Current Cycling Demand:
Modelled based on road network routing of origin and destination data (at the Dissemination Area level) from the 2016 Transportation Tomorrow Survey using current cycling trips (24 hour period).

Date: March 2019

Data Source: DMG, Transportation Tomorrow Survey (2016)
Projection: NAD 1927 MTM 3
Cartography: Cycling Infrastructure and Programs, City of Toronto
Potential Cycling Demand:
Modelled based on road network routing of origin and destination data (at the Dissemination Area level) from the 2016 Transportation Tomorrow Survey using 66% of short motorized vehicle and public transit trips (5km and under) and long walking trips over 1 km (24 hour period). Only a proportion of these trips are used in order to account for the 33% of the population estimated not to cycle regardless of cycling conditions (Geller, 2006). The analysis shows areas that have the greatest potential to convert mode share to cycling if more cycling-friendly infrastructure is provided.
Trip Generators:
Based on the density of destinations (libraries, community and recreation centres, schools, hospitals, health care centres, grocery stores, daycares) which focus on trip generators that serve daily needs. This analysis helps identify the number of trip generators each route is modelled to serve, within a 250m buffer of each location, helping people access these destinations using cycling-friendly routes.
This analysis highlights streets within Context Area 2 that are modelled to carry the highest number of commuters from their home to the closest public transit station. By providing continuous, safe routes to transit, it will help encourage people to access transit by bike.
Connectivity:
This analysis highlights bikeway projects that can close gaps in the existing network by providing cycling-friendly connections between nearby routes. The result will be more continuous, connected routing options for cyclists using those facilities.
Network Coverage:
This analysis helps identify parts of the city that currently lack bikeways. It is based on proximity to existing cycling facilities, using a 250 m buffer around existing facilities in Context Area 1, and a 500 m buffer in Context Area 2 (projects outside of these buffer areas receive a higher score).
Barrier Crossings:
This analysis will identify opportunities to provide safer crossings across barriers, including freeways, railways, ravines, watercourses and LRT lines, which reduce crossing opportunities by bike. Opportunities to improve existing crossings will also be considered.
Safety: ranks mid-block and intersection locations into 4 quartiles to identify which locations are experiencing a higher proportion of cycling collisions (4 being highest and 1 the lowest). The quartile ranking analyzes cycling collisions relative to each other depending on whether the locations are in Context Area 1 or Context Area 2. The Renew program is informed by a safety analysis of collisions along existing cycling routes.
Equity:
Based on street segments which have the highest number of key access destinations abutting them, as identified by Neighbourhood Planning Tables, within Neighbourhood Improvement Areas (NIAs). Projects that fall within NIAs receive a higher score.
Population and Employment Density

Projection: NAD 1927 MTM3
Cartography: City Planning, Research and Information, City of Toronto
Date: April 2019