Toronto's Future Weather & Climate

Presentation to Parks and Environment Committee January 29, 2013

Justification for ... and Purpose of the Study

Christopher Ll. Morgan, PhD Program Manager, TEO

Justification for the Study (i) Questions & Issues

City Council Adopted Policy Direction

- Climate Change, Clean Air & Sustainable Energy Action Plan (2007)
- Ahead of the Storm (2008) rec. Analysis of Toronto's Changing Climate

Major Questions and Issues

- How HOT will it be?
- How much RAIN & SNOW can we expect?
- How much SMOG will occur?
- How DRY will it be?
- How WINDY will it be?

Justification for the Study (ii) Limitations of Global-Regional Climate Models

- Depict Very Large Areas Weather & Climate of Toronto is the same as North Bay & Buffalo
- Don't Include Local Effects of Great Lakes, Niagara Escarpment, Oak Ridges Moraine, Tall Buildings etc
- Based on 30-year Weather "Normals" (exclude more recent & rapid changes – i.e. the "hockey stick" data)
- Weather/Climate Means Don't Address the City's Exposure to Costs of Extreme Events

Justification for the Study (ii)

Toronto's Recent Extreme Weather Records

- Warmest Summer in 63 years (2002)
- Warmest January in 165 years (2005)
- Record one-day power demand of 27,005 MW due to summer heat (August 1st, 2006)
- Earliest Heat Wave (June 19-21, 2012)
- Highest Summer Rainfall Ever (2008)
- Three 1 in 100 year storms in less than 12 years: (July 2000, August 2005, July 2012)

New & Innovative Local Model Approach

- Global Climate Models + Regional Climate Models + Local Weather Model (1km² Cells)
- SENES Consultants ran the computer models

ADVISORS & PEER REVIEW GROUP

- Environment Canada
- Ontario Ministry of the Environment
- Toronto Regional Conservation Authority
- Approach adopted by US National Centre for Atmospheric Research + MOE + UofT (W.R.Pelltier)

New Elements

.... To Include: New Influences

Included Influence of the Great Lakes, Niagara Escarpment and the Oak Ridges Moraine.

.... To Model : Two 10 Year Periods

The "Present" 10 Year Base Period 2000-2009
 A "Future" 10 Year Period 2040-2049

.... To Examine: Toronto within the GTA

New Questions

.... To Answer: New Questions

Focused on obtaining data concerning:

Future Extremes-of-Weather

(e.g., Heat Waves & Torrential Storms) rather than ...

Future Averages-of-Climate

(e.g., Average Temperature & Average Rainfall)

But examined such "Averages" to check model validity!

Results of the Study

James Young PhD, PEng, PMet., SENES Consultants ⁹

What We Did

- Obtained data output relevant to Ontario from combined Global Climate Models (Coarse km Resolution) and Regional Climate Models (Medium km Resolution) from the Hadley Meteorological Centre UK
- Used that data as the starting point to run
 Toronto's Local Weather Model (Fine km Resolution) regarding 2000-2009 (the "Present") and regarding 2040-2049 (the "Future")
- Analyzed the Data Created and Analyzed the Results against rational Meteorological Science and Local Influences (the "Climate Drivers")

Results: Warmer Temperatures (2040's)

Average annual temperatures increase by 4.4°C

- Projected average winter temp. increases by 5.7°C.
- Projected average summer temp. increases by 3.8°C.
- The extreme daily minimum temperature
 - "becomes less cold" by 13°C.
- The extreme daily maximum temperature
 - "becomes warmer" by 7.6°C.

Confidence in Results: Temperature

- **Compared with Monitored Means** (2000-2009)
 - Monitored Data from Lester Pearson Airport = 8.7°C
 - Toronto's Climate-Weather Model = 8.7°C
 - Environment Canada's Model = 6.7°C
 - Our model approach is closer!

Compared with Other Models (2040-2049) for GTA

- Comparing High Resolution (Toronto) versus Low Resolution Models' re: Delta Temperature Values
- Our 4.4°C compares favourably with Low Resolution Models showing changes from -2.7°C to 6.3°C 12

Results: Changes in Precipitation

Snowfall & Rainfall

- Less Snow & More Rain -- in Winter
- More Rain in July (80%) & August (50%)

- Fewer Rain Storms >25 mm in Winter
- Same Number of Storms in Summer

BUT these = Much More Intense Storms !!

Modelled Daily Extreme Rainfall

Highest Rainfall is shown over Finch Avenue.

- Captured by Modelling, but NOT by Standard Environment Canada Monitoring at Pearson International Airport because the centre of the storm was distant from the airport monitoring station.
- Monitoring stations can only identify what happens at a particular station.
- Modelling this at RCM Scale put it well into New York State with less intensity

Finch Avenue "Washout" 19 August 2005

Expected Changes Some Examples

WEATHER EXTREMES	PARAMETER	UNITS	2000- 2009	2040- 2049
Extreme Rainfall	Maximum Amount in One Day	mm	66	166
	Number of Days with More Than 25mm	days	19	9
	Mean Annual Daily Maximum	mm	48	86
Extreme	Maximum Daily (in °C)	°C	33	44
Heat	Number of Days with Temperature greater than 30 °C	days	20	66
	Number of Heat Waves (3 or more Consecutive Days with Temperatures greater than 32°C)	3-day events	0.57	2.53

Potential Implications of Study Projections ... and Next Steps

Lawson J. Oates, MES

Director, Toronto Environment Office

Climate Adaptation & Infrastructure Management Approaches

- **Objectives**
- **1.** Cost effective pre-emptive adaptation measures
- 2. Minimize cost through adaptive design and construction
- 3. Build resilience and restoration capability into public infrastructure and services
- 4. Risk management analysis

Avoiding Future Climate Costs

- August 19, 2005
 Storm impacted
 Finch Avenue
- at a Cost of \$47 million to the City
- plus \$600 million in Private Costs

City's Adaptation Responsibilities

- Air Conditioning Peaks & Blackouts Toronto Hydro
 Storms & Urban Flooding Toronto Water
 Culverts & City Roads Toronto Transportation
- Gardens & Trees Toronto Parks & Recreation
- Storms Toronto Region Conservation Authority
- People in Need Shelter, Support & Housing
- Street Ventilation (re Smog etc)
 City Planning

WeatherWise Partnership Participants

ISSUE: Increased Summer Temperatures -A/C, Electricity Demand, Heat Vulnerability

Expected in **2040-2049:** Almost "**6 times**" increase in **A/C use** during days with greater than 24°**C**

ADAPTATION: Options & Actions

Cooling Centres, Shade Same and

ISSUE: Increased Summer Temperatures – Impact Air Quality (SMOG)

Heat waves & smog events go hand in hand

More Heat means More Smog

ADAPTATION: Options & Actions

Mainstreaming of Adaptation

Toronto to host Chief Planners Roundtable on Resilient Cities

Toronto's Chief Planner told the Toronto Board of Trade:

- "Climate change could have significant planning implications in the years ahead"
- "Thinking about resiliency and how we're going to adapt to changing weather patterns... needs to be injected into our conversation of city building"

http://news.nationalpost.com/2013/01/14/from-a-growth-to-climate-change-five-highlightsof-the-toronto-chief-planners-speech-to-the-board-of-trade/

ISSUE: Increased Summer Temperatures – Transportation Systems

ADAPTATION: Options & Actions – Low Tech Response

ADAPTATION: Options & Actions

Mechanical components in traffic control systems have temperature thresholds

Simple adaptation option, install fans to ensure continued operation

ISSUE: Increased Rainfall – Culverts, Roads and Drainage

ADAPTATION: Options & Actions

Basement Flooding Protection Program - 34 Priority Study Areas

Enhanced Design Standards:

- May 2000 storm event for Sanitary Sewers.

- 100 Year design storm event for Storm Drainage systems.

Only a few cities undertake a similar risk assessment and mitigation approach.

Conclusions

Toronto's Future Weather Will Be Different with an increase in extreme weather events

We Must Continue to Adapt to the Changes

 City Divisions can now undertake individual Climate Change Risk Assessments (using City Risk Tool)

Monitor Situation & Update Study as Required

Thank You

Lawson Oates,

LOates@toronto.ca

Christopher Morgan, cmorgan1@toronto.ca

James Young jyoung@senes.ca