

ARRIS Strategy Studio 801 - 101 Roehampton Ave Toronto M4P 2W2 647 330 9061 Terry@TerryMills.ca

November 23rd, 2021

RE: PH29.2 – Agenda Item Nov. 25 – Changing Lanes

The City of Toronto's Review of Laneway Suites - Zoning By-law Amendments - Final Report

SENT BY EMAIL

Planning & Housing Committee – attention of Nancy Martins, Secretariat Contact, phc@toronto.ca *Councillor Bailao, Chair*, councillor_bailao@toronto.ca

INTRODUCTION

I was retained by FoNTRA to review the maximum permitted building height standard for Laneway Suites. My opinion is based upon 20-years experience operating Chizen & Mills, a design-build practice primarily renovating and constructing additions to houses in the former City of Toronto, and my 18-years of practice as a Registered Professional Planner.

It has been recommended to increase height to 6.3m (20'-8"), primarily to address wood/soil contact and insulation considerations...

In my opinion, no such increase in the maximum permitted building height is necessary. <u>Currently, 2.44m (8'-0") ceiling heights can be attained with an R-60 roof assembly</u>.

Furthermore, in my opinion, there are good reasons for not increasing the building height standard. Laneway Suites are not intended to emulate the scale of the main house. These buildings should be of a more modest scale – recognisant of their ancillary building origins.

ABOUT BUILDING HEIGHT

The following schedule is an *'indicative' model*, intended for reference purposes. It identifies the components of a Laneway Suite that cumulatively amount to the building's overall height. A height is ascribed to each component. The intention is to permit each component to be reviewed separately, whilst being recognisant of the effect on the overall building height.

I have intentionally set up the model to reflect the current 6.00m (19'-8") height standard. This model permits individual component heights to be adjusted, to increase some and to reduce others, whilst maintaining the planned building height.

INDICATIVE MODEL				
MAIN FLOOR	 height above grade 	0.20m	(0'-8")	
	 floor-to-ceiling height 	2.44m	(8'-0")	
SECOND FLOOR	 floor assembly thickness 	0.30m	(1'-0")	
	 floor-to-ceiling height 	2.44m	(8'-0")	
ROOF ASSEMBLY	 assembly thickness 	<u>0.58m</u>	(1'-6")	
		5.96.m	(19'-7")	

Each component is briefly discussed below in terms of potential height savings. Of note, if all the potential height savings were applied -0.33m(1'-1'') – then a cumulative height could be achieved that is below the current maximum permitted building height standard, namely, achieving a height of a 5.66m (18'-7''). However, that is not the intention of this exercise—but rather it is to determine whether there is enough latitude in the current 6.00m (19'-'8'') standard to accommodate appropriate and desirable Laneway Suite solutions.

- main floor assembly No height savings have been identified in this element. Insulated concrete floors can address wood/soil contact and associated moisture issues within this condition. If wood floor assemblies are preferred a ventilated recessed crawl space can be incorporated.
- floor-to-ceiling heights a height savings of up to 0.11m (0'-4½") per floor could be attained by adopting OBC minimum room height standards, and a smaller savings if partial reductions were selected.
- 3. **second floor assembly** a height savings of up to 0.10m (0'-4") could be attained by reducing span lengths by introducing interior load bearing walls. In so doing, reducing joist thicknesses.
- 4. **roof assembly** a height saving of 0.13m (0'-5") could be attained by utilizing high R-value foam insulation, as I find some builders have already adopted.

As mentioned further above, no savings are actually necessary.

Sincerely –

Terry Mills B.ARCH RPP MCIP

Also sent to – All Councillors, clerk@toronto.ca Gregg Lintern, Chief Planner and Executive Director, City Planning Division, Gregg.Lintern@toronto.ca Graig Uens, Senior Planner, City Planning Division, Graig.Uens@toronto.ca