

ReNew Sheppard East Transportation Planning Study

Final Report

City of Toronto

ReNew Sheppard East Transportation Planning Study

Final Report

City of Toronto

R.J. Burnside & Associates Limited 6990 Creditview Road, Unit 2 Mississauga ON L5N 8R9 CANADA

September 2024 300055817.0000

Distribution List

No. of Hard Copies	PDF	Email	Organization Name
_	Yes	Yes	City of Toronto

Record of Revisions

Revision	Date	Description
3	September 16, 2024	Fourth Submission to City of Toronto

R.J. Burnside & Associates Limited

Report Prepared By:

Gordon Hui, P.Eng. Senior Transportation Planner GH/XT:tm

Report Prepared By:

Xinli Tu, EIT Transportation Planner

Report Reviewed By:

Ray Bacquie, P.Eng., MBA Senior Vice President, Transportation

Table of Contents

1.0	Intro 1.1		n round	
	1.1	0	round	
	1.2		iption of the study area	
	1.3	00	jement Stakeholder Consultation	
		1.3.1		
			Community Consultation	
2.0			ontext and Initiatives	
	2.1		icial Planning Context	
			Provincial Policy Statement, 2020	
		2.1.2	Places to Grow – Growth Plan for the Greater Golden Horsesho (2020)	
		2.1.3	2041 Regional Transportation Plan (2018)	4
		2.1.4	GO Rail Station Access (2023)	5
		2.1.5	CycleON	5
	2.2	City of	Toronto Planning Context and Related Studies	6
		2.2.1	City of Toronto Official Plan	
		2.2.2	Sheppard East Subway Corridor Secondary Plan	7
		2.2.3	City of Toronto Complete Streets Guidelines	7
		2.2.4	City of Toronto Vision Zero Road Safety Plan	8
		2.2.5	City of Toronto TransformTO	9
	2.3	Releva	ant Planning and Infrastructure Initiatives	9
		2.3.1	Sheppard Avenue East Complete Street (City of Toronto)	
		2.3.2	Sheppard Avenue East Resurfacing Project (City of Toronto)	10
		2.3.3	5-Year Service Plan & 10-Year Outlook (TTC)	10
		2.3.4	Oriole GO Station Relocation (Metrolinx)	11
3.0	Exis	ting Tra	ansportation Conditions	13
	3.1	Trans	portation System Inventory	13
		3.1.1	Street Network	13
		3.1.2	Active Transportation Network	15
		3.1.3	Transit Network	15
		3.1.4	Road Right-of-Way Characteristics	18
	3.2	Travel	Demand	18
		3.2.1	Travel Patterns	18
		3.2.2	2019 and 2020 Temporal Distribution of Traffic Volumes	19
	3.3	Existir	ng Traffic Conditions	20
		3.3.1	Existing Intersection Traffic Operations	20
		3.3.2	Existing Road Capacity Analysis	23
	3.4	Existir	ng Transit Conditions	23
	3.5	Existir	g Active Transportation Conditions	25
		3.5.1	Multi-Modal Level of Service Evaluation	25
		3.5.2	Cycling Level of Service Evaluation	26

		3.5.3	Pedestrian Level of Service Evaluation	26
4.0	Stre	et Netw	ork Planning Principles, Needs, and Opportunities	28
	4.1	Planne	ed Road Improvements	28
	4.2		Network Principles	
	4.3		to Overcome Property Constraints	
	4.4	Oppor	tunity to Transform the Role of the Street Network	29
5.0			sportation Planning Principles, Needs, and Opportunities	
	5.1	•	sed Active Transportation Improvements	
		5.1.1		
		5.1.2	-) - 9	
	5.2		Transportation Principles	
		5.2.1		
		5.2.2		
		5.2.3		
	5.3		and Opportunities	
		5.3.1	Enhance North-South Corridors	
		5.3.2	Provide Quieter Alternatives	
		5.3.3		
		5.3.4	Provide Safe Mid-block Crossings	
		5.3.5	Stakeholder Identified Opportunities	36
6.0	Tran		nning Principles, Needs, and Opportunities	
	6.1	Planne	ed or Proposed Transit Improvements	
		6.1.1	Proposed Regional Transit Improvements	
		6.1.2		
	6.2	Transi	t Principles	
		6.2.1	Transit and the Public Realm	
		6.2.2	First and Last Mile Connections	42
	6.3	Needs	and Opportunities	
		6.3.1	5 1 5 5	
		6.3.2		
		6.3.3	Cycleshed Analysis	48
		6.3.4	Parking Constraints at the Future Oriole GO	49
		6.3.5	Connectivity between Regional and Local Transit	49
		6.3.6	Support for Future Transit Improvements	50
7.0	Sust		ity Initiatives	
	7.1	Transf	ormTO Net Zero Strategy	51
	7.2	Electri	c Vehicle Initiatives	51
	7.3	•	orating Resilience	
	7.4	TTC G	Green Initiatives	52
8.0			ding Principles, and Objectives	
	8.1			
	8.2	Guidin	g Principles	53

	8.3	Transportation Planning Objectives	.54
		8.3.1 Growth Management Objectives	.54
		8.3.2 Placemaking and Sociability Objectives	.55
		8.3.3 Transportation Equity Objectives	
		8.3.4 Transportation Sustainability Objectives	.56
9.0	Futu	re Conditions Assessment	.58
	9.1	Land Use Scenario	
	9.2	Multi-modal Transportation Assessment	.60
		9.2.1 Travel Demands	.60
		9.2.2 Link Capacity Analysis	.61
		9.2.3 Target Mode Share	.64
10.0	Multi	i-modal Transportation Strategies and Solutions	.74
		Street Network Strategies	
		10.1.1 New Local Street Design	.74
		10.1.2 Public Street Right-of-way	.74
	10.2	Active Transportation Strategies	.74
		10.2.1 Separated or Designated Active Transportation Infrastructure	.74
		10.2.2 Overcoming the Highway 401 Active Transportation Barrier	.75
		10.2.3 Local Active Transportation Corridors	.75
		10.2.4 Pedestrian Crossing	.76
		10.2.5 Off-Road Trails	.77
	10.3	Transit Strategies	.77
		10.3.1 GO Station and TTC Integration	.77
		10.3.2 Support of Regional Transit	.77
		10.3.3 Local Bus Services Improvements	.78
		10.3.4 Accessible and Equitable Transit Station Design and Experience	
	10.4	Travel Demand Management Strategies	
		10.4.1 Educational Campaigns	
		10.4.2 Bike Share Toronto	
		10.4.3 School Partnerships	
		10.4.4 Mobility and Gathering Spaces	
		10.4.5 Placemaking and Public Art	
		10.4.6 Carpooling and Parking Management Strategies	
		10.4.7 Car-share Spaces	
		10.4.8 Curbside Management and On-street Parking Strategies	
		10.4.9 Trip-end Facilities	
		Land Use Strategies	
	10.6	Sustainability Strategies	.86

Tables

2	Stakeholder Consultations	Table 1-1
blicy Directions5	Target Modal Splits for Oriole GC	Table 2-1
ections13	Existing Road Characteristics of	Table 3-1

Table 3-2:	Date of Turning Movement Counts	20
Table 3-3:	2019 Maximum Pedestrian Volumes within the Study Area - AM	24
Table 3-4:	2019 Maximum Pedestrian Volumes within the Study Area - PM	24
Table 3-5:	2019 GO Rail Ridership	24
Table 5-1:	Stakeholder Identified Active Transportation Opportunities	36
Table 9-1:	Population and Employment Forecasts	59
Table 9-2:	Net Vehicular Trip Growth During the Peak Hour	60
Table 9-3:	V/C Ratio Threshold Description	61
Table 9-4:	2051 Future Capacity Analysis (AM Peak Hour)	62
Table 9-5:	2051 Future Capacity Analysis (PM Peak Hour)	63
Table 9-6:	Mode Split Benchmarks	68
Table 9-7:	2051 Future Capacity Analysis (AM Peak Hour) with 50% Modal Split	70
Table 9-8:	2051 Future Capacity Analysis (PM Peak Hour) with 50% Modal Split	71
Table 9-9:	2051 Future Capacity Analysis (AM Peak Hour) with 70% Modal Split	72
Table 9-10	: 2051 Future Capacity Analysis (PM Peak Hour) with 70% Modal Split	73
Table 10-1	: Shared Active Transportation Corridor Recommendations	76

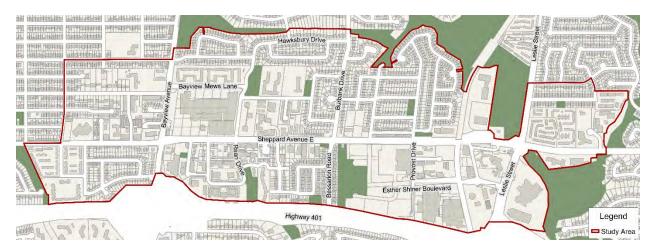
Figures

Figure 1-1:	Study Area	1
Figure 2-1:	Safety Zones and Fatal / Seriously Injured Collisions (2018 to 2022)	9
Figure 3-1:	Roadway Configuration	14
Figure 3-2:	Active Transportation Network within Study Area	16
•	Transit Network within Study Area	
Figure 3-4:	Right-of-Way Widths Official Plan	18
Figure 3-5:	ReNew Sheppard East Trip Distribution (Outbound, 6 AM to 10 AM)	19
	Vehicle Trip Patterns (Weekday)	
	Existing Conditions Traffic Volumes	
	Summary of Existing Traffic Operations Analysis	
Figure 3-9:	2019 Access Mode Share	24
Figure 5-1:	Proposed Cross-section of Sheppard Avenue West of Rean Drive	30
0	Cycling Impact Analysis Scores	
	Examples of Widths of Different Types of Pedestrians	
Figure 6-1:	Draft Proposed TTC Improvements	39
Figure 6-2:	West Harbour GO Station, City of Hamilton – Design Elements Part 1	41
Figure 6-3:	West Harbour GO Station, City of Hamilton – Design Elements Part 2	41
Figure 6-4:	West Harbour GO Station, City of Hamilton - Design Elements Part 3	42
Figure 6-5:	2019 October Average Weekday Entrance Usage	44
Figure 6-6:	2022 October Average Weekday Entrance Usage	44
	Main Entrance at Leslie Station	
Figure 6-8:	Walkshed Analysis for Bayview TTC Station	46
-	Walkshed Analysis for Bessarion TTC Station	
Figure 6-10	: Walkshed Analysis for Leslie TTC Station	48
Figure 6-11	: Cycleshed Analysis for All Three TTC Stations	49

Figure 9-1: Traffic Zones	58
Figure 9-2: TTS Zones (Planning Districts) Close to Line 1	66
Figure 9-3: Planned Transit Improvements	67
Figure 10-1: Bike Share	81
Figure 10-2: Ethennonnhawahstihnen' Park	82
Figure 10-3: Public Art Along Sheppard Avenue	83

Appendices

Appendix A	Supplemental Information: Existing Traffic Operations
Appendix B	Supplemental Information: Active Transportation Needs and Opportunities
Appendix C	Supplemental Information: Transit Needs and Opportunities


1.0 Introduction

1.1 Background

The City of Toronto (City) has retained R.J. Burnside & Associates Limited (Burnside) to complete a Transportation Planning Study to guide growth and future development within the Sheppard Avenue East corridor between Bayview Avenue and Leslie Street. The ReNew Sheppard East Transportation Planning Study will provide recommendations to improve infrastructure, refine the existing policy framework, and develop additional policies.

1.2 Description of the study area

The ReNew Sheppard East study area (study area) is shown in Figure 1-1.

Figure 1-1: Study Area

1.3 Engagement

1.3.1 Stakeholder Consultation

This Phase 1 report documents the transportation needs and opportunities assessment within the study area. This analysis was conducted based on a review of existing conditions and the engagement of internal staff and external stakeholders such as the Toronto Transit Commission (TTC) and Bike Share Toronto. The purpose of these stakeholder meetings was to brainstorm ideas, derive needs and opportunities, and ensure potential solutions were aligned with stakeholder interests and objectives. Key engagement dates are provided in Table 1-1.

Stakeholder	Type of Stakeholder	Date of Consultation
Toronto Transit Commission	External	October 26, 2022
Bike Share Toronto	External	November 18, 2022
Transportation Services –	Internal	January 23, 2023
Capital Projects Pedestrian and		
Cycling Projects, City Planning		

Table 1-1: Stakeholder Consultations

1.3.2 Community Consultation

The ReNew Sheppard East Study Open House was held on Wednesday, April 12, 2023. Residents and members of the public provided feedback to City staff and the Ward Councillor to understand the community's concerns. Public feedback on the transportation planning study highlighted several key concerns. There was safety concerns related to vehicle access and pedestrian crossings, particularly at the YMCA parking exit, Sheppard Avenue, and Ethennonnhawahstihnen' Lane, where speeding and unsafe conditions were reported. Cyclists and pedestrians face conflicts due to a lack of dedicated infrastructure, with repeated concerns regarding for the need for separated cycling lanes on Sheppard Avenue and Burbank Drive. Speeding was also concerning along the East Don River Trail.

There were also concerns about congestion, particularly along Sheppard Avenue, Ether Shiner Boulevard, and Leslie Street, with many expressing frustrations about new development exacerbating traffic problems. Suggestions for improving pedestrian connectivity include more frequent and safer crossings, particularly for seniors and near new community centers, with additional measures like raised pedestrian crossings, speed bumps, and sidewalk extensions. Finally, several residents raised the need for better access to the TTC, enhanced multi-use trails, and safer crossings at major intersections.

2.0 Planning Context and Initiatives

This section provides a summary of the Provincial and City policy documents. The existing policies and other guiding planning principles provide direction for developing the City's transportation system.

2.1 Provincial Planning Context

2.1.1 Provincial Policy Statement, 2020

The Provincial Policy Statement (PPS) provides a vision for land use planning in Ontario that encourages efficient use of land, resources, and public investment in infrastructure. The policies related to transportation system planning include:

Healthy, Active Communities (1.5.1)

- Plan public streets, spaces, and facilities to be safe, meet the needs of pedestrians, foster social interaction, and facilitate active transportation and community connectivity.
- Recognize provincial parks, conservation reserves, and other protected areas, and minimizing negative impacts on these areas.

Transportation Systems (1.6.7)

- Provide for transportation systems which are safe, energy efficient, facilitate the movement of people and goods, and are appropriate to address projected needs.
- Make efficient use of existing and planned infrastructure, including the use of transportation demand management strategies, where feasible.
- Provide for a multimodal transportation system, which maintains connectivity within and among transportation systems and, where possible, improves connections which cross jurisdictional boundaries.
- Promote a land use pattern, density, and mix of uses that minimize the length and number of vehicle trips and support current and future use of transit and active transportation.

Transportation and Infrastructure Corridors (1.6.8)

- Plan for and protect corridors and rights-of-way for infrastructure, including transportation, transit and electricity generation facilities and transmission systems to meet current and projected needs.
- Protect major goods movement facilities and corridors for the long term.
- Prevent development in planned corridors that could preclude or negatively affect the use of the corridor for the purpose for which it was identified.

- Encourage the preservation and reuse of abandoned corridors for purposes that maintain integrity and continuous linear characteristics of the corridor, wherever feasible.
- Consider the Wise Use and Management of Resources when planning for corridors and rights-of-way for significant transportation and infrastructure facilities.

2.1.2 Places to Grow – Growth Plan for the Greater Golden Horseshoe (2020)

A Place to Grow (Growth Plan) contains policies and schedules to plan for growth and development in a way that supports economic prosperity, protects the environment, and helps communities achieve a high quality of life. This Growth Plan also sets out a long-term framework for managing growth by providing population and employment forecasts for upper- and single-tier municipalities within the Greater Golden Horseshoe.

The guiding principles of the Growth Plan related to transportation are as follows:

- "Prioritize intensification and higher densities in strategic growth areas to make efficient use of land and infrastructure and support transit viability.
- Improve the integration of land use planning with planning and investment in infrastructure and public service facilities, including integrated service delivery through community hubs, by all levels of government."

2.1.3 2041 Regional Transportation Plan (2018)

The 2041 Regional Transportation Plan (RTP) identifies a long-term vision for building an integrated transportation system in the Greater Toronto and Hamilton Area (GTHA). It sets forth a plan for Regional Rapid Transit, the regional Highway, Network, and Regional Express Rail (RER), now referred to as the GO Expansion Project.

GO Expansion will transform GO Rail into a frequent all-day, two-way express rail service that will provide an electrified service on existing GO Rail lines with 15-minute frequencies and all-day two-way service. To support the expanded services, improvement to infrastructure is needed:

- Track expansion, including the upgrade of existing structures within corridors such as culverts, bridges
- Grade separations
- Maintenance and storage facilities
- Electrification infrastructure
- Station Expansions (parking, building, pedestrian access, etc.)
- New stations that will optimize ridership and minimize the delay

The development of the Oriole GO Station that is currently within the study area will be aligned with the vision and objectives of the 2041 RTP.

2.1.4 GO Rail Station Access (2023)

GO Rail Station Access "supports enhanced GO Station access, improves options for customers, and increases the capacity of GO Stations to accommodate ridership growth in a way that is sustainable and financially efficient to 2041." GO Rail Station Access was released in February 2023. Part of the access plan provides details for each GO Station regarding the target mode shares and expected ridership. The GO Rail Station Access envisions a shift to rail station access that grows ridership, enhances customer experience and safety, and reduces dependence on single-occupancy vehicles.

Relevant policy direction and target 2041 modal splits for the Oriole GO Station for each access mode are shown in Table 2-1.

Station Access Mode	Target Modal Split (2041) %	Policy Directions
Walking	19	Establish a network of safe and comfortable pedestrian
		routes that connect directly to the station and are
		activated with transit-supportive uses.
Transit	27	Coordinate local and regional service schedules and
		fare systems.
Cycling	3	Create safe and direct routes to stations that are
		complemented with clear wayfinding.
Pick-up/	15	Provide efficient access and appropriately located with
Drop-off		clear wayfinding.
Carpool	4	Optimize available parking to enhance safety and
Passengers		usability, while integrating parking within Mixed Modal
		stations.
Drive & Park	32	Explore innovating strategies for providing and
		managing parking.

Table 2-1: Target Modal Splits for Oriole GO Station and Policy Directions

The development of the Oriole GO Station that is currently within the study area will be aligned with the vision and objectives of the GO Rail Station Access.

2.1.5 CycleON

Ontario's Cycling Strategy provides strategic direction to support and encourage growth in cycling over the next 20 years. The key strategic directions focus on:

• Healthy, active, and prosperous communities – direction focuses on providing enhanced cycling infrastructure through buildings (including commercial, residential, and institutional buildings) and planning guidelines and policies.

- Cycling infrastructure the direction aims to improve the efficiency of the approval process for new cycling infrastructure and focuses on funding partnerships with municipalities to test and build cycling infrastructure.
- Safer highways and streets this direction recognizes the need for continuing education and the enforcement of traffic laws to create a safe space for all road users.
- Awareness and behavioural shift the direction focuses on educating people to encourage them to cycle more through province-wide campaigns or schools and communities. It also states the need to research, collect data, and develop cycling best practices.

2.2 City of Toronto Planning Context and Related Studies

2.2.1 City of Toronto Official Plan

The City's Official Plan sets a clear vision for the City defining a set of policies that ensures the City grows responsibly and sustainably, meeting the needs of future generations. The transportation-related policies include:

- The City will work with neighbouring municipalities, the Province of Ontario and Metrolinx to address mutual challenges and to implement the Provincial framework for dealing with growth across the GTA which reduces auto dependency and improves air quality,
- The City's transportation system will be maintained and developed to support the growth management objectives of this Plan by developing the key elements of the transportation system in a mutually supportive manner which prioritizes walking, cycling, and transit over other passenger transportation modes,
- Considering the diverse travel needs of people of all ages, abilities, and means in the planning and development of the transportation system,
- Improving connections between key elements of the transportation system to enhance the convenience of multi-modal trips, and
- Incorporating design features in transportation infrastructure, where feasible, that facilitate their modification or conversion to other uses in response to changes in environmental conditions, technology, development, and travel behaviour.

The Official Plan also emphasizes the importance of land use and transportation integration: "The integration of transportation and land use planning is critical to achieving the overall aim of increasing accessibility throughout the City. Accessibility has two components: mobility (transportation) and proximity (land use). Increasing mobility by providing modal choice, and/or increasing the speed of travel allows more trips to be made within a given time, whereas increasing proximity through greater mixing of uses and/or higher densities achieves the same effect by shortening trip lengths. The policies of this Plan reflect the importance of mutually supportive transportation and land use

policies that combine the mechanisms of mobility and proximity to maximize accessibility."

The following key maps of the Official Plan were reviewed within the context of ReNew Sheppard East:

- Urban Structure: Map 2 of the Official Plan
- High Order Transit Corridors: Map 4 of the Official Plan
- Surface Transit Priority Network: Map 5 of the Official Plan

The Urban Structure review indicated that Sheppard Avenue is designated as an "Avenue." The Official Plan defines "Avenues" as areas of growth within Mixed-Used Areas and areas that can provide for new jobs and homes to accommodate the City's growing population.

The High Order Transit Corridor and Surface Transit Priority Network reviews indicated that the segments along Sheppard Avenue adjacent to TTC Line 4 are designated as areas for future transit expansion and priority transit segments.

2.2.2 Sheppard East Subway Corridor Secondary Plan

The Sheppard East Subway Corridor Secondary Plan is a strategy to support the significant investment in rapid transit by managing, directing, and ensuring quality development in the area. This strategy aims to encourage development in key areas designated as *Mixed-Use Areas* and establish a planning context for long-term growth. The transportation-related policies include:

- To facilitate traffic flow, the number of access points from public roads to private redevelopment sites will be minimized, particularly on arterial roads.
- Major office/employment development proponents will be encouraged to develop and implement appropriate travel demand management strategies to reduce peak period automobile trips, and facilitate non-auto modes of travel such as transit, walking and cycling. In addition, measures to support transit use such as maximum parking standards, parking sharing arrangements, public parking structures, and payment-in-lieu may be required on sites within walking distance of rapid transit stations.

2.2.3 City of Toronto Complete Streets Guidelines

The City's Complete Streets Guidelines (2017) provide Toronto-specific direction on how to allocate space in the street right-of-way that accounts for all road users. The three guiding principles include:

- Streets for People:
 - Improve safety and accessibility of streets for the most vulnerable road users in mind – children, the elderly, and individuals with disabilities.

- Give people mobility choices.
- Make a connected network and infrastructure for all mobility choices.
- Promote healthy and active living by designing streets that are more comfortable and inviting for walking and cycling.
- Streets for Placemaking:
 - Create beautiful and vibrant public spaces where people naturally want to stop, spend time, and engage with the social fabric of the street.
 - Respect and respond to the local area context as provided by the envisioned land uses and the character of the surrounding neighbourhoods.
 - Improve environmental sustainability goals by incorporating street vegetation and other progressive stormwater management systems.
- Streets for Prosperity:
 - Support economic vitality and the neighbourhood businesses that front it.
 - Enhance social equity by welcoming all races, incomes, genders, and abilities.
 - Balance flexibility and cost-effectiveness by having the ability to adapt to the City's changing needs over time.

The Complete Street Guidelines describe a range of street types in Toronto and are intended to be considered in all street design projects in the City of Toronto. They outline the steps involved in street design and provide an overview of the design principles and considerations for the key components and functions of streets (i.e., the design for pedestrians, cycling, transit, green infrastructure, roadways, and intersections).

2.2.4 City of Toronto Vision Zero Road Safety Plan

The City of Toronto's Vision Zero Road Safety Plan is a comprehensive action plan focused on reducing traffic-related fatalities and serious injuries on Toronto's streets. The plan prioritizes the safety of our most vulnerable road users across seven emphasis areas through a range of extensive, proactive, targeted, and data-driven initiatives. The emphasis areas include pedestrians, school children, older adults, cyclists, motorcyclists, aggressive driving, and distraction.

Within and around the study area, approximately 10% of the residents are 14 years old or younger, and 18% are 65 years old and over. The study area contains several school / senior safety zones and community safety zones, as shown in Figure 2-1.

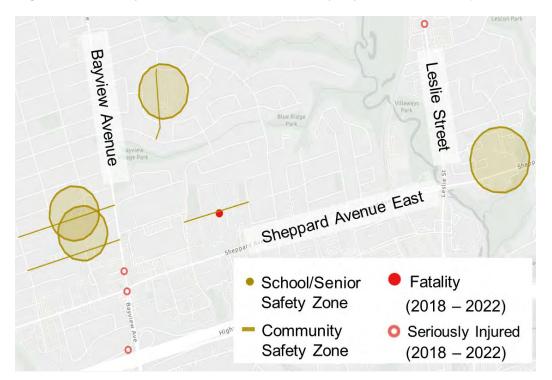


Figure 2-1: Safety Zones and Fatal / Seriously Injured Collisions (2018 to 2022)

Source: Adapted from the City of Toronto's Vision Zero Road Safety Map

2.2.5 City of Toronto TransformTO

The City of Toronto's TransformTO is a strategy to achieve net zero greenhouse gas emissions (GHG) across the community by 2040. This strategy calls for rapid action to scale up existing programs, implement additional authorities, and coordinate with other levels of government to establish the trajectory needed to achieve net zero by 2040. In 2020, the transportation sector accounted for 33% of community-wide emissions, primarily attributable to gasoline used in passenger cars and trucks, which accounted for 25% of community-wide emissions.

The transportation sector is the second largest source of GHG emissions in Toronto; therefore, the City will work to increase access to low-carbon transportation options, including walking, biking, public transit, and electric vehicles. By 2030, the City aims for 30% of registered vehicles in Toronto to be electric, as well as 75% of school/work trips under 5 km to be walked, biked, or by transit.

2.3 Relevant Planning and Infrastructure Initiatives

2.3.1 Sheppard Avenue East Complete Street (City of Toronto)

The Sheppard Avenue East Complete Street project proposes changes to Sheppard Avenue East from Bayview Avenue to Leslie Street. These changes will improve safety

for people driving, cycling, walking, and taking transit. The proposed changes to Sheppard Avenue East are as follows:

- Reallocation of some vehicular lanes and narrowed lane widths to improve safety.
- Intersection improvements, including protected intersection elements at signalized intersections.
- Widened sidewalks and enhanced crossings to improve the experience of people walking and to ensure compliance with the Accessibility for Ontarians with Disabilities Act (AODA).
- New transit stop features, including accessible bus stops, new transit shelters and seating areas.
- Raised uni-directional (one-way) cycle tracks on the north and south side of the road.
- New plantings and green infrastructure.

2.3.2 Sheppard Avenue East Resurfacing Project (City of Toronto)

The primary objective of road resurfacing and reconstruction is to repair or replace damaged sections of the road, curb, and sidewalk. This provides opportunities for improving safety and operations at intersections, installing new cycle tracks, widening sidewalks, and including new trees and green infrastructure. The proposed changes to Sheppard Avenue East are as follows:

- Reallocation of some vehicular lanes and narrowed lane widths to improve safety.
- Intersection improvements, including protected intersection elements at signalized intersections.
- Raised uni-directional (one-way) cycle tracks on the north and south side of the road.

2.3.3 5-Year Service Plan & 10-Year Outlook (TTC)

The TTC's 5-Year Service Plan & 10-Year Outlook outlines the service needs between 2020 to 2024. The Plan identifies resource and funding requirements, serving as the basis for annual operating budgets and 10-year capital plans. Five pillars of opportunity were identified to improve customer experience:

- Enhance the transit network:
 - Accommodate population and employment growth by increasing service.
 - Implement new services to address travel patterns by modifying existing and implementing new routes.
 - Open Line 5 Eglinton, which will offer fast and frequent east-west rapid transit across Toronto's Eglinton Avenue from Etobicoke to Scarborough.
 - Relieve crowding on Line 1 by upgrading the signaling system.
 - Open Line 6 Finch West between Humber College and Finch West Station, improving service for affected neighbourhoods.
 - Enhance the streetcar network by adding new, low-floor, high-capacity cars.
 - Apply an equity lens to service planning.

- Enhance customer experience at key surface transit stop areas:
 - Expand customer amenities at stop areas, including accessibility, heating, and furnishing.
 - Improve wayfinding at stops, including vehicle arrival signs and maps.
 - Improving placemaking at key stops, including formal pathways, improved lighting, larger sidewalks, and platforms for customers to wait.
- Improve service reliability:
 - Improve surface transit schedules to reflect actual operating conditions.
 - Mitigate delays from planned service disruptions by increasing the availability of buses, streetcars, and trains.
- Prioritize surface transit:
 - Explore bus transit lanes by implementing exclusive bus lanes, stop consolidation, all-door boarding, and other measures.
 - Implement more queue jump lanes, up to three new locations each year.
 - Implement more transit signal priority to help transit vehicles.
- Accelerate integration with regional transit partners and complementary modes of transit:
 - Expand service integration with regional routes.
 - Integrate micro-transit services, including an autonomous shuttle trial.
 - Enhance integration with cycling by enhancing TTC Subway Stations and stops with bike repair stations and bike parking.
 - Enhance pedestrian pathways to TTC services.
 - Implement a Mobility as a Service (MaaS) strategy.

The TTC has begun preparing a new 5-Year Service Plan (2024 to 2028) and 10-Year Outlook. This updated service plan will revisit certain aspects of the previous 5-Year Service Plan, as the COVID-19 pandemic affected the timing of its implementation

2.3.4 Oriole GO Station Relocation (Metrolinx)

Metrolinx has proposed to relocate the Oriole GO Station as part of their Regional Express Rail (RER) program, which aims to significantly increase rail service across the GO Rail network. The new location for the Oriole GO Station is proposed to be directly south of the TTC Leslie Station on Old Leslie Street, with access through the existing TTC Leslie Station parking lot. Parking spaces from the previous location will not be reinstated; therefore, active transportation and transit access to the GO Station will be encouraged.

Transportation operations analyses were conducted at the study intersections for 2018, 2019, 2020, and 2025 weekday morning (AM) and afternoon (PM) peak hours. The analysis found that most turning movements in the study area would not be impacted

City of Toronto

ReNew Sheppard East Transportation Planning Study September 2024

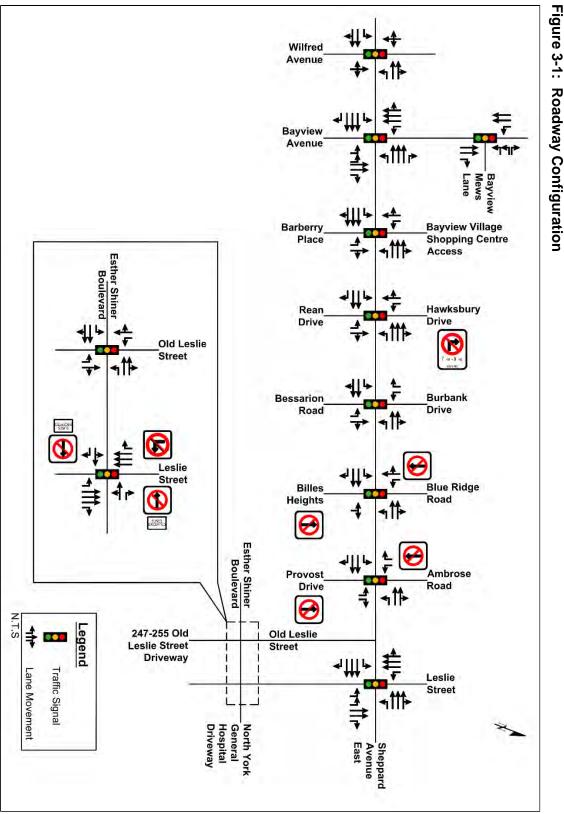
and concluded that the relocation would be a significant transportation gain for the communities who use the Oriole GO Station.

3.0 Existing Transportation Conditions

This section documents a review of the existing transportation conditions. The City's transportation network within the ReNew Sheppard East study area includes roads, active transportation infrastructure, and transit routes. Mobility characteristics such as the residents' travel patterns are assessed to understand how and when this transportation system is being used.

3.1 Transportation System Inventory

3.1.1 Street Network


Sheppard Avenue East is an east-west urban major arterial road that runs continuously throughout the City of Toronto. It intersects Bayview Avenue to the west and Leslie Street to the east, which are north-south urban major arterial roads. Sheppard Avenue East intersects a few north-south urban collector and minor arterial roads, namely Wilfred Avenue, Ambrose Road / Provost Drive / Esther Shiner Boulevard and Old Leslie Street. South of Sheppard Avenue East lies Highway 401, an east-west provincial expressway with interchanges at Bayview Avenue and Leslie Street. The road characteristics of the study intersections are shown in Table 3-1. All roads are under the jurisdiction of the City.

Name	Classification	Number of Through	Posted/ Assumed
Name		Lanes per Direction	Speed Limit (km/hr)
Sheppard Avenue East	Major Arterial	2/3	50/60
Wilfred Avenue	Collector/Local	1	40
Bayview Avenue	Major Arterial	3	50
Leslie Street	Major Arterial	3	50
Bayview Mews Lane	Local	1	40
Barberry Place	Local	1	40
Rean Drive	Local	1	40
Hawksbury Drive	Local	1	40
Burbank Drive	Local	1	40
Bessarion Road	Local	1	40
Blue Ridge Road	Local (Assumed)	1	40
Billes Heights	Local (Assumed)	1	50
Ambrose Road	Collector/Local	1	40
Provost Drive	Minor Arterial	1	40
Esther Shiner Boulevard	Minor Arterial	2	40
Old Leslie Street	Collector	1	40

Table 3-1: Existing Road Characteristics of the Study Intersections

The roadway configuration is shown in Figure 3-1.

R.J. Burnside & Associates Limited 055817_ReNew Sheppard_Final Report.docx

ReNew Sheppard East Transportation Planning Study September 2024

City of Toronto

300055817.0000

14

3.1.2 Active Transportation Network

There are continuous sidewalks along both sides of major arterial roads. Local streets within the study area have sidewalks on both sides, sidewalk on one side, or no sidewalk. There is a designated bicycle lane on Esther Shiner Boulevard between Old Leslie Street and Provost Drive. Within and in close vicinity of the study area are off-road multi-use trails along the Don Valley River: the Betty Sutherland Trail and the East Don Parkland Trail. The existing active transportation network is shown in Figure 3-2.

3.1.3 Transit Network

Transit within the study area is provided by the Toronto Transit Commission (TTC) and Metrolinx.

Along Sheppard Avenue East between Yonge Street and Don Mills Road, TTC operates Line 4(Sheppard). This subway has stations along Sheppard Avenue East at Bayview Avenue, Bessarion Road, and Old Leslie Street.

Along Sheppard Avenue East, TTC operates 85 Sheppard East (Don Mills Station to Yonge Street). This bus has stops along Sheppard Avenue East, including at Bayview Avenue, Bessarion Road, Provost Drive, Old Leslie Street, and Leslie Street. Key stops within the study area include Leslie Station, Bessarion Station, and Bayview Station. As of 2024, this bus has now been rebranded to 185 Sheppard Central. For the purposes of this report, this bus will be referred to as 85 Sheppard East.

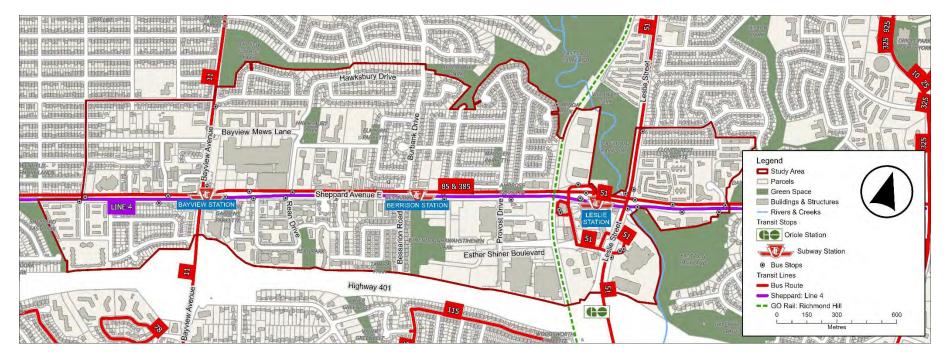
Along Bayview Avenue, TTC operates 11 Bayview (Steeles Avenue to Davisville Station). This bus has stops along Bayview Avenue, including at Sheppard Avenue East and Bayview Mews Lane.

Along Leslie Avenue, TTC operates 51 Leslie (Freshmeadow-Don Mills Access to Eglinton Station). This bus has stops along Leslie Street, including at Sheppard Avenue East and Esther Shiner Boulevard. This bus also makes stops at Leslie Station (intersection of Old Leslie Street and Sheppard Avenue) and the main entrance of North York General Hospital.

TTC also operates special routes, including 385 Sheppard East (Yonge Street to Meadowvale Loop at Sheppard Avenue East). This bus operates along Sheppard Avenue East between Yonge Street and Meadowvale Road, following the same stops as 185 Sheppard Central. The 385 Sheppard East runs only at night between 2:25 a.m. and 4:40 a.m. These bus routes are shown in Figure 3-3.

Metrolinx provides GO Transit service via the Oriole GO. The Oriole GO provides quick and efficient inter- and intra-regional transit service to major destinations such as downtown Toronto and Richmond Hill. The station also provides pedestrian connectivity to Esther Shiner Boulevard.

City of Toronto

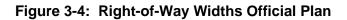

ReNew Sheppard East Transportation Planning Study September 2024

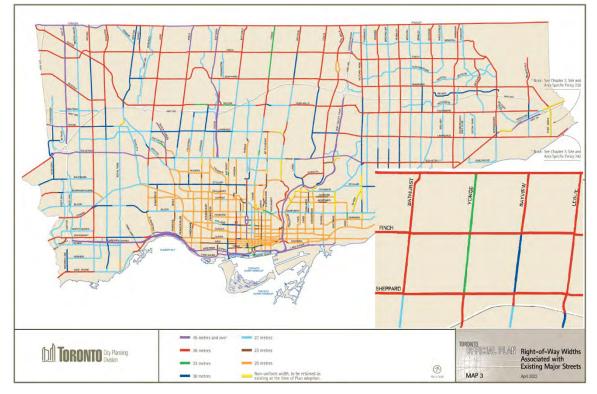
aranie ^al secondram i**nclusi c**este actionitica. Aranie ^al secondram inclusione controlation DATITION e ane ALA A Augure New at the 和日期 olicità d'encles d'all'allacida.c **TECHNER** Alexin and differences -Et Hornen FA मेक्स स्वयंग H11 CLUB LEVEL PUT 90994000000300 hill. THE THE INTERIOR Contraction of the DIVERSIO 2 Anta Hawksbury Drive COLOUP PROPERTAL sa dia diatata ana kan and an and a THE PARTY PA 町町 **HEREPARE** and De Helickershi PTOD DEPOSITOR Bayview Mews Lane dana AUGULE DEFENSION attan) RV-LAP ANDSIDIT TITIPO Legend Study Area Sheppard Avenue Parcels Green Space Buildings & Structures - Rivers & Creeks ISTIHEMEN à Cycling Network Esther Shiner Boulevard Bike Lanes — Major Multi-use Pathway - Minor Multi-use Pathway Highway 401 - Signed Routes - and - Major Citywide Routes 150 300 0 600 Metre

Figure 3-2: Active Transportation Network within Study Area

16

Figure 3-3: Transit Network within Study Area




3.1.4 Road Right-of-Way Characteristics

The road right-of-way for the major streets in the study area are as follows:

- Sheppard Avenue East: 36.0 m
- Bayview Avenue: 30.0 m and 36.0 m
- Leslie Street: 36.0 m

These right-of-way widths are shown in Figure 3-4.

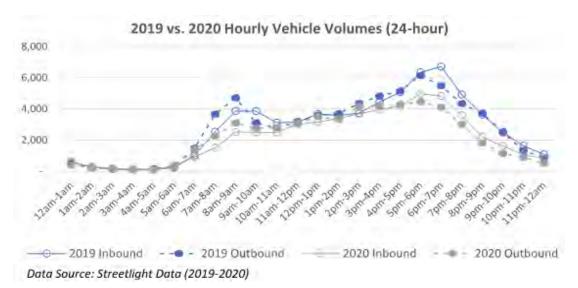


Source: City of Toronto Official Plan Map 3

3.2 Travel Demand

3.2.1 Travel Patterns

Transportation Tomorrow Survey (TTS) provided 2016 travel patterns and mode shares for the AM peak period for the study area which is illustrated in Figure 3-5. This data shows that only 10% travel of trips stay within the study area. Out of that 10%, 70% of those trips are made by driving, 21% by cycling or walking, and 9% by transit. The TTS data also indicates that 37% of the trips are to North York where 59% of those trips are made by driving, 10% by walking or cycling, and 31% by transit.



3.2.2 2019 and 2020 Temporal Distribution of Traffic Volumes

Data for travel demand was obtained from Streetlight's 2019/2020 Sheppard East Corridor Monitoring Program.

Streetlight provided 2019 and 2020 hourly vehicle volume data (over a 24-hour period) for the Sheppard East Corridor. There has been an approximately 16% overall reduction in the average daily total number of vehicles in the Sheppard East Corridor between 2019 and 2020 (due to COVID-19 impacts). The vehicle trip patterns for 2019 and 2020 are illustrated in Figure 3-6.

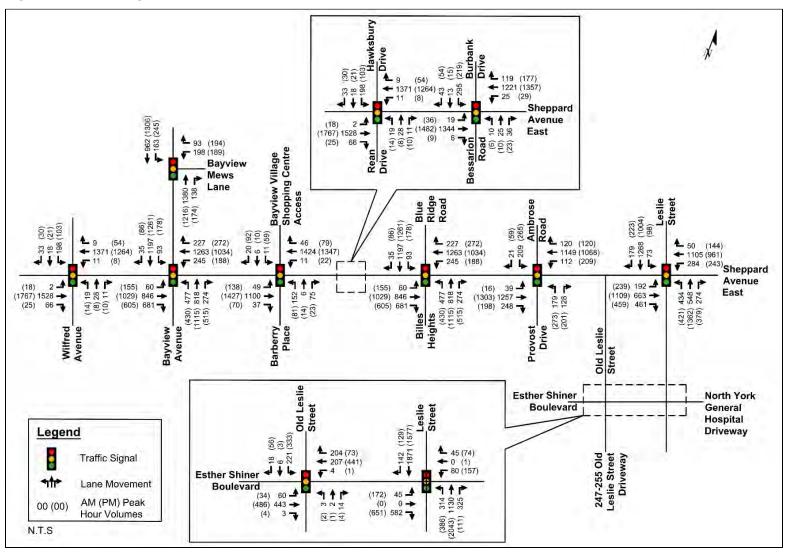
3.3 Existing Traffic Conditions

The existing traffic conditions analysis for eleven major ReNew Sheppard East Study intersections and mid-block road segments were assessed. A summary of the traffic assessment is provided in this section. A more detailed analysis is provided in Appendix A.

3.3.1 Existing Intersection Traffic Operations

The existing traffic volumes were derived and balanced using data from the City of Toronto and 4Transit. Data was also collected from the "*Sheppard Avenue Existing Conditions Traffic Assessment Memorandum*" by Urban Systems. The turning movement counts that were provided by the City for the traffic analysis are shown in Table 3-2.

Location	Date of Count
Leslie Street and Sheppard Avenue East	April 18, 2017
Leslie Street and Sheppard Avenue East	June 26, 2018
Leslie Street and Esther Shiner Boulevard	June 26, 2018
Old Leslie Street and Esther Shiner Boulevard	June 26, 2018
Bayview Avenue and Sheppard Avenue East	June 13, 2019
Bayview Avenue and Bayview Mews Lane	November 26, 2019
Bessarion Road / Burbank Drive and Sheppard Avenue East	November 26, 2019
Provost Drive / Ambrose Road and Sheppard Avenue East	November 26, 2019
Wilfred Avenue and Sheppard Avenue East	August 31, 2021


 Table 3-2: Date of Turning Movement Counts

Location	Date of Count
Barberry Place and Sheppard Avenue East	August 31, 2021
Rean Drive / Hawksbury Drive and Sheppard Avenue East	August 31, 2021
Blue Ridge Road / Billes Heights and Sheppard Avenue East	August 31, 2021

The traffic count data was collected between 2017 and 2021. Based on a review of the historic growth rates and the Sheppard Monitoring Data that compares traffic data prior to the COVID-19 pandemic, a 0% growth was observed. Therefore, the 2017 to 2021 traffic counts were assumed reasonable for existing conditions.

The existing traffic conditions are shown in Figure 3-7.

Figure 3-7: Existing Conditions Traffic Volumes

R.J. Burnside & Associates Limited 055817_ReNew Sheppard_Final Report.docx

A summary of the intersection operations is shown in Figure 3-8.



Figure 3-8: Summary of Existing Traffic Operations Analysis

The traffic operations assessment indicated that the Bayview Avenue and Sheppard Avenue intersection and the Leslie Street and Sheppard Avenue intersection are operating close to or above capacity (LOS E) during the AM and PM peak hour.

3.3.2 Existing Road Capacity Analysis

A road capacity analysis for the AM peak hour indicated that the following roadway segments were congested:

- Bayview Avenue (Southbound) Sheppard Avenue East to Highway 401
- Leslie Street (Southbound) Maris Shepway to Sheppard Avenue East
- Leslie Street (Southbound) Esther Shiner Boulevard to Highway 401

A road capacity analysis for the PM peak hour indicated that the following links were congested:

- Bayview Avenue (Southbound) Sheppard Avenue East to Highway 401
- Leslie Street (Northbound) Maris Shepway to Sheppard Avenue East
- Leslie Street (Southbound) Esther Shiner Boulevard to Highway 401

The existing traffic operations and link capacity analysis indicates that there is a need to improve transportation conditions within the study area. This need can be generally accomplished through demand management or infrastructure improvements.

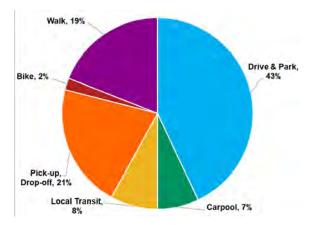
3.4 Existing Transit Conditions

The 2019 maximum passenger volumes were provided by TTC for 85 Sheppard East, 51 Leslie, and 11 Bayview in the study area. Maximum passenger volumes represent the maximum number of passengers that are traversing through the bus stop after

boarding and alighting. Maximum pedestrian volumes in 2019 for each bus within the study area are shown in Table 3-3 for the AM period and Table 3-4 for the PM period.

TTC Bus	Eastbound / Northbound	Westbound / Southbound
85 Sheppard East	46	127
11 Bayview	134	109
51 Leslie	58	85

 Table 3-3: 2019 Maximum Pedestrian Volumes within the Study Area – AM


TTC Bus	Eastbound / Northbound	Westbound / Southbound
85 Sheppard East	70	51
11 Bayview	110	146
51 Leslie	101	64

The 2019 GO Rail ridership and access mode share is detailed in GO Rail Station Access (2023) and shown in Table 3-5 and Figure 3-9.

Table 3-5: 2019 GO Rail Ridership

	Ridership
Daily Riders' Home Station	425
Daily Riders' Destination Station	50
Daily Total Footfall	875
(Boarding + Alightings)	

Figure 3-9: 2019 Access Mode Share

Source: GO Rail Station Access (2023)

3.5 Existing Active Transportation Conditions

3.5.1 Multi-Modal Level of Service Evaluation

A multi-modal level of service (MMLOS) analysis was undertaken for intersections and corridors within the study area. MMLOS analysis is a methodology for analyzing the level of service experienced by users of different modes along street segments and at intersections.

The Ontario Traffic Council (OTC) MMLOS methodology was used to understand specific areas of improvement within the study area. This methodology was released in 2022 and was developed through the collaboration of many municipalities in Ontario, including the City of Toronto.

For the purposes of the OTC MMLOS evaluation, the future roles of major arterials within the study area (e.g., Sheppard Avenue, Leslie Street, and Bayview Avenue) based on a review of the City's policy framework were designated as a Neighbourhood Main Street based on OTC categories. OTC's definition of a Neighbourhood Main Street is the following:

- Street balances mobility and access.
- Moves moderate to high volumes of cycling, transit, and vehicle movements.
- Balances priority of all modes.
- Traditionally "auto-oriented" land use but often subject to intensification or redevelopment.
- Likely to have mixed but predominantly commercial land use.

For Neighbourhood Main Streets, OTC recommends a target pedestrian and cycling LOS of LOS COTC's general definition of LOS C for pedestrians is the following:

- Pedestrians often have sufficient space to walk or roll in a social manner that is removed from traffic nuisance.
- Crossing distance and delay at intersections is often optimized for pedestrians.
- Crossing locations are often located with sufficient frequency to minimize detour.

OTC's general definition of LOS C for cyclists is the following:

- Cyclists often have sufficient space to ride in a social manner that is removed from traffic nuisance.
- Delay at intersections is often optimized for cyclists.
- Exposure to conflict at intersections is often minimized.

For the purposes of the OTC MMLOS evaluation, minor arterials, and collector roads within the study area (e.g., Provost Drive, Esther Shiner Boulevard, and Old Leslie

Street have a target LOS C. Local streets within the study area (e.g., Bessarion Road, Burbank Drive, and Bayview Mews Lane) have a target LOS E.

3.5.2 Cycling Level of Service Evaluation

Cycling level-of-service evaluation was conducted on seven intersections. At intersections, the criteria used to determine the LOS were:

- Degree of enhanced cycling facilities that add to the safety and comfort for cyclists; and
- Signal cycle length for signalized intersections.

For road segments, the criteria used to determine the LOS were:

- Bike buffer width
- Bike facility width

The results of the cycling level of service evaluation found that all segments and intersections were a LOS of E or F. No intersection or road segment reached their target LOS. The following observations assisted in deriving the MMLOS:

- Although the bike lanes along Esther Shiner Boulevard had sufficient cycle length to minimize delay for pedestrians, there were no additional cycling measures that added to the safety and comfort for cyclists at the intersection.
- The bike lanes along Esther Shiner Boulevard had sufficient width but no buffer between the bike lane and the general-purpose lane.
- Although not part of the MMLOS evaluation, the bike lanes along Esther Shiner Boulevard do not connect to any other dedicated cycling facility, which contributes to its underutilization.

3.5.3 Pedestrian Level of Service Evaluation

Pedestrian level-of-service evaluation was conducted on seven intersections. At intersections, the criteria used to determine the LOS were:

- Degree of enhanced pedestrian facilities that add to the safety and comfort for pedestrians at signalized intersections.
- Degree of marked controlled crossings at unsignalized intersections.
- Signal cycle length for signalized intersections.

For road segments, the criteria used to determine the LOS were:

- Pedestrian facility width
- Pedestrian buffer width

The results of the pedestrian level of service evaluation found that most segments and intersections were a LOS of D, E, or F and did not reach their target LOS. The

exception would be the intersection of Esther Shiner Boulevard and Old Leslie Street which achieved an intersection LOS B. The following observations assisted in deriving the MMLOS:

- Although there were sidewalks present throughout the study area, there was either inadequate pedestrian facility width or buffer between the sidewalk and the general-purpose lane.
- Enhanced pedestrian facilities were observed at several intersections and incorporated in the analysis. More specifically, leading pedestrian intervals at following intersections enhanced the pedestrian environment:
 - Bayview Avenue and Bayview Mews Lane (East-West).
 - Sheppard Avenue and Burbank Drive (North-South, East-West).
 - Sheppard Avenue and Provost Drive (North-South).
 - Leslie Street and Esther Shiner Boulevard (East-West).
 - Esther Shiner Boulevard and Old Leslie Street (North-South, East-West).
- Although not inherently apart of the MMLOS analysis, the lack of east-west crossing at the southern leg of the Bayview Mews Lane and Bayview Avenue intersection creates a less desirable walking environment.

Based on the criteria, Esther Shiner Boulevard and Old Leslie Street met its target LOS because of short pedestrian wait times based on signal timing cycle lengths and the use of leading pedestrian intervals. Although, there are still opportunities to provide enhanced pedestrian facilities to further improve the walking environment.

4.0 Street Network Planning Principles, Needs, and Opportunities

This section describes the planned road improvements, street network principles, and street network needs and opportunities.

4.1 Planned Road Improvements

The Sheppard Avenue East Complete Street project and Sheppard Avenue Resurfacing project proposes changes to Sheppard Avenue East from Bayview Avenue to Leslie Street. These changes will improve safety for people driving, cycling, walking, and taking transit. The design process is still underway and will continue throughout 2024.

4.2 Street Network Principles

As outlined in the City's Complete Streets Guidelines, roads are common spaces where the city comes together. Roads should be "complete streets" where streets should safely accommodate all users – pedestrians, cyclists, transit services, and motor vehicles, while supporting and enhancing local neighbourhood context and character. Supporting goals of equity and the City's Vision zero values, streets should be a safe place for all mobility users regardless of age or ability.

Each street should look, feel, and function in accordance with the City's values. To achieve this objective, road improvements should consider constraints to all road users. Level of service should be assessed for all modes of transportation to understand the types of infrastructure improvements that are required to ensure:

- Pedestrians and cyclists feel safe and comfortable within the public right-of-way.
- Pedestrians and cyclists are encouraged to access the regional and local transit system.
- Congestion from private automobiles is minimized.

4.3 Need to Overcome Property Constraints

There are property constraints within the study area imposed by the Ministry of Transportation Ontario (MTO) and Metrolinx from infrastructure such as Highway 401 ramps and interchanges for MTO and the rail line for Metrolinx, as well as associated setbacks.

Proposed road improvements within the study area should prioritize road elements within the City's right-of-way where they are limited opportunities to expand due to these property constraints. The prioritization of transportation modes will depend on the function of the road and its associated municipal road allowance. For example, Bayview Avenue and Leslie Street should be able to provide for more protected facilities for road

users while narrower streets such as Bessarion Road may require more selective considerations on the facilities and facility types.

4.4 Opportunity to Transform the Role of the Street Network

The Sheppard East Corridor Secondary Plan indicates that the role of Sheppard Avenue should act as a pedestrian-oriented main street. Currently, the other major arterials, Bayview Avenue and Leslie Street, are auto-oriented and facilitate longer-distance travel and movement in the City. Like Sheppard Avenue, Leslie Street, and Bayview Avenue will need to transform more similarly to the function of Sheppard Avenue as a "Main Street" while facilitating longer distance travel especially with vehicles anticipated to access the Highway 401 interchanges.

The need to transform to a more pedestrian-friendly corridor result from the growth of population, employment, and commercial activity within the study area that support self-sufficiency. The City can explore opportunities to secure new connections for pedestrians and cyclists including but not limited to mid-block connections on private property.

5.0 Active Transportation Planning Principles, Needs, and Opportunities

This section describes the planned active transportation improvements, active transportation principles, and needs and opportunities. Supplemental information regarding active transportation needs and opportunities is provided in Appendix B.

5.1 Proposed Active Transportation Improvements

5.1.1 Sheppard Avenue East Complete Street Project

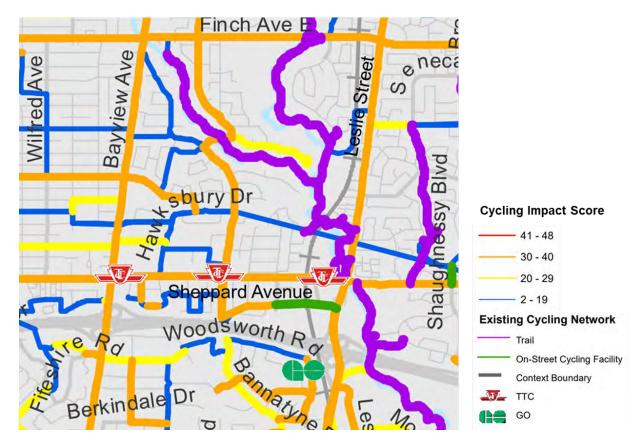
The Sheppard Avenue East Complete Street project proposes road safety improvements to Sheppard Avenue East from Bayview Avenue to Leslie Street. The design process is still underway. A sample of the proposed active transportation improvement is shown in Figure 5-1.

Figure 5-1: Proposed Cross-section of Sheppard Avenue West of Rean Drive

Source: City of Toronto – Sheppard Avenue East Complete Street from Bayview Avenue to Leslie Street

5.1.2 Cycling Network Plan

The Cycling Network Plan (CNP) serves as a comprehensive roadmap and work plan, outlining the City's planned investments in the near-term and intention for the long-term. The Cycling Network Plan consists of the following three components:


- The Long-Term Cycling Network Vision
- The Major City-Wide Cycling Routes
- A three-year rolling Near-Term Implementation Program

As part of the City's active transportation policy framework, every street in Toronto should be considered for bikeways and other cycling upgrades. Therefore, the Cycling Network Plan does not limit cycling to a specific set of streets. However, the CNP prioritizes the streets based on the value the street brings to the overall cycling network.

This value is represented by the City's Cycling impact analysis which categorizes streets based on the following priority:

- Top: Routes that scored highly across most, if not all, inputs. These are found mostly on arterial streets that connect to many destinations and transit.
- High: Routes that scored highly against most inputs.
- Medium: Routes that scored highly in some input or scored well across many inputs.
- Low: Routes that are primarily local neighborhood connections and typically have parallel routes alternatives.

The analysis scores for the ReNew Sheppard Study Area are shown in Figure 5-2.

Figure 5-2: Cycling Impact Analysis Scores

The following corridors in the study area were assessed as High:

- Bayview Avenue
- Leslie Street
- Esther Shiner Boulevard
- Bessarion Road
- Burbank Drive

5.2 Active Transportation Principles

5.2.1 Connected and Continuous

To be most effective, active transportation networks should be connected and continuous to allow cyclists and pedestrians more opportunities to have safe, separated, and protected facilities to reduce and minimize conflicts with vehicles. Providing safe mobility options for all ages and abilities ensures that active transportation users can feel more confident when using active transportation facilities. A connected network does not leave users isolated and stranded at the end of active transportation facilities. Active transportation networks should also connect to points of interest, including employment and key institutions such as community centres, parks, grocery stores / farmer's markets, libraries, buildings that offer social services, and medical centres.

5.2.2 Human-Scaled and Balanced

A balanced transportation system is one that provides safe, accessible, and efficient options for people to travel around their community without relying solely on cars. A human-scaled transportation system is one that is designed to prioritize the needs of people rather than the need of cars. A balanced and human-scaled transportation system has many benefits to the community, such as:

- Improving the quality of life for people in the community.
- Creating vibrant and livable communities where people can easily connect with neighbours and local businesses.
- Increasing the use of sustainable modes can reduce traffic congestion.
- Increase the commercial and economic activity by creating more walkable and transit-oriented communities.

Active transportation infrastructure plays a key role in balanced and human-scaled transportation systems. This type of infrastructure supports mobility objectives for residents getting to work and promoting physical activity and healthy living. Human-scaled active transportation also caters to the needs of cyclists.

Road design elements related to active transportation can also improve the active transportation environment, include lighting, street furniture, trees for shade, plantings, and bicycle racks.

5.2.3 Accessible Active Transportation

Accessible active transportation ensures that the road right-of-way provides sufficient physical space to pedestrians and cyclists for added safety and to let all road users know that all transportation modes are important. The *Accessibility for Ontarians with Disabilities Act* (AODA) outlines legal requirements to improve accessibility standards

City of Toronto

ReNew Sheppard East Transportation Planning Study September 2024

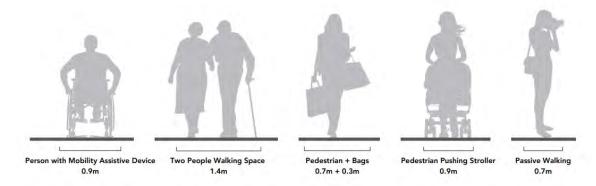
with consideration for both physical and mental disabilities (i.e., relating to mobility, vision, hearing, and cognition).

Young pedestrians or children (particularly under the age of ten) are more likely to misjudge vehicle speeds and available crossing gaps because of their limited scanning ability and attention capacity. Children are considered at-risk road users as they tend to have an underdeveloped sense of safety and understanding of traffic control devices. Seniors are also more likely to underestimate the relative depth separating visual targets, misperceive the distance between themselves and vehicles, and process information more slowly. The elderly are vulnerable road users as the likelihood of fatality also increases with age.

To address the limitations and challenges of young pedestrians and the elderly, it is important to recognize the need to manage pedestrian expectations and misguided decisions due to road geometry, land uses or other operating environment characteristics. In addition, there is an emphasis on providing warning devices and / or signs to heed caution and draw drivers' attention in areas with a greater child and / or senior demographic (e.g., near schools, retirement / nursing homes).

Mobility-impaired pedestrians refer to those affected by a motor movement disability, including pedestrians who use wheelchairs or walkers / canes. Pedestrian crossings should be designed to eliminate physical barriers, where feasible, and provide for adequate walking times at signalized crossings. In allocating pedestrian walk times, a design speed of 1.0 m/s is typically used. However, in the case that 20% or more pedestrians using a crossing is expected to be older (65 years or older), a lower walking speed of 0.9 m/s is assumed. At locations where 20% or more pedestrians are mobility-impaired (i.e., using assistive devices such a wheelchairs and canes), it is best practice to use a walking design speed of 0.8 m/s. These guidelines apply particularly near hospitals and retirement / nursing homes, where there is a need to accommodate a greater number of mobility-impaired pedestrians and the elderly.

Visually impaired pedestrians depend on auditory and tactual information for travel to varying degrees. There is a wide range in the extent to which people are visually impaired, as some may have extremely limited vision, and others may be more sensitive to brightness contrast. Pedestrian facilities should be designed to allow visually impaired pedestrians to easily identify safe pedestrian paths, detect streets and recognize the proper time to cross streets.


Three considerations for providing accessible pedestrian facilities include:

- Providing adequate pedestrian clearways
- Providing accessible pedestrian signals
- Installation of tactile walking surface indicators

Adequate pedestrian clearways should consider accommodating a wide range of pedestrian users, as illustrated in Figure 5-3. Multi-use trails which can have a mix of cyclists and pedestrians should also have adequate clearway space to improve safety and comfort. This space is important in addressing potentially high-speed differentials between pedestrians and cyclists.

Accessible pedestrian signals advise pedestrians who are blind, visually impaired, or deaf-blind when they have the right-of-way to cross at a signalized intersection using auditory sounds. Tactile walking surfaces are surface-level installations that provide warnings for pedestrians to stop at the sidewalk edge.

Figure 5-3: Examples of Widths of Different Types of Pedestrians

Source: City of Toronto Complete Streets Guidelines

5.3 Needs and Opportunities

5.3.1 Enhance North-South Corridors

Since Sheppard Avenue will be improved through the Sheppard Avenue East Complete Street project with proposed separated cycling facilities, there is an opportunity to enhance north-south roadways to improve connectivity. Sheppard Avenue can act as the main spine of the active transportation network, while the north-south roadways can feed into this spine. North-south roadways that can contribute to this network include Bayview Avenue, Leslie Street, Bessarion Road, and Burbank Drive. A major constraint along Leslie Street is providing continuous and connected active transportation infrastructure through the Metrolinx rail corridor.

More details regarding the existing conditions of these roads and their opportunities are provided in Appendix B.

5.3.2 Provide Quieter Alternatives

With the City's vision of considering every street for cycling upgrades, there are a few parallel routes that can enhance the active transportation network. Sheppard Avenue is a major arterial with high auto volumes. These parallel routes leverage the local neighbourhood streets, which have significantly fewer auto volumes and can be considered quieter alternatives. These routes include:

- Irvington Avenue via a connection from Bayview Avenue
- The entire road segment of Bayview Mews Lane connects west to Spring Garden Avenue
- Citation Drive / Empress Avenue
- Blithfield Avenue / McKee Avenue
- Old Leslie Street and Esther Shiner Boulevard to connect North York General Hospital to/from southside of Sheppard Avenue

More details regarding the existing conditions of these routes and their opportunities are shown in Appendix B.

5.3.3 Enhance Off-Road Trails

The active transportation network consists of both off-road and on-road trails. The benefits of off road-trails include:

- Enhances connectivity to the overall active transportation network.
- Provides more comfort than on-road routes since trails are separated from automobile traffic, potentially increasing use, and promoting healthy communities.
- Allows riders and pedestrians to explore the City's ravines and green space, creating an enjoyable and vibrant community.

Opportunities to enhance off-road trails include:

- Improve the East Don Parkland trail connection where it intersects with Sheppard Avenue and Leslie Street, as south portion of the trail currently has no connection to the north section.
- Ensure trail connectivity is safe and accessible.
- Provide more information about parks and trails using wayfinding and signage.
- Add additional trail crossings where feasible.
- Add multi-use path connection between North York General Hospital and Betty Sutherland Trail to support connectivity.
- Improving access to meet the Accessibility for Ontarians with Disabilities Act (AODA).

More details regarding a potential trail connection are shown in Appendix B.

5.3.4 Provide Safe Mid-block Crossings

Long road segments should be reviewed for adequate crossing opportunities to promote walking and cycling. These crossings should be accessible, and the design should consider the use by young children and elderly. Specific locations identified by residents include crossing north and south of Sheppard Avenue to the Bessarion TTC Station and the Leslie TTC Station.

5.3.5 Stakeholder Identified Opportunities

Based on consultation with the City's Transportation Services, Capital Projects, Pedestrian and Cycling Projects team on January 23, 2023, which also included City staff from various departments, a list of opportunities was developed.

A summary of these opportunities is shown in Table 5-1.

Location	Opportunity
General	Use cycling infrastructure rough-ins to establish
	north-south cycling connections.
General, TTC Stations,	Create smooth linkages with TTC and GO Transit
Re-located Oriole GO Station	Stations.
Old Leslie Street	Re-evaluate the function of Old Leslie to
	accommodate cycling infrastructure to address
	narrow bridge width, southbound left-turn at Esther
	Shiner Boulevard, and bus terminal impacts.
Dallington Park	Improve connectivity between proposed Sheppard
	Avenue cycling facilities and Dallington Park Trail by
	linking trail access to signalized intersection at
	Buchan Court.
Clarinda Park	City's Parks, Forestry, and Recreation is planning
	improvements at Clarinda Park that may include trail
	access improvements.
East Don Parkland Trail	Informal trail connection at north side of
	1200 Sheppard Avenue East and / or connection
	across GO rail line between 1200 Sheppard East and
	Clarinda Park to mitigate environmental impacts.
Sheppard Avenue and Leslie	Trail Bridge between the Betty Sutherland Trail and
Street Intersection	the intersection at Sheppard and Leslie.

Location	Opportunity
Leslie Street and	North-south multi-use trail along the existing Oriole
Highway 401	GO platform to continue below Highway 401 to avoid
	ramp interchange and rejoin Leslie Street south of
	Highway 401 to provide an off-road connection.
Bayview Avenue and	Explore off-road multi-use trail around the Bayview
Highway 401	and Highway 401 interchange.
Empress Avenue and Citation	East-west local active transportation connection along
Drive	Empress Avenue and Citation Drive.
Hillcrest Avenue and Bayview	East-west local active transportation connection along
Village Park Trail	Hillcrest Avenue and Bayview Village Park Trail.
McKee Avenue and Blithfield	East-west local active transportation connection along
Avenue	McKee Avenue and Blithfield Avenue.
Spring Garden Avenue and	East-west local active transportation connection along
Bayview Mews Lane	Spring Garden Avenue and Bayview Mews Lane to
	connect to Willowdale Park Trail, St. Gabriel Catholic
	School, Bayview Village, and Hawksbury Park.
Hollywood Avenue and	East-west local active transportation connection along
Foxwarren Avenue	Hollywood Avenue and Foxwarren Avenue to connect
	to Willowdale Park Trail.
Bayview Avenue and	Connect Irvington Crescent, which is on the west side
Irvington Crescent	of Bayview Avenue, to the east side of Bayview
	Avenue.

6.0 Transit Planning Principles, Needs, and Opportunities

This section describes the planned and proposed transit improvements, transit principles, and needs and opportunities. Supplemental information regarding transit needs and opportunities is provided in Appendix C.

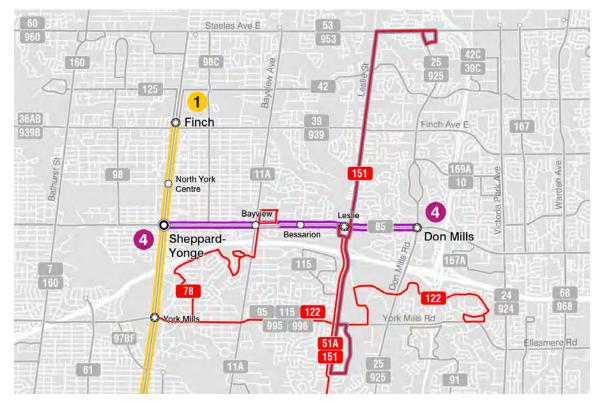
6.1 Planned or Proposed Transit Improvements

6.1.1 Proposed Regional Transit Improvements

A proposed relocation of Oriole GO will have the station directly south of Leslie Station on Old Leslie Street with access through the existing Leslie Station parking lot. The opening year was intended to be 2020; however, this project has been delayed. Other proposed design elements are outlined below:

- The platform will include standard GO enclosed passenger waiting areas with canopied sections.
- A Multi-Use Path on the north side of the existing parking lot just south of Leslie Station will provide cyclist and pedestrian connection from Old Leslie Street to the station platform.
- Storage for up to 28 bicycles will be provided at the end of the multi-use paths between the platform and the parking lot.
- A 3 m sidewalk is also proposed north of Sheppard Avenue East, connecting the existing sidewalk on Old Leslie Street to the station platform. Bicycle racks will be installed at this location.

There are a diverse range of land uses surrounding the GO Station including residential, commercial, and community facilities that are supportive of pedestrian activities. The Transportation Impact Study undertaken for this proposed development notes that the bike lanes along either side of Esther Shiner Boulevard between Old Leslie Street and Provost are generally unused and suggests this is due to high-speed limits, wide travel lanes, and a discontinuous cycling network.


6.1.2 Proposed Local Transit Improvements

The 2023 Annual Service Plan is currently under review. The draft proposed transit improvements include:

- 78 St. Andrews: Service extended north to Bayview Village.
- **51 Leslie South:** New north end-of-line will be Leslie Station. Service north of Leslie Station will be provided by the new 151 Leslie North.
- 151 Leslie North: New route operating from Bond Avenue (South terminus) to Steeles Avenue. Southern end-of-line will loop eastbound on York Mills Road, southbound on Scarsdale Road, westbound on Bond Avenue before returning northbound on Leslie Street.

• **122 Graydon Hall:** Eastern end-of-line will be adjusted to loop southbound on Ness Drive, westbound on York Mills Road, northbound on Fernside Drive, and eastbound on Lynedock Crescent.

A summary of these proposed changes is shown in Figure 6-1.

Figure 6-1: Draft Proposed TTC Improvements

Source: TTC

6.2 Transit Principles

6.2.1 Transit and the Public Realm

The study area boundaries are based on a revised amalgamation of the three boundaries of the Major Transit Station Areas (MTSAs) surrounding the three transit stations. By design, the stations are geographically central to the MTSA boundaries. The transportation system should also be planned in such a way that the stations are the central attractions of each of the MTSAs. This can lead to increased use of the transit provided at these MTSAs, a switch to more sustainable transportation, and provides another community gathering space in which the benefits were mentioned earlier.

This objective can be achieved by ensuring the stations and their immediate surroundings should be designed such that various modes of transportation, public

realm, and attractive community spaces and the public realm are integrated. This concept is commonly referred to as a mobility hub or "higher-order transit zone." Although this term should not be confused with Metrolinx's use of the term "Mobility Hub." Metrolinx has identified 51 mobility hubs in the Greater Toronto and Hamilton Area based on existing and planned transit investments and provision of higher order transit. Bayview, Leslie, and Bessarion stations did not meet the criteria as identified by Metrolinx. At the time of identification, none of these three transit stations were connected to the regional transit network. For the purposes of this study, these three stations will be referred as "local mobility hubs." Unless otherwise stated, this study will use the term "mobility hub" in the general sense of the definition and not specifically referring to the Metrolinx mobility hubs.

Mobility hubs are usually places where people transition from one mode to another. As people are in the process of transitioning from one mode to the next, there are elevated levels of foot traffic. Mobility hubs can take advantage of these high levels by including welcoming and aesthetic design elements to facilitate community interaction and user comfort. Design elements can include:

- Seating furniture: To provide commuters, especially elderly persons, a place to rest and to converse.
- Art and cultural exhibitions.
- Landscaping: Landscaping can help separate pedestrians and cyclists from vehicular traffic and provide benefits to stormwater management.
- Wayfinding: Signage and maps can ensure users understand where they are in a broader context, so they feel more comfortable.
- Lighting: Adequate pedestrian-scale lighting should be provided outside and inside.
- Trip end facilities: Showers and washrooms, bike lockers and storage, and bike repair.

Mobility hubs have also been incorporating emerging technologies in their design, such as the provision of Wi-Fi, e-bike, e-scooter micromobility services, car sharing services, and electric vehicle charging stations. These elements can increase the number of possible modal transitions facilitating more trips to transit while increasing foot traffic and increasing community interactions.

The West Harbour GO Station has been designed with the integration of placemaking and multi-modal transportation in mind. Aesthetic design elements including a children play area, canopied waiting area, and a wayfinding map are shown in Figure 6-2.

Figure 6-2: West Harbour GO Station, City of Hamilton – Design Elements Part 1

Other design elements include landscaped areas, various seating arrangements, and a canopied seating area are shown in Figure 6-3.

Figure 6-3: West Harbour GO Station, City of Hamilton – Design Elements Part 2

The integration of bike share with the GO Station is shown in Figure 6-4.

Figure 6-4: West Harbour GO Station, City of Hamilton – Design Elements Part 3

6.2.2 First and Last Mile Connections

Improving the first and last mile connection to and from transit stations helps enhance the customer transit experience and improve transit usage. Understanding the connections between the regional and local transit stations and points of interests such as parks, open spaces, places of employment, and other institutions helps build more connected communities.

6.3 Needs and Opportunities

6.3.1 Existing Transit Capacity Analysis

A transit capacity analysis was undertaken using passenger volumes and assumed bus capacities for the 51 Leslie Street TTC bus, 11 Bayview Avenue TTC bus, and 85 Sheppard Avenue TTC bus within the study area. This analysis is provided in Appendix C. The results of the analysis indicate that bus ridership is generally below capacity. Further exploration and consultation are required to understand if the low bus ridership is because of:

- Inconvenient routes and connections or inadequate accessibility resulting in travel time costs which are too high to compete with other modes; or
- Service is sufficient and meets the total transit demand of the study area.

If inconvenient routes and connections are causing low bus usage, additional connections may be required to unlock latent transit demand.

6.3.2 Active Transportation Integration

The active transportation system can help facilitate the central importance of the transit stations by being connected, safe, and comfortable for all road users as outlined in the Provincial Growth Plan, Major Transit Station Areas should be connected to local and regional transit services to support transit service integration and should have surrounding infrastructure to support active transportation, including sidewalks, bicycle lanes, and secure bicycle parking.

To identify potential improvements to active transportation corridors to and from the GO and TTC Stations, the following analyses was undertaken:

- Qualitative Public Realm Observations
- Walk-access and walk-egress analysis by TTC Subway entrance
- Walkshed analysis

6.3.2.1 Qualitative Public Realm Observations

A site visit by the project team provided an understanding of the public realm and pedestrian and cyclist comfort at each TTC Station and potential public realm improvements. These observations are documented in Appendix C.

6.3.2.2 Walk-Access and Walk-Egress Analysis

The 2019 and 2022 weekday walk-access and walk-egress to Bayview, Leslie, and Bessarion TTC Stations are shown in Figure 6-5 and Figure 6-6, respectively.

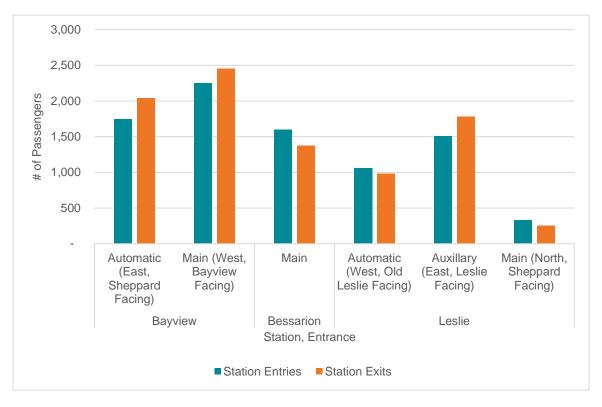
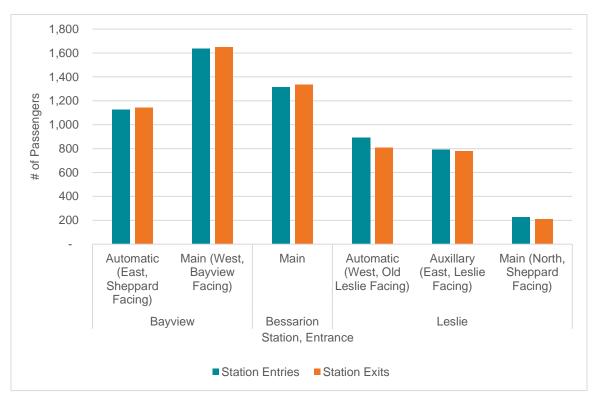



Figure 6-5: 2019 October Average Weekday Entrance Usage

Figure 6-6: 2022 October Average Weekday Entrance Usage

The walk-access and walk-egress analysis indicated that for Bayview Station, the west, Bayview Avenue-facing entrance is more used than the east, Sheppard Avenue-facing entrance. Based on a site visit, the project team observed that the west, Bayview Avenue-facing entrance has fewer pedestrian amenities than the east, Sheppard Avenue-facing entrance. This observation is further documented in Appendix C. A need to improve the pedestrian comfort for the west entrance was observed.

The walk-access and walk-egress analysis indicated that the Main (north, Sheppard Avenue-facing) entrance at Leslie Station is underutilized compared to the other stations. Further exploration is required to understand why this entrance is underutilized. There is a possibility that this entrance is not a direct entrance to many residential units nearby. There is a relatively large, open space in front of this entrance. This open space can be repurposed by adding pedestrian amenities to convert this to a stronger community space. This space is shown in Figure 6-7.

Figure 6-7: Main Entrance at Leslie Station

Source: Google Maps

6.3.2.3 Walkshed Analysis

A walkshed analysis shows how far a pedestrian can walk from a certain location. A walkshed analysis was conducted for each entrance of each of the three TTC Stations within the study area. The walkshed analyses can identify preferred routes for walking by understanding the path of least resistance that provides the greatest distance and gaps within the active transportation network.

The walkshed analyses for Bayview TTC Station, Bessarion TTC Station, Leslie TTC Station are shown in Figure 6-8, Figure 6-9, and Figure 6-10, respectively.

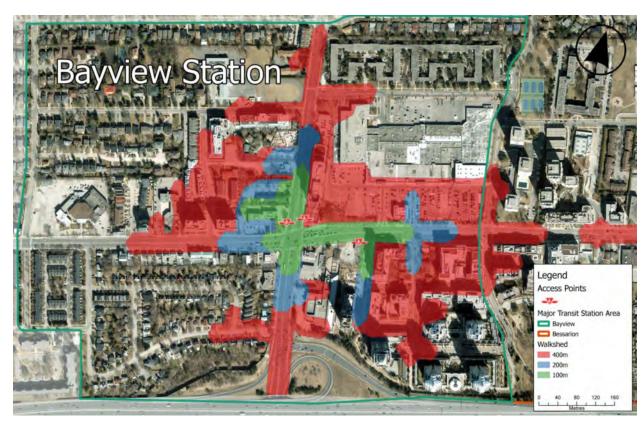


Figure 6-8: Walkshed Analysis for Bayview TTC Station

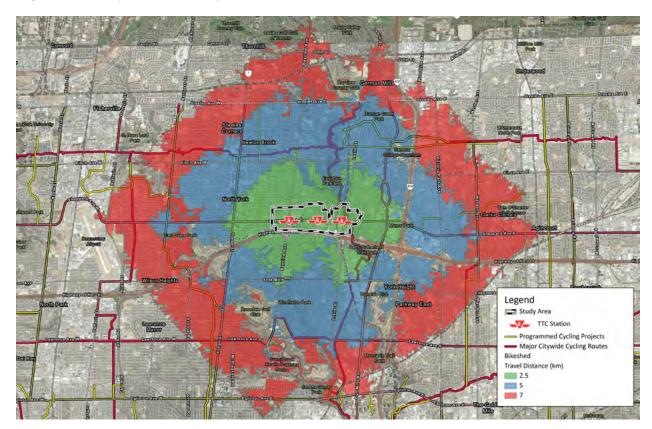
The most noticeable gap in the walkshed analyses was the connection between Bayview Village and the TTC entrance. A more direct connection to the TTC Station would be preferable. This finding was also confirmed through site visits as the project team observed many pedestrians accessing the TTC Station from Bayview Village using restricted routes or routes with no active transportation infrastructure such as the hills on the north side of Sheppard Avenue and west of Bayview Avenue.

Figure 6-9: Walkshed Analysis for Bessarion TTC Station

The distance between Bessarion TTC Station and Ethennonnhawahstihnen' Park is walkable via Ethennonnhawahstihnen' Lane which is shown to be between 200 m and 400 m away. To promote the connection between these two points, active transportation improvements along Ethennonnhawahstihnen' Lane should be explored.

Figure 6-10: Walkshed Analysis for Leslie TTC Station

Based on the walkshed analysis, several key walkable destinations surround Leslie Station including:


- North York General Hospital
- East Don Parkland Trail / Betty Sutherland Trail
- Various commercial and educational institutions

Corridors leading to these destinations include Leslie Street, Sheppard Avenue, Esther Shiner Boulevard, and Old Leslie Street. These routes should be further investigated for active transportation improvements.

6.3.3 Cycleshed Analysis

A cycleshed analysis shows how far a cyclist can travel from a certain location. A cycleshed analysis was conducted for each entrance of each of the three TTC Stations and is illustrated in Figure 6-11. The cycleshed analysis indicates major barriers that should be addressed which include:

- Highway 401
- Don Valley Parkway
- The Don Valley River

6.3.4 Parking Constraints at the Future Oriole GO

Parking spaces removed at the existing Oriole GO Station will not be reinstated at the new location. Park-and-ride trips are expected to travel to Old Cummer GO Station where parking is available. Oriole GO Station currently provides 284 parking spaces with high parking utilizations throughout the day. The parking utilization is over 90% by 8:00 a.m. and drops to approximately 88% by 5:00 p.m. Leslie Station currently has 102 parking spaces with high parking utilization throughout the day. The parking utilization is over 90% by 8:00 a.m. and drops to below 90% by 3:00 p.m. As the 284 parking spaces at Oriole GO Station will not be reinstated at the relocated site, encouraging alternative modes to park-and-ride such as active transportation modes for access and egress will be even more important.

6.3.5 Connectivity between Regional and Local Transit

With the relocation of the Oriole GO Station to Leslie Station, there will be increased interconnection between the regional and local transit services. The need to develop Leslie Station as a local mobility hub is even more important as higher-order modal transitions are provided. Comfortable, connected, and accessible pedestrian and cycling connections are important to facilitate the modal transition between local and regional

services. This strategy can help facilitate more use of the regional or local transit services for commuting trips, especially to the downtown central business district.

6.3.6 Support for Future Transit Improvements

The draft proposed TTC improvements require several protections to enhance its feasibility. These are outlined below:

- Extending Route 78 St. Andrews would require protecting for transit operations on Hawksbury Drive and Bayview Mews Lane due to the constraints at the intersection.
- Property for a bus loop on the east side of Bayview Avenue between Sheppard Avenue and Bayview Mews Lane should be identified. A bus loop would promote transit to Bayview Village, provide improved facilities for operators, and expand on potential transit service improvements for other nearby routes. A bus loop would also be able to connect the active transportation network and the transit network.

Road design can also facilitate the use of transit. Based on consultation with the TTC, transit riders prefer direct transit access to North York General Hospital rather than walk from Leslie Station. The draft proposed bus route changes to 51 Leslie would split the existing bus route into two bus routes, both serving North York General Hospital. There is a need to explore streamlined bus access to the hospital. Opportunities include bus-only lanes on Esther Shiner Boulevard to access the overpass over Leslie Street and maintain bus exceptions for through-traffic.

7.0 Sustainability Initiatives

This section describes the City's other sustainability initiatives that can be incorporated within this study including supporting electric vehicles and building infrastructure while considering resilience.

7.1 TransformTO Net Zero Strategy

Toronto City Council has adopted a strategy to reduce community-wide greenhouse gas (GHG) emissions in Toronto to net zero by 2040. The City's GHG reduction targets, from 1990 levels, are:

- 30% by 2020
- 40% by 2025
- 65% by 2030
- Net zero by 2040

Short-term recommendations identified through the strategy include:

- Support safe cycling and walking
- Provide enhanced transit service
- Develop a low-carbon freight strategy
- Enable electric vehicles (EVs)

7.2 Electric Vehicle Initiatives

TransformTO outlines that 100% of transportation shall use zero-carbon energy by 2050. The Federal Government has also announced that they will require 100% of car and passenger truck sales in Canada to be zero-emissions by 2035.

The City has supported the consumer adoption of electric vehicles by creating parking standards for new developments making the provision of EV-ready stalls compulsory. The Toronto Green Standard Version 4, adopted by City Council in July 2021, requires 100% of residential parking spaces (excluding visitor spaces) to be equipped with an energized outlet capable of providing Level 2 charging or higher to the parking spaces. Since December 2021, the City's parking zoning by-law indicated that all parking spaces for residents be EV Ready and that 25% of all other parking spaces in development must also be EV Ready.

The City has also supported the consumer adoption of electric vehicles by installing on-street EV charging stations. This practice started in 2020 as a pilot. In 2022, the City committed to installing 32 additional on-street EV charging stations for 17 residential on-street permit parking locations. In 2023, the Toronto Parking Authority will take full responsibility for the operations and maintenance of all existing and future on-street chargers.

The City plans to begin a City-wide Parking Strategy in 2023. There is an opportunity for the ReNew Sheppard East study to collaborate with the Parking Strategy to understand if there will be a sufficient level of EV-charging stations provided either through private developments or municipal parking spaces by 2051.

7.3 Incorporating Resilience

The City's Resilience Strategy sets the vision, goals, and actions to help Toronto survive, adapt, and thrive in the face of any challenge, particularly climate change and growing inequities. A specific action item from the Resilience Strategy that could be integrated with this study is to communicate, synthesize and scale up ongoing City efforts to advance a system of green and blue infrastructure.

The risk of climate shocks and stresses can be mitigated through the development of a network of green and blue infrastructure. This type of infrastructure purposefully and carefully integrates natural elements into the built environment in ways that can help protect against flooding, mitigate the heat island effect, and improve air, soil, and water quality.

Green and blue infrastructure can include:

- Bioswales
- Urban forestry
- Wetland habitats
- Green streets

The integration of green and blue infrastructure with transit stations, parks / parkettes, and other community spaces would not only enhance the public realm but also have a positive impact on climate change mitigation.

7.4 TTC Green Initiatives

The TTC has set goals to attain a zero-emissions bus fleet that will continue to deliver safe and reliable service. The targets set include 50% of their fleet be zero-emissions by 2028 to 2032 and 100% of their fleet be zero emissions by 2040. The TTC will be trialing a variety of bus models that operate on green technologies.

8.0 Vision, Guiding Principles, and Objectives

8.1 Vision

Since the opening of the Sheppard Subway, development has extended eastward along the Sheppard East corridor from the North York Centre in support of significant investments in public transit. Investments in multi-modal transportation will support the transformation of the area from auto-oriented to one that reduces auto dependency and supports a pedestrian oriented street network. The study area will enhance the identity and sense of place to reinforce existing assets and local features to build a mixed-use, transit supportive community.

The vision for the ReNew Sheppard Study Area is to create a complete, liveable, connected, prosperous, sustainable, and resilient mixed-use community. The study area identifies Distinctive Nodes and Character Areas that will accommodate a balanced mix of housing and built form (building types, tenures, and affordability), diverse commercial uses that support employment opportunities, and build upon community services and facilities.

The street network within the ReNew Sheppard Study Area will support investments in multi-modal transportation and leverage local and regional transportation infrastructure. New streets and connections will support sustainable mobility choices to connect residents and workers to employment, community assets, and residential communities, while supporting goals to reduce car dependency.

8.2 Guiding Principles

The ReNew Sheppard East Secondary Plan is informed by the following Guiding Principles:

Complete Community

- Will encourage a mix of land uses to support daily needs, employment opportunities, and access to community services and facilities.
- A mix of housing options to provide a range of housing choice for people of all ages and abilities across the housing spectrum.

Liveable Community

- A multi-functional, welcoming, and resilient public realm network comprised of parks and open spaces that offer ample opportunities for passive and active recreation, social gathering, and connection to nature.
- Compact development that defines a pedestrian oriented streetscape with comfortable conditions for all users, ages, and abilities.

• Provide varied building heights with transition in intensity and scale to build on existing character and to reflect transit-oriented communities.

Connected Community

- Improve and provide a safe comfortable and connected pedestrian and cycling environment at transit stations.
- Enhance and provide sustainable and active transportation choices.
- Optimize the use of TTC Subway Stations and the Oriole GO Station.
- Establish a complete and balanced transportation network that connects residents and workers to important community destinations.

Prosperous Community

- Will build upon existing healthcare resources such as the North York General Hospital, and other institutional uses.
- Support the expansion of employment and service uses with connections to local and regional transit. A diverse range of new types of business opportunities will be encouraged.

Sustainability and Resilient Community

- Promote sustainable and resilient communities by incorporating low impact design measures, absorbing stormwater on-site, and growing the urban tree canopy.
- Recognize Don River Valley as an important natural heritage asset and destination for the study area. Protect and enhance the ravine adjacent to Don East River to balance its recreational and ecological functions.
- Will support the reuse of materials through the development and construction process.

8.3 Transportation Planning Objectives

This section describes the various planning objectives that are intended to further guide the transportation network within the ReNew Sheppard East study area to 2051.

8.3.1 Growth Management Objectives

There are a mix of land uses within the ReNew Sheppard Study Area with varying densities of employment and residential communities. Commercial activity is generally located along the Sheppard Avenue corridor close to Bayview TTC Station, Bessarion TTC Station, and Leslie TTC Station.

The Integration of land use and transportation planning allows for the development of more complete communities where a community offers a wide range of amenities, services, and opportunities within a compact and accessible area. Managing the study

area's population and employment growth to develop a complete community promotes shorter distance trips within the community, less reliance on personal vehicles, and can increase the adoption of active transportation modes which supports a healthier and more sustainable lifestyle.

8.3.2 Placemaking and Sociability Objectives

One of the primary objectives of transportation planning is to develop a transportation system that provides safe, accessible, and affordable transportation options to connect people to jobs, education, healthcare, social services, and other essential institutions. This transportation planning objective revolves around the concept of mobility. While mobility plays a critical role in our society, transportation planning has also evolved to support the building of great places and sociability.

The sociability of a community refers to communities that offer more opportunities for social interaction between residents and visitors. Sociable cities enhance the community's vibrancy improving the quality of life. Transportation planning can support this objective by ensuring that the transportation network acts as a catalyst for people to interact. This objective can be accomplished if streets are perceived as safe and comfortable and support the congregation of people in community spaces. As public realm enhances and sociability increases, the desire to want to take sustainable modes of transportation such as walking and transit can also increase.

Transportation systems and programs can combat social isolation and loneliness and build stronger and healthier communities. Strategies can include investments in creative programs that make use of transportation infrastructure. Examples include:

- Safe Routes to School and walking school bus programs: These programs create greater social connections between schools, parents, and students utilizing the walkability of neighborhoods surrounding schools.
- Play Streets: A temporary closure of public streets to create a safe space for active play, which offers students and parents a place to meet and build a sense of community.
- Little Free Library around Public Transit Stops: Little Free Library is a nonprofit organization that promotes neighbourhood book exchanges, usually in the form of a public bookcase.
- Transforming trails into walkable art galleries.

8.3.3 Transportation Equity Objectives

An equitable transportation system ensures that the distribution of infrastructure and programs ensure that oppressed and underserved communities have reasonably equal transportation benefits and impacts as communities better served by the transportation system. Recent transportation planning principles have considered equity. For

example, Vision Zero seeks to ensure that vulnerable road users, such as pedestrians and cyclists, are provided infrastructure to ensure robust safety and protection. Complete Streets seeks to ensure that a transportation system is built for all road users, regardless of age or ability.

However, transportation equity analysis is important, as transportation planning decisions can have significant impacts on the community. The impacts of these decisions include:

- Household expenditures: Transportation and living costs usually make up a significant portion of household spending.
- Access to jobs: Employment opportunities are limited to people having reasonable and consistent access to mobility choices.
- Transportation infrastructure imposes indirect and external costs such as pollution, vehicular accidents, and congestion delay. These costs usually affect certain populations, such as low-income neighbourhoods, disproportionally.

8.3.4 Transportation Sustainability Objectives

Sustainable transportation planning refers to the development of a transportation network that reduces resource use, including energy, while still meeting the transportation needs of the community. The Centre for Sustainable Transportation defined a sustainable transportation system as one that:

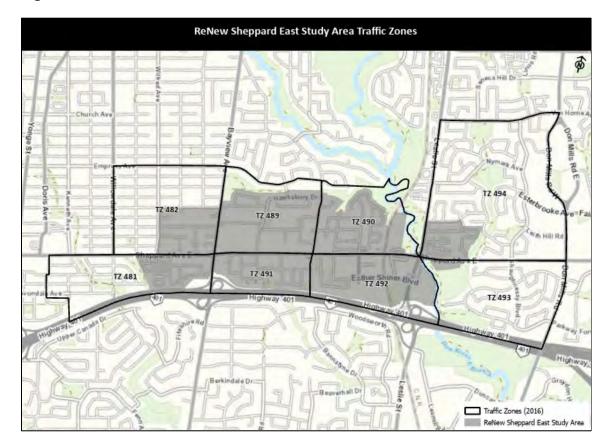
- Allows individuals and societies to meet their access needs safely and in a manner consistent with human and ecosystem health and with equity within and between generations.
- Is affordable, operates efficiently, offers a choice of transport mode, and supports a vibrant economy.
- Limits emissions and waste to within the planet's ability to absorb them, minimizes consumption of non-renewable resources, limits consumption of renewable resources to the sustainable yield level, reuses and recycles its components, and minimizes the use of land and the production of noise.

One approach to obtaining transportation sustainability is to focus on planning for all modes of transportation. Transportation planning should identify strategies to increase walking, cycling, transit, rideshare, and teleworking. Planning should recognize that these transportation modes should not be treated in isolation, but some synergies exist between them. Planning for these synergies, such as walk-access to transit, should also be considered in the planning process.

Another consideration for obtaining transportation sustainability is minimizing the transportation system's reliance on impervious surfaces that increase the amount of runoff from precipitation. Increased runoff increases the risk of floods. Strategies to reduce its reliance include ensuring the road network at the mid-blocks and intersections

City of Toronto

ReNew Sheppard East Transportation Planning Study September 2024


is not wider than they need to be, maximizing the existing parking supply before considering new parking structures and paved spaces, and the use of green infrastructure or low-impact development. Green infrastructure within a transportation system can include the use of swales, permeable pavement, and the use of bioretention areas and rain gardens.

9.0 Future Conditions Assessment

9.1 Land Use Scenario

Long-term population and employment forecasts were provided by the City of Toronto's Planning Division and reflect a growth scenario reflecting the greatest intensification of the ReNew Sheppard Study Area (i.e., "Option 1"). This future condition assessment uses this growth scenario for the purposes of understanding and preparing for the "worst case." The City is currently finalizing the preferred growth scenario which, at this time, may or may not be the "Option 1" scenario.

Growth forecasts were provided for eight traffic zones within the ReNew Sheppard Study Area, as shown in Figure 9-1. The corresponding population and employment forecasts for each zone is summarized in Figure 9-1.

Figure 9-1: Traffic Zones

Table 9-1: Population and Employment Forecasts

Traffic Zone	2021	2041 (Assumed)	Net Growth	% Growth Rate Per Annum
481	2,760	10,490	7,730	7%
482	3,920	15,050	11,130	7%
489	4,766	14,670	9,904	6%
490	1,204	7,690	6,486	10%
491	6,580	17,030	10,450	5%
492	4,366	25,385	21,019	9%
493	2,863	2,865	2	0%
494	12,481	19,420	6,939	2%
Total	38,940	112,600	73,660	5%

Population (Resident) Forecasts

Employment (Jobs) Forecasts

Traffic Zone	2021	2041 (Assumed)	Net Growth	% Growth Rate Per Annum
481	1,029	2,385	1,356	4%
482	845	2,030	1,185	4%
489	1,712	3,685	1,973	4%
490	1,586	1,565	-21	0%
491	814	1,065	251	1%
492	5,619	11,990	6,371	4%
493	346	345	-1	0%
494	700	1,665	965	4%
Total	12,651	24,730	12,079	3%

As shown, the study area is anticipated to experience significant intensification, with population planned to triple and employment planned to double over the long-term. Dense, built-up urban areas like the City of Toronto typically see 0% to 1% growth per annum. For example, between 2016 to 2021, the City of Toronto's population grew by 0.5% per annum from 2,731,571 to 2,794,356. The 5% per annum planned population growth to 2041 in the study area outpaces typical growth within the city. However, with a 3% per annum growth in jobs, the mixed-use densification may provide opportunities to shift trips to more sustainable modes of transportation. This is explored in the subsequent sections.

9.2 Multi-modal Transportation Assessment

A transportation assessment was conducted to consider the impacts and potential mitigation solutions to manage the growth as part of a land use scenario with the greatest intensification.

9.2.1 Travel Demands

Future travel demands were forecasted based on estimated population and employment allocations for each traffic zone in the study area as summarized in Table 9-1. To inform congested road segments in the area, vehicular trip rates were derived based on 2016 Transportation Tomorrow Survey (TTS) data and applied to the net growth in residents and jobs to project future travel demands. The following vehicular trip rates, reflecting the trips produced and attracted to the study area, were applied:

- Resident Trip Rate: 0.11 vehicle trips per resident.
- Employee Trip Rate: 0.56 vehicle trips per job.

However, it should be recognized that these trip rates reflect the pre-pandemic (prior to 2020) demands. Since the onset of the pandemic, telecommuting (work-from-home) has become more prevalent as companies have opted for a more flexible or hybrid work model. Therefore, the vehicle trip rates are likely an overestimation. In addition, the application of the above rates assumes a "business-as-usual" scenario whereby the existing auto mode split of 68% is maintained.

The projected additional trips associated with the "Option 1" growth scenario in the study area is provided in Table 9-2. These additional vehicular trips were assigned and distributed throughout the study network based on the availability of existing accesses for each of the traffic zones.

Traffic Zone (2016)	Net Population Growth	Net Employment Growth	Net Resident Trips	Net Employee Trips	Additional Total Trips
481	7,730	1,356	836	760	1,596
482	11,130	1,185	1,204	664	1,868
489	9,904	1,973	1,071	1,105	2,177
490	6,486	0	702	0	702
491	10,450	251	1,130	141	1,271
492	21,019	6,371	2,274	3,569	5,843
493	2	-1	0	0	0
494	6,939	965	751	541	1,291
Total	73,660	12,100	7,968	6,779	14,746

Table 9-2: Net Vehicular Trip Growth During the Peak Hour

9.2.2 Link Capacity Analysis

It is estimated that an additional 14,700 vehicles will use the study road network during both morning and afternoon peak hours as a result of the forecasted population and employment growth. The major travel corridors within the ReNew Sheppard Study Area are currently limited to just Sheppard Avenue East, Bayview Avenue, and Leslie Street, each of which will generally provide two travel lanes or service 1,800 vehicles per hour per direction in the future. The results of the future capacity analysis for the morning peak hour are shown in Table 9-4. The results of the future capacity analysis for the afternoon peak hour are shown in Table 9-5.

The volume to capacity (v/c) ratio represents the sufficiency for the road segment to accommodate vehicular demand. A description of typical v/c thresholds is shown in Table 9-3.

V/C Ratio	Description					
<0.85	Road segment is operating under capacity and congestion is normally					
	not experienced.					
0.85 to0.95	Road segment is operating near its capacity. Higher delays may occur,					
	but typically not for long periods of time.					
0.95 to 1.0	Road segment is on the verge of congested conditions and may					
	experience higher delays during the peak hours of the day.					
>1.0	The demand exceeds the available capacity of the road segment. High					
	delays may be experienced for extended periods of time.					

Table 9-3: V/C Ratio Threshold Description

A volume-to-capacity ratio of 0.90 or less is typically considered acceptable as it indicates a Level of Service (LOS) of D or above. A LOS of E or F is usually considered not acceptable and would warrant the need for mitigation measures or improvement. However, the typical threshold of 0.90 is not specific to rural, sub-urban, or urban environments. For the City of Toronto, specifically in the ReNew Sheppard Study Area, a v/c threshold must consider the realities of an urban environment and the need to prioritize its most critical corridors, along with the mobility of road users beyond the automobile (i.e., pedestrians and cyclists). For these reasons, the v/c threshold for determining corridors that require improvement was set to 1.0. This indicates that corridors that are experiencing used capacity greater than 100% should be identified for improvement.

Table 9-4: 2051 Future Capacity Analysis (AM Peak Hour)

Northbound / Eastbound

Road	From	То	Future Demand	Capacity (Vehicles per Hour per Direction)	Used Capacity
Sheppard Avenue East	Wilfred Avenue	Bayview Avenue	1,960	1,800	109%
Sheppard Avenue East	Bayview Avenue	Bessarian Road / Burbank Drive	3,378	1,800	188%
Sheppard Avenue East	Bessarian Road / Burbank Drive	Provost Drive / Ambrose Road	4,548	1,800	253%
Sheppard Avenue East	Provost Drive / Ambrose Road	Leslie Street	1,827	1,800	102%
Sheppard Avenue East	Leslie Street	Shaughnessy Boulevard	2,454	2,700	91%
Esther Shiner Road	Provost Drive / Ambrose Road	Old Leslie Street	1,087	1,800	60%
Esther Shiner Road	Old Leslie Street	Leslie Street	1,281	1,800	71%
Bayview Avenue	Hollywood Avenue	Bayview Mews Lane	2,816	1,800	156%
Bayview Avenue	Bayview Mews Lane	Sheppard Avenue East	2,611	1,800	145%
Old Leslie Street	Sheppard Avenue East	Highway 401	1,018	1,800	57%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	920	900	102%
Leslie Street	Marowyne Drive	Sheppard Avenue East	2,152	1,800	120%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	754	2,700	28%

Southbound / Westbound

Road	From	То	Vehicles	Capacity (Vehicles per Hour per Direction)	Used Capacity
Sheppard Avenue East	Wilfred Avenue	Bayview Avenue	3,971	1,800	221%
Sheppard Avenue East	Bayview Avenue	Bessarian Road / Burbank Drive	2,897	1,800	161%
Sheppard Avenue East	Bessarian Road / Burbank Drive	Provost Drive / Ambrose Road	4,238	1,800	235%
Sheppard Avenue East	Provost Drive / Ambrose Road	Leslie Street	3,546	1,800	197%
Sheppard Avenue East	Leslie Street	Shaughnessy Boulevard	1,886	1,800	105%
Esther Shiner Road	Provost Drive / Ambrose Road	Old Leslie Street	672	1,800	37%
Esther Shiner Road	Old Leslie Street	Leslie Street	429	1,800	24%
Bayview Avenue	Hollywood Avenue	Bayview Mews Lane	1,657	1,800	92%
Bayview Avenue	Bayview Mews Lane	Sheppard Avenue East	1,454	1,800	81%
Old Leslie Street	Sheppard Avenue East	Highway 401	3,940	2,700	146%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	467	900	52%
Leslie Street	Marowyne Drive	Sheppard Avenue East	1,509	1,800	84%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	3,743	2,700	139%

300055817.0000

City of Toronto

ReNew Sheppard East Transportation Planning Study September 2024

Table 9-5: 2051 Future Capacity Analysis (PM Peak Hour)

Northbound / Eastbound

Road	From	То	Future Demand	Capacity (Vehicles per Hour per Direction)	Used Capacity
Sheppard Avenue East	Wilfred Avenue	Bayview Avenue	2,541	1,800	141%
Sheppard Avenue East	Bayview Avenue	Bessarian Road/Burbank Drive	4,363	1,800	242%
Sheppard Avenue East	Bessarian Road / Burbank Drive	Provost Drive / Ambrose Road	4,047	1,800	225%
Sheppard Avenue East	Provost Drive / Ambrose Road	Leslie Street	1,914	1,800	106%
Sheppard Avenue East	Leslie Street	Shaughnessy Boulevard	2,630	2,700	97%
Esther Shiner Road	Provost Drive / Ambrose Road	Old Leslie Street	819	1,800	46%
Esther Shiner Road	Old Leslie Street	Leslie Street	1,156	1,800	64%
Bayview Avenue	Hollywood Avenue	Bayview Mews Lane	2,351	1,800	131%
Bayview Avenue	Bayview Mews Lane	Sheppard Avenue East	2,049	1,800	114%
Old Leslie Street	Sheppard Avenue East	Highway 401	1,203	1,800	67%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	441	900	49%
Leslie Street	Marowyne Drive	Sheppard Avenue East	2,738	1,800	152%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	1,495	2,700	55%

Southbound / Westbound

Road	From	То	Vehicles	Capacity (Vehicles per Hour per Direction)	Used Capacity
Sheppard Avenue East	Wilfred Avenue	Bayview Avenue	3,417	1,800	190%
Sheppard Avenue East	Bayview Avenue	Bessarian Road/Burbank Drive	2,372	1,800	132%
Sheppard Avenue East	Bessarian Road / Burbank Drive	Provost Drive / Ambrose Road	3,753	1,800	208%
Sheppard Avenue East	Provost Drive / Ambrose Road	Leslie Street	4,237	1,800	235%
Sheppard Avenue East	Leslie Street	Shaughnessy Boulevard	2,077	1,800	115%
Esther Shiner Road	Provost Drive / Ambrose Road	Old Leslie Street	1,586	1,800	88%
Esther Shiner Road	Old Leslie Street	Leslie Street	984	1,800	55%
Bayview Avenue	Hollywood Avenue	Bayview Mews Lane	2,399	1,800	133%
Bayview Avenue	Bayview Mews Lane	Sheppard Avenue East	1,552	1,800	86%
Old Leslie Street	Sheppard Avenue East	Highway 401	3,255	2,700	121%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	935	900	104%
Leslie Street	Marowyne Drive	Sheppard Avenue East	1,180	1,800	66%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	2,865	2,700	106%

300055817.0000

A link capacity analysis with these additional trips assigned indicate that the following issues during the AM and / or PM peak hour:

- Sheppard Avenue East (Eastbound and Westbound) between Wilfred Avenue and Leslie Street will significantly exceed capacity (up to 253% used capacity).
- Bayview Avenue (Northbound and Southbound) north of Bayview Mews Lane will exceed capacity (up to 156% used capacity).
- Bayview Avenue (Northbound) between Bayview Mews Lane and Sheppard Avenue East will exceed capacity (up to 145% used capacity).
- Bayview Avenue (Southbound) south of Sheppard Avenue East will exceed capacity by up to 146%.
- Old Leslie Street (Northbound and Southbound) between Sheppard Avenue East and Esther Shiner Boulevard will be at capacity.
- Leslie Street (Northbound) north of Sheppard Avenue East will exceed capacity (up to 152%).
- Leslie Street (Southbound) between Sheppard Avenue East and Esther Shiner Boulevard will exceed capacity (up to 139%).
- Leslie Street (Northbound and Southbound) south of Esther Shiner Boulevard will exceed capacity (up to 175%).

9.2.3 Target Mode Share

A review of 2016 TTS data indicate that the mode splits during the morning peak period for residents currently residing within the ReNew Sheppard Study Area are as follows:

- Auto driver or passenger: 68%
- Non-auto mode share: 31%:
 - Transit (GO rail and/or local transit): 25%
 - Cycle: 0.4%
 - Walk: 5%
- Other (motorcycle, school bus, taxi passenger and paid rideshare): 1%

With the intensification of the area to support mixed-use lands and the planned improvements to encourage a shift to sustainable (non-auto) modes, including the cycle track proposed along Sheppard Avenue and the relocation of the Oriole GO Station to the existing Leslie TTC Subway Station, the non-auto mode share is anticipated to increase over the next 20 years. To ensure that the transportation network within the study area can accommodate and manage the anticipated growth, a non-auto mode share target was established.

This mode share target was established based on the potential for certain types of existing driving trips to be converted to sustainable modes. The steps included the following:

- 1. Existing trip patterns and person characteristic data from TTS were first assessed.
- 2. Based on this assessment, a lower mode share target and a higher, more aggressive mode share was established. This was to provide realistic and contextualized upper and lower bounds for determining the target mode share.
- 3. Benchmarked areas within the City were compared for mode share, population, employment, and employment-to-population ratio.

Step 1:

The assessment indicated that of all the existing auto driver or passenger trips destined to / originating from the ReNew Sheppard Study Area during the morning peak period (6:00 to 9:00 a.m.), 35% are less than 7.5 km in length. With the addition of and protection for cycling facilities, there is anticipated to be some level of increased uptake in cycling for those who are within a reasonable biking distance to their destination. For reference, the average biking trip for residents in the study area was 7.5 km in 2019 per the Sheppard East Corridor – Transportation Review (2019/2020).

 The shorter (< 1 km) trips make up 3% of existing auto trips, which have the potential to be shifted to walking trips in the future.

Therefore, Future Scenario #1 is defined as a scenario where all driving trips less than 7.5 km in length (35% of existing driving trips) are converted to cycling trips. For reference, this is slightly more aggressive than TransformTO which indicates that 75% of school / work trips under 5 km are walked, biked, or by transit.

Converting auto trips to more sustainable modes will be further supported by planned higher-order transit improvements, as illustrated in Figure 9-3. The Sheppard Subway Extension and Yonge-North Subway Extension will help facilitate this shift as proposed stations and stops are anticipated to be located within 7.5 km of residents within the ReNew Sheppard Study Area.

The assessment also indicated that of all the existing auto driver or auto passenger trips destined to / originating from the ReNew Sheppard Study Area during the morning peak period (6:00 to 9:00 a.m.), 22% are greater than 7.5 km in length and accessible via transit; more specifically, these existing auto trips are travelling to/from TTS Planning Districts (Zones 1, 4, 5, 11, and 12) which are located within close proximity to TTC's Line 1 (Yonge-University) subways highlighted in Figure 9-2. Given the proximity of the Leslie and Bayview Subway Station and Oriole GO, which will provide direct access to/from Union Subway Station, this may become an increasingly attractive option for travelers. Additionally, with the implementation of Metrolinx's One Fare Program on February 26, 2024, undertaking joint trips with GO Transit and TTC will be more affordable as transit riders would only need to pay once.

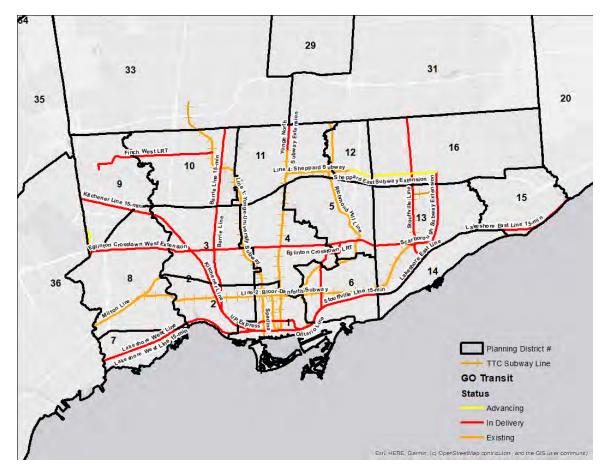


Figure 9-2: TTS Zones (Planning Districts) Close to Line 1

Further, as mentioned, planned transit improvements illustrated in Figure 9-3 can help further encourage and shift existing longer distance auto trips to transit. The Eglinton Crosstown LRT and Scarborough Subway Extension, in particular, provide connecting transfers from the Line 4 / Line 1 Subway and Sheppard Avenue buses, respectively. For reference, approximately 19% of existing origin-destination auto trips would benefit from these transit connections (i.e., proportion of trips travelling to / from TTS Planning District 13). The planned Finch Light Rail Transit (LRT) and Ontario Line are also noted to help expand the transit network; however, given the location of these proposed connections, it is anticipated that the shift for those who are currently using their car to travel would be minor. Therefore, this assessment assumes that the Eglinton LRT, Scarborough Subway Extension, the Finch LRT and Ontario Line would shift an additional 3% of auto trips to transit.

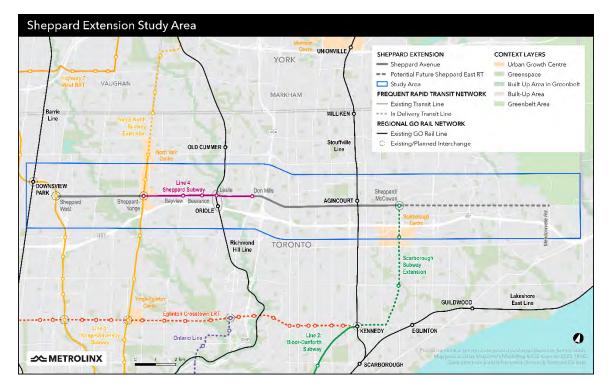


Figure 9-3: Planned Transit Improvements

Therefore, Future Scenario #2 is defined as a scenario where all driving trips greater than 7.5 km in length but are close to Line 1 (22% of existing trips) are converted to transit and planned transit improvements provide an additional 3% in modal shift. Therefore, Future Scenario #2 assumes a modal share shift of 25% of auto trips to transit.

Step 2:

Based on the above, it is estimated that, as a lower threshold, 35% of the current auto trips have the potential to be realistically shifted to sustainable modes. This translates to a future non-auto mode split of 46%. This is achieved if all auto driving / passenger trips that are less than 7.5 km in length are converted to cycling and/or walking trips (Future Scenario #1).

Based on the above, it is estimated that, as an upper threshold, 60% of the current auto trips have the potential to be shifted to sustainable modes. This translates to a future non-auto mode split of 72%. This is achieved if Future Scenario #1 is achieved, if all driving trips greater than 7.5 km in length but are close to Line 1 are converted to transit (Future Scenario #2), and planned transit improvements are implemented.

Therefore, the target non-auto modal split can be assumed to be between 46% and 72%.

Step 3:

Three areas of the city were benchmarked as comparable areas to the ReNew Sheppard Study Area. The benchmarks are shown in Table 9-6.

	Auto Mode Split (AM Peak)	Non-auto (AM Peak)	Population	Employment	Employment-to-Population Ratio
ReNew Sheppard (2041)	-	-	112,600	24,730	0.22
Downtown	27%	73%	229,500	502,500	2.19
North York City Centre	59%	41%	42,500	119,500	2.81
Midtown Yonge	48%	52%	107,500	42,000	0.39

Table 9-6: Mode Split Benchmarks

Based on the benchmarks, Midtown Yonge has similar magnitudes of population, employment, and a higher employment-to-population ratio than the land use mix in ReNew Sheppard by 2041. With Midtown Yonge having a higher employment-to-population ratio and located along Line 1, the ReNew Sheppard Study Area should realistically have an achievable non-auto mode share target that is slightly lower than Midtown Yonge. Therefore, for ReNew Sheppard, a target modal split is assumed to be 50% auto and 50% non-auto.

As shown in Table 9-7, based on a 50% auto / 50% non-auto modal split, the following road corridors remain well over capacity in the AM peak period:

- Sheppard Avenue East, between Bayview Avenue and Bessarion Road / Burbank Drive (Eastbound).
- Sheppard Avenue East, between Bessarion Road and Provost Drive / Ambrose Road (Eastbound).
- Sheppard Avenue West, between Provost Drive and Leslie Street (Westbound).
- Bayview Avenue, between Sheppard Avenue East and Hollywood Avenue (Northbound).
- Leslie Street, between Sheppard Avenue West and Highway 401 (Southbound).

As shown in Table 9-8, based on a 50% auto / 50% non-auto modal split, the following road corridors remain well over capacity in the PM peak period:

- Sheppard Avenue East, between Wilfred Avenue and Bayview Avenue (Eastbound).
- Sheppard Avenue East, between Bayview Avenue and Bessarion Road / Burbank Drive (Eastbound).

- Sheppard Avenue East, between Bessarion Road and Provost Drive / Ambrose Road (Eastbound).
- Sheppard Avenue West, between Leslie Street and Shaughnessy Boulevard (Westbound).
- Leslie Street, between Marowyne Drive and Sheppard Avenue East (Northbound).

With the planned transportation network in place with a 50% auto and a 50% non-auto mode share, the multi-modal transportation assessment indicates that there are several street segments within the ReNew Sheppard Study Area that will experience some constraints to auto capacity until the ultimate of 70% non-auto mode share is achieved. With a mode share of 70%, the future capacity analysis for the AM peak hour is shown in Table 9-9 and the future capacity analysis for the PM peak hour is shown in Table 9-10.

To support a mode shift toward 70% non-auto, all planned and proposed infrastructure improvements examined through this study should be implemented. Providing infrastructure for a more balanced and multi-modal transportation network will allow for a more resilient and effective transportation network. Additionally, one of the two mode share scenarios or some combination of the two should be achieved.

- 1. At least a 70% non-auto modal share is required which can be achieved if most existing driving trips within 7.5 km is converted to non-driving trips like cycling and walking, and if most existing driving trips greater than 7.5 km is converted to transit trips.
- 2. Travel demand management (TDM) strategies are undertaken to decrease overall travel demand.

Multi-modal transportation strategies, solutions, and policies to achieve these two scenarios are outlined in Chapter 10.

Table 9-7: 2051 Future Capacity Analysis (AM Peak Hour) with 50% Modal Split

Northbound / Eastbound

Road	From	То	Future Demand	Capacity (Vehicles per Hour per Direction)	Used Capacity
Sheppard Avenue East	Wilfred Avenue	Bayview Avenue	1,568	1,800	87%
Sheppard Avenue East	Bayview Avenue	Bessarian Road / Burbank Drive	2,703	1,800	150%
Sheppard Avenue East	Bessarian Road / Burbank Drive	Provost Drive / Ambrose Road	3,638	1,800	202%
Sheppard Avenue East	Provost Drive / Ambrose Road	Leslie Street	1,462	1,800	81%
Sheppard Avenue East	Leslie Street	Shaughnessy Boulevard	1,964	2,700	73%
Esther Shiner Road	Provost Drive / Ambrose Road	Old Leslie Street	870	1,800	48%
Esther Shiner Road	Old Leslie Street	Leslie Street	1,025	1,800	57%
Bayview Avenue	Hollywood Avenue	Bayview Mews Lane	2,253	1,800	125%
Bayview Avenue	Bayview Mews Lane	Sheppard Avenue East	2,089	1,800	116%
Old Leslie Street	Sheppard Avenue East	Highway 401	814	1,800	45%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	736	900	82%
Leslie Street	Marowyne Drive	Sheppard Avenue East	1,721	1,800	96%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	603	2,700	22%

Southbound / Westbound

Road	From	То	Vehicles	Capacity (Vehicles per Hour per Direction)	Used Capacity
Sheppard Avenue East	Wilfred Avenue	Bayview Avenue	3,177	1,800	177%
Sheppard Avenue East	Bayview Avenue	Bessarian Road / Burbank Drive	2,317	1,800	129%
Sheppard Avenue East	Bessarian Road / Burbank Drive	Provost Drive / Ambrose Road	3,391	1,800	188%
Sheppard Avenue East	Provost Drive / Ambrose Road	Leslie Street	2,837	1,800	158%
Sheppard Avenue East	Leslie Street	Shaughnessy Boulevard	1,509	1,800	84%
Esther Shiner Road	Provost Drive / Ambrose Road	Old Leslie Street	538	1,800	30%
Esther Shiner Road	Old Leslie Street	Leslie Street	343	1,800	19%
Bayview Avenue	Hollywood Avenue	Bayview Mews Lane	1,326	1,800	74%
Bayview Avenue	Bayview Mews Lane	Sheppard Avenue East	1,164	1,800	65%
Old Leslie Street	Sheppard Avenue East	Highway 401	3,152	2,700	117%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	374	900	42%
Leslie Street	Marowyne Drive	Sheppard Avenue East	1,207	1,800	67%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	2,995	2,700	111%

300055817.0000

Table 9-8: 2051 Future Capacity Analysis (PM Peak Hour) with 50% Modal Split

Northbound / Eastbound

Road	From	То	Future Demand	Capacity (Vehicles per Hour per Direction)	Used Capacity
Sheppard Avenue East	Wilfred Avenue	Bayview Avenue	2,033	1,800	113%
Sheppard Avenue East	Bayview Avenue	Bessarian Road / Burbank Drive	3,490	1,800	194%
Sheppard Avenue East	Bessarian Road / Burbank Drive	Provost Drive / Ambrose Road	3,238	1,800	180%
Sheppard Avenue East	Provost Drive / Ambrose Road	Leslie Street	1,531	1,800	85%
Sheppard Avenue East	Leslie Street	Shaughnessy Boulevard	2,104	2,700	78%
Esther Shiner Road	Provost Drive / Ambrose Road	Old Leslie Street	655	1,800	36%
Esther Shiner Road	Old Leslie Street	Leslie Street	925	1,800	51%
Bayview Avenue	Hollywood Avenue	Bayview Mews Lane	1,881	1,800	104%
Bayview Avenue	Bayview Mews Lane	Sheppard Avenue East	1,639	1,800	91%
Old Leslie Street	Sheppard Avenue East	Highway 401	962	1,800	53%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	353	900	39%
Leslie Street	Marowyne Drive	Sheppard Avenue East	2,191	1,800	122%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	1,196	2,700	44%

Southbound / Westbound

Road	From	То	Vehicles	Capacity (Vehicles per Hour per Direction)	Used Capacity
Sheppard Avenue East	Wilfred Avenue	Bayview Avenue	2,734	1,800	152%
Sheppard Avenue East	Bayview Avenue	Bessarian Road / Burbank Drive	1,898	1,800	105%
Sheppard Avenue East	Bessarian Road / Burbank Drive	Provost Drive / Ambrose Road	3,002	1,800	167%
Sheppard Avenue East	Provost Drive / Ambrose Road	Leslie Street	3,390	1,800	188%
Sheppard Avenue East	Leslie Street	Shaughnessy Boulevard	1,661	1,800	92%
Esther Shiner Road	Provost Drive / Ambrose Road	Old Leslie Street	1,269	1,800	70%
Esther Shiner Road	Old Leslie Street	Leslie Street	787	1,800	44%
Bayview Avenue	Hollywood Avenue	Bayview Mews Lane	1,919	1,800	107%
Bayview Avenue	Bayview Mews Lane	Sheppard Avenue East	1,241	1,800	69%
Old Leslie Street	Sheppard Avenue East	Highway 401	2,604	2,700	96%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	748	900	83%
Leslie Street	Marowyne Drive	Sheppard Avenue East	944	1,800	52%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	2,292	2,700	85%

300055817.0000

71

Table 9-9: 2051 Future Capacity Analysis (AM Peak Hour) with 70% Modal Split

Northbound / Eastbound

Road	From	То	Future Demand	Capacity (Vehicles per Hour per Direction)	Used Capacity
Sheppard Avenue East	Wilfred Avenue	Bayview Avenue	1,176	1,800	65%
Sheppard Avenue East	Bayview Avenue	Bessarian Road / Burbank Drive	2,027	1,800	113%
Sheppard Avenue East	Bessarian Road / Burbank Drive	Provost Drive / Ambrose Road	2,729	1,800	152%
Sheppard Avenue East	Provost Drive / Ambrose Road	Leslie Street	1,096	1,800	61%
Sheppard Avenue East	Leslie Street	Shaughnessy Boulevard	1,473	2,700	55%
Esther Shiner Road	Provost Drive / Ambrose Road	Old Leslie Street	652	1,800	36%
Esther Shiner Road	Old Leslie Street	Leslie Street	769	1,800	43%
Bayview Avenue	Hollywood Avenue	Bayview Mews Lane	1,690	1,800	94%
Bayview Avenue	Bayview Mews Lane	Sheppard Avenue East	1,567	1,800	87%
Old Leslie Street	Sheppard Avenue East	Highway 401	611	1,800	34%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	552	900	61%
Leslie Street	Marowyne Drive	Sheppard Avenue East	1,291	1,800	72%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	452	2,700	17%

Southbound / Westbound

Road	From	То	Vehicles	Capacity (Vehicles per Hour per Direction)	Used Capacity
Sheppard Avenue East	Wilfred Avenue	Bayview Avenue	2,383	1,800	132%
Sheppard Avenue East	Bayview Avenue	Bessarian Road/Burbank Drive	1,738	1,800	97%
Sheppard Avenue East	Bessarian Road/Burbank Drive	Provost Drive/Ambrose Road	2,543	1,800	141%
Sheppard Avenue East	Provost Drive/Ambrose Road	Leslie Street	2,127	1,800	118%
Sheppard Avenue East	Leslie Street	Shaughnessy Boulevard	1,132	1,800	63%
Esther Shiner Road	Provost Drive/Ambrose Road	Old Leslie Street	403	1,800	22%
Esther Shiner Road	Old Leslie Street	Leslie Street	257	1,800	14%
Bayview Avenue	Hollywood Avenue	Bayview Mews Lane	994	1,800	55%
Bayview Avenue	Bayview Mews Lane	Sheppard Avenue East	873	1,800	48%
Old Leslie Street	Sheppard Avenue East	Highway 401	2,364	2,700	88%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	280	900	31%
Leslie Street	Marowyne Drive	Sheppard Avenue East	905	1,800	50%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	2,246	2,700	83%

300055817.0000

Table 9-10: 2051 Future Capacity Analysis (PM Peak Hour) with 70% Modal Split

Northbound / Eastbound

Road	From	То	Future Demand	Capacity (Vehicles per Hour per Direction)	Used Capacity
Sheppard Avenue East	Wilfred Avenue	Bayview Avenue	1,524	1,800	85%
Sheppard Avenue East	Bayview Avenue	Bessarian Road / Burbank Drive	2,618	1,800	145%
Sheppard Avenue East	Bessarian Road / Burbank Drive	Provost Drive / Ambrose Road	2,428	1,800	135%
Sheppard Avenue East	Provost Drive / Ambrose Road	Leslie Street	1,148	1,800	64%
Sheppard Avenue East	Leslie Street	Shaughnessy Boulevard	1,578	2,700	58%
Esther Shiner Road	Provost Drive / Ambrose Road	Old Leslie Street	491	1,800	27%
Esther Shiner Road	Old Leslie Street	Leslie Street	694	1,800	39%
Bayview Avenue	Hollywood Avenue	Bayview Mews Lane	1,411	1,800	78%
Bayview Avenue	Bayview Mews Lane	Sheppard Avenue East	1,230	1,800	68%
Old Leslie Street	Sheppard Avenue East	Highway 401	722	1,800	40%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	265	900	29%
Leslie Street	Marowyne Drive	Sheppard Avenue East	1,643	1,800	91%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	897	2,700	33%

Southbound / Westbound

Road	From	То	Vehicles	Capacity (Vehicles per Hour per Direction)	Used Capacity
Sheppard Avenue East	Wilfred Avenue	Bayview Avenue	2,050	1,800	114%
Sheppard Avenue East	Bayview Avenue	Bessarian Road / Burbank Drive	1,423	1,800	79%
Sheppard Avenue East	Bessarian Road / Burbank Drive	Provost Drive / Ambrose Road	2,252	1,800	125%
Sheppard Avenue East	Provost Drive / Ambrose Road	Leslie Street	2,542	1,800	141%
Sheppard Avenue East	Leslie Street	Shaughnessy Boulevard	1,246	1,800	69%
Esther Shiner Road	Provost Drive / Ambrose Road	Old Leslie Street	951	1,800	53%
Esther Shiner Road	Old Leslie Street	Leslie Street	591	1,800	33%
Bayview Avenue	Hollywood Avenue	Bayview Mews Lane	1,439	1,800	80%
Bayview Avenue	Bayview Mews Lane	Sheppard Avenue East	931	1,800	52%
Old Leslie Street	Sheppard Avenue East	Highway 401	1,953	2,700	72%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	561	900	62%
Leslie Street	Marowyne Drive	Sheppard Avenue East	708	1,800	39%
Leslie Street	Sheppard Avenue East	Esther Shiner Boulevard	1,719	2,700	64%

300055817.0000

10.0 Multi-modal Transportation Strategies and Solutions

This section outlines various strategies and recommendations to achieve a 50% to 70% non-auto mode split. New local streets, active transportation strategies, and transit strategies are required to increase the number of trips using sustainable modes. In addition, travel demand management (TDM) and land use strategies are recommended to further reduce auto demand for the study area.

10.1 Street Network Strategies

10.1.1 New Local Street Design

As indicated in Chapter 9, a 70% non-auto mode share is required to ensure that the network can function. To facilitate this 70% non-auto mode share, local road connectors should be considered to enhance the connectivity of the street network within the study area to enhance first / last mile connections and provide more direct active transportation access to Shepard Avenue.

10.1.2 Public Street Right-of-way

Local street connectors should be considered to enhance the connectivity of the street network within the study area. Based on City's design standard and complete street approach to ensure safety for all mobility users Local Street are recommended to achieve a road right-of-way width between 18.5 m to 23 m.

10.2 Active Transportation Strategies

The following active transportation strategies are required to achieve the 50% non-auto mode split.

10.2.1 Separated or Designated Active Transportation Infrastructure

Based on existing and projected traffic volumes, separated or designated active transportation infrastructure is recommended to be implemented along the following public street within the study area:

- Bayview Avenue
- Leslie Street
- Esther Shiner Boulevard
- Burbank Drive
- Old Leslie Road, between Esther Shiner Boulevard and Sheppard Avenue East
- Bessarion Road

Existing cycling infrastructure rough-ins should be used to establish north-south cycling connections.

10.2.2 Overcoming the Highway 401 Active Transportation Barrier

The Highway 401 interchanges at Bayview Avenue and Leslie Street are critical barriers for the continuation of an active transportation network if no strategies are implemented. Separated active transportation infrastructure both within and outside the public street right-of-way should be considered at these interchanges to provide seamless north-south connections across the highway.

Along Leslie Street, the separated active transportation infrastructure can use the existing Oriole GO platform to continue below Highway 401. This would avoid the ramp interchange and can rejoin Leslie Street south of Highway 401 to provide an off-road connection.

Along Bayview Avenue, an off-road multi-use trail going around the interchange should be further explored.

If the active transportation network must cross any freeway ramps, public streets should be designed to slow approaching ramp traffic to promote safer stronger pedestrian and cyclist environment. These considerations can include:

- Normalization of highway on and off ramps.
- Implementing traffic calming measures on the ramp approach such a concrete truck apron to increase radius of ramp entry while accommodating for large trucks.
- Implementing yield controlled painted crossings with appropriate signage.

10.2.3 Local Active Transportation Corridors

Several local street segments are recommended to be considered for active transportation connections and dedicated cycling facilities should be consider in the long-term. For the interim, the use of quiet streets, advisory bike lanes, or sharrows / shared-lane markings with signage can be considered. These street segments are shown in Table 10-1.

Road Segment	Additional Active Transportation Considerations
Irvington Avenue	Connection should be considered to Sheppard
	East Park.
Bayview Mews Lane / Spring	Connections should be considered to Yonge
Garden Avenue	Street.
Citation Drive / Empress Avenue	Connections should be considered to Yonge
	Street.
Blithfield Avenue / McKee Avenue	Connections should be considered to Yonge
	Street via Church Avenue.
Hollywood Avenue / Foxwarren	Connection should be considered to Yonge
Avenue	Street via Doris Avenue and Empress Avenue.
Old Leslie Street	Accommodate cycling infrastructure along the
	narrow bridge width, southbound left-turn at
	Esther Shiner Boulevard, and bus terminal.
Hillcrest Avenue / Bayview Village	Connections should be considered to Yonge
Park Trail	Street via Kenneth Avenue and Empress
	Avenue.

Table 10-1: Shared Active Transportation Corridor Recommendations

10.2.4 Pedestrian Crossing

Several pedestrian crossings are recommended to enhance the continuity of the active transportation network. These pedestrian crossings are outlined below:

- A north-south pedestrian crossing along Sheppard Avenue East is recommended approximately 200 m west of the intersection of Leslie Street and Sheppard Avenue. This pedestrian crossing would facilitate pedestrians crossing to / from the TTC bus stop and Leslie Station.
- An east-west pedestrian crossing at the Bayview Avenue and Foxwarren Drive / Hollywood Avenue intersection is recommended to facilitate continuity between Bayview Avenue and Yonge Street.
- For future studies, an east-west pedestrian crossing at the Bayview Avenue and Bayview Village Park Trail intersection should be explored to facilitate continuity between Bayview Avenue and Yonge Street.

The misaligned intersection of Bayview Mews Lane and Bayview Avenue should be reviewed for safety and/or active transportation-related intersection treatments. During this review, an east-west pedestrian crossing is recommended to be considered on the southbound side of the Bayview Mews Lane and Bayview Avenue intersection.

10.2.5 Off-Road Trails

The following off-road trails are recommended for further study:

- 1200 Sheppard Avenue East to / from East Don Parkland Trail and / or connection across GO Rail line between 1200 Sheppard Avenue East and Clarinda Park to mitigate environmental impacts.
- Improve connectivity between the Betty Sutherland Trail and East Don River Trail. This can be achieved by re-orienting the Betty Sutherland Trail to the Leslie Street and Sheppard Avenue intersection.
- Trail access improvements at Clarinda Park.

To facilitate use of these off-road trails, wayfinding strategies around the study area should be implemented and enhancements to the trailhead located at the north-west corner of the Sheppard Avenue and Leslie Street intersection should be considered.

10.3 Transit Strategies

The following transit strategies are required to achieve a non-auto mode split of 50%.

10.3.1 GO Station and TTC Integration

Metrolinx's previously proposed relocation of the Oriole GO Station to the Leslie TTC Station is recommended to improve transit accessibility and integration. Strategies to consider with the relocation of the Oriole GO Station are outlined below:

- Comfortable, connected, and accessible pedestrian and cycling connections are important to facilitate the modal transition between local and regional transit services.
- Consider the integration of bike parking and micromobility to enhance opportunities for multi-modal transitions.
- Early implementation of multi-modal transportation strategies is important to shift travel behaviours away from driving in anticipation of the parking that will be removed at the existing Oriole GO Station.

10.3.2 Support of Regional Transit

To support the shift to sustainable transportation modes, several Regional transit projects should be implemented to directly affect travel of residents travelling to / from the study area including:

- Introduction of regional GO Bus Service to the study area.
- Sheppard Subway Extension connecting to Line 1 Sheppard West Subway Station and future Scarborough Subway Extension.

10.3.3 Local Bus Services Improvements

It is recommended that residents should continue to be surveyed and consulted regarding the accessibility and routing to potentially enhance utilization of the 51 Leslie Street, 11 Bayview Avenue, and 85 Sheppard Avenue TTC buses.

To support the proposed TTC service enhancements, the following strategies are recommended to be considered:

- Extending Route 78 St. Andrews to loop around the existing Bayview Village Mall via Bayview Mews Lane and Hawksbury Drive. This would require protecting for transit operations on Hawksbury Drive and Bayview Mews Lane due to the physical constraints at the intersection that would limit bus movements.
- Property for a bus loop or facility on the east side of Bayview Avenue between Sheppard Avenue and Bayview Mews Lane should be identified. This bus loop would promote transit to Bayview Village, provide improved facilities for operators, and expand on potential transit service improvements for other nearby routes. A bus loop would also be able to connect the active transportation network and the transit network.
- Streamlining bus access to the North York General Hospital such as bus-only lanes along Esther Shiner Boulevard to facilitate access to the overpass over Leslie Street.
- Further traffic studies to be undertaken to incorporate transit signal priority within the study area to enhance service reliability.

10.3.4 Accessible and Equitable Transit Station Design and Experience

The City should consider incorporating enhanced transit station elements focusing on transit user comfort leveraging public realm improvements. Elements to consider include seating / furniture, passenger wayfinding, green infrastructure, and bike parking.

Focus areas for these enhancements include the west, Bayview Avenue-facing entrance at Bayview Station and the north, Sheppard Avenue-facing entrance at Leslie Station. These entrances showed qualitatively fewer pedestrian amenities than other entrances and quantitatively less usage.

Another focus area would be the Oriole GO Station relocation to the Leslie TTC Station. Enhancing pedestrian comfort would make this location a place to visit and gather supporting the desire to shift to non-automobile transportation modes.

Ensuring more accessible and equitable transit station design can improve the attraction of using public transit. The three TTC stations within the Study Aea should be reviewed to ensure universal design standards are applied. This includes:

• Step-free access for including elevators, ramps, or lifts to accommodate passengers with mobility devices, strollers, and luggage.

- Tactile pathways to guide passengers from the station entrance to the platform or bus stop.
- Clear signage and wayfinding to provide clear, easily readable signage throughout transit stations and stops. Signage should include large print, high-contrast colours placed at accessible heights for all users.
- Seating and resting areas throughout the station allow resting for those with mobility constraints and the elderly.
- Ticket machines should be accessible for those who use wheelchairs or those with dexterity constraints.
- Ensure that transit information, signage, and / or customer service are available in multiple languages to cater to diverse populations within the study area. Data from Statistics Canada indicates that the most popular languages spoken at home within the study area include English, Persian, Mandarin, Korean, and Cantonese.

Enhancing first and last mile connections improves the overall accessibility and convenience of using public transit, supporting the shifts to sustainable modes. The following strategies support the enhancement of first and last mile connections:

- The active transportation network strategies and recommendations indicated in Section 10.2 will improve pedestrian and cycling connections to the three TTC stations within the study area.
- Improving the overall built-environment within the study area by enhancing the comfort, safety, and aesthetics will promote active transportation modes to transit stations. These include enhancing gathering spaces (Section 10.5.4) and incorporating more placemaking and public art elements within the study area (Section 10.5.5).
- Increasing the number of bike share stations within the study area. Although four stations have been identified in the 4-Year Growth Plan (2022 to 2025), there are additional opportunities within the next Growth Plan to increase the number of planned bike share stations. The City can consider using developer contributions (such as through cash-in-lieu of parking funds) to fund additional stations. The City of Hamilton recently used cash-in-lieu of parking funds to introduce their e-scooter pilot program.
- The City can partner with developers to discuss transit incentives for new developments. During the pre-application consultation stage, the City can ask developers to provide free pre-loaded transit passes (i.e., PRESTO cards) to future residents.
- The City can also work with developers, TTC, and non-profit agencies to introduce micro transit shuttles that connect to TTC services in the area to further enhance the accessibility of reach of transit users. There are currently over 35 private shuttles connecting to TTC stations across the network. More information and details can be found in TTC's 5-Year Service and Customer Experience Action Plan.

10.4 Travel Demand Management Strategies

Travel Demand Management (TDM) is used to describe a set of strategies that allow for the more efficient use of transportation resources. From the City's Official Plan: TDM measures aim to encourage people to take fewer and shorter vehicle trips to reduce congestion, energy consumption, and pollution. In the past, transportation planning has focused on supply-side solutions by identifying where transportation capacity is needed to satisfy forecast travel demand. TDM, in contrast, emphasizes changing travel behaviour to modify and reduce our demand for vehicular travel in cities. TDM is most effective when supported by complementary actions in the key areas of land use planning and public transit improvements.

Active transportation and transit network strategies facilitate the shift to a 50% non-auto mode share by increasing the number of sustainable mode trips. Travel demand strategies can incrementally reduce the overall auto demand and potentially help increase the non-auto mode share to 70%.

10.4.1 Educational Campaigns

Educational campaigns can bring the community together. They provide an opportunity for residents within the ReNew Sheppard East study area to meet others with a common interest in improving their cycling knowledge and meeting more experienced cyclists. This can be achieved through the City developing partnerships with local businesses in the active lifestyle industry within the study area.

There is a potential to tap into businesses that facilitate educational campaigns with the following topics:

- Learn how to fix a flat bike tire
- Learn essential bike maintenance skills
- Unlock the secrets of winter bike commuting
- Commuter safety

10.4.2 Bike Share Toronto

Bike Share Toronto offers 24/7 convenient access to over 9,000 bikes and 700 stations across the city. Bike Share Toronto's 4-Year Growth Plan (2022 to 2025) guides station planning for the Bike Share Toronto network as part of the Toronto Parking Authority's (TPA) annual capital expansion from 2022 to 2025. The future bike share network considers ridership, equity, revenue, first / last mile, and accessibility. The 4-Year Growth Plan identifies four potential bike share locations within the ReNew Sheppard Study Area, as shown in Figure 10-1.

Figure 10-1: Bike Share

There is an opportunity to provide input on the locations of the four planned Bike Share Toronto stations.

Increasing the number of bike share stations within the study area. Although four stations have been identified in the 4-Year Growth Plan (2022 to 2025), there are additional opportunities within the next Growth Plan to increase the number of planned bike share stations. The City can consider using developer contributions (such as through cash-in-lieu of parking funds) to fund additional stations. The City of Hamilton recently used cash-in-lieu of parking funds to introduce their e-scooter pilot program.

10.4.3 School Partnerships

Recognizing that students and young children are vulnerable road users, there are opportunities to partner with schools within the study area to promote active transportation such as walking and cycling. Providing more opportunities for children to walk allows them to be more confident in their abilities and can increase the likelihood of this healthy habit carrying on with them as they get older. The two programs that the City should explore with the schools include:

- Safe routes to school, walking school bus programs, and bike to school programs: These programs create greater social connections between schools, parents, and students utilizing the walkability of neighborhoods surrounding schools.
- Play Streets: A temporary closure of public streets to create a safe space for active play, which offers students and parents a place to meet and build a sense of community.

City of Toronto

ReNew Sheppard East Transportation Planning Study September 2024

Schools within the study area include:

- Hollywood Public School
- Elkhorn Public School
- St. Gabriel Catholic School

Other schools in proximity to the study area include Lescon Public School, Dallington Public School, Shaughnessy Public School, and Avondale Public School. Although these schools are not within the study area, there may still be residents close to the borders of the study area that may have children that attend these schools. All future Toronto District School Board and Toronto Catholic District School Board schools should be considered for these programs.

10.4.4 Mobility and Gathering Spaces

The more community gathering spaces within the study area, the more opportunities there are for a connected and vibrant community. With this objective, there are opportunities to enhance pedestrian amenities at the parks and parkettes within the study area.

Ethennonnhawahstihnen' Park, as shown in Figure 10-2, has many amenities such as a splash pad, turf area for sports and physical activity, and various aesthetic canopied areas for shade.

Figure 10-2: Ethennonnhawahstihnen' Park

This park is one of the largest within and in close proximity to the study area. Other parks or parkettes within the study area are smaller, so the amenities should be scaled appropriately. For example, additional shade trees, a small chess table, or an extra seating area may be sufficient for a parkette to draw more visitors by foot and bike. Further investigations should be done to understand what sorts of improvements can be made to any of these parks to enhance the public realm.

10.4.5 Placemaking and Public Art

The retaining walls along Sheppard Avenue near Leslie Street are an opportunity to create a more pleasant and comfortable walking and cycling environment through the use of public art. This location already has public art installed and leads to the East Don Parkland Trail, which is further east, as shown in Figure 10-3.

Figure 10-3: Public Art Along Sheppard Avenue

The City could partner with local Toronto artists to assist in beautifying the Sheppard Avenue corridor. The City of Hamilton regularly seeks submissions from artists or artist-led teams for permanent public artwork at various locations within the City. StreetARToronto (StART) is a suite of innovative programs designed specifically for street and public spaces. The goal of StART programs is to make City streets more beautiful and safer, encourage active transportation (walking and cycling), and showcase local artists. Partnering with StART would provide an opportunity in developing public art along the corridor.

10.4.6 Carpooling and Parking Management Strategies

Enhancing the feasibility of carpooling should be considered as a strategy especially with high volumes of people traveling to major destinations simultaneously such as to the North York General Hospital. Parking at major destinations and employment areas is anticipated to be constraint in the future. Therefore, carpooling can be part of the strategy to reduce single-occupant vehicle trips to reduce future parking demand.

Carpooling would also reduce parking demand. Through community consultation, residents have expressed concerns regarding on-street parking. In some areas, on-street parking has created issues with perceived safety and comfort of cyclists and traffic circulation.

10.4.7 Car-share Spaces

The City can partner with developers during the pre-application consultation phase to provide car-share spaces reducing the need for private vehicle ownership. Typically, car-share spaces replace vehicular parking spaces based on parking requirements in the zoning by-law.

The limitation of providing car-share spaces in new developments is that the property manager must be able to partner with a car-share operator to utilize the space. If no operator is willing to allocate a car to that car-share space, that parking space becomes an inefficient use of land. When possible, the City should work with the developers to find implementable solutions of car-share in addition to providing the car-share spaces during the pre-application consultation phase.

10.4.8 Curbside Management and On-street Parking Strategies

In the future, the City should consider either limiting the number of on-street parking spaces to encourage the use of alternative transportation modes to the study area or applying on-street pricing techniques to limit the demand. These techniques can include higher hourly parking rates or dynamic pricing to respond to demand throughout the day.

Curbside management is an important consideration for the future of ReNew Sheppard. In these types of physically constraint areas, there is a lot of competition for the curb which can include in the future:

- Vehicle-for-hire / taxi pick-up and drop-off zones
- Access for loading, curbside pick-up, and commercial deliveries
- Active transportation facilities
- Pedestrians and pedestrian crossings
- Vehicular parking
- Bike parking
- E-scooter and e-bike parking zones
- Temporary patios for restaurants, bars, cafes, and retail spaces
- Food trucks
- Landscaping
- Street activations and special events

The City should explore future strategies to utilize the curb to respond to the growing mix of residential, commercial, and other uses in the area.

10.4.9 Trip-end Facilities

To encourage the use of alternative modes of travel, the City can work with developers and employers to increase the provision of trip-end facilities, such as showers, bike lockers, and changing rooms, in new and existing developments. These amenities will support commuters who choose to walk, bike, or run to work by providing convenient and secure options for storing personal belongings and freshening up upon arrival.

The City can also install more bike posts or secure bike storage along Sheppard Avenue, focused at the transit stations, to improve first- and last-mile connections using the bike.

The City should work with the TTC to ensure that bike repair stations in good condition should be continued to be provided at Bayview Station and Leslie Station. A bike repair station should also be implemented at Bessarion Station and other City facilities such as community centres (e.g., Ethennonnhawahstihnen' Community Recreation Centre).

10.5 Land Use Strategies

Land use planning should consider matching the planned types of employment with the anticipated socio-economic demographics of the future population. This could enhance the possibility that residents of the study area can live and work within the study area. This could decrease future trip distances and increase the potential for shifts to non-automobile modes of transportation. Enhancing self-containment is an important strategy that could help reduce the automobile demand within the study area. Appropriate land use mix would create a complete community where more internal trips within the study area can be facilitated by sustainable mode of transportation.

Increase in employment uses can in the area would utilize available capacity travel to the study area in the morning peak hours and away in the afternoon peak hours. Examples of employment uses to encourage in the area should be professional / management / technical services and retail / sales / service and general office / clerical type jobs.

Additionally, to ensure that the transportation network can function adequately by 2041, the planned net population and employment should decrease to ensure by appropriate transportation infrastructure is available to support the growth and to achieve a 50% non-auto modal split.

Appropriate policies to manage growth are essential to ensure that infrastructure is properly aligned with the desired shifts in travel behavior. It is recommended that site- and area-specific policies be developed to ensure that the necessary infrastructure is implemented, and that mode share trends shift toward sustainable transportation options before further development in the area proceeds.

10.6 Sustainability Strategies

Additional sustainability initiatives include:

- Consider exploring the availability of electric vehicle charging stations (publicly or privately provided) to support the adoption of zero-emission vehicles.
- Increase the active transportation mode share to reduce the use of automobile trips which reduces GHG emissions.
- Support the integration of green and blue infrastructure at transit stations, parks / parkettes, and other community spaces to enhance desirability to walk, cycle, and transit. This infrastructure can include green roofs and walls, urban trees, permeable pavements, rain garden and bioswales, water features like ponds and fountains, and green streetscapes.

Appendix A

Supplemental Information: Existing Traffic Operations

Appendix A – Supplemental Information: Existing Traffic Operations

Date:	March 2, 2023	Project No.: 300055817.000	
Project Name:	Toronto ReNew Sheppard East		
Client Name:	City of Toronto		
From:	R.J. Burnside & Associates Limited	d	

1.0 Introduction

The existing traffic operations for the ReNew Sheppard East study intersections and mid-block road segments were assessed. The City of Toronto provided 2019 TMCs for most study intersections, and 2018 TMCs were obtained from 4Transit's Oriole GO Station Relocation (Metrolinx) report for those remaining. Along with the TMCs, existing Signal Timing Plans for the study intersections were provided by the City and coded into the Synchro model, incorporating the newly implemented Leading Pedestrian Interval (LPI) where applicable.

2.0 Data Collection

Data for conducting traffic analysis were obtained from the City of Toronto.

2.1 Turning Movement Counts

The turning movement counts that were provided by the City for the traffic analysis are shown in Table 1. Turning movement counts are provided in Attachment 1.

Location	Date of Count
Bayview Avenue and Bayview Mews Lane	November 26, 2019
Bayview Avenue and Sheppard Avenue East	June 13, 2019
Bessarion Road/Burbank Drive and Sheppard Avenue East	November 26, 2019
Provost Drive/Ambrose Road and Sheppard Avenue East	November 26, 2019
Leslie Street and Sheppard Avenue East	April 18, 2017

Table 1: Turning Movement Counts Provided by the City of Toronto

Due to the dated regional turning movement count provided, traffic count data for the following study was reviewed:

• Oriole Go Station – Transportation and Traffic Impact Assessment, dated March 29, 2021, was prepared by 4Transit.

Details regarding weekday turning movement counts for the 4Transit study are shown in Table 2.

Table 2: Supplemental Traffic Data Details

Location	Date of Count
Leslie Street and Sheppard Avenue East	June 26, 2018
Leslie Street and Esther Shiner Boulevard	June 26, 2018
Old Leslie Street and Esther Shiner Boulevard	June 26, 2018

The traffic count data is provided in Attachment 1.

2.3 Existing Signal Timing Plans

Signal timing plans were provided by the City for the 7 signalized study intersections. Detailed signal timing plans are provided in Attachment 2.

3.0 Methodology

Intersection operations were assessed for intersections in the Study Areas using the software program Synchro 11, which employs methodology from the *Highway Capacity Manual (HCM 2000, HCM 2010, and HCM 6)*, published by the Transportation Research Board National Research Council.

Synchro 11 can analyze both signalized and unsignalized intersections in a road corridor or network, considering the spacing, interaction, queues, and operations between intersections. The analysis contained within this report utilizes the HCM 2000 techniques / methodology within the Synchro software package.

Signalized Intersections

Signalized intersection analysis considers two separate measures of performance:

- The capacity of all intersection movements, based on a volume to capacity ratio that measures the degree of capacity utilized.
- The level of service (LOS) for all intersection movements, based on the average control delay per vehicle for the various movements through the intersection and overall. Delay indicates how long a vehicle must wait to complete a movement and is represented by a

letter between A and F, with F being the longest delay. The link between LOS and delay (in seconds) for signalized intersections is summarized below.

	Level of Service	Control Delay per Vehicle (seconds)
А		≤10
В		> 10 - 20
С		> 20 – 35
D		> 35 – 55
E		> 55 - 80
F		> 80

In the case that a v/c ratio for a movement is greater than 1.0 under existing conditions, the software is likely underestimating the capacity. This could be due to several reasons, including but not limited to higher saturation flows, more aggressive drivers, and vehicles utilizing more of the yellow or all-red phases.

4.0 Existing Traffic Conditions

4.1 Traffic Volumes

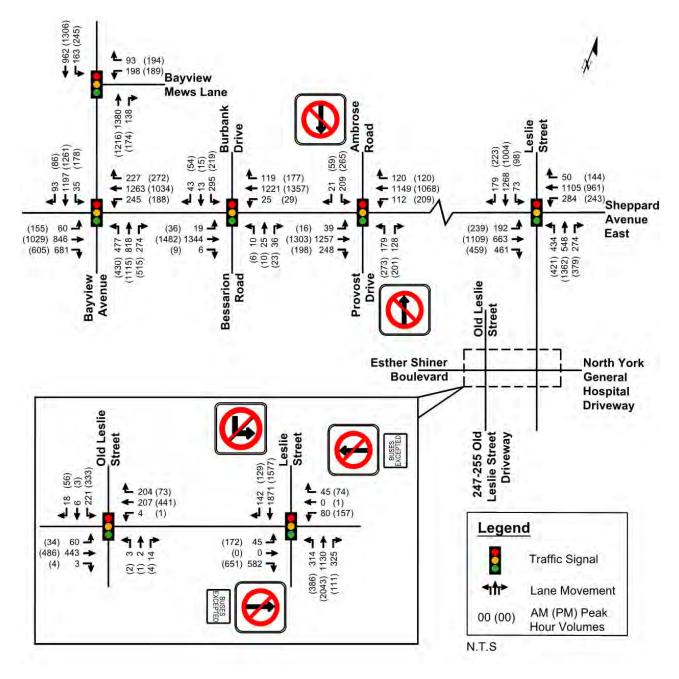

The existing traffic volumes were derived and balanced using data from the City of Toronto and 4Transit. The turning movement counts provided by the City for the traffic analysis are shown in Table 3.

Table 3: Date of Turning Mov	vement Counts
------------------------------	---------------

Location	Date of Count
Leslie Street and Sheppard Avenue East	April 18, 2017
Leslie Street and Sheppard Avenue East	June 26, 2018
Leslie Street and Esther Shiner Boulevard	June 26, 2018
Old Leslie Street and Esther Shiner Boulevard	June 26, 2018
Bayview Avenue and Sheppard Avenue East	June 13, 2019
Bayview Avenue and Bayview Mews Lane	November 26, 2019
Bessarion Road/Burbank Drive and Sheppard Avenue East	November 26, 2019
Provost Drive/Ambrose Road and Sheppard Avenue East	November 26, 2019

The traffic count data was collected between 2017 and 2019. Based on a review of the historic growth rates and the Sheppard Monitoring Data that compares traffic data pre-covid, a 0% growth rate was employed.

The existing traffic conditions are shown in Figure 1.

Figure 1: Existing Conditions Traffic Volumes (2023)

4.2 Link Capacity Analysis

The existing v/c ratios for the study corridors were calculated for the weekday AM and PM peak hours using the existing traffic automobile volumes. Based on transportation modelling data provided by the City, 800 vehicles per hour [veh/hr] per through lane was used to calculate link capacity. The through movements exiting the links were used as the link volumes, and for cases with a through + right lane, the through and right turn movements were used together. Cases where these volumes were not available were analyzed as follows:

- Bayview Avenue Sheppard Avenue to Highway 401 Southbound: Turning movement counts for the Bayview Avenue interchange were provided by the City, and the percentage of southbound through traffic was applied to the existing southbound screenline volume. Turning movement counts are provided in Attachment 1.
- Leslie Street Sheppard Avenue to Maris Shepway Northbound: The link contains no dedicated left or right turn lanes; therefore, the northbound screenline volume was used.
- Leslie Street Esther Shiner Boulevard to Highway 401 Southbound: Turning movement counts for the Leslie Street interchange were not provided; therefore, the on-ramp was included as a through lane, and the southbound screenline volume was used.

The reasoning behind using the through-volumes only and omitting the turn volumes where possible is that the turn lanes sometimes extend from intersection to intersection, and turn lanes do not have a capacity of 800 veh/hr.

Congested links are assumed to have a link v/c ratio greater than 0.90 and are highlighted in the tables below in red.

The results for Bayview Avenue are presented in Table 4 for the AM peak and Table 5 for the PM peak.

Table 4: Link Capacity Analysis for Bayview Avenue - AM Existing Conditions

Bayview Avenue	# of Lanes	Total Capacity [veh/hr]	Volume [veh]	v/c ratio	# of Lanes	Total Capacity	Volume	v/c ratio
	Southbound			Northbound				
Sheppard Avenue to Bayview Mews Lane	3	2,400	1,232	0.52	2	1,600	1,380	0.87
Sheppard Avenue to Highway 401	2	1,600	1,523	0.96	2	1,600	818	0.52

Table 5: Link Capacity Analysis for Bayview Avenue - PM Existing Conditions

Bayview Avenue	# of Lanes	Total Capacity [veh/hr]	Volume [veh]	v/c ratio	# of Lanes	Total Capacity	Volume	v/c ratio
	Southbound			Northbound				
Sheppard Avenue to Bayview Mews Lane	3	2,400	1,347	0.57	2	1,600	1,216	0.76
Sheppard Avenue to Highway 401	2	1,600	1,674	1.05	2	1,600	1,115	0.70

The results for Leslie Street are presented in Table 6 for the AM peak and Table 7 for the PM peak.

Table 6: Link Capacity Analysis for Leslie Street - AM Existing Conditions

Bayview Avenue	# of Lanes	Total Capacity [veh/hr]	Volume [veh]	v/c ratio	# of Lanes	Total Capacity	Volume	v/c ratio
	Southbound Northbound							
Sheppard Avenue to Maris Shepway	2	1,600	1,447	0.91	2	1,600	790	0.50
Sheppard Avenue to Esther Shiner Boulevard	3	2,400	1,871	0.78	2	1,600	548	0.35
Esther Shiner Boulevard to Highway 401	3	2,400	2,533	1.06	3	2,400	1,130	0.48

Table 7: Link Capac	ity Analysis for	Leslie Street - Pl	M Existing Conditions
---------------------	------------------	--------------------	-----------------------

Bayview Avenue	# of Lanes	Total Capacity [veh/hr]	Volume [veh]	v/c ratio	# of Lanes	Total Capacity	Volume	v/c ratio
	Southbound Northbound							
Sheppard Avenue to Maris Shepway	2	1,600	1,227	0.77	2	1,600	1,745	1.10
Sheppard Avenue to Esther Shiner Boulevard	3	2,400	1,577	0.66	2	1,600	1,362	0.86
Esther Shiner Boulevard to Highway 401	3	2,400	2,385	1.00	3	2,400	2,043	0.86

4.3 Traffic Operations

The existing traffic operation results for the study intersections are summarized in Table 8. Detailed results are provided in Attachment 3. Critical movements have LOS of E or F and are highlighted in red.

Mayamant	Weekday	AM Peak Hour	Weekday	PM Peak Hour
Movement	v/c	LOS	v/c	LOS
_	Bayview A	venue and Bayvi	iew Mews Lane	
Overall	0.73	В	0.76	В
WBL	0.55	D	0.51	D
WBR	0.08	D	0.32	D
NBT	0.69	В	0.54	A
NBR	0.12	Α	0.14	A
SBL	0.72	С	0.75	В
SBT	0.42	Α	0.53	A
	Bayview Av	enue and Shepp	ard Avenue East	
Overall	1.09	E	1.07	E
EBL	0.82	F	0.76	D
EBT	0.59	D	0.68	D
EBR	1.09	F	0.93	E
WBL	1.25	F	0.92	E
WBT	0.65	С	0.69	D
WBR	0.32	С	0.33	D
NBL	1.28	F	1.25	F
NBT	0.50	С	0.80	D
NBR	0.34	В	0.67	С
SBL	0.51	D	1.18	F
SBTR	0.76	D	0.79	D
Be	essarion Road/Bu	urbank Drive and	Sheppard Aven	ue East
Overall	0.80	С	0.78	В
EBL	0.30	В	0.57	С
EBTR	0.80	С	0.76	В
WBL	0.36	В	0.36	В
WBTR	0.83	С	0.81	В
NBL	0.02	В	0.02	C
NBTR	0.06	С	0.04	С
SBL	0.65	С	0.61	D
SBTR	0.06	С	0.07	С
P	rovost Drive/Am	brose Road and	Sheppard Avenu	e East
Overall	0.82	С	0.84	С
EBL	0.29	C	0.11	С
EBT	0.89	D	0.90	D
EBR	0.28	В	0.21	С
WBL	0.60	С	0.77	D
WBTR	0.68	В	0.57	В

 Table 8: Existing Conditions Traffic Operations Analysis

Mayamant	Weekday A	M Peak Hour	Weekday	Weekday PM Peak Hour		
Movement	v/c	LOS	v/c	LOS		
NBL	0.46	С	0.70	D		
NBR	0.09	D	0.50	D		
SBL	0.52	D	0.70	D		
SBR	0.02	С	0.04	С		
	Leslie Stre	eet and Sheppard	d Avenue East	·		
Overall	1.06	E	1.25	E		
EBL	1.10	F	1.35	F		
EBT	0.42	D	0.72	D		
EBR	0.68	D	0.63	С		
WBL	0.96	E	1.36	F		
WBTR	0.74	D	0.73	D		
NBL	1.35	F	0.80	E		
NBT	0.35	С	0.76	С		
NBR	0.35	В	0.47	В		
SBL	0.30	D	1.29	F		
SBTR	0.93	E	0.79	D		
	Leslie Stre	et and Esther Sh	iner Boulevard			
Overall	0.98	С	0.94	С		
EBTL	0.37	D	0.79	E		
EBR	1.17	F	0.95	E		
WBTL	0.56	D	0.82	E		
WBR	0.03	D	0.05	D		
NBL	0.79	D	0.85	D		
NBT	0.31	А	0.58	В		
NBR	0.22	А	0.07	A		
SBT	0.76	С	0.77	С		
SBR	0.10	В	0.10	С		
	Old Leslie St	reet and Esther S	Shiner Boulevard	k		
Overall	0.41	В	0.55	В		
EBL	0.18	В	0.12	В		
EBTR	0.34	В	0.38	В		
WBL	0.01	В	0.00	В		
WBTR	0.25	В	0.40	В		
NBL	0.01	В	0.00	В		
NBTR	0.01	В	0.00	В		
SBL	0.42	В	0.61	В		
SBTR	0.02	В	0.04	В		

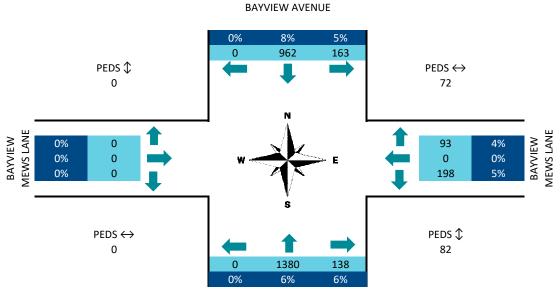
4.4 Intersection Queues

Queueing was reviewed using Synchro's 95th percentile queue. A comparison of the existing storage / link distances and queues is summarized in Table 9. Movements with 95th percentile queues exceeding the storage / link distance are highlighted in red.

Movement	Existing Storage/ Link Distance (m)	Weekday AM Peak Hour 95th % Queue (m)	Weekday PM Peak Hour 95th % Queue (m)
WBL	66	32	31
WBR	300+	15	29
NBT	200+	123	92
NBR	71	7	8
SBL	40	21	29
SBT	500+	47	74
	Bayview Ave	nue and Sheppard Aven	ue East
EBL	78	46	59
EBT	500+	94	111
EBR	85	239	179
WBL	160	129	82
WBT	200+	126	112
WBR	45	51	44
NBL	97	131	115
NBT	200	104	179
NBR	200	53	128
SBL	80	43	93
SBTR	200+	140	148
B	essarion Road/Bur	bank Drive and Sheppar	d Avenue East
EBL	30	10	5
EBTR	200+	135	111
WBL	31	12	3
WBTR	180	139	119
NBL	15	5	1
NBTR	300+	13	2
SBL	41	82	40
SBTR	300+	11	3
P	Provost Drive/Amb	rose Road and Sheppard	d Avenue East
EBL	37	15	8
EBT	210	180	201.8
EBR	42	32	24
WBL	160	28	58
WBTR	500+	115	96
NBL	200	56	89
NBR	70	18	41
SBL	500+	64	87
SBR	50	0	0
		et and Sheppard Avenue	
EBL	166	96	130
EBT	500+	66	125
EBR	130	112	106
WBL	187	109	134
WBTR	300+	124	124

Movement	Existing Storage/ Link Distance (m)	Weekday AM Peak Hour	Weekday PM Peak Hour		
		95th % Queue (m)	95th % Queue (m)		
NBL	152	118	83		
NBT	200+	66	199		
NBR	200+	52	73		
SBL	134	31	7		
SBTR	200+	176	142		
Leslie Street and Esther Shiner Boulevard					
EBTL	110	21	66		
EBR	110	210	177		
WBTL	23	33	62		
WBR	23	0	8		
NBL	155	101	146		
NBT	200+	36	133		
NBR	182	7	7		
SBT	200+	151	162		
SBR	180	11	14		
Old Leslie Street and Esther Shiner Boulevard					
EBL	42	13	8		
EBTR	300+	30	34		
WBL	62	2	1		
WBTR	100+	18	34		
NBL	50	2	2		
NBTR	200+	4	2		
SBL	36	35	56		
SBTR	100+	5	6		

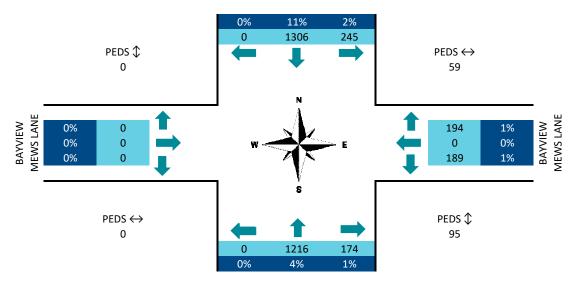
Attachment 1


Historical Counts

Attachment 1: Historical Counts

AM AND PM PEAK HOUR DIAGRAMS

PM PEAK HOUR
FROM 17:00
TO 18:00
IICLES HEAVY VEHICLE %

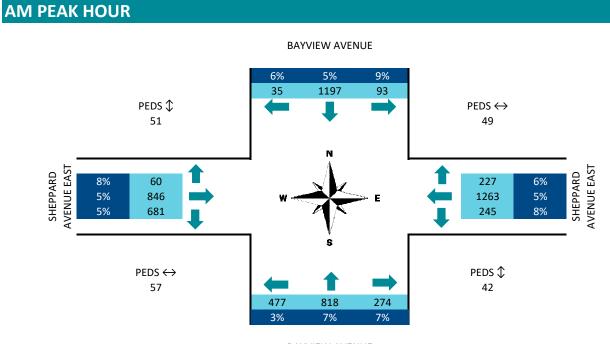

AM PEAK HOUR

BAYVIEW AVENUE

PM PEAK HOUR

BAYVIEW AVENUE

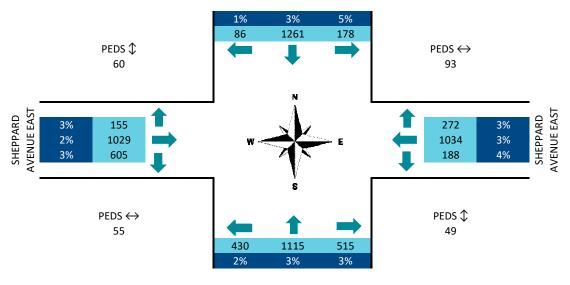
BAYVIEW AVENUE


AM AND PM PEAK HOUR DIAGRAMS

SOURCECITY OF TORONTOAM PEAK HOURPM PEAK HOURINTERSECTIONBAYVIEW AVE AT SHEPPARD AVE (PX 648)FROM08:00FROM17:00COUNT DATEThursday, June 13, 2019TO09:00TO18:00

N-S Street BAYVIEW AVENUE E-W Street SHEPPARD AVENUE EA

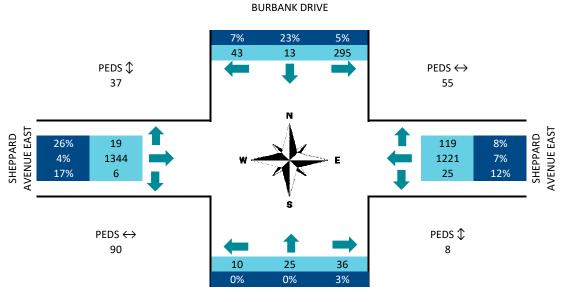
JE EA TO


TOTAL VEHICLES HEAVY VEHICLE %

BAYVIEW AVENUE

PM PEAK HOUR

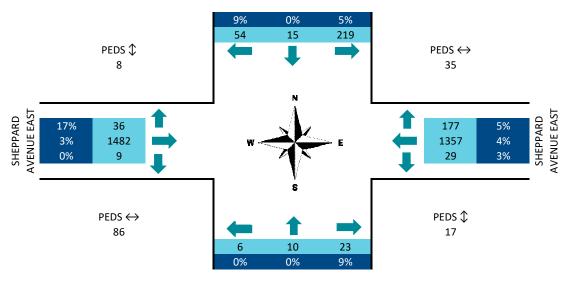
BAYVIEW AVENUE



BAYVIEW AVENUE

AM AND PM PEAK HOUR DIAGRAMS

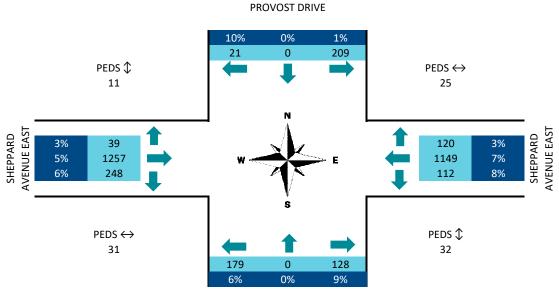
SOURCE	CITY OF TORONTO			AM PEAK	HOUR	PM PEAK	HOUR
INTERSECTION	BESSARION RD AT BU	JRBANK DR & S	HEPPARD AVE (PX 743)	FROM	08:00	FROM	17:00
COUNT DATE	Tuesday, November	26, 2019		то	09:00	то	18:00
N-S Street	BURBANK DRIVE	E-W Street	SHEPPARD AVENUE E	4	TOTAL VEHICLES	HEAVY \	/EHICLE %


AM PEAK HOUR

BURBANK DRIVE

PM PEAK HOUR

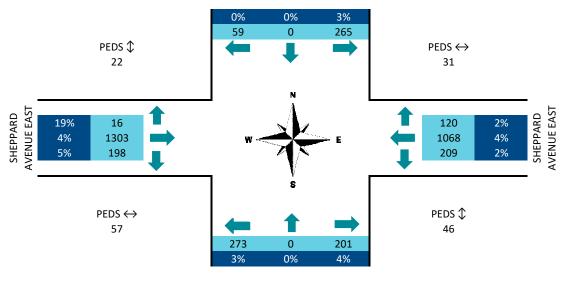
BURBANK DRIVE



BURBANK DRIVE

AM AND PM PEAK HOUR DIAGRAMS

SOURCE	CITY OF TORONTO			AM PEAK	HOUR	PM PEAK	HOUR
INTERSECTION	SHEPPARD AVE E AT	AMBROSE RD	& PROVOST DR (PX 1014	FROM	08:00	FROM	16:15
COUNT DATE	Tuesday, November	26, 2019		то	09:00	то	17:15
N-S Street	PROVOST DRIVE	E-W Street	SHEPPARD AVENUE E	4	TOTAL VEHICLES	HEAVY	VEHICLE %


AM PEAK HOUR

PROVOST DRIVE

PM PEAK HOUR

PROVOST DRIVE

PROVOST DRIVE

Acc	u-Tr	affic	In	С.					
Morning Peak Diagram	Specified Period From: 7:00:00 To: 10:00:00				One Hour Peak From: 8:00:00 To: 9:00:00)	
Municipality:TorontoSite #:1808700007Intersection:Leslie St & Sheppard AveTFR File #:1Count date:26-Jun-18	Weather conditions: Person counted: Person prepared: Person checked:								
** Signalized Intersection **		Major	Roa	ad: Le	slie St	runs	N/S		
North Leg Total: 2261Heavys321North Entering:1471Trucks28North Peds:11Cars1741190Peds Cross:Image: Marce Science Sci	73	-		Heavys Trucks Cars Totals	14 740	-			2449 1439 57 ▼
Heavys Trucks Cars Totals					¢ ↓ ↓	Cars 46 1062 276 1384	Truck 2 19 5 26	s Heavy 2 24 3 29	s Totals 50 1105 284
Heavys Trucks Cars Totals					She	opard A	ve		N
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Leslie St	ٌ ل ۲	ſ			Cars 981	Truck 8	s Heavy 21	
Peds Cross: X Cars 1919	Ca	rs 425	512	263	1200		Peds 0	Cross:	X
West Peds:90Trucks17West Entering:1316Heavys28	Truc Heavy		10 26	6 5	20 36		South	Peds: Entering:	97 1256
West Entering: 1316 Heavys 28 Vest Leg Total: 3034 Totals 1964			20 548	5 274	50			Leg Total	

Afternoon Peak Diagram	Specified Period One Hour Peak From: 16:00:00 From: 17:00:00 To: 19:00:00 To: 18:00:00
Municipality:TorontoSite #:1808700007Intersection:Leslie St & Sheppard AveTFR File #:1Count date:26-Jun-18	Weather conditions: Person counted: Person prepared: Person checked:
Peds Cross: M Totals 223 1004 98 Heavys Trucks Cars Totals Image: Cars I	Major Road:Leslie St runs N/SHeavys8 TrucksEast Leg Total:2934 East Entering:Trucks4 Cars1733 TotalsEast Peds:93 Peds Cross:Peds Cross: \overline{X} Peds Cross: \overline{X} <td< td=""></td<>
7 6 1096 1109 1 1 457 459 8 8 1791 Leslie St Peds Cross: X Cars 1688 Cars	Cars Trucks Heavys Totals 1572 7 7 1586 Ars 419 1352 378 2149 Peds Cross: M
West Entering: 1807 Heavys 5 Heavy	Als 421 1362 379 South Leg Total: 3868

Accu-Tr	affic Inc.
Morning Peak Diagram	Specified Period One Hour Peak From: 7:00:00 From: 7:45:00 To: 10:00:00 To: 8:45:00
Municipality:TorontoSite #:1808700008Intersection:Leslie St & Esther Shiner BlvdTFR File #:1Count date:26-Jun-18	Weather conditions: Person counted: Person prepared: Person checked:
** Signalized Intersection **	Major Road: Leslie St runs N/S
North Leg Total: 3233 Heavys 1 28 0 29 North Entering: 2013 Trucks 1 10 0 11 North Peds: 56 Cars 140 1833 0 18 Peds Cross: M Totals 142 1871 0	ייייייייייייייייייייייייייייייייייייי
Heavys Trucks Cars Totals	eslie St Cars Trucks Heavys Totals 45 0 0 45 0 0 0 77 0 3 122 0 3
Heavys Trucks Cars Totals 6 1 38 45	driveway
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cars Trucks Heavys Totals 322 1 2 325
Peds Cross: X Cars 2482 Cars West Peds: 10 Trucks 16 Trucks West Entering: 627 Heavys 35 Heavys	rs 307 1089 322 1718 Peds Cross: ➡ ks 3 12 1 16 South Peds: 3
Comp	nents

Accu-Tra Afternoon Peak Diagram	Specified Period From: 16:00:00One Hour Peak From: 16:45:00				
	To: 19:00:00 To: 17:45:00				
Municipality:TorontoSite #:1808700008Intersection:Leslie St & Esther Shiner BlvdTFR File #:1Count date:26-Jun-18	Weather conditions: Person counted: Person prepared: Person checked:				
** Signalized Intersection **	Major Road: Leslie St runs N/S				
North Leg Total: 3969 Heavys 3 3 0 6 North Entering: 1680 Trucks 0 9 9 North Peds: 89 Cars 126 1539 0 16 Peds Cross: ◄ Totals 129 1551 0	65 Heavys 11 Trucks 10 Cars 2268 Totals 2289 Peds Cross: X				
Heavys Trucks Cars Totals 4 0 512 516 Esther Shiner Blvd	slie St Cars Trucks Heavys Totals 74 0 0 74 1 0 0 155 1 1 155 1 1 157 E				
Heavys Trucks Cars Totals 4 1 167 172 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	driveway				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cars Trucks Heavys Totals				
West Peds: 29 Trucks 12 Truck West Entering: 823 Heavys 8 Heavys					
Comm	nents				

Morning Peak Diagram	Specified Period One Hour Peak From: 7:00:00 From: 7:45:00 To: 10:00:00 To: 8:45:00
Municipality:TorontoSite #:1808700006Intersection:Esther Shiner Blvd & Old Leslie StTFR File #:1Count date:26-Jun-18** Signalized Intersection **	Weather conditions: Person counted: Person prepared: Person checked: Major Road: Esther Shiner Blvd runs W/E
North Leg Total: 511Heavys 10910North Entering: 245Trucks 00023North Peds: 28Cars 17 621223Peds Cross: \bowtie Totals186221Heavys Trucks CarsTotals \checkmark \checkmark \bigcirc \bigcirc 65217228 \checkmark \bigcirc \bigcirc Esther Shiner BlvdHeavys Trucks CarsTotals \bigcirc 105960 \bigcirc 35425433 \bigcirc 0033 \bigcirc 45487 \checkmark \checkmark	Trucks 0 Cars 263 Totals 266 Cars Cars Trucks Heavys Totals 202 0 2 197 5 5 4 0 0 4 0 0 4 0 0 4 0 0 Cars Trucks Heavys Totals Cars Trucks Heavys Totals
Peds Cross: X Cars 13 Cars West Peds: 46 Trucks 0 Trucks West Entering: 496 Heavys 0 Heavys	ars 3 2 13 18 Peds Cross: ₩ ks 0 0 1 1 South Peds: 10

	Traffic Monitoring	g & Data Analysis	
	Accu-Tra	affic Inc.	
Afternoon Peak	Diagram	Specified Period From: 16:00:00 To: 19:00:00	One Hour Peak From: 16:45:00 To: 17:45:00
Municipality:TorontoSite #:1808700006Intersection:Esther ShinerTFR File #:1Count date:26-Jun-18	Blvd & Old Leslie St	Weather conditions: Person counted: Person prepared: Person checked:	
** Signalized Intersection	**	Major Road: Esther S	hiner Blvd runs W/E
North Leg Total: 500HeavysNorth Entering: 392TrucksNorth Peds: 20CarsPeds Cross:M	0 0 2 2 54 3 325 38	Heavys 5 Trucks 1 2 Totals 102	East Leg Total: 1338 East Entering: 515 East Peds: 19 Peds Cross: X
Heavys Trucks Cars Totals 6 1 492 499		d Leslie St	Cars Trucks Heavys Totals 67 1 5 73 436 1 4 441 1 0 0 1 504 2 9 9
Heavys Trucks Cars Totals 0 0 34 34 4 1 481 0 0 4 486 4 1 519	s driveway	Esth	Cars Trucks Heavys Totals 810 3 10 823
Peds Cross:XCarsWest Peds:89TrucksWest Entering:524Heavys			Peds Cross:►South Peds:21South Entering:7

Comments

Totals 2

1

4

South Leg Total: 15

West Leg Total: 1023

Totals 8

)ntario

Ped.

14

401

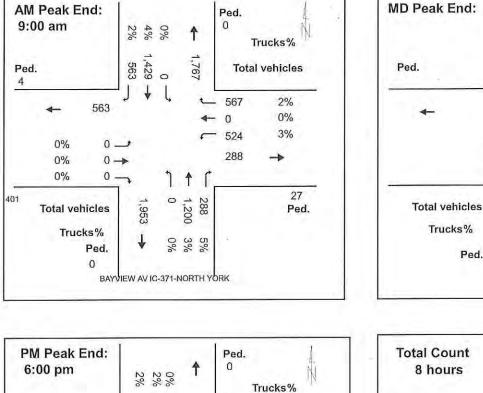
HWY 401 @ BAYVIEW AV IC-371-NORTH YORK

Central

Count Date: 12-Oct-2016

Ped.

Trucks%


Ped.

Total vehicles

t

Intersection ID:476420000(--N--)

Count Day: Wednesday

491

2,019

338

J

0-1

0->

0-

338

0%

0%

0%

Total vehicles

Trucks%

Ped.

0

,767

4

F

231

î

,269

6% 1% 0%

BAYVIEW AV IC-371-NORTH YORK

Total Vehicles

0%

0%

0%

->

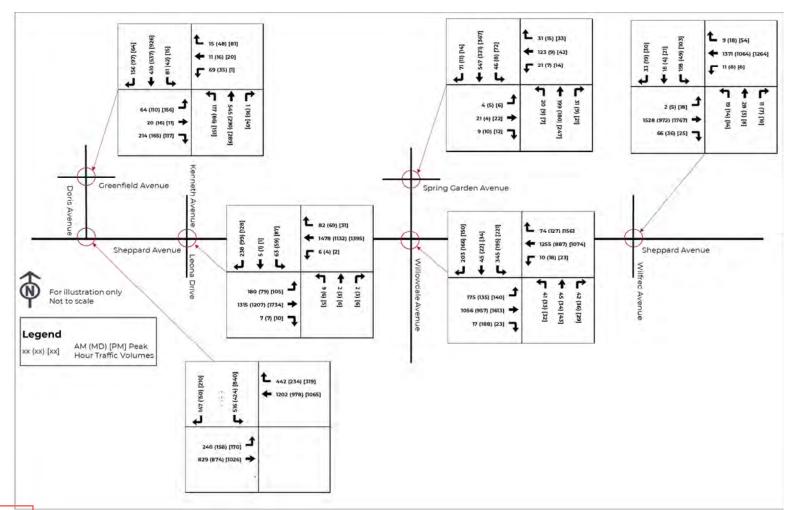
27


Ped.

498

0

- 528


231

URBAN SYSTEMS MEMORANDUM

PAGE: 4 of 34

Figure 2: AM (MD) [PM] Peak Hour Traffic Volumes (Doris Rd to Wilfred Ave)

URBAN SYSTEMS MEMORANDUM

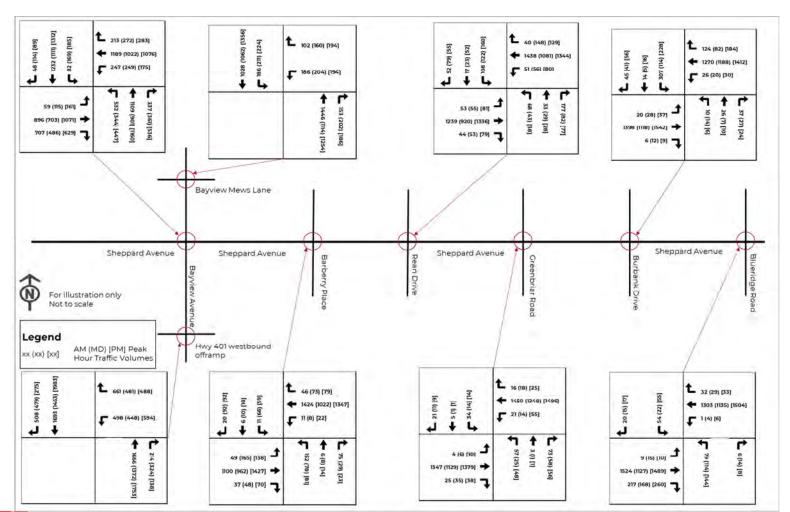


Figure 3: AM (MD) [PM] Peak Hour Traffic Volumes (Bayview Ave to Blueridge Rd)

Suite 405, 9900 King George Blvd., Surrey, BC V3T 0K9 | T: 604-953-6500

URBAN SYSTEMS MEMORANDUM

PAGE: 6 of 34

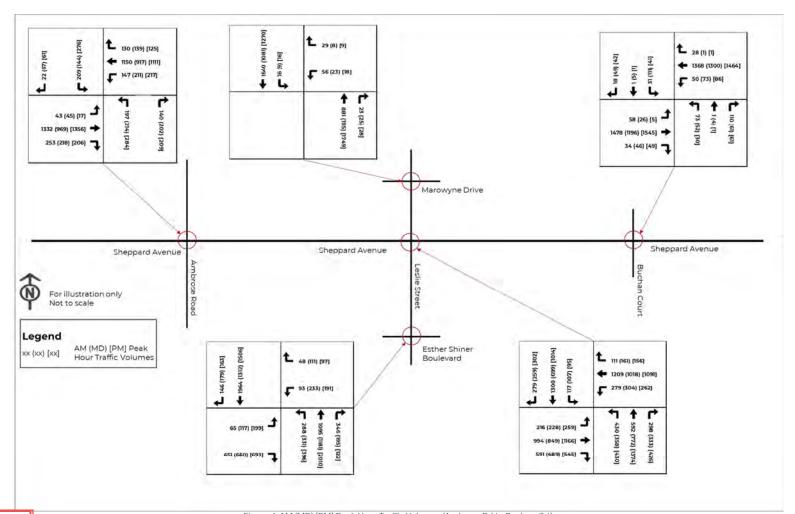


Figure 4: AM (MD) [PM] Peak Hour Traffic Volumes (Ambrose Rd to Buchan Crt)

Suite 405, 9900 King George Blvd., Surrey, BC V3T 0K9 | T: 604-953-6500

urbansystems.ca

Attachment 2

Signal Timing Plans

Attachment 2: Signal Timing Plans

LOCATION:				Bayview M		12	UTC Stages	Green Return	
NODE/COMMENT: ICS/SCN: PREPARED BY / DATE:		1147 Toni	/ 11311 Hourani /	April 17, 20		& LPI	B F H	286 488 186	
CHECKED BY / DATE: DISTRICT; COMPUTER SYSTEM: CONTROLLER/CABINET CONFLICT FLASH: DESIGN WALK SPEED; CONTROLLER FIRMWAI	RE:	North UTC/ Econ Red / 1.0 m 2.47.	n York SCOOT solite ASC & Red Vs (FDW b 10	neh / April 2 /3-2100 / M ased on ful					
IPLEMENTATION DATE	-	may	22, 2020 OFF	AM	PM	Phase Mode	-	1	
NEMA Phase (Green Return)	Local System	Pren	All Other Times Pattern 1 Plan 1	06:30-10:00 M-F Pattern 2 Plan 2	M-F Pottern 3 Plan 3	(Fixed/Demanded or Callable)	Ren	narks	
L	WLK FDW MIN MAX1 MAX2 AMB ALLR	6 B 15 3 T				Callable & Extendable by Setback Loop	Pedestnan Minimu NSWK = 7 sec, NS EWWK = 7 sec, NS EWWK = 7 sec, Er WB phase is call at pedestrian actuatio is received, the min seconds. If ongoin exists on the stopb evisits on the stopb	IFD = 17 sec WFD = 16 sec Sie by vehicle or on. If a vehicle ca nimum WBG is 7 rg vehicle deman iar (eop; the WBC	
2 Bayview Ave	SPUT FDW MIN MAX1 MAX2 AMB ALLR SPLIT	/ 17 24 24 24 33 2.4	43	11	- 11 77	Fixed	capable of providing vehicle extensions up to the maximum. If pedestrian call is received, the pedestrian minimums will be serv. The EWWK & EWFD are only displayed on the pedestrian signs heads if a pedestrian call is recei- Extension time is based on vehic demand. Unused extension time given to the NSG.		
1 NOT USED	WLK FDW MIN MAX1 AMB ALLR SPLIT						Side Street Passe; APS on during 7 st of EWWK when at button. Extended Push Ac Left-Turn Passage	ec of NSWK & 7 i divated by push tivation = 3 sec Time = 2 sec.	
	WLK FDW MIN	7 16 7			-		SF#1 disables SBL determined). SF#4 enables Max determined).		
ACTIVATED	MAX1 MAX2 AMB ALLR SPLIT	23 23 3,0 3,2	30	30	80	4	EW Leading Pedestr comes up 5 seconds groen.		
5 (NOT USED)	WLK FDW MIN MAX1 AMB ALLR SPLIT								
6 Bayview Ave	WLK FDW MIN MAX1 MAX2 AMB ALLR SPLIT	7 17 24 24 24 23 2	68	60	ĒD	Fixed			
7 NOT USED	WLK FDW MIN MAX1 AMB ALLR SPUT								
Bayview Mews Lane	DLY G WLK FDW MIN MAX1 MAX2 AMB ALLR SPLIT	5 7 16 7 23 23 30 3,2	30	40	30	Callable by Slopber loop and/or Pushbutton, Extendable by Stopber loop Split shown includes 5 sec of EW LP(
	CL.		96	(110)	118.				
	VP.		17	17	17				

No podestrian crossing on South side

OCATION: MODE/COMMENT: TCSWSCHN PREPARED BY/DATE: CHECKED BY/DATE: CHECKED BY/DATE: CHECKED BY/DATE: CHECKED BY/DATE: COMPUTER SYSTEM: COMFLICT: DOWFLICT: DESIGN WALK SPEED: MPLEMENTATION DATE		SA1 w 0648 / RanaJ Tony 2 Area 2 UTC/S PEEK Red & 0.9 m/	ith 2 - Wire I 11321 amil Iftikhar Zhao/ Octob 2 / North Yor COOT ATC-1000 / Red s (FDW base er 3. 2022	k / 18 TS2 T1 ed on full cros	UPS - RLC (M 022 sing at 1.1m/s	5)			LITC Stages Green Returns A 2&5 B 2&5 C 3&7 D 3&8 E 4&7 F 4&8 G 1&5 H 1&8			
Dual Ring			OFF	AM	PM	NGHT	WKND	- Anna -				
NEMA Phase (Green Return)			All Other Times	06.30-10:00 M - F	15:00-19:00 M - F	22:00-6:00 Daily	Set-Sun	Daily Sat-Sun	Phase Mode (Fixed, Demanded or Callable)	Re	marks	
	Syste	i Plan m Plan	Pattern 1 Plan 1	Pattern 2 Plan 2	Pattern 3 Plan 3	Pattern 4 Plan 4	Pattern 5 Plan 5					
'L	WLK FDW MIN MAX1 MAX2 AMB ALLR SPLIT	6 6 3.2 3.7	13		13	13	13	by 9 m Set-Back Loop	Pedestaien Minimum NSWK = 8 sec. NEFD = 31 EB WE and SD Left-Tune NB (Furly Protected) Left-Tune SF# 1 disables SBLA during SF# 2 disables WELA (Tim SF# 3 disables BBLA during	2 sec. Pessage Time = 2 sec an Passage Time = 2.5 sec 106:30-10:00 M-F es to be determined)		
Bayyiew Ave	WLK FDW MIN MAX1 MAX2 AME ALLR	8 39 47 47 32 37						Fixed	6.00 cs ly SPE 4 enables MAX2 (Tim APS on during full NS and I posh builtons. APS not on during Lott Tum Extended Push Activation - The following grades were in	as to be determined (). 2W walks when activated to 1 arrows phases. 3 eecs		
· (1)	SPLIT WLK FDW MIN MAX1 MAX2	6 6 10	07	. 78	61	-63	63		intervals: Shappard Ave (EB): 2,5% Shappard Ave (WB): 3,9% Bayview Ave (NB): 1,6% Bayview Ave (SB): 3,8%			
\sim	AMB ALLR SPLIT	3.2 4.6	14	té	18	-14	16	NBRT concurrent with WBLT				
A Constant Ave East	WLK FDW MIN MAX1 MAX2 AMB ALLB SPLIT	6 32 40 40 40 3.2 2.9	50	04	50	48	50	Fried				
•	WLK FDW MIN MAX1 MAX2 AM8 ALLR SPLIT	6 15 15 31 45	23	23	21	14	21	NBLT Fully Protected Calable/Extendable by Stop-bel Loop EBRT concurrent with NBLT	-			
6 A AVS	WLK FDW MIN MAX1 MAX2 AMB ALLR SPLIT	6 31 30 42 42 32 37	57	(Error in 59	STP) 55 57*	-52	57	Filed				
ť.	WLK FDW MIN MAX1 MAX2 AMB ALLR SPLIT	6 6 10 3 1 4.9	18		18		15	ESLA Castable / Extendable by 9 m Set-Back Loop				
Sheppard Ave East	MIN MAX1 MAX2 AMB ALLR SPLIT	6 32 40 40 40 3.2 2.9	50	- 26	50	63	50	Exect				
	CL		144	144	144	128	144					
	OFF		1	- i	t	1	1					

LOCATION. HODE/COMMENT:	Sheppard Ave E		/ Bessarion Rd					ATO (Disolet) / WARD: COMPUTER SYSTEM	2 (North York) / 17 N N TransSuite		
CS: REPARED BY/DATE: HECKED BY/DATE: MPLEMENTATION DATE:	743 IB/ / December 10 Behinam Amini / I January 15, 2021	8 2020 Ihtesham Ahm	ad /December 3	30, 2020				CONTROLLERICABINET TYPE: CONFLICT FLASH DESION WALK SPEED: CHANNELDROP: CONTROLLER FININWARE	Econolite ASC/3-2100/TS2T1 Red & Red 1.0 m/s (FDW based on full crossing at 1.2 m/s) 4084/52 2,47.10		
	1	OFF	AM	PM	NGHT	WKND		Phase Mode	2,47,10		
		All Other	06:30-09:30	15:00-19:00	22:00-06:30	9:00-18:00	Highway 401 Closure	T INGE INVES	Control Inc.		
NEMA Phase		Times	M-F	M-F	Daily	Sat & Sun	Ciosure	(Fixed/Demanded/Callable)	Remarks		
	Local Plan	Patiern 1	Pattern 2	Pattern 3	Pattern 4		Pattern 16	te inter Deliveringen Gelieniet			
	System Plan	Plan I	Ptan 2	Plan 3	Plan 4	Plan 5	Plan 16		Pedestrian Minimuma:		
1	WLK FOW MIN		1						EWWK = 12 seconds, EWFD = 16 seconds NSWK = 12 seconds, NSFD = 21 seconds		
NOTUSED	MAX1 AMB ALR		-						NS phase is callable by vehicle or pedestrian actuation. If a vehicle call is received, the minimur NSG is 7 seconds. If orgoing vehicle demand exit		
~	SPLIT						1 ·····		on the stopbar loop, the NSG is capable of providi		
2 Sheepard Ave E	DLY GRN 5 WLK 12 FDW 16 MIN 23								Fixed.	wehicle extensions up to the maximum. If a pedestrian call is received, the pedestrian minimum will be served. The NSWK & NSFD are only displayed on the pedestrian signal heads if a	
()	MAX1 48									The second second second	pedestrian call is received. Extension time is base
27	AMB 33 ALR 29									_	
\sim	SPLIT	60	64	-80-	38	70	90				
3	WLK								Side street passage time = 3 seconds		
NOTUSED	FDW MIN MAX1 AMB	-						1.1	Leading Pedestrian Intervals - EWWK comes up I seconds before EW vehicle green and NSWX con up 5 seconds before NS vehicle green		
	ALR										
Besserven Rd	SPLIT DLY GRN 5	-	4	-	-			C.			
4	WLK 12							Callable by Stopbar loop and/or pushbutton;			
(AT)	FDW 21							Extendable by Stopbar loop.			
	MIN 7 MAX1 28							BUILDING STRATES			
1.1.	AMB 3.3							Split shown includes 5 seconds of NS LP1			
\sim	ALR 3.4 SPLIT	40	-46	40	40	40	-40	BOCONDS OF NO LET			
	orth	-HU			40	40	-40				
5 NOT USED	WLK FDW MIN MAX1 AMB ALR SPLIT										
Sheppard Ave E	DLY CRN 5			<u> </u>							
6 (~)	WLK 12 FDW 16 MIN 23							Fixed.			
	MAX1 48 AMB 3.3							Split shown includes 5			
~	ALR 2.9						1.00	seconds of EW LPI			
	SPLIT	60	64	90	-38	70	BD				
NOT USED	WLK FDW MIN MAX1 AMB ALR										
Butbank Dr	SPLIT DLY GRN 5		-	-		-	-	And the second			
	WLK 12 FDW 21 MIN 7 MAX1 28 AMB 3.3							Callable by Stopbar loop and/or pushbutton; Extendable by Stopbar loop. Split shown includes 5 seconds of NS LPI.			
~	ALR 34 SPLIT	40	46	40	40	40	40	Annual and the real	1-A		
	CL	100	110	120	78	110	130				
	OF	2	104	117	70	87	115				

DCATION RODE/COMMENT: CS: REPARED BY:DATE HECKED BY:DATE MPLEMENTATION DATE:	Sheppard Ave E 8 SAP with PR and 2 1014 <i>IBI /</i> December 18 Behnam Amini / Im January 18, 2021	2020	APS & LPI	, 2020				ATO (Disinet) / WARD COMPUTER SYSTEM: CONTROLLER/CABNET TYPE: CONFLICT FLASH: DESIGN WALK SPEED: CHANNEL/DROP: CONTROLLER FIRMMARE.	2 (North York) / 17 N N TransSuite Econoite ASC/3-2100/TS2T1 Red & Red 1.0 m/s (FDW based on full crossing at 1.2 m/s) 4025/15 2.47.10
		OFF	AM	PM	NGHT	WKND	Highway 401	Phase Mode]
		All Other	06:30-09:30	15:00-19:00	22:00-06:30	9:00-18:00 Closure	11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
NEMA Phase		Times	M-F	M-F	Daily	Sat & Sun	and the second second	(Fixed/Demanded/Callable) Ri	Remarks
	Local Plan System Plan	Pattern 1 Plan 1	Pattern 2 Plan 2	Pattern 3 Plan 3	Pattern 4 Plan 4	Pattern 5 Plan 5	Pattern 16 Plan 16		
1		Plan 1	Plan 2	enan o	Pian 4	Plan p	P120 10		Pedestnan Minimums
1	WLK FDW			100				Callable/Extendable by Setback loop	EWWK = 7 seconds, EWFD = 23 seconds NSWK = 7 seconds, NSFD = 24 seconds
	MIN 6							Deback bop	NS phase is catable by vehicle and/or pedestrian
	MAX1 12			_				NBRA concurrent with WBLA	actuation. If a vehicle call and/or a pedestrian call i
	AMB 3.3 ALR 5.4								received, the maximum NSG will be served. Unuse
~	SPLIT	.21	18	-26	1	290	38		time allocated to EWG/EWWK. The NSWK & NSFI sine displayed on the pedestrian signal heads if a
Snoppart Ave E	WLK 7								vehicle and/or pedestrian call is received.
1 1	FDW 23					-			Side street passage time = 3 seconds
()	MIN 30							Fixed.	Left-tum passage time = 2 seconds
(>)	MAX1 32 AMB 3.3								Extended Push Activation = 3 seconds APS on for 7 seconds of EWWK and 7 seconds for
	ALR 3.3								NSWK when activated by pushbutton and no left-tu
~	SPLIT.	39	52	63	38	-40	62		a nows are displayed.
3	WLK								NS Leading Pedestrian Interval - NSWK comes up
1	FDW								saconds before NS vehicle graen
(NOT USED)	MIN								
(MAX1 AMB								
	ALR								
Project Dr.	SPLIT DLY GRN 5		-			-			
4	WLK 7				1			Callable by Stopbar loop and/or pushbutton;	
(11)	FDW 24							Extendable by Stopbar loop.	
()	MIN 26 MAX1 28								
X LL/	AMB 3.3							Split shown includes 5 seconds of NS LPI	
- IV	ALR 5.4 SPLIT	-40	40	41	40	- 10	40	swonids of HalePh.	
	arti	40				40	40		
5	WLK FDW								
NOT USED	MIN MAX1								
	AMB								
\smile	ALR SPLIT				-	_			
Eheppard Ave E			-		-	-			1
6	WLK T								
(<->)	FDW 23 MIN 30							Fixed	
()	MAX1 53							ringa.	
	AMB 3.3			_					
	ALR 3.3 SPLIT	80	70	78	38	70	90		
1	WLK			-		1.00			
1	FDW								
NOT USED	MAX1								
	AMB								
~	ALR				_				
Ambridge Rd	DLY GRN 5							Callable by Stopbar loop	1
8 11	WLK 7 FDW 24							and/or pushbutton:	
	FDW 24 MIN 28							Extendable by Stopbar loop	
	MAX1 28							Split shown includes 5	
VVV/	AMB 3.3 ALR 5.4							seconds of NS LPI	
~	SPLIT	-40	40	41	40	40	40		
	CL.	100	110	120	78	110	130		
	OF	15	25	-23	74	100	21		

OCATION: MODE/COMMENT ICS: MEPARED BY/DATE SHECKED BY/DATE MPLEMENTATION DATE	SA1 with 2-V 744	January 10, 2	PS, UPS & RLC	(SB)		7			ATO(DISTRICT) I WARD: COMPUTER SYSTEM: CONTROLLINGADMENT TYPE: CONTROLLINGADMENT TYPE: CONTROLLINGADMENT CONTROLLER FIRMWARD:	2 (North York) / 17 N TransSuite N Peek ATC 1000/TS2T1 Rod & Red 0.9 m/s (FDW based on full crossing at 1.1 m 4039/45 3.010.11.2976
NEMA Phase	1.53	OFF All Other Times	AM 06:30-09:30 M-F	PM 15:00-19:00 M-F	NGHT 22:00-06:30 Daily	WKND 9:00-18:00 Sat & Sun	DVP	Hignway 401 Closure	Phase Mode	Remarks
	Local Plan	Pattern 1	Pattern 2	Pattern 3	Pattern 4	Pattern 5.	Pattern 6	Pattern 16	I Near Clienter Concentration	
· (==)	Spit Table WLK FDW MIN 6 MAX1 6	Spin 1	Split 2	Split 3	Spin 4	Spit 5	Spin 6	Split 16	WBLA caskable/exits-reable by selback loop WBLA and NBRA are	Pecestrian Minimums: EWWK = 8 s, EWFD = 35 s NSWK = 8 s, NSFD = 35 s Left-tum passage time = 2 s Fully protected NBLA passage time = 2.5 s APS on during full welk of NSWK & EWWK whe
	AMB 33 ALR 49								displayed simultaneously.	activated by pushbutton and no left-turn arrows
Shapurana Avid E	SPLIT	15	17	17		19	-24	18		are displayed. Extended Push Activation = 3 seconds
2	WLK 8 FDW 35 MIN 43		1.11		10.11			1.1		Equipped with 11 system loops (see loop drawing)
(>)	MAX1 45								Fixed	NBLA and EBRA are displayed simultaneously NBLA is fully protected due to the double left to
	AME 3.3 ALR 37						62	1.2.1		WBLA and NBRA are displayed simultaneousl
NOT USED	FDW MIN MAX1 AMB ALR SFL/T WLK 8		×				_			
	FDW 35 MIN 43 MAX1 65 AMB 3.3 ALR 3.8 SPLIT	73	74	51	685	69	74	69	Foed	
	WLK FDW MIN 6 MAX1 6 AAR 5.3 ALR 5.2 SPLT	15	17	77		19	24	19	EBLA calleolitifextentiablo by setback loop	
	WLK 8 FDW 25 MIN 43 MAX1 45 AMB 3,3 ALR 3,7 SPLIT	52	52	52	52	52	52	52	Fixed	
(T)	WLK FDW MIN 6 MAX1 14 AMB 3.3 ALR 4.4 SPLIT	22	20	30-	17	18	23	18	NB is Fully Protected NBLA callable/extendable by stopbar (oop NBLA and EBRA are displayed simultaneously.	
8 Carlos	WLK 8 FDW 35 MIN 43 MAX1 43 AMB 8.3 ALR 88 SPLIT	61	5	51	-61	63	51	51	Fixed	
		740	140	150	120	140	150	140		
	QL OF	2	139	2	111	139	125	122		

LODATION: MODE COMMENT: /CS PREPARED BY / DATE: SRECKED BY / DATE: MADE MAIN TATION COTTS.	Losile St & Esthe SA2 with PR & T 1752 Samis Lamsai K Amunuh Dialami November 29, 20	EBLA Fennall I hanal / Septem in / Spetember	hearingtion &					ATODISTINCT) / WARD COMPLETE SISTEM COMPLETE SISTEM COMPLETE SISTEM DESIGN WALK SPEED DURKIN, OWOP COMPLETE SIMUMARS:	2 (North York) / 17 N TransSuite PEEK ATC-1000 / TS2T1 Red & Red 10 m/s (FDW based on full crossing @1.2m/s) 402/13 3.018,12876
NEMA Phase	Local Man	OFF All Other Times -Pattern 1 Spic	AM 08:30-09:30 M-F Pattern 2	PM 15:00.19:00 M-F Pattern 3 Spit 3	NGHT 22:00-06:30 Daily Pattern 4 Solt 4	WKND 9:00-19:00 Sat - Sun Pattern 5 Split 5	DVP TBD Pallem 16 Split 10	Phase Mode (Fixed/Demanded/Callable)	femarks
NOT SSED	WUX, FOW MIN MAX1 ANB ALA SITUT	Spe	Sbit 5.	spra	Spit 4	3047.0	spin in		Pedestrian Minimums, NSWK = 7 per, NSFD = 18 sec. EVWK = 12 per, EVFD = 31 per EW prase is callable by viticle or pedestrian actuation. If in vehic call is received, the minimum EWG is 7 seconds. If inspoling vehic demand exists on the staphart roop, the EWG is capabile of provide vehicle extensions up to the minimum. If a perfection call is received, the minimum dubble texting. The EWWK is EWPD an
2 Lester SI	WLX 7 FDW 18 MIN 25 MAX1 83 AND 14 ALR 25	109	89	89	80	69	50	Fasei,	bitly displayed on the pedestrum algosit heads if a penestrum call in neuronal. Extension line is called on vehical pedestrum destand. Unused extension time is prior to the NSG Size almost Passage Time = 3 peo- Latt-Tum Passage Time = 2 peo- Feetaal Presentation: Il promittance to monimed in plansa 25.41, time to Presentation Sequence A = 0.31 peo-
ALR 2.5 BB 0.9 0.9 0.9 3 WLX FGW Min Min									If preemption is received in phase 4/5, time to Preemption Sequence 4 = 0, 51 set: Preemption Sequence 4 Serve 3 descende 1927 WOW Serve 3 descende 1927 WOW Serve 3 descende 1927 WOW Serve 3 descende 1927 Not NS phase. Serve 3 descende 1927 Not NS phase.
Esthar Shree Bigt	WLK DLY 5 WLK 12 TDW 11 MIN 7 MAX1 39 ANS 50 ALR 48 SPLIT	81	bf	51	51	-51	at	Cullible by Wavefronk sensor and/w Push Button Estendable by WaveScrive sensor	EW Loading Profestrian Interval - EWAK comes up 5 necesta pélone EW which groen The following grides were used to calcitine the wrone mervae
	WLK *DW MIN 8 MAXI 27 AMB 2.4 ALR 4.5 SPLIT	斑	29	35		41	44	NBLA Calable Extendation by existence loop EDRA on concurrently with NBLA	
5 Cedie SI	WLK 7 FOW 16 MIN 15 MAX1 68 AMB 2.0 ALB 2.0 BPL(T	54	00		89	48	85	Faen	
	WLK FDW MIN MAX1 AM8 ALB SPLU							Sterand starting FileInal (primingston drify	
North York Cen Hopp En		51	01	-1	'n	51	81	Califible by Wavestronix sense electro Paals Battern Exercisite by Wavebprickensor Split shown intilides 5 sec of EW EPI	
	CL OF	14Q 00	140. 64	140 18	120	140 47	100. E		

LOCATION: TCS: MODE/COMMENT; PREPARED BY / DATE: CHECKED BY / DATE: CITY STAFF; MPLEMENTATION DATE:	2041 SA2 with W	RM, LPI & 2-v en / 2022-10-1 22-10-24 ilameh	i Leslie St / Priva vire Polara APS 14	ite Access	ATO (Disanco / WARD: COMPUTER SYSTEM: CONTROLLER/CABINET TYPE: CONFLICT FLASH: DESIGN WALK SPEED: CHANNEL/DROP: CONTROLLER FIRMWARE:	2 (North York) / 15 TransSuite Peek ATC-1000 / TS2T1 Red & Red 1.0 m/s (FDW based on full crossing at 1.2 m/s 5013/6 3,018.1.2976
NEMA Phase	Local Plan	OFF All Other Times Pattern 1	AM 06:30-09:15 M F Pattern 2	PM 15:45-18:30 M F Pattern 3	Phase Mode (Fixed/Demanded/Callable)	Remarks
1 (NOT USED	Spirt Table WLK FDW MIN MAX 1 AMB ALR SPLIT	Split 1	Split 2	Split 3		Pedestrian Minimums: EWWK = 7 sec. EWFD = 22 sec NSWK = 7 sec. NSFD = 24 sec NS phase is callable by vehicle or pedestrian actuation. If a vehicle call is received, the minimur NSG is 7 seconds. If ongoing vehicle demand exis on the stopbar loop, the NSG is capable of provid vehicle extensions up to the maximum. If a
2 Esther Shiner Byd	WLK D 5 WLK 7 FDW 22 MIN 24 MAX 1 30 AME 3.0 ALR 37			1	Fixed. Split shown includes 5 sec of EW LPI	pedestrian call is received, the pedestrian minimu will be served. The NSWK & NSFD are only displayed on the pedestrian signal heads if a pedestrian call is received. Extension time is base on vehicle demand. Unused extension time is give Side Street Passage Time = 3 sec During free plans, signal rests in EWWK and does
3 NOT USED	MLK SPLIT WLK FDW MIN MAX 1 AMB ALR SPLIT	30	30	30		Lump free plans, signal reads in EVWVK and does not cycle through EWFD uritess there is side street vehicle and/or side street pedestrian demand. All plans operate free using split values as green times (WLK & FDW) for phases 2 & 6. The signal serve the programmed WLK & FDW values follow WRM. Phase 4 & 8 uses split values as green tim APS on during 7 sec of EWWK & NSWK when activated by push buttons.
4 Privees. Acc	WLR D 5 WLK 7 FDW 24 MIN 7 MAX.1 26 AMB 3.0 ALR 3.8 SPLIT	26	26	26	Callable by Stopbar Loop and/or Push Button; Extendable by Stopbar Loop Split shown includes 5 sec.of NS LPI	NS and EW Leading Pedestrian Interval - NSWK s EWWK comes up 5 seconds before NS and EW vehicle greens The following frades were used to calculate the Al Intervals: North Leg: -1.4% South Leg: 1.0%
5 NOT USED	WLK FDW MIN MAX 1 AMB ALR SPLIT					East Leg: 0% West Leg: 0.5% Script to call main street APS during free operatio Installed
6 Esther Shiner Blyce	WLK D 5 WLK 7 FDW 22 MIN 24 MAX 1 30 AME 3.0 ALR 3.7 SPLIT	30	30	30	Fixed Splil shown includes 5 sec of EW LPI	
7 NOT USED	WLK FDW MIN MAX 1 AMB- ALR SPLIT					
8 Our Leslie B!	WLK D 6 WLK 7 FDW 24 MIN 7 MAX 1 28 AME 3.0 ALR 3.8 SPLIT	26	26	26	Catlable by Stopbar Loop and/or Push Button; Extendable by Stopbar Loop Split shown includes 5 suc of NS LPI	
	CL OF	0 Free	0 Free	0 Free		

OCATION:	Sheppard Ave E		T.				-	ATO (District) / WARD:	2 (North York) / 18 NN
IDDE/COMMENT:	SA2-VMG with PI	R & LPI						COMPUTER SYSTEM	TransSuite
CS.	1245							CONTROLLER/CABINET TYPE.	Econolite ASC/3-2100 /TS2T1
REPARED BY/DATE:	IBI / December 1	8 2020						CONFLICT FLASM:	Red & Red
HECKED BY/DATE	Behnam Amini / I	Intesham Ahm	ad /December 3	30, 2020				DESIGN WALK SPEED:	1.0 m/s (FDW based on full crossing at 1.2 m/s)
PLEMENTATION DATE:	January 15, 2021							CHANNEL/DROP:	4039/52
								CONTROLLER FIRMWARE:	2.47.10
		OFF	AM	PM	NGHT	WKND	Instance of	Phase Mode	
		All Other	06:30-09:30	15:00-19:00	22:00-06:30	10:00-19:00	Highway 401		
NEMA Phase		Times	M-F	M-F	Daily	Sat & Sun	Closure	and other total and the second	Remarks
Contract of Contract of	Local Plan	Pattern 1	Pattern 2	Pattern 3	Pattern 4	Pattern 5	Pattern 16	(Fixed/Demanded/Callable)	
	System Plan	Plan 1	Plan 2	Plan 3	Plan 4	Plan 5	Plan 16		
	Crystelline and	7.647.1	1 militz	1 44715	1 1011 9	1 0012 -1	1 part 1 to		Pedestrian Minimums:
1	WLK								EWWK = 12 seconds, EWFD = 16 seconds
	FDW								NSWK = 12 seconds, NSFD = 18 seconds
(NOT USED)	MIN								NS phase is callable by vehicle or pedestrian
(MOT DOLD)	MAX1								actuation. If a vehicle call is received, the minimur
	AMB								NSG is 7 seconds. If ongoing vehicle demand exa
	ALR		_	_					on the stopbar loop, the NSG is capable of provide
Sheppard Ave E	DLY GRN 5		-	-					wehicle extensions up to the maximum. If a pedestrian call is received, the pedestrian minimum
2	WLK 12								will be served. The NSWK & NSFD are only
1	FDW 16							Fixed.	displayed on the pedestrian signal heads if a
(MIN 23						10		pedestrian call is received. Extension time is base
<>)	MAX1 53							and the second sec	on vehicle demand. Unused extension time is give
	AMB 3.3							Split shown includes 5	to the EWG.
-	ALR 2.3		-			1.00		seconds of EW LPL	Side street passage time = 3 seconds
	SPLIT	64	81	74	56	64	.84		Leading Pedestrian Intervals - EWWK comes up 5
1	han is	-							seconds before EW vehicle green and NSWK com
3	WLK FDW								p 5 seconda before NS vehicle green.
1	MIN	_							
NOT USED	MAX1								
	AMB					1.00			
	ALR								
	SPLIT		-	1	1				
Wilfred Ave	DLY GRN 5			1 1	1			Callable by Stopbar loop	
4/	WLK 12							and/or pushbutton;	
1 11	FDW 18							Extendable by Stopbar loop.	
(I)	MIN 7							Extendence by Stopboli roop.	
	MAX1 25							Split shown includes 5	
VIV/	AMB 3.3							seconds of NS LPL	
~	ALR 2.5 SPLIT	36	39	36	36	36	36		
	arco	30	39	dec	-20	30	-36		
5	WLK		100						
	FDW								
NOT USED	MIN								
(HOI DOLL)	MAX1						10 C		
	AMB								
\sim	ALR								
Wellington and the Pro-	SPLIT	-	-		-		_		
Sheppard Ave E	DLY GRN 5		and the second sec			Sec. 1	10 A	11	
6	WLK 12 FDW 16							Fixed.	
(<>)	MIN 23			10					
	MAX1 53				_				
	AMB 3.3			1 m				Split shown includes 5	
	ALR 23	1.00		1				seconds of EW LPI	
	SPLIT	64	81	74	56	64	84		
-	ALC: NO		-						
1	WLK					100			
	FDW				100 C	10 March 10			
NOT USED	MIN		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.0				
1	MAX1 AMB				1.1	-			
	AMB			1 m					
-	SPLIT			And Designed		1000		and the second sec	
Witted Ave	DLY GRN 5		-					A had a second of the	
8	WLK 12							Callable by Stopbar loop	
(11)	FDW 18			100				and/or pushbutton;	
	MIN 7			-				Extendable by Stopbar loop.	
	MAX1 25							Split shown includes 5	
	AMB 3.3							seconds of NS LPI	
-	ALR 25		100			20			
	SPLIT	36	- 39	36	36	36	36		
	CL	100	120	110	92	100	120		
	OF	23	111	23	91	26	95		
	10F								

LOCATION			Shep	pard .	Av. E.	& Ba	rberry	PI/B	ayviev	v Villa	age Ma	all		-	DISTR	ICT			North York
NODE/COMMENT			SA2-	VMG	with P	R. LP	1 & Po	olara 2	2-Wire	APS				1	COMP	UTER S	YSTEM		UTC / SCOOT
TCS/SCN				/ 1137										1	CONTR	ROLLER	CABIN	ET	Novax L7N2 / M
PREPARED BY / D	ATE:		_	-	-	eh / O	ctobe	r 29 2	2018			_	-	1		ICT FL		-	Red & Red
CHECKED BY / DA			-	am A		en ro								- I		N WALK		5	0.9 m/s (FDW based on full crossing at 1.1 m/s)
STREET	_	-	Sheppa	and Aur I	-		-	-	_		Rarbor	n Pi /P	modowy	/Illage N	all	T		-	REMARKS
COMPUTER INTER	RVAL	-	11	12	13	1 1	2	3	4	5	6	7	B	9	10	1	1		
ASPECT	PLAN	1:				EWG	5	5	>	>	>	5	a diama di	>	5	No Cal	ls /	1	Pedestrian Minima
	No La			-		EWWK	>	>	5	6	>	>	- 3	*	2	EWPR		1	EWWK = 8 sec., EWFD = 16 sec.
	Tum C	alled		A	PS			11.7.2	-		1		1.28	1	1000	-	100		NSWK = 8 sec., NSFD = 25 sec.
	(benerican)				1	1	1	1					1000		100		190		SF#1 disables EBLA 00:00-10:00 daily (backed up by external clock)
	PLAN	2	EBLA	EBYA	-	EWG	3	>	EWY	ALLR	NSG-	3	s	NSY	ALLR	Vehicle	Call		SF#2 disables WBLA all limes
	EBLA		EBG	>	>	EWWK	2	EWFD	EWDW	2	NSDW	2	2	2	2	Onty	1		EBLA & WBLA callable by setback loops
	Only		EWWK	>	>		-	11.1-	1		1.00				1000				Extended push activation = 3 secs.
	Called	6. J. I.	South S	ide Only	y	1		1122			1	10.00	100		14			-	Under system control APS only provided during local interval
	_			1					1			12.0	1						# 1112, & 13 when no arrows are displayed.
		WBLA	WBYA							1	NSG	2	N5Y	ALLR	Pedest	nian		NS Leading Pedestrian Interval - NSWK comes up 5 secs before NS	
WBLA Only Called		WBG	>	>			1		-	NSWK	5	NSED	NSDW	3	Call			vehicle green	
		EWWK	2	<u>ا</u> د	-				. 1	APS		Y	1		200				
		North S	ide Only	1			1		1.1				1		100			1	
									1.47				1.1	-	1	24			1
	PLAN	4:	EWLA	EWYA	ALLR				A				100		1.00	1]
	Both E	BLA	EWDW	2	*				1		-		1	1 1]
	and W	BLA					-	-	1	100	-			1.3	1				
	Called			_	1		1	12	1	100	1	-	1	12.2	1000		1	_	
		_				-		1.5		100	-	10	-			-		_	
CONTROLLER INT		-	11	12	13	1	2	3	4	5	6	7	8	9	10	1		-	SCHEDULES
MP. DATE	CL	C/S	-		-		T	10		-	5	-	-		4	-		-	All Other Times.
	100	C1S1	6	2	2	21	1	16	4	2	0	3	25	3	4			-	Al Olitor Times.
	110	C2S1	6	2	2	21	17	16	4	2	5	3	25	3	4		-	-	06:30 - 10:00 M-F
Nov 23, 2018		- secon	- v	-	-				-	-			1-3						
	110	C3S1	9	2	2	21	14	16	4	2	5	3	25	3	4				15:00 - 19:00, M-F
							-		-	1			1+3						
HOLD INTERVAL			*	1			. * .	1.1	1.1		1 =		11 ==		1				
UTC	Plan	1				8	8	DE	DE	DE	E	E		В	В				
STAGE	Plan 2	2	A	Б	B				L^{*}		D	D	1.	ACBF	ACBF				
	Plan :	3	C	в	в						D	D	1.1	ACBF	ACBF				
	Plan 4	4	F	в	в						1.1								

Vehicle Extensions are inhibited during Stage E to improve response time to side street pedestrians and/or vehicle demand.

During local control, intervals 11-13 are only limed if EWLA called.

LOCATION			Shepp	oard A	V. E. a	& Hawl	ksbury	Dr./R	ean Di	t.					DI	STRIC	τ		North York
MODE/COMMENT			SA2-V	MGw	ith PF	3						1			GC	MPUT	TER SYS	TEM	UTC / SCOOT
TCS/SCN			742/1	11381				-							cc	NTRO	DLLER/C	ABINET	Novax - 18cct
PREPARED BY/DAT	E:					2, 202	0									NFLIC		040340	Red & Red
CHECKED BY/DATE						ni / Ma		2020	_			1					WALK S	PEED	0.9 m/s (FDW based on full crossing @ 1.1m/s)
STREET			Sheppa	ard Av.	E.		-		Hawks	bury D	r./Rean	Dr.	2	_			-		REMARKS
COMPUTER INT.			1	2	3	4	5	6	7	8	9	10	11	12			1	1.0	
SPECT			EWG	>	>	>	5	>	>	\$	>	1.00	>	>	No Galls /		1.1.1		Pedestrian Minimums:
			EWWK	>	>	>	>	>	>	2.	2	1	>	>	EW PR			100	NSWK = 8 s. NSFD = 25 s
			1.2.2		1.00			1.1	1			· · · · ·	11-21-2	1700			1.19	1211-1	EWWK = 8 s. EWFD = 13 s.
			1		1.000												-		Controller background cycle is
			EWG	>	>	\$	EWY	ALLR	NSG	>	2	>	NSY	ALLR	Vehicle Call		6.34	n	disabled. Signal holds in int. #3
			EWWK	2	>	EWFD	EWDW	>	NSDW	>	>	>	>	>	Only	1	1. A		
			1	-	-			1					(Inc.)			1.			
													10-	1	1		19°		
									NSG	>	2	2	NSY.	ALLR	Pedestrian		1.1	,	
			1.				1. 1	1.	NSWK	>	2	NSFD	NSDW	2	Call				
					-				-		1			10	1.00	-			
CONTROLLER INT.	-	-	1	2	3	4	5	6	7	B	9	10	11	12		-	1	-	SCHEDULES
MP. DATE	CL	C/S		12	(5)		1.1	0.00	1	1.20	1.5	100	11	1				1.01	6.6003
Mar 27, 2020	144	C1S1	2	20	63	13/	4	2	3	4	1	25	.4	3		-	() ()	(L.	NORMAL
			1.00	100.00	-12			1	1	100	1	1+3	1.	1.	200				
	144	C251	2	20	62	13	4	2	3	4	2	-25	4	- 7	1.000				06:30 - 10:00, M-F
		1.1.8.1		-	-		-		the second	-		1+3	1.00			-			
	144	C3S1	2	20	61	13	4	2	3	- 1	3	25	4	3		-		-	15:00 - 19:00, M-F
HOLD INTERVAL	-				*	-	-	-	1		*	173	1	- 2	-	-			
ITC	Plan	ľ	в	в	8	ABC	ABC	ABC	С	c	C	-	ß	В		-	-	-	-
STAGE	Plan :		-	-					A	A	۸	1	B	В					
and the second	Plan : Plan -	3							A	A	A	2	В	Б					

NOTES:

Stage C is a dummy stage when EWFD reverts to EWWK in the absence of side street demand at the end of Interval #4.

Vehicle Extensions are inhibited during Stage C to improve response time to side street pedestrians and/or vehicle demand.

å

OCATION:	Sheppard Ave E 8		d / Private Acces	55				ATO (District) / WARD:	2 (North York) / 17 NN
DDE/COMMENT:	SA2-VMG with PR 1956	& LPI						COMPUTER SYSTEM: CONTROLLERICABINET TYPE:	TransSuite Econolite ASC/3-2100/TS2T1
EPARED BY/DATE	IBI / December 18	2020						CONFLICT FLASH	Red & Red
ECKED BY DATE	Behnam Amini / Ih		d /December 30	2020				DESKIN WALK SPEED:	1.0 m/s (FDW based on full crossing at 1.2 m/s)
PLEMENTATION DATE:	January 15, 2021		a lo avenue avenue					CHANNEL OROP:	5023/10
	and a set and a set							CONTROLLER FIRMWARE:	2.47.10
		OFF	AM	PM	NGHT	WKND	Highway 401	Phase Mode	
		All Other	06:30-09:30	15:00-19:00	22:00-06:30	9:00-18:00	Closure		and a start of the second
NEMA Phase		Times	M-F	M-F	Daily	Sat & Sun		(Fixed/Demanded/Callable)	Remarks
	Local Plan	Pattern 1	Pattern 2	Pattern 3	Pattern 4	Pattern 5	Pattern 16	Participation and an ended	
	System Plan	Plan 1	Plan 2	Plan 3	Plan 4	Plan 5	Plan 16		Pedestrian Mnimums:
1	WLK		10 million					11	EWWK = 12 seconds, EWFD = 15 seconds
	FDW								NSWK = 12 seconds, NSFD = 23 seconds
NOTUSED	MIN MAX1								
	AMB								NS phase is callable by vehicle or pedestnan actuation. If a vehicle call is received, the minimum
\smile	ALR					1			NSG is 7 seconds. If ongoing vehicle demand exis
Shappard Ave E	SPLIT DLY GRN 5	-	-		-	-			on the stopbar loop, the NSG is capable of providi
2	WLK 12							Fixed.	wehicle extensions up to the maximum. If a
	FDW 15							Pixeo.	pedestrian call is received, the pedestrian minimum will be served. The NSWK & NSFD are only
(MIN 22 MAX1 45							in the second second	displayed on the pedestrian signal heads if a
1 1	AMB 3.3							Split shown includes 5	pedestrian call is received. Extension time is base
	ALR 2.5					(A) (A)	100	seconds of EW LPL	on vehicle/pedestrian demand. Unused extension time is given to the EWG.
	SPLIT	56	86	78	34	66	86		and a distant on side of stands
3	WLK							0.00	Side street passage time = 3 seconds
	FDW								Leading Pedestrian Intervals - EWWK comes up 5
NOT USED	MIN MAX1					-		1000	seconds before EW vehicle green and NSWK com
	AMB					1		C	up 5 seconds before NS vehicle green
\checkmark	ALR	-				-		1 - T	
Private Access	SPLIT DLY GRN 5	-		-	-			200.000.0000	-
4	WLK 12				1		- C	Callable by Traficam and/or	
1 14 1	FDW 23							pushbutton; Extendable by Traficam.	
(T)	MIN 7 MAX1 30							0.00	
	AMB 3.3				1	100		Split shown includes 5	
~	ALR 4.9		-			-		seconds of NS LPI	
	SPLIT	44	44	-44	44	44	44	-	
5	WLK				100				
$\langle \rangle$	FDW								
NOT USED	MIN MAX1								
	AMB					-			
\smile	ALR			_	-	-		2.	
Sheppad Ave E	SPLIT DLY GRN 5		-		-	-			1
6	WLK 12					Sec. 1.		Fixed,	
1.	FDW 15					_		i steri	
-	MIN 22 MAX1 45			1				the second second	
	AMB 3.3			100				Split shown includes 5	0
	ALR 2.5 SPLIT	56	p.o	78		-	86	seconds of EW LPI	
	SPLIT	- 00	66	10	34	68	86		
1	WLK					1.1			
	FDW					A. 1			
NOTUSED	MIN MAX1				1.1				
	AMB				11 1	· · ·			
	ALR			-	1	1			
Blue Ridge Rd	DLY GRN 5		-	-	-	-			1
8	WLK 12							Callable by Stopbar loop and/or pushbutton;	
(11)	FDW 23							Extendable by Stopbar loop.	
	MIN 7 MAX1 30								
141/	AMB 3.3							Split shown includes 5 seconds of NS LPI	
	ALR 4.9 SPLIT	44	44	44	-44	44	44	Seconda of two Lift	
	SPLIT	44	44	-44	44	44	44		1
	CL	100	110	120	78	110	130		
	OF	91	104	117	72	104	3		

Attachment 3

Existing AM/PM Synchro Reports

	1	•	1	1	1	↓		
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	Ø7	
Lane Configurations	ሻሻ	1	<u>†</u> †	1	٦	<u></u>		
Traffic Volume (vph)	198	93	1380	138	163	962		
Future Volume (vph)	198	93	1380	138	163	962		
Lane Group Flow (vph)	220	103	1533	153	181	1069		
Turn Type	Perm	Perm	NA	Perm	pm+pt	NA		
Protected Phases			2		1	6	7	
Permitted Phases	8	8		2	6			
Detector Phase	8	8	2	2	1	6		
Switch Phase		-				-		
Minimum Initial (s)	7.0	7.0	24.0	24.0	6.0	24.0	1.0	
Minimum Split (s)	24.2	24.2	46.0	46.0	10.5	29.7	5.0	
Total Split (s)	25.0	25.0	69.0	69.0	11.0	80.0	5.0	
Total Split (%)	22.7%	22.7%	62.7%	62.7%	10.0%	72.7%	5%	
Yellow Time (s)	3.0	3.0	3.3	3.3	3.0	3.3	2.0	
All-Red Time (s)	3.2	3.2	2.4	2.4	1.0	2.4	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	-1.0	0.0	0.0		
Total Lost Time (s)	6.2	6.2	5.7	4.7	4.0	5.7		
Lead/Lag	Lag	Lag	Lag	Lag	Lead		Lead	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	
Recall Mode	None	None	Max	Max	None	Max	None	
v/c Ratio	0.55	0.41	0.69	0.18	0.71	0.42		
Control Delay	46.0	13.3	13.4	1.7	25.3	4.9		
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		
Total Delay	46.0	13.3	13.4	1.7	25.3	4.9		
Queue Length 50th (m)	20.5	0.0	87.4	0.0	6.7	30.4		
Queue Length 95th (m)	31.8	14.4	122.5	6.7	#20.4	46.2		
Internal Link Dist (m)	321.3		291.9			215.1		
Turn Bay Length (m)	66.0			71.0	40.0			
Base Capacity (vph)	648	342	2228	858	256	2566		
Starvation Cap Reductn	0	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0	0		
Reduced v/c Ratio	0.34	0.30	0.69	0.18	0.71	0.42		
Intersection Summary								
Cycle Length: 110	•							
Actuated Cycle Length: 97.	9							
Natural Cycle: 90	acard							
Control Type: Semi Act-Un								
# 95th percentile volume			leue may	be longe	r.			
Queue shown is maximu	um atter two	o cycles.						
Splits and Phases: 1: Ba	yview Aven	ue & Bav	view Mew	s Lane				
1 A	,							
▶ø1 ₽ø2 11s 69s								
L Contraction								AL Zas

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

Synchro 11 Report 01/18/2024 - Page 1

۰. ŧ 1 € Ť ۶ Movement WBL WBR NBT NBR SBL SBT **†**† **↑↑** 962 Lane Configurations ኘኘ Traffic Volume (vph) 198 1380 138 163 93 Future Volume (vph) 198 93 1380 138 163 962 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Total Lost time (s) 6.2 6.2 5.7 4.7 4.0 5.7 Lane Util. Factor 0.97 1.00 0.95 1.00 1.00 0.95 Frpb, ped/bikes 1.00 0.87 1.00 0.82 1.00 1.00 Flpb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 Frt 1.00 0.85 1.00 0.85 1.00 1.00 Flt Protected 0.95 1.00 1.00 1.00 0.95 1.00 Satd. Flow (prot) 3444 3380 3372 1371 1257 1738 Flt Permitted 1.00 1.00 1.00 0.10 1.00 0.95 Satd. Flow (perm) 3372 1371 3444 1257 187 3380 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 0.90 Adj. Flow (vph) 220 103 1533 153 181 1069 RTOR Reduction (vph) 91 52 0 0 0 0 Lane Group Flow (vph) 101 220 12 1533 181 1069 Confl. Peds. (#/hr) 82 82 72 5% 6% Heavy Vehicles (%) 4% 6% 5% 8% Turn Type Perm Perm NA pm+pt NA Perm Protected Phases 2 1 6 Permitted Phases 8 8 2 6 Actuated Green, G (s) 74.3 11.6 11.6 63.3 63.3 74.3 Effective Green, g (s) 11.6 74.3 11.6 63.3 64.3 74.3 Actuated g/C Ratio 0.12 0.12 0.65 0.66 0.76 0.76 Clearance Time (s) 6.2 5.7 5.7 4.0 5.7 6.2 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 399 162 2229 826 253 2567 v/s Ratio Prot c0.05 0.32 0.45 v/s Ratio Perm c0.07 0.01 0.08 c0.49 v/c Ratio 0.55 0.08 0.69 0.12 0.72 0.42 Uniform Delay, d1 40.6 38.3 11.0 6.2 11.8 4.1 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 1.6 0.2 1.8 0.3 9.2 0.5 Delay (s) 42.3 38.5 12.7 6.5 21.0 4.6 Level of Service D D B С А А Approach Delay (s) 41.1 12.2 7.0 Approach LOS D В А Intersection Summary 13.1 HCM 2000 Level of Service HCM 2000 Control Delay B HCM 2000 Volume to Capacity ratio 0.73 17.9 Actuated Cycle Length (s) 97.8 Sum of lost time (s) Intersection Capacity Utilization 74.6% ICU Level of Service D Analysis Period (min) 15

c Critical Lane Group

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

HCM Signalized Intersection Capacity Analysis

1: Bayview Avenue & Bayview Mews Lane

Synchro 11 Report 01/18/2024 - Page 2

2023 Existing AM

Lane Group Lane Configurations Traffic Volume (vph)			•	•		~	7	†	1	*	+
	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Traffic Volume (vph)	<u> </u>	<u></u>	1	۲.	^	1	ኘኘ	^	1	۲	^† †ĵ ₂
	60	846	681	245	1263	227	477	818	274	93	1197
Future Volume (vph)	60	846	681	245	1263	227	477	818	274	93	1197
Lane Group Flow (vph)	64	900	724	261	1344	241	507	870	291	99	1310
Turn Type	Perm	NA	pm+ov	pm+pt	NA	Perm	Prot	NA	pm+ov	Perm	NA
Protected Phases		4	5	3	8		5	2	3		6
Permitted Phases	4		4	8		8			2	6	
Detector Phase	4	4	5	3	8	8	5	2	3	6	6
Switch Phase			-				-				
Minimum Initial (s)	40.0	40.0	6.0	6.0	40.0	40.0	6.0	39.0	6.0	39.0	39.0
Minimum Split (s)	46.1	46.1	13.6	13.8	46.1	46.1	13.6	45.9	13.8	45.9	45.9
Total Split (s)	50.0	50.0	23.0	16.0	66.0	66.0	23.0	78.0	16.0	55.0	55.0
Total Split (%)	34.7%	34.7%	16.0%	11.1%	45.8%	45.8%	16.0%	54.2%	11.1%	38.2%	38.2%
Yellow Time (s)	3.2	3.2	3.1	3.2	3.2	3.2	3.1	3.2	3.2	3.2	3.2
All-Red Time (s)	2.9	2.9	4.5	4.6	2.9	2.9	4.5	3.7	4.6	3.7	3.7
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
Total Lost Time (s)	5.1	5.1	6.6	6.8	5.1	5.1	6.6	5.9	6.8	5.9	5.9
Lead/Lag	Lag	Lag	Lead	Lead			Lead		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes			Yes		Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	None	Max	None	Max	Max
v/c Ratio	0.82	0.59	1.11	1.29	0.65	0.37	1.28	0.50	0.35	0.51	0.76
Control Delay	108.8	43.9	99.4	189.8	34.9	19.5	193.6	24.8	14.0	48.5	45.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	108.8	43.9	99.4	189.8	34.9	19.5	193.6	24.8	14.0	48.5	45.2
Queue Length 50th (m)	16.7	79.0	~211.7	~70.1	109.5	28.8	~94.8	85.5	35.2	22.5	122.1
Queue Length 95th (m)	#45.4	93.7	#238.8	#128.5	125.5		#130.2	103.9	52.2	42.9	140.0
Internal Link Dist (m)	11-10.1	145.8	11200.0	1120.0	235.0	00.1	# 100.2	137.9	02.2	12.0	291.9
Turn Bay Length (m)	78.0	140.0	85.0	160.0	200.0	45.0	97.0	101.0		80.0	201.0
Base Capacity (vph)	81	1574	655	203	2136	666	395	1726	827	195	1713
Starvation Cap Reductn	0	0	000	0	0	000	0	0	021	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.79	0.57	1.11	1.29	0.63	0.36	1.28	0.50	0.35	0.51	0.76
Intersection Summary											
Cycle Length: 144											
Actuated Cycle Length: 142.	4										
Natural Cycle: 140											
Control Type: Semi Act-Unc	oord										
 Volume exceeds capacit 		s theoreti	cally infin	ite.							
Queue shown is maximu			,								
# 95th percentile volume e			leue mav	be lonae	r.						
Queue shown is maximu											
Splits and Phases: 2: Bay	view Aven	110 & Sha	nnard Av	enue Fac	t						
· •	view Avell		μματά Αν	CITUE EQ2	ι 	~		A			
⁶ Ø2						€ Ø3		€ ¶Ø4			
78 s						16 s	50	S			

23 s 255 s 231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

Synchro 11 Report 01/18/2024 - Page 3 HCM Signalized Intersection Capacity Analysis 2: Bayview Avenue & Sheppard Avenue East 2023 Existing AM

	≯	-	\mathbf{i}	1	-	•	•	Ť	1	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u></u>	111	1	5	^	1	ካካ	^	1	5	ተተኈ	
Traffic Volume (vph)	60	846	681	245	1263	227	477	818	274	93	1197	35
Future Volume (vph)	60	846	681	245	1263	227	477	818	274	93	1197	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.1	5.1	6.6	6.8	5.1	5.1	6.6	5.9	6.8	5.9	5.9	
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91	1.00	0.97	0.95	1.00	1.00	0.91	
Frpb, ped/bikes	1.00	1.00	0.95	1.00	1.00	0.94	1.00	1.00	0.95	1.00	1.00	
Flpb, ped/bikes	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1678	4995	1474	1687	4995	1443	3437	3411	1449	1651	4963	
Flt Permitted	0.15	1.00	1.00	0.16	1.00	1.00	0.95	1.00	1.00	0.33	1.00	
Satd. Flow (perm)	258	4995	1474	282	4995	1443	3437	3411	1449	567	4963	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	64	900	724	261	1344	241	507	870	291	99	1273	37
RTOR Reduction (vph)	0	0	52	0	0	51	0	0	10	0	2	0
Lane Group Flow (vph)	64	900	672	261	1344	190	507	870	281	99	1308	0
Confl. Peds. (#/hr)	49		57	57		49	51		42	42		51
Heavy Vehicles (%)	8%	5%	5%	8%	5%	6%	3%	7%	7%	9%	5%	6%
Turn Type	Perm	NA	pm+ov	pm+pt	NA	Perm	Prot	NA	pm+ov	Perm	NA	
Protected Phases		4	5	3	8		5	2	3		6	
Permitted Phases	4		4	8		8			2	6		
Actuated Green, G (s)	42.3	42.3	57.7	58.3	58.3	58.3	15.4	71.1	79.3	48.1	48.1	
Effective Green, g (s)	43.3	43.3	59.7	59.3	59.3	59.3	16.4	72.1	81.3	49.1	49.1	
Actuated g/C Ratio	0.30	0.30	0.42	0.42	0.42	0.42	0.12	0.51	0.57	0.34	0.34	
Clearance Time (s)	6.1	6.1	7.6	7.8	6.1	6.1	7.6	6.9	7.8	6.9	6.9	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	78	1518	617	208	2080	600	395	1727	827	195	1711	
v/s Ratio Prot		0.18	0.13	c0.08	0.27		c0.15	0.26	0.02		c0.26	
v/s Ratio Perm	0.25		0.33	c0.44		0.13			0.17	0.17		
v/c Ratio	0.82	0.59	1.09	1.25	0.65	0.32	1.28	0.50	0.34	0.51	0.76	
Uniform Delay, d1	45.9	42.1	41.4	36.3	33.2	27.9	63.0	23.3	16.3	37.1	41.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	47.4	0.6	63.0	147.7	0.7	0.3	145.7	1.1	0.2	9.1	3.3	
Delay (s)	93.3	42.7	104.4	184.0	33.9	28.2	208.7	24.3	16.5	46.2	44.8	
Level of Service	F	D	F	F	С	С	F	C	В	D	D	
Approach Delay (s)		71.1			54.4			79.0			44.9	
Approach LOS		E			D			E			D	
Intersection Summary												
HCM 2000 Control Delay			62.8	Н	CM 2000	Level of	Service		E			
HCM 2000 Volume to Capa	acity ratio		1.09									
Actuated Cycle Length (s)			142.4		um of lost				24.4			
Intersection Capacity Utiliza	ation		150.0%	IC	CU Level of	of Service)		Н			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

	≯	-+	1	-	1	1	1	Ŧ				
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø1	Ø3	Ø5	Ø7
Lane Configurations	ľ	≜î ≽	ľ	∱1 ≱	1	ĥ	ľ	¢Î				
Traffic Volume (vph)	19	1344	25	1221	10	25	295	13				
Future Volume (vph)	19	1344	25	1221	10	25	295	13				
Lane Group Flow (vph)	20	1406	26	1396	10	64	307	59				
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA				
Protected Phases		2		6		8		4	1	3	5	7
Permitted Phases	2		6		8		4					
Detector Phase	2	2	6	6	8	8	4	4				
Switch Phase												
Minimum Initial (s)	23.0	23.0	23.0	23.0	7.0	7.0	7.0	7.0	1.0	1.0	1.0	1.0
Minimum Split (s)	34.2	34.2	34.2	34.2	39.7	39.7	39.7	39.7	5.0	5.0	5.0	5.0
Total Split (s)	59.0	59.0	59.0	59.0	41.0	41.0	41.0	41.0	5.0	5.0	5.0	5.0
Total Split (%)	53.6%	53.6%	53.6%	53.6%	37.3%	37.3%	37.3%	37.3%	5%	5%	5%	5%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	2.0	2.0	2.0	2.0
All-Red Time (s)	2.9	2.9	2.9	2.9	3.4	3.4	3.4	3.4	0.0	0.0	0.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
Total Lost Time (s)	6.2	6.2	6.2	6.2	6.7	6.7	6.7	6.7				
Lead/Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	Max	Max	Max	Max	None	None	None	None
v/c Ratio	0.31	0.80	0.36	0.83	0.02	0.10	0.66	0.11				
Control Delay	28.2	23.6	30.8	25.2	22.0	12.0	34.8	9.9				
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
Total Delay	28.2	23.6	30.8	25.2	22.0	12.0	34.8	9.9				
Queue Length 50th (m)	2.1	107.5	2.8	109.2	1.3	3.3	50.2	1.8				
Queue Length 95th (m)	9.1	134.6	11.2	138.3	4.8	12.1	81.7	10.3				
Internal Link Dist (m)		520.0		187.5		166.1		235.9				
Turn Bay Length (m)	30.0		31.0		15.0		41.0					
Base Capacity (vph)	72	1948	80	1852	479	637	468	560				
Starvation Cap Reductn	0	0	0	7	0	0	0	0				
Spillback Cap Reductn	0	0	0	0	0	0	0	0				
Storage Cap Reductn	0	0	0	0	0	0	0	0				
Reduced v/c Ratio	0.28	0.72	0.33	0.76	0.02	0.10	0.66	0.11				
Intersection Summary												
Cycle Length: 110												
Actuated Cycle Length: 95.	3											
Natural Cycle: 95												
Control Type: Semi Act-Un	coord											
Splits and Phases: 3: Be	ssarion Roa	ad/Burbar	nk Drive 8	Sheppar	d Avenue	East						
11												
.₹₿ø - 1 ø2						7	n Ø:▼ 10	04				
5 59 5						5 S	415					
Ag. 🗸 ø6						Å	i ₀≦¶α	38				
5 s 59 s						5 c	41 c					

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates Synchro 11 Report 01/18/2024 - Page 5 HCM Signalized Intersection Capacity Analysis 3: Bessarion Road/Burbank Drive & Sheppard Avenue East

2023 Existing AM

	≯	-	\mathbf{r}	1	+	•	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	1	A		7	≜ 1₽		ľ	¢Î		ľ	¢Î	
Traffic Volume (vph)	19	1344	6	25	1221	119	10	25	36	295	13	4
Future Volume (vph)	19	1344	6	25	1221	119	10	25	36	295	13	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)	6.2	6.2		6.2	6.2		6.7	6.7		6.7	6.7	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	0.99		1.00	0.99		1.00	0.96	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		0.97	1.00		0.99	1.00	
Frt	1.00	1.00		1.00	0.99		1.00	0.91		1.00	0.89	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1448	3503		1630	3324		1762	1699		1725	1478	
Flt Permitted	0.09	1.00		0.08	1.00		0.72	1.00		0.72	1.00	
Satd. Flow (perm)	132	3503		144	3324		1332	1699		1299	1478	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.9
Adj. Flow (vph)	20	1400	6	26	1272	124	10	26	38	307	14	4
RTOR Reduction (vph)	0	0	Ŭ	0	6	0	0	24	0	0	29	
Lane Group Flow (vph)	20	1406	0	26	1390	0	10	40	0	307	30	
Confl. Peds. (#/hr)	55	1400	90	90	1000	55	37	10	8	8	00	3
Heavy Vehicles (%)	26%	4%	17%	12%	7%	8%	0%	0%	3%	5%	23%	79
Turn Type	Perm	NA	17.70	Perm	NA	0/0	Perm	NA	070	Perm	NA	
Protected Phases	I CIIII	2		I CIIII	6		I CIIII	8		I CIIII	4	
Permitted Phases	2	2		6	0		8	0		4	-	
Actuated Green, G (s)	47.9	47.9		47.9	47.9		34.4	34.4		34.4	34.4	
Effective Green, g (s)	47.9	47.9		47.9	47.9		34.4	34.4		34.4	34.4	
Actuated g/C Ratio	0.50	0.50		0.50	0.50		0.36	0.36		0.36	0.36	
Clearance Time (s)	6.2	6.2		6.2	6.2		6.7	6.7		6.7	6.7	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	66	1762		72	1672		481	613		469	534	
v/s Ratio Prot	00	0.40		12	c0.42		401	0.02		409	0.02	
/s Ratio Perm	0.15	0.40		0.18	C0.42		0.01	0.02		c0.24	0.02	
	0.15	0.80		0.16	0.83		0.01	0.06		0.65	0.06	
v/c Ratio												
Uniform Delay, d1	13.9	19.6		14.4	20.2		19.6	19.9		25.4	19.8	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	2.6	2.6		3.1	3.7		0.1	0.2		7.0	0.2	
Delay (s)	16.5	22.2		17.4	23.9		19.6	20.1		32.4	20.0	
Level of Service	В	C		В	C		В	C		С	C	
Approach Delay (s)		22.2			23.8			20.0			30.4 C	
Approach LOS		С			С			С			U	
ntersection Summary												
HCM 2000 Control Delay			23.7	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.80									
ctuated Cycle Length (s)			95.2	S	um of lost	time (s)			16.9			
Intersection Capacity Utiliza	tion		72.0%	IC	U Level o	of Service			С			
Analysis Period (min)			15									

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

	≯	-	\mathbf{r}	1	-	1	1	1	1		
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBR	SBL	SBR	Ø3	Ø7
Lane Configurations	۲	<u></u>	1	٢	≜t ≽	۴.	1	۲	1		
Traffic Volume (vph)	39	1257	248	112	1149	179	128	209	21		
Future Volume (vph)	39	1257	248	112	1149	179	128	209	21		
Lane Group Flow (vph)	42	1366	270	122	1379	195	139	227	23		
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Over	Perm	Perm		
Protected Phases		2		1	6		1			3	7
Permitted Phases	2	-	2	6	v	8		4	4	· ·	•
Detector Phase	2	2	2	1	6	8	1	4	4		
Switch Phase	-	-	-		v	Ŭ		-	-		
Minimum Initial (s)	30.0	30.0	30.0	6.0	30.0	26.0	6.0	26.0	26.0	1.0	1.0
Minimum Split (s)	36.6	36.6	36.6	14.7	36.6	34.7	14.7	34.7	34.7	5.0	5.0
Total Split (s)	52.0	52.0	52.0	18.0	70.0	35.0	18.0	35.0	35.0	5.0	5.0
Total Split (%)	47.3%	47.3%	47.3%	16.4%	63.6%	31.8%	16.4%	31.8%	31.8%	5%	5%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	2.0	2.0
All-Red Time (s)	3.3	3.3	3.3	5.4	3.3	5.4	5.4	5.3 5.4	5.4	2.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.6	0.0 6.6	6.6	8.7	0.0 6.6	8.7	8.7	8.7	8.7		
Lead/Lag	Lag	Lag	Lag	Lead	0.0	Lag	Lead	Lag	Lag	Lead	Lead
	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Lead-Lag Optimize?					Max						
Recall Mode	Max 0.29	Max	Max	None	Max	None	None	Max	Max 0.05	None	None
v/c Ratio		0.89	0.38	0.61	0.68	0.46	0.56	0.52			
Control Delay	26.3	36.1	9.4	29.3	15.9	37.5	16.5	39.1	0.2		
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Total Delay	26.3	36.1	9.4	29.3	15.9	37.5	16.5	39.1	0.2		
Queue Length 50th (m)	5.4	133.0	13.0	10.5	91.3	33.8	0.0	40.1	0.0		
Queue Length 95th (m)	14.9	#179.3	31.6	28.0	114.2	55.2	17.3	63.8	0.0		
Internal Link Dist (m)	07.0	216.6	10.0	400.0	562.9				50.0		
Turn Bay Length (m)	37.0	1500	42.0	160.0		105		10.1	50.0		
Base Capacity (vph)	144	1533	719	214	2032	425	262	434	468		
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0	0	0	0	0		
Reduced v/c Ratio	0.29	0.89	0.38	0.57	0.68	0.46	0.53	0.52	0.05		
Intersection Summary											
Cycle Length: 110											
Actuated Cycle Length: 105											
Natural Cycle: 95											
Control Type: Semi Act-Unco	ord										
# 95th percentile volume ex		pacity, qu	eue mav	be lonae	r.						
Queue shown is maximum			· · · ·	Ŭ							
Splits and Phases: 4: Prov	ost Drive	Ambrose	Road & S	Sheppard	Avenue E	ast					
6 A							1.1	1			
f Ø1 🔶	Ø2						π	0 04	-		
18 s 52 s							5 s	35 s			
₹ø6							. je	9 / Ø8			
70 s							5.0	35 s		_	

231011 ReNew Sheppard Ex R.J. Burnside & Associates

01/18/2024 - Page 7

HCM Signalized Intersection Capacity Analysis 4: Provost Drive/Ambrose Road & Sheppard Avenue East

2023 Existing AM

	۶	-	\mathbf{r}	1	-	*	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ሻ	- † †	1	٦	A		٦		1	٦		i
Traffic Volume (vph)	39	1257	248	112	1149	120	179	0	128	209	0	2
Future Volume (vph)	39	1257	248	112	1149	120	179	0	128	209	0	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)	6.6	6.6	6.6	8.7	6.6		8.7		8.7	8.7		8.
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95		1.00		1.00	1.00		1.0
Frpb, ped/bikes	1.00	1.00	0.93	1.00	0.99		1.00		1.00	1.00		0.9
Flpb, ped/bikes	0.99	1.00	1.00	1.00	1.00		0.99		1.00	0.96		1.0
Frt	1.00	1.00	0.85	1.00	0.99		1.00		0.85	1.00		0.8
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95		1.00	0.95		1.0
Satd. Flow (prot)	1761	3476	1428	1690	3355		1699		1498	1737		144
Flt Permitted	0.18	1.00	1.00	0.07	1.00		0.95		1.00	0.95		1.0
Satd. Flow (perm)	329	3476	1428	129	3355		1699		1498	1737		144
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.9
Adj. Flow (vph)	42	1366	270	122	1249	130	195	0	139	227	0	2
RTOR Reduction (vph)	0	0	91	0	7	0	0	0	128	0	0	1
Lane Group Flow (vph)	42	1366	179	122	1372	0	195	0	11	227	0	
Confl. Peds. (#/hr)	25		31	31		25	11		32	32		1
Heavy Vehicles (%)	3%	5%	6%	8%	7%	3%	6%	0%	9%	1%	0%	109
Turn Type	Perm	NA	Perm	pm+pt	NA		Perm		Over	Perm		Perr
Protected Phases		2		1	6				1			
Permitted Phases	2		2	6			8			4		4
Actuated Green, G (s)	46.3	46.3	46.3	63.4	63.4		26.3		8.4	26.3		26.
Effective Green, g (s)	46.3	46.3	46.3	63.4	63.4		26.3		8.4	26.3		26.
Actuated g/C Ratio	0.44	0.44	0.44	0.60	0.60		0.25		0.08	0.25		0.2
Clearance Time (s)	6.6	6.6	6.6	8.7	6.6		8.7		8.7	8.7		8.
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0		3.0	3.0		3.
Lane Grp Cap (vph)	145	1532	629	202	2025		425		119	435		36
v/s Ratio Prot		c0.39		0.05	c0.41				0.01			
v/s Ratio Perm	0.13		0.13	0.31			0.11			c0.13		0.0
v/c Ratio	0.29	0.89	0.28	0.60	0.68		0.46		0.09	0.52		0.0
Uniform Delay, d1	18.8	27.0	18.8	19.5	13.9		33.3		44.8	33.9		29.
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00		1.00	1.00		1.0
Incremental Delay, d2	5.0	8.3	1.1	5.0	1.8		0.8		0.3	4.4		0.
Delay (s)	23.8	35.3	19.9	24.5	15.8		34.1		45.1	38.4		29.
Level of Service	С	D	В	С	В		С		D	D		(
Approach Delay (s)		32.5			16.5			38.7			37.6	
Approach LOS		С			В			D			D	
Intersection Summary												_
HCM 2000 Control Delay			27.0	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacit	tv ratio		0.82						-			
Actuated Cycle Length (s)	,		105.0	S	um of lost	time (s)			26.0			
Intersection Capacity Utilization	on		93.4%		CU Level o				F			
Analysis Period (min)	-		15									

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

	≯	-+	\mathbf{r}	1	-	1	1	1	1	Ŧ	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Configurations	۲	<u></u>	1	ľ	^	ሻሻ	<u></u>	1	۲	*††	
Traffic Volume (vph)	192	663	461	284	1105	434	548	274	73	1219	
Future Volume (vph)	192	663	461	284	1105	434	548	274	73	1219	
Lane Group Flow (vph)	198	684	475	293	1191	447	565	282	75	1442	
Turn Type	pm+pt	NA	pm+ov	pm+pt	NA	Prot	NA	pm+ov	Perm	NA	
Protected Phases	5	2	3	1	6	3	8	1		4	
Permitted Phases	2		2	6				8	4		
Detector Phase	5	2	3	1	6	3	8	1	4	4	
Switch Phase											
Minimum Initial (s)	6.0	43.0	6.0	6.0	43.0	6.0	43.0	6.0	43.0	43.0	
Minimum Split (s)	14.5	50.0	13.7	14.1	50.0	13.7	50.1	14.1	50.1	50.1	
Total Split (s)	17.0	52.0	20.0	17.0	52.0	20.0	71.0	17.0	51.0	51.0	
Total Split (%)	12.1%	37.1%	14.3%	12.1%	37.1%	14.3%	50.7%	12.1%	36.4%	36.4%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	5.2	3.7	4.4	4.8	3.7	4.4	3.8	4.8	3.8	3.8	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	0.0	0.0	
Total Lost Time (s)	7.5	6.0	6.7	7.1	6.0	6.7	6.1	7.1	7.1	7.1	
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lead		Lead	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	Max	None	Max	Max	
v/c Ratio	1.12	0.42	0.71	0.98	0.74	1.35	0.35	0.36	0.30	0.90	
Control Delay	132.9	37.7	29.4	82.2	44.9	220.7	24.5	15.1	40.1	53.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	132.9	37.7	29.4	82.2	44.9	220.7	24.5	15.1	40.1	53.5	
Queue Length 50th (m)	~44.9	53.7	76.1	53.4	105.9	~81.5	50.5	32.6	15.4	135.7	
Queue Length 95th (m)	#95.1	65.7	111.4	#108.7	123.1	#117.3	66.0	51.1	30.1	158.9	
Internal Link Dist (m)		562.9			569.3		219.7			317.1	
Turn Bay Length (m)	166.0		130.0	187.0		152.0			134.0		
Base Capacity (vph)	177	1687	669	298	1655	332	1595	774	253	1602	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.12	0.41	0.71	0.98	0.72	1.35	0.35	0.36	0.30	0.90	
Intersection Summary											
Cycle Length: 140											
Actuated Cycle Length: 138	.8										
Natural Cycle: 140											
Control Type: Semi Act-Uno	coord										
 Volume exceeds capaci 			cally infin	ite.							
Queue shown is maximu											
# 95th percentile volume			leue may	be longer	r.						
Queue shown is maximu	im after two	o cycles.									
Calife and Diseases 5		Ohan									
Splits and Phases: 5: Les	slie Street 8	sneppa	ra Avenue	e East	Т.		L F				
1 - 102					1	3 3	- + *	Ø4			

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates Synchro 11 Report 01/18/2024 - Page 9 HCM Signalized Intersection Capacity Analysis 5: Leslie Street & Sheppard Avenue East 2023 Existing AM

	٦	-	\mathbf{r}	1	+	×.	1	Ť	1	1	Ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	^	1	5	44Þ		ኘኘ	^	1	5	^	
Traffic Volume (vph)	192	663	461	284	1105	50	434	548	274	73	1219	179
Future Volume (vph)	192	663	461	284	1105	50	434	548	274	73	1219	179
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.5	6.0	6.7	7.1	6.0		6.7	6.1	7.1	7.1	7.1	
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91		0.97	0.95	1.00	1.00	0.91	
Frpb, ped/bikes	1.00	1.00	0.92	1.00	1.00		1.00	1.00	0.91	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	0.99	1.00		1.00	1.00	1.00	0.96	1.00	
Frt	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85	1.00	0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1737	5092	1481	1758	4987		3471	3411	1428	1730	5022	
Flt Permitted	0.10	1.00	1.00	0.30	1.00		0.95	1.00	1.00	0.44	1.00	
Satd. Flow (perm)	190	5092	1481	559	4987		3471	3411	1428	801	5022	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	198	684	475	293	1139	52	447	565	282	75	1257	185
RTOR Reduction (vph)	0	004	57	233	3	0	0	0	14	0	12.57	0
Lane Group Flow (vph)	198	684	418	293	1188	0	447	565	268	75	1428	0
Confl. Peds. (#/hr)	57	004	90	90	1100	57	11	505	97	97	1420	11
Heavy Vehicles (%)	5%	3%	2%	3%	4%	8%	2%	7%	4%	1%	2%	3%
Turn Type		NA			NA	070	Prot	NA		Perm	NA	570
Protected Phases	pm+pt 5	2	pm+ov 3	pm+pt 1	NA 6		3	NA 8	pm+ov 1	Penn	NA 4	
Permitted Phases	2	2	2	6	0		3	0	8	4	4	
Actuated Green, G (s)	52.3	43.8	56.1	52.7	43.8		12.3	63.9	72.8	43.9	43.9	
Effective Green, g (s)	54.3	44.8	58.1	54.7	43.0		13.3	64.9	74.8	43.9	43.9	
Actuated g/C Ratio	0.39	0.32	0.42	0.39	0.32		0.10	04.9	0.54	0.32	43.9	
Clearance Time (s)	8.5	7.0	7.7	8.1	7.0		7.7	7.1	8.1	7.1	7.1	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
	180	1643	619	305	1609		332	1594	769	253	1588	
Lane Grp Cap (vph)	c0.08	0.13		305 0.07	0.24		332 c0.13	0.17	0.02	253	c0.28	
v/s Ratio Prot		0.13	0.06		0.24		CU.13	0.17		0.00	CU.28	_
v/s Ratio Perm v/c Ratio	c0.35	0.42	0.22	0.31	0.74		1 25	0.25	0.16 0.35	0.09	0.90	
	1.10		32.7	0.96			1.35	0.35		0.30		
Uniform Delay, d1	33.1 1.00	36.8 1.00	32.7 1.00	37.2 1.00	41.8 1.00		62.8 1.00	23.6 1.00	18.2 1.00	35.8 1.00	45.3 1.00	
Progression Factor	96.4	0.2	2.9	40.8	1.00		174.7	0.6	0.3	3.0	8.5	
Incremental Delay, d2	96.4 129.5	36.9	35.6	40.0 78.1	43.6		237.4	24.2	18.4	38.8	6.5 53.9	
Delay (s) Level of Service	129.5 F	36.9 D	35.6 D	78.1 E	43.6 D		237.4 F	24.2 C	18.4 B	38.8 D	53.9 D	
Approach Delay (s)	F	50.0	0	E	50.4		г	96.6	В	U	53.1	
		50.0 D			50.4 D			90.0 F			55.1 D	
Approach LOS		U			U			F			U	
Intersection Summary				_						_		
HCM 2000 Control Delay			61.6	Н	CM 2000	Level of :	Service		E			
HCM 2000 Volume to Cap	acity ratio		1.05									_
Actuated Cycle Length (s)			138.8		um of lost				27.3			
Intersection Capacity Utiliz	ation		145.2%	IC	U Level o	of Service)		Н			_
Analysis Period (min)			15									
 Critical Lane Group 												

c Critical Lane Group

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

	۶	+	~	4	t	•	1	t	*	Ļ	1	
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBT	SBR	Ø3
ane Configurations		ب ا	1		Ą	1	۲	^	1	^	1	~~
Fraffic Volume (vph)	45	0	582	80	0	45	314	1130	325	1871	142	
Future Volume (vph)	45	0	582	80	0	45	314	1130	325	1871	142	
ane Group Flow (vph)	0	47	606	0	83	47	327	1177	339	1949	148	
Turn Type	Perm	NA	pm+ov	Perm	NA	Perm	pm+pt	NA	Perm	NA	Perm	
Protected Phases		4	5		8		5	2		6		3
Permitted Phases	4		4	8		8	2		2		6	
Detector Phase	4	4	5	8	8	8	5	2	2	6	6	
Switch Phase					-	-						
Vinimum Initial (s)	7.0	7.0	6.0	7.0	7.0	7.0	6.0	25.0	25.0	25.0	25.0	1.0
Vinimum Split (s)	45.8	45.8	13.9	45.8	45.8	45.8	13.9	30.9	30.9	30.9	30.9	5.0
Total Split (s)	46.0	46.0	29.0	46.0	46.0	46.0	29.0	89.0	89.0	60.0	60.0	5.0
Total Split (%)	32.9%	32.9%	20.7%	32.9%	32.9%	32.9%	20.7%	63.6%	63.6%	42.9%	42.9%	4%
Yellow Time (s)	3.0	3.0	3.4	3.0	3.0	3.0	3.4	3.4	3.4	3.4	3.4	2.0
All-Red Time (s)	4.8	4.8	4.5	4.8	4.8	4.8	4.5	2.5	2.5	2.5	2.5	0.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		7.8	7.9		7.8	7.8	7.9	5.9	5.9	5.9	5.9	
Lead/Lag	Lag	Lag	Lead	Lag	Lag	Lag	Lead			Lag	Lag	Lead
_ead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes			Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	None	Max	Max	Max	Max	None
v/c Ratio		0.36	1.16		0.56	0.18	0.79	0.31	0.27	0.76	0.19	
Control Delay		52.6	122.3		60.8	1.4	43.9	4.5	1.0	25.1	3.3	
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		52.6	122.3		60.8	1.4	43.9	4.5	1.0	25.1	3.3	
Queue Length 50th (m)		9.4	~145.1		17.0	0.0	50.4	23.5	0.0	118.3	0.0	
Queue Length 95th (m)		20.8	#209.4		32.4	0.0	#100.3	35.5	6.8	150.8	10.4	
Internal Link Dist (m)		126.3			53.3			213.2		219.7		
Turn Bay Length (m)							155.0		182.0		180.0	
Base Capacity (vph)		407	522		465	628	413	3848	1279	2554	793	
Starvation Cap Reductn		0	0		0	0	0	0	0	0	0	
Spillback Cap Reductn		0	0		0	0	0	0	0	0	0	
Storage Cap Reductn		0	0		0	0	0	0	0	0	0	
Reduced v/c Ratio		0.12	1.16		0.18	0.07	0.79	0.31	0.27	0.76	0.19	
ntersection Summary												
Cycle Length: 140												
Actuated Cycle Length: 109)											
Natural Cycle: 140												
Control Type: Semi Act-Und	coord											
 Volume exceeds capaci 	ity, queue is	s theoreti	cally infini	te.								
Queue shown is maximu 95th percentile volume			Jeue mav	be longe	r.							
Queue shown is maximu												
Splits and Phases: 6: Les	slie Street 8	Esther S	Shiner Bo	ulevard/N	orth York	General	Hospital					
							1	1				
Ø2			_	_	_		7.	(1 04		_		
89 S							55	46 S				

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates Synchro 11 Report 01/18/2024 - Page 11 Timings <u>6</u>: Leslie Street & Esther Shiner Boulevard/North York General Hospital 2023 Existing AM

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

	≯	-	~	~	+	•	•	t	*	1	Ţ	1
Ma		EDT			MDT		NDI	NDT	NDD	001		0.0
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		୍	1		નું	1	<u> </u>		1	•	^	
Traffic Volume (vph)	45	0	582	80	0	45	314	1130	325	0	1871	14
Future Volume (vph)	45	0	582	80	0	45	314	1130	325	0	1871	14
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)		7.8	7.9		7.8	7.8	7.9	5.9	5.9		5.9	5
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00	0.91	1.00		0.91	1.0
Frpb, ped/bikes		1.00	0.99		1.00	0.99	1.00	1.00	0.97		1.00	0.9
Flpb, ped/bikes		1.00	1.00		0.99	1.00	1.00	1.00	1.00		1.00	1.0
Frt		1.00	0.85		1.00	0.85	1.00	1.00	0.85		1.00	0.8
Flt Protected		0.95	1.00		0.95	1.00	0.95	1.00	1.00		1.00	1.0
Satd. Flow (prot)		1570	1589		1741	1609	1789	5043	1574		5142	148
Flt Permitted		0.70	1.00		0.73	1.00	0.06	1.00	1.00		1.00	1.0
Satd. Flow (perm)		1162	1589		1331	1609	121	5043	1574		5142	148
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.9
Adj. Flow (vph)	47	0	606	83	0	47	327	1177	339	0	1949	14
RTOR Reduction (vph)	0	0	40	0	0	42	0	0	80	0	0	7
Lane Group Flow (vph)	0	47	566	0	83	5	327	1177	259	0	1949	1
Confl. Peds. (#/hr)	3		10	10		3	56		3	3		
Heavy Vehicles (%)	16%	0%	2%	4%	0%	0%	2%	4%	1%	0%	2%	1
Turn Type	Perm	NA	pm+ov	Perm	NA	Perm	pm+pt	NA	Perm		NA	Per
Protected Phases		4	5		8		5	2			6	
Permitted Phases	4		4	8		8	2		2			
Actuated Green, G (s)		12.1	33.2		12.1	12.1	83.2	83.2	83.2		54.2	54
Effective Green, g (s)		12.1	33.2		12.1	12.1	83.2	83.2	83.2		54.2	54
Actuated g/C Ratio		0.11	0.30		0.11	0.11	0.76	0.76	0.76		0.50	0.5
Clearance Time (s)		7.8	7.9		7.8	7.8	7.9	5.9	5.9		5.9	5
Vehicle Extension (s)		3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3
Lane Grp Cap (vph)		128	483		147	178	415	3849	1201		2556	73
v/s Ratio Prot			c0.23				0.15	0.23			0.38	
v/s Ratio Perm		0.04	0.13		0.06	0.00	c0.45		0.16			0.0
v/c Ratio		0.37	1.17		0.56	0.03	0.79	0.31	0.22		0.76	0.1
Uniform Delay, d1		44.9	37.9		46.0	43.2	31.8	4.0	3.7		22.2	14
Progression Factor		1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.0
Incremental Delay, d2		1.8	97.2		4.9	0.1	9.6	0.2	0.4		2.2	0
Delay (s)		46.7	135.1		50.8	43.3	41.3	4.2	4.1		24.4	14
Level of Service		D	F		D	D	D	А	А		С	
Approach Delay (s)		128.8			48.1			10.8			23.7	
Approach LOS		F			D			В			С	
Intersection Summary												
HCM 2000 Control Delay			33.9	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capacity	ratio		0.98									
			109.0	C.	um of lost	time (a)			23.6			
Actuated Cycle Length (s)			109.0	30	ann on iosi	unie (S)			23.0			
Actuated Cycle Length (s) Intersection Capacity Utilization			99.5%		U Level		9		23.0 F			
							•					

c Critical Lane Group

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

Synchro 11 Report 01/18/2024 - Page 13

Timings								2023 Existing AM
7: 241-255 Esther Shine	r Boulevai	d Dri	veway	/Old I	eslie	Street a	& Esthe	er Shiner Boulevard
ر	+	~	t	*	t	6	1	

		-			<u>)</u>			•				
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø1	Ø3	Ø5	Ø7
Lane Configurations	ľ	A	ľ	∱ Ъ	1	4Î	٢	4Î				
Traffic Volume (vph)	60	433	4	207	3	2	221	6				
Future Volume (vph)	60	433	4	207	3	2	221	6				
Lane Group Flow (vph)	63	459	4	433	3	17	233	25				
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA				
Protected Phases		2		6		8		4	1	3	5	7
Permitted Phases	2		6		8		4					
Detector Phase	2	2	6	6	8	8	4	4				
Switch Phase												
Minimum Initial (s)	24.0	24.0	24.0	24.0	7.0	7.0	7.0	7.0	1.0	1.0	1.0	1.0
Minimum Split (s)	30.7	30.7	30.7	30.7	32.8	32.8	32.8	32.8	5.0	5.0	5.0	5.0
Total Split (s)	31.7	31.7	31.7	31.7	27.8	27.8	27.8	27.8	5.0	5.0	5.0	5.0
Total Split (%)	45.6%	45.6%	45.6%	45.6%	40.0%	40.0%	40.0%	40.0%	7%	7%	7%	7%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	2.0	2.0	2.0
All-Red Time (s)	3.7	3.7	3.7	3.7	3.8	3.8	3.8	3.8	0.0	0.0	0.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
Total Lost Time (s)	6.7	6.7	6.7	6.7	6.8	6.8	6.8	6.8				
Lead/Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	Max	Max	Max	Max	None	None	None	None
v/c Ratio	0.18	0.34	0.01	0.32	0.01	0.03	0.42	0.04				
Control Delay	14.9	15.0	12.5	7.5	11.3	6.6	16.2	6.7				
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
Total Delay	14.9	15.0	12.5	7.5	11.3	6.6	16.2	6.7				
Queue Length 50th (m)	4.8	19.5	0.3	8.7	0.2	0.2	18.7	0.4				
Queue Length 95th (m)	12.1	29.6	1.9	17.3	1.5	3.2	35.0	4.1				
Internal Link Dist (m)		258.8		126.3		94.1		280.8				
Turn Bay Length (m)	42.0		62.0		50.0		36.0					
Base Capacity (vph)	368	1407	356	1402	570	640	559	660				
Starvation Cap Reductn	0	0	0	0	0	0	0	0				
Spillback Cap Reductn	0	0	0	0	0	0	0	0				
Storage Cap Reductn	0	0	0	0	0	0	0	0				
Reduced v/c Ratio	0.17	0.33	0.01	0.31	0.01	0.03	0.42	0.04				

Intersection Summary Cycle Length: 69.5 Actuated Cycle Length: 63.5 Natural Cycle: 75 Control Type: Semi Act-Uncoord

Splits and Phases: 7: 241-255 Esther Shiner Boulevard Driveway/Old Leslie Street & Esther Shiner Boulevard

₽∎ø1	A 102	₩ø	Ø3 Ø4
5 s	31.7 s	5s	27.8 s
₩ø₅	₩ Ø6	₩ø	Ø7 1 Ø8
5.5	31.7 s	5.5	27.8 s

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

	٦	-+	\mathbf{i}	1	-	•	•	t	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	٦	≜ †₽		٢	≜ î≽		٦	4		5	Þ	
Traffic Volume (vph)	60	433	3	4	207	204	3	2	14	221	6	18
Future Volume (vph)	60	433	3	4	207	204	3	2	14	221	6	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)	6.7	6.7		6.7	6.7		6.8	6.8		6.8	6.8	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	0.99		1.00	0.98		1.00	0.98	
Flpb, ped/bikes	0.99	1.00		0.97	1.00		0.98	1.00		0.99	1.00	
Frt	1.00	1.00		1.00	0.93		1.00	0.87		1.00	0.89	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1780	3574		1766	3232		1789	1543		1742	1588	
Flt Permitted	0.50	1.00		0.49	1.00		0.74	1.00		0.75	1.00	
Satd. Flow (perm)	937	3574		907	3232		1395	1543		1369	1588	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.9
Adj. Flow (vph)	63	456	3	4	218	215	3	2	15	233	6	1
RTOR Reduction (vph)	0	1	Ő	0	134	0	Ő	9	0	0	11	
Lane Group Flow (vph)	63	458	0	4	299	0	3	8	0	233	14	
Confl. Peds. (#/hr)	7		46	46		7	28		10	10		2
Heavy Vehicles (%)	2%	2%	0%	0%	5%	1%	0%	0%	7%	4%	0%	69
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1 0111	2		1 Unit	6		1 Unit	8		1 01111	4	
Permitted Phases	2	-		6	, in the second se		8	Ŭ		4		
Actuated Green, G (s)	24.0	24.0		24.0	24.0		26.0	26.0		26.0	26.0	
Effective Green, g (s)	24.0	24.0		24.0	24.0		26.0	26.0		26.0	26.0	
Actuated g/C Ratio	0.38	0.38		0.38	0.38		0.41	0.41		0.41	0.41	
Clearance Time (s)	6.7	6.7		6.7	6.7		6.8	6.8		6.8	6.8	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	354	1350		342	1221		571	631		560	650	
v/s Ratio Prot		c0.13		0.2	0.09		0	0.01		000	0.01	
v/s Ratio Perm	0.07	00.10		0.00	0.00		0.00	0.01		c0.17	0.01	
v/c Ratio	0.18	0.34		0.01	0.25		0.01	0.01		0.42	0.02	
Uniform Delay, d1	13.2	14.1		12.3	13.5		11.1	11.1		13.3	11.2	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.2	0.2		0.0	0.1		0.0	0.0		2.3	0.1	
Delay (s)	13.4	14.2		12.4	13.6		11.1	11.2		15.6	11.2	
Level of Service	В	В		В	В		В	В		В	В	
Approach Delay (s)		14.1			13.6			11.2			15.2	
Approach LOS		В			В			В			В	
Intersection Summary												
HCM 2000 Control Delay			14.1	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.41									
Actuated Cycle Length (s)			63.5	S	um of lost	time (s)			17.5			
Intersection Capacity Utiliza	ation		78.5%	IC	U Level o	of Service			D			
Analysis Period (min)			15									
Critical Lane Group												

c Critical Lane Group

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

Synchro 11 Report 01/18/2024 - Page 15

Timings 8: Blue Ridge Road & Sheppard Avenue East ٠ ~

2023 Existing AM

N 1

	≯	+	*	4	Ļ	•	1	*	4
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBR	SBL	SBR
Lane Configurations	ň	††	1	۲	≜ ⊅	۲.	1	۲.	1
Traffic Volume (vph)	9	1524	217	1	1303	79	6	54	20
Future Volume (vph)	9	1524	217	1	1303	79	6	54	20
Lane Group Flow (vph)	10	1657	236	1	1451	86	7	59	22
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	Perm	Perm
Protected Phases		2			6				
Permitted Phases	2		2	6		4	4	8	8
Detector Phase	2	2	2	6	6	4	4	8	8
Switch Phase									
Minimum Initial (s)	22.0	22.0	22.0	22.0	22.0	7.0	7.0	7.0	7.0
Minimum Split (s)	40.8	40.8	40.8	32.8	32.8	43.2	43.2	43.2	43.2
Total Split (s)	66.0	66.0	66.0	66.0	66.0	44.0	44.0	44.0	44.0
Total Split (%)	60.0%	60.0%	60.0%	60.0%	60.0%	40.0%	40.0%	40.0%	40.0%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5	4.9	4.9	4.9	4.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.8	5.8	5.8	5.8	5.8	8.2	8.2	8.2	8.2
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	Max	Max	Max	Max	Max	None	None	None	None
v/c Ratio	0.05	0.60	0.19	0.01	0.53	0.43	0.03	0.29	0.11
Control Delay	4.7	6.9	2.4	4.0	6.0	41.4	1.0	37.9	12.0
Queue Delay	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	4.7	7.0	2.4	4.0	6.0	41.4	1.0	37.9	12.0
Queue Length 50th (m)	0.4	59.3	4.5	0.0	47.1	13.0	0.0	8.8	0.0
Queue Length 95th (m)	2.0	91.3	12.1	0.5	72.1	26.4	0.6	19.5	5.5
Internal Link Dist (m)		187.5			216.6				
Turn Bay Length (m)	30.0		40.0	30.0					
Base Capacity (vph)	221	2767	1265	164	2755	758	694	758	694
Starvation Cap Reductn	0	255	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.05	0.66	0.19	0.01	0.53	0.11	0.01	0.08	0.03
Intersection Summary									
Cuolo Longth: 110									

Cycle Length: 110 Actuated Cycle Length: 84.5

Natural Cycle: 85 Control Type: Semi Act-Uncoord

Splits and Phases: 8: Blue Ridge Road & Sheppard Avenue East

	™ ∕Ø4
66 s	44 s
₩ Ø6	A 28
66 s	44 s

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

											·	
	≯	-	\mathbf{r}	1	-	•	1	1	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
ane Configurations	۲	- † †	1	ሻ	At≽		٦		1	٦		1
Traffic Volume (vph)	9	1524	217	1	1303	32	79	0	6	54	0	2
Future Volume (vph)	9	1524	217	1	1303	32	79	0	6	54	0	2
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)	5.8	5.8	5.8	5.8	5.8		8.2		8.2	8.2		8.
ane Util. Factor	1.00	0.95	1.00	1.00	0.95		1.00		1.00	1.00		1.0
Frt	1.00	1.00	0.85	1.00	1.00		1.00		0.85	1.00		0.8
Fit Protected	0.95	1.00	1.00	0.95	1.00		0.95		1.00	0.95		1.0
Satd. Flow (prot)	1789	3579	1601	1789	3566		1789		1601	1789		160
Fit Permitted	0.15	1.00	1.00	0.11	1.00		0.95		1.00	0.95		1.0
Satd. Flow (perm)	287	3579	1601	213	3566		1789		1601	1789		160
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.9
Adj. Flow (vph)	10	1657	236	1	1416	35	86	0	7	59	0	2
RTOR Reduction (vph)	0	0	32	0	1	0	0	0	6	0	0	2
ane Group Flow (vph)	10	1657	204	1	1450	0	86	0	1	59	0	
Furn Type	Perm	NA	Perm	Perm	NA		Perm		Perm	Perm		Perr
Protected Phases		2			6							
Permitted Phases	2		2	6			4		4	8		
Actuated Green, G (s)	64.1	64.1	64.1	64.1	64.1		8.1		8.1	8.1		8.
Effective Green, g (s)	64.1	64.1	64.1	64.1	64.1		8.1		8.1	8.1		8.
Actuated g/C Ratio	0.74	0.74	0.74	0.74	0.74		0.09		0.09	0.09		0.0
Clearance Time (s)	5.8	5.8	5.8	5.8	5.8		8.2		8.2	8.2		8.
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0		3.0	3.0		3.
ane Grp Cap (vph)	213	2661	1190	158	2651		168		150	168		15
//s Ratio Prot	-	c0.46			0.41							
//s Ratio Perm	0.03		0.13	0.00			c0.05		0.00	0.03		0.0
//c Ratio	0.05	0.62	0.17	0.01	0.55		0.51		0.00	0.35		0.0
Jniform Delay, d1	2.9	5.3	3.2	2.8	4.8		37.2		35.4	36.6		35.
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00		1.00	1.00		1.0
ncremental Delay, d2	0.4	1.1	0.3	0.1	0.8		2.6		0.0	1.3		0.
Delay (s)	3.4	6.4	3.6	2.9	5.6		39.8		35.4	37.9		35.
evel of Service	A	Α	A	A	A		D		D	D		[
Approach Delay (s)		6.0			5.6			39.5			37.2	
Approach LOS		А			А			D			D	
ntersection Summary												
HCM 2000 Control Delay			7.4	H	CM 2000	Level of \$	Service		А			
HCM 2000 Volume to Capa	city ratio		0.61									
Actuated Cycle Length (s)			86.2	Sum of lost time (s)					14.0			
ntersection Capacity Utiliza	ition		66.3%	ICU Level of Service					С			
Analysis Period (min)			15									

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

Synchro 11 Report 01/18/2024 - Page 17

Timings 9: Rean Drive/Hawksbury Drove & Sheppard Avenue East

2023 Existing AM

	٦	-	\mathbf{r}	4	-	×	1	Ť	×	Ŧ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	۲	- † †	1	۲	^	1	٦	4Î	۲	ĥ	
Traffic Volume (vph)	53	1239	44	51	1438	40	68	33	108	17	
Future Volume (vph)	53	1239	44	51	1438	40	68	33	108	17	
Lane Group Flow (vph)	58	1347	48	55	1563	43	74	228	117	75	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	NA	
Protected Phases		2			6			4		8	
Permitted Phases	2		2	6		6	4		8		
Detector Phase	2	2	2	6	6	6	4	4	8	8	
Switch Phase											
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	27.0	27.0	27.0	27.0	27.0	27.0	40.0	40.0	40.0	40.0	
Total Split (s)	103.0	103.0	103.0	103.0	103.0	103.0	41.0	41.0	41.0	41.0	
Total Split (%)	71.5%	71.5%	71.5%	71.5%	71.5%	71.5%	28.5%	28.5%	28.5%	28.5%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	3.0	3.0	3.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	7.0	7.0	7.0	7.0	
Lead/Lag											
Lead-Lag Optimize?											
Recall Mode	Max	Max	Max	None	None	None	None	None	None	None	
v/c Ratio	0.35	0.52	0.04	0.24	0.60	0.04	0.32	0.66	0.97	0.23	
Control Delay	15.5	9.5	2.0	10.9	10.8	3.3	51.2	42.8	129.0	21.4	
Queue Delay	0.0	1.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	15.5	10.9	2.0	10.9	10.8	3.3	51.2	42.8	129.0	21.4	
Queue Length 50th (m)	5.0	72.8	0.0	4.3	93.5	0.9	17.2	37.6	30.8	6.0	
Queue Length 95th (m)	18.0	115.5	4.2	13.5	147.3	5.1	31.9	64.4	#60.3	19.2	
Internal Link Dist (m)		131.5			520.0			90.0		77.4	
Turn Bay Length (m)	30.0			40.0		40.0	35.0				
Base Capacity (vph)	167	2613	1182	228	2613	1177	341	477	180	462	
Starvation Cap Reductn	0	991	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.35	0.83	0.04	0.24	0.60	0.04	0.22	0.48	0.65	0.16	
Intersection Summary											
Cycle Length: 144											

Actuated Cycle Length: 133.3

Natural Cycle: 80 Control Type: Semi Act-Uncoord

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

Splits and Phases: 9: Rean Drive/Hawksbury Drove & Sheppard Avenue East

	₫ _{Ø4}
103 s	41 s
₩ Ø6	↓ Ø8
103 s	41 s

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

9: Rean Drive/Haw	KSDURY I	Diove		pparu	Avenu								
	٦	-	\mathbf{r}	1	+	•	٠	t	1	1	ŧ	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF	
Lane Configurations	۲	† †	1	۲	^	1	۲	el 🗍		۲	4Î		
Traffic Volume (vph)	53	1239	44	51	1438	40	68	33	177	108	17	5	
Future Volume (vph)	53	1239	44	51	1438	40	68	33	177	108	17	5	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190	
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	7.0	7.0		7.0	7.0		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00		
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.87		1.00	0.89		
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00		
Satd. Flow (prot)	1789	3579	1601	1789	3579	1601	1789	1646		1789	1669		
Flt Permitted	0.12	1.00	1.00	0.17	1.00	1.00	0.71	1.00		0.37	1.00		
Satd. Flow (perm)	230	3579	1601	313	3579	1601	1334	1646		705	1669		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.9	
Adj. Flow (vph)	58	1347	48	55	1563	43	74	36	192	117	18	5	
RTOR Reduction (vph)	0	0	13	0	0	8	0	63	0	0	40	Ű	
Lane Group Flow (vph)	58	1347	35	55	1563	35	74	165	0	117	35		
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA		
Protected Phases	I CIIII	2	I CIIII	I CIIII	6	I CIIII	I CIIII	4		I CIIII	8		
Permitted Phases	2	2	2	6	0	6	4	4		8	0		
Actuated Green, G (s)	97.3	97.3	97.3	97.3	97.3	97.3	22.9	22.9		22.9	22.9		
Effective Green, g (s)	97.3	97.3	97.3	97.3	97.3	97.3	22.9	22.9		22.9	22.9		
Actuated g/C Ratio	0.73	0.73	0.73	0.73	0.73	0.73	0.17	0.17		0.17	0.17		
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	7.0	7.0		7.0	7.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0		
Lane Grp Cap (vph)	168	2614	1169	228	2614	1169	229	282		121	286		
v/s Ratio Prot		0.38		0.40	c0.44			0.10		0.47	0.02		
v/s Ratio Perm	0.25		0.02	0.18		0.02	0.06			c0.17			
v/c Ratio	0.35	0.52	0.03	0.24	0.60	0.03	0.32	0.59		0.97	0.12		
Uniform Delay, d1	6.5	7.8	4.9	5.9	8.6	4.9	48.4	50.8		54.8	46.7		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00		
Incremental Delay, d2	5.5	0.7	0.0	0.6	0.4	0.0	0.8	3.1		70.8	0.2		
Delay (s)	12.0	8.5	5.0	6.4	9.0	5.0	49.2	53.9		125.5	46.9		
Level of Service	В	A	A	А	A	А	D	D		F	D		
Approach Delay (s)		8.5			8.8			52.7			94.8		
Approach LOS		А			A			D			F		
ntersection Summary													
HCM 2000 Control Delay			16.9	H	CM 2000	Level of \$	Service		В				
HCM 2000 Volume to Capacity ratio			0.67										
Actuated Cycle Length (s)			133.2	Si	um of lost	time (s)			13.0				
Intersection Capacity Utiliza	tion		79.3%	IC	U Level o	of Service			D				
Analysis Period (min)			15										
c Critical Lane Group													

c Critical Lane Group

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

Synchro 11 Report 01/18/2024 - Page 19

Timings 10: Barberry Place & Sheppard Avenue East

2023 Existing AM

	۶	+	4	Ļ	•	1	1	ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	ľ	ተተኈ	ľ	ተተኈ	ľ	¢Î	ľ	¢Î	
Traffic Volume (vph)	49	1100	11	1424	152	6	11	6	
Future Volume (vph)	49	1100	11	1424	152	6	11	6	
Lane Group Flow (vph)	53	1236	12	1598	165	89	12	29	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	NA	Perm	NA	
Protected Phases	5	2	1	6		4		8	
Permitted Phases	2		6		4		8		
Detector Phase	5	2	1	6	4	4	8	8	
Switch Phase									
Minimum Initial (s)	6.0	21.0	6.0	21.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	10.0	60.0	10.0	60.0	40.0	40.0	41.0	41.0	
Total Split (s)	10.0	60.0	10.0	60.0	40.0	40.0	41.0	41.0	
Total Split (%)	9.0%	54.1%	9.0%	54.1%	36.0%	36.0%	36.9%	36.9%	
Yellow Time (s)	2.0	4.0	2.0	4.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	4.0	4.0	4.0	4.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.0	6.0	4.0	6.0	7.0	7.0	7.0	7.0	
Lead/Lag	Lead	Lag	Lead	Lag					
Lead-Lag Optimize?	Yes	Yes	Yes	Yes					
Recall Mode	None	Max	None	None	Max	Max	None	None	
v/c Ratio	0.29	0.46	0.04	0.66	0.37	0.15	0.03	0.05	
Control Delay	13.9	15.8	9.7	22.7	30.1	7.7	25.4	13.0	
Queue Delay	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	
Total Delay	13.9	15.8	9.7	22.9	30.1	7.7	25.4	13.0	
Queue Length 50th (m)	4.4	50.1	1.0	89.5	24.1	0.9	1.6	0.9	
Queue Length 95th (m)	9.4	74.9	3.4	104.9	47.3	12.3	6.3	7.8	
Internal Link Dist (m)		235.0		131.5		99.4		60.3	
Turn Bay Length (m)	40.0		25.0		50.0		25.0		
Base Capacity (vph)	181	2715	270	2715	463	596	439	571	
Starvation Cap Reductn	0	0	0	366	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.29	0.46	0.04	0.68	0.36	0.15	0.03	0.05	
Intersection Summary									

Intersection Summary Cycle Length: 111 Actuated Cycle Length: 102 Natural Cycle: 115 Control Type: Semi Act-Uncoord

Splits and Phases: 10: Barberry Place & Sheppard Avenue East

✓ Ø1 → Ø2	≪1 Ø4
10 s 60 s	40 s
▲ ø5 ★ ø6	↓ [™] Ø8
10 s 60 s	41 s

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

	•		-							``	-	,
	<u> </u>	-	\rightarrow	-	-		1	Ť	1	×	ŧ	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
ane Configurations	٦	ተተቡ		٦	ተተቡ		٦	4Î		٦	4Î	
Traffic Volume (vph)	49	1100	37	11	1424	46	152	6	75	11	6	2
Future Volume (vph)	49	1100	37	11	1424	46	152	6	75	11	6	20
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)	4.0	6.0		4.0	6.0		7.0	7.0		7.0	7.0	
ane Util. Factor	1.00	0.91		1.00	0.91		1.00	1.00		1.00	1.00	
Frt	1.00	1.00		1.00	1.00		1.00	0.86		1.00	0.89	
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1789	5117		1789	5118		1789	1623		1789	1669	
FIt Permitted	0.08	1.00		0.18	1.00		0.74	1.00		0.70	1.00	
Satd. Flow (perm)	153	5117		344	5118		1391	1623		1317	1669	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.9
Adj. Flow (vph)	53	1196	40	12	1548	50	165	7	82	12	7	2
RTOR Reduction (vph)	0	3	0	0	3	0	0	56	0	0	15	(
ane Group Flow (vph)	53	1233	0	12	1595	0	165	33	0	12	14	(
Furn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2	-		6	, in the second se		4			8	Ű	
Actuated Green, G (s)	58.9	54.1		51.5	50.4		33.0	33.0		33.0	33.0	
Effective Green, q (s)	58.9	54.1		51.5	50.4		33.0	33.0		33.0	33.0	
Actuated g/C Ratio	0.56	0.51		0.49	0.48		0.31	0.31		0.31	0.31	
Clearance Time (s)	4.0	6.0		4.0	6.0		7.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
ane Grp Cap (vph)	160	2631		183	2451		436	509		413	523	
/s Ratio Prot	c0.02	0.24		0.00	c0.31		400	0.02		10	0.01	
/s Ratio Perm	0.17	0.24		0.03	00.01		c0.12	0.02		0.01	0.01	
//c Ratio	0.33	0.47		0.03	0.65		0.38	0.06		0.01	0.03	
Jniform Delay, d1	13.9	16.4		14.1	20.7		28.1	25.3		25.0	25.0	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
ncremental Delay, d2	1.2	0.6		0.2	0.6		2.5	0.2		0.0	0.0	
Delay (s)	15.1	17.0		14.2	21.4		30.6	25.5		25.0	25.0	
_evel of Service	13.1 B	17.0 B		14.2 B	21.4 C		50.0 C	23.3 C		23.0 C	23.0 C	
Approach Delay (s)	D	16.9		D	21.3		U	28.8		U	25.0	
Approach LOS		10.9 B			21.3 C			20.0 C			23.0 C	
ntersection Summary				C								
ICM 2000 Control Delay			20.2	.2 HCM 2000 Level of Service					С			
ICM 2000 Volume to Capa	city ratio		0.53		2.11 2000	2010/010	0011100					
Actuated Cycle Length (s)	iony ratio		105.2	0	um of lost	time (s)			17.0			
ntersection Capacity Utiliza	ation		62.8%		CU Level				17.0 B			
Analysis Period (min)			15	IC.	JO LEVEL				U			

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

Synchro 11 Report 01/18/2024 - Page 21

Timings 11: Wilf

2023 Existing AM

Ifred Ave & Sheppard Avenue East	
----------------------------------	--

	≯	-	1	+	•	t	1	ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	۲	A	ሻ	A		4		\$	
Traffic Volume (vph)	2	1528	11	1371	19	28	198	18	
Future Volume (vph)	2	1528	11	1371	19	28	198	18	
Lane Group Flow (vph)	2	1733	12	1500	0	63	0	271	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		2		6		4		8	
Permitted Phases	2		6		4		8		
Detector Phase	2	2	6	6	4	4	8	8	
Switch Phase									
Minimum Initial (s)	23.0	23.0	23.0	23.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	33.6	33.6	33.6	33.6	35.8	35.8	35.8	35.8	
Total Split (s)	81.0	81.0	81.0	81.0	39.0	39.0	39.0	39.0	
Total Split (%)	67.5%	67.5%	67.5%	67.5%	32.5%	32.5%	32.5%	32.5%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	2.3	2.3	2.3	2.3	2.5	2.5	2.5	2.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0		0.0	
Total Lost Time (s)	5.6	5.6	5.6	5.6		5.8		5.8	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	Max								
v/c Ratio	0.02	0.77	0.16	0.67		0.14		0.70	
Control Delay	9.0	19.2	15.2	16.1		28.8		49.1	
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0	
Total Delay	9.0	19.2	15.2	16.1		28.8		49.1	
Queue Length 50th (m)	0.2	144.5	1.1	110.8		9.4		56.1	
Queue Length 95th (m)	1.2	173.8	4.7	133.7		20.6		86.9	
Internal Link Dist (m)		149.2		363.8		136.1		104.8	
Turn Bay Length (m)	28.0		24.0						
Base Capacity (vph)	125	2237	76	2246		447		387	
Starvation Cap Reductn	0	0	0	0		0		0	
Spillback Cap Reductn	0	0	0	0		0		0	
Storage Cap Reductn	0	0	0	0		0		0	
Reduced v/c Ratio	0.02	0.77	0.16	0.67		0.14		0.70	
Intersection Summary									
Cycle Length: 120									

Cycle Length: 120 Actuated Cycle Length: 120 Natural Cycle: 80 Control Type: Semi Act-Uncoord

Splits and Phases: 11: Wilfred Ave & Sheppard Avenue East

	< ↑ _{Ø4}
81s	39 s
√ Ø6	↓ Ø8
81s	39 s

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

				st								
	≯	→	\mathbf{F}	∢	+	*	٠	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	٦	A1⊅		٦	A⊅			4			\$	
Traffic Volume (vph)	2	1528	66	11	1371	9	19	28	11	198	18	33
Future Volume (vph)	2	1528	66	11	1371	9	19	28	11	198	18	33
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.6	5.6		5.6	5.6			5.8			5.8	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00			1.00	
Frt	1.00	0.99		1.00	1.00			0.97			0.98	
Flt Protected	0.95	1.00		0.95	1.00			0.98			0.96	
Satd. Flow (prot)	1789	3556		1789	3575			1805			1779	
Flt Permitted	0.11	1.00		0.06	1.00			0.87			0.75	
Satd. Flow (perm)	200	3556		120	3575			1593			1386	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	2	1661	72	12	1490	10	21	30	12	215	20	36
RTOR Reduction (vph)	0	3	0	0	0	0	0	7	0	0	4	C
ane Group Flow (vph)	2	1730	0	12	1500	0	0	56	0	0	267	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)	75.4	75.4		75.4	75.4			33.2			33.2	
Effective Green, g (s)	75.4	75.4		75.4	75.4			33.2			33.2	
Actuated g/C Ratio	0.63	0.63		0.63	0.63			0.28			0.28	
Clearance Time (s)	5.6	5.6		5.6 5.6			5.8			5.8		
Vehicle Extension (s)	3.0	3.0		3.0 3.0			3.0			3.0		
Lane Grp Cap (vph)	125	2234		75	2246			440			383	
v/s Ratio Prot		c0.49		0.42								
v/s Ratio Perm	0.01			0.10			0.04			c0.19		
v/c Ratio	0.02	0.77		0.16 0.67				0.13			0.70	
Uniform Delay, d1	8.4	16.1		9.2 14.3 1.00 1.00				32.5			38.9	
Progression Factor	1.00	1.00		1.00 1.00 4.5 1.6				1.00			1.00	
ncremental Delay, d2	0.2	2.7		4.5 1.6 13.7 15.9				0.6			10.0	
Delay (s)	8.6	18.8						33.1			48.9	
Level of Service	A	B		В	B			C			D	
Approach Delay (s)		18.8		15.9 B				33.1			48.9	
Approach LOS		В		В			С			D		
Intersection Summary												
HCM 2000 Control Delay			20.1			Service		С				
HCM 2000 Volume to Capaci	ty ratio		0.75									
Actuated Cycle Length (s)			120.0		um of lost				11.4			
Intersection Capacity Utilizati	on		74.4%	IC	U Level o	of Service)		D			
Analysis Period (min)			15									

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

	-	•	1	1	1	↓		
ane Group	WBL	WBR	NBT	NBR	SBL	SBT	Ø7	
ane Configurations	ሻሻ	1	^	1	۲	<u></u>		
raffic Volume (vph)	189	194	1216	174	245	1306		
uture Volume (vph)	189	194	1216	174	245	1306		
ane Group Flow (vph)	197	202	1267	181	255	1360		
Turn Type	Perm	Perm	NA	Perm	pm+pt	NA		
Protected Phases			2		1	6	7	
Permitted Phases	8	8		2	6			
Detector Phase	8	8	2	2	1	6		
Switch Phase								
/inimum Initial (s)	7.0	7.0	24.0	24.0	6.0	24.0	1.0	
/inimum Split (s)	24.2	24.2	46.0	46.0	10.5	29.7	5.0	
otal Split (s)	25.0	25.0	77.0	77.0	11.0	88.0	5.0	
otal Split (%)	21.2%	21.2%	65.3%	65.3%	9.3%	74.6%	4%	
ellow Time (s)	3.0	3.0	3.3	3.3	3.0	3.3	2.0	
All-Red Time (s)	3.2	3.2	2.4	2.4	1.0	2.4	0.0	
ost Time Adjust (s)	0.0	0.0	0.0	-1.0	0.0	0.0		
otal Lost Time (s)	6.2	6.2	5.7	4.7	4.0	5.7		
.ead/Lag	Lag	Lag	Lag	Lag	Lead		Lead	
ead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	
Recall Mode	None	None	Max	Max	None	Max	None	
/c Ratio	0.51	0.66	0.54	0.20	0.74	0.53		
Control Delay	49.0	21.1	10.2	1.6	18.9	5.7		
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		
otal Delay	49.0	21.1	10.2	1.6	18.9	5.7		
Queue Length 50th (m)	20.0	5.9	61.8	0.0	9.7	44.0		
Queue Length 95th (m)	30.9	28.3	91.6	7.2	#29.0	73.1		
nternal Link Dist (m)	321.3		291.9			215.1		
urn Bay Length (m)	66.0			71.0	40.0			
Base Capacity (vph)	622	391	2363	886	344	2555		
Starvation Cap Reductn	0	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0	0		
Reduced v/c Ratio	0.32	0.52	0.54	0.20	0.74	0.53		
ntersection Summary								
Cycle Length: 118								
Actuated Cycle Length: 106								
latural Cycle: 90								
Control Type: Semi Act-Unc	oord							
95th percentile volume e		nacity qu	ielie mav	be longe	r			
Queue shown is maximu			iouo may	bollongo				
Quodo onominio maxima		0,0000						
Splits and Phases: 1: Bay	view Aven	ue & Bav	view Mew	/s I ane				
'. I A (101171101	uo u buy		lo Luno				
Ø1 Ø2								

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

Synchro 11 Report 01/18/2024 - Page 1

HCM Signalized In 1: Bayview Avenue		•			10		2023 Existing	,
*	4	×	Ť	1	1	ţ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	ሻሻ	1	^	1	ň	^		
Traffic Volume (vph)	189	194	1216	174	245	1306		
Future Volume (vph)	189	194	1216	174	245	1306		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.2	6.2	5.7	4.7	4.0	5.7		
Lane Util, Factor	0.97	1.00	0.95	1.00	1.00	0.95		
Frob. ped/bikes	1.00	0.89	1.00	0.77	1.00	1.00		
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	0.85	1.00	1.00		
Fit Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	3506	1432	3510	1252	1784	3288		
Flt Permitted	0.95	1.00	1.00	1.00	0.17	1.00		
Satd. Flow (perm)	3506	1432	3510	1252	310	3288		
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96		
Adj. Flow (vph)	197	202	1267	181	255	1360		
RTOR Reduction (vph)	0	152	0	57	255	0		
Lane Group Flow (vph)	197	50	1267	124	255	1360		
Confl. Peds. (#/hr)	197	59	1207	95	255	1300		
Heavy Vehicles (%)	1%	1%	4%	95 1%	95 2%	11%		
Turn Type	Perm	Perm	NA	Perm	pm+pt	NA		
Protected Phases	0	•	2	•	1	6		
Permitted Phases	8	8	74.4	2	6	00.4		
Actuated Green, G (s)	11.7	11.7	71.4	71.4	82.4	82.4		
Effective Green, g (s)	11.7	11.7	71.4	72.4	82.4	82.4		
Actuated g/C Ratio	0.11	0.11	0.67	0.68	0.78	0.78		
Clearance Time (s)	6.2	6.2	5.7	5.7	4.0	5.7		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	386	158	2364	855	338	2555		
v/s Ratio Prot			0.36		c0.05	0.41		
v/s Ratio Perm	c0.06	0.03		0.10	c0.54			
v/c Ratio	0.51	0.32	0.54	0.14	0.75	0.53		
Uniform Delay, d1	44.4	43.5	8.8	5.9	7.4	4.5		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	1.1	1.2	0.9	0.4	9.2	0.8		
Delay (s)	45.6	44.6	9.7	6.3	16.6	5.3		
Level of Service	D	D	А	А	В	Α		
Approach Delay (s)	45.1		9.3			7.1		
Approach LOS	D		Α			А		
Intersection Summary								
HCM 2000 Control Delay			12.4	Н	CM 2000	Level of Service	В	
HCM 2000 Volume to Capa	city ratio		0.76					
Actuated Cycle Length (s)			106.0	S	um of lost	time (s)	17.9	
Intersection Capacity Utiliza	ation		74.2%		CU Level o		D	
Analysis Period (min)			15				5	
c Critical Lane Group								

c Critical Lane Group

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

Synchro 11 Report 01/18/2024 - Page 2

	٦	-	\rightarrow	4	-	•	1	Ť	1	1	Ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configurations	<u>۲</u>	<u> </u>	1	۲.	^	1	ሻሻ	^	1	۲	^	
Traffic Volume (vph)	155	1029	605	188	1034	272	430	1115	515	178	1261	
Future Volume (vph)	155	1029	605	188	1034	272	430	1115	515	178	1261	
Lane Group Flow (vph)	158	1050	617	192	1055	278	439	1138	526	182	1375	
Turn Type	pm+pt	NA	pm+ov	pm+pt	NA	Perm	Prot	NA	pm+ov	pm+pt	NA	
Protected Phases	7	4	5	3	8		5	2	3	1	6	
Permitted Phases	4		4	8		8			2	6		
Detector Phase	7	4	5	3	8	8	5	2	3	1	6	
Switch Phase												
Minimum Initial (s)	6.0	40.0	6.0	6.0	40.0	40.0	6.0	39.0	6.0	6.0	39.0	
Minimum Split (s)	14.0	46.1	13.6	13.8	46.1	46.1	13.6	45.9	13.8	12.9	45.9	
Total Split (s)	18.0	50.0	21.0	18.0	50.0	50.0	21.0	63.0	18.0	13.0	55.0	
Total Split (%)	12.5%	34.7%	14.6%	12.5%	34.7%	34.7%	14.6%	43.8%	12.5%	9.0%	38.2%	
Yellow Time (s)	3.1	3.2	3.1	3.2	3.2	3.2	3.1	3.2	3.2	3.2	3.2	
All-Red Time (s)	4.9	2.9	4.5	4.6	2.9	2.9	4.5	3.7	4.6	3.7	3.7	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	7.0	5.1	6.6	6.8	5.1	5.1	6.6	5.9	6.8	5.9	5.9	
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lag	Lead	Lag	Lead	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	Max	None	None	Max	
v/c Ratio	0.78	0.68	0.96	0.94	0.69	0.49	1.25	0.80	0.70	1.19	0.79	
Control Delay	54.4	46.1	59.2	79.3	46.4	14.7	182.6	42.5	26.7	158.1	45.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	54.4	46.1	59.2	79.3	46.4	14.7	182.6	42.5	26.7	158.1	45.5	
Queue Length 50th (m)	28.2	95.0	132.3	35.0	95.8	16.2	~77.5	143.9	84.2	~39.7	124.2	
Queue Length 95th (m)	#58.2	110.8	#179.0	#81.1	111.8	43.2		178.8	127.3	#92.3	147.9	
Internal Link Dist (m)		145.8			235.0			137.9			291.9	
Turn Bay Length (m)	78.0		85.0	160.0		45.0	97.0			80.0		
Base Capacity (vph)	203	1629	643	205	1613	583	352	1428	753	153	1745	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.78	0.64	0.96	0.94	0.65	0.48	1.25	0.80	0.70	1.19	0.79	
Intersection Summary												
Cycle Length: 144 Actuated Cycle Length: 141	7											
Natural Cycle: 130	.1											
Control Type: Semi Act-Unc	oord											
 Volume exceeds capaci 		s theoreti	cally infini	to								
Queue shown is maximu												
 95th percentile volume e 			ielle mav	he lonce	r							
Queue shown is maximu			ieue may	be longer								
Splite and Dhases: 2: Po	wiow Avon	ULD & Cha	nnard Au	onuo Eco	+							
Splits and Phases: 2: Bay	view Aven	ue & She	ppard Av	enue Eas	t I	€ Ø3	1					

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates Synchro 11 Report 01/18/2024 - Page 3 HCM Signalized Intersection Capacity Analysis 2: Bayview Avenue & Sheppard Avenue East 2023 Existing PM

	≯	-	\mathbf{r}	1	+	•	•	t	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	111	1	۲	^	1	ሻሻ	- 11	1	۲	^	
Traffic Volume (vph)	155	1029	605	188	1034	272	430	1115	515	178	1261	86
Future Volume (vph)	155	1029	605	188	1034	272	430	1115	515	178	1261	86
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	5.1	6.6	6.8	5.1	5.1	6.6	5.9	6.8	5.9	5.9	
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91	1.00	0.97	0.95	1.00	1.00	0.91	
Frpb, ped/bikes	1.00	1.00	0.95	1.00	1.00	0.89	1.00	1.00	0.95	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.99	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1770	5142	1503	1753	5092	1413	3471	3544	1500	1737	5025	
Flt Permitted	0.13	1.00	1.00	0.13	1.00	1.00	0.95	1.00	1.00	0.11	1.00	
Satd. Flow (perm)	233	5142	1503	234	5092	1413	3471	3544	1500	194	5025	
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	158	1050	617	192	1055	278	439	1138	526	182	1287	88
RTOR Reduction (vph)	0	0	54	0	0	140	0	0	39	0	5	0
Lane Group Flow (vph)	158	1050	563	192	1055	138	439	1138	487	182	1370	0
Confl. Peds. (#/hr)	93	1000	55	55	1000	93	60	1100	49	49	1010	60
Heavy Vehicles (%)	3%	2%	3%	4%	3%	3%	2%	3%	3%	5%	3%	1%
Turn Type	pm+pt	NA	pm+ov	pm+pt	NA	Perm	Prot	NA	pm+ov	pm+pt	NA	170
Protected Phases	pin+pt 7	4	5	рш+рі 3	NA 8	Feilii	5	2	pi11+0V 3	pm+pt 1	6	
Permitted Phases	4	4	4	8	0	8	5	2	2	6	0	
Actuated Green, G (s)	51.6	41.6	55.0	51.8	41.6	41.6	13.4	56.1	66.3	54.2	48.1	
Effective Green, g (s)	53.6	41.0	57.0	53.8	41.0	41.0	14.4	57.1	68.3	56.2	40.1	
	0.38	42.0	0.40	0.38	42.0	42.0	0.10	0.40	00.3	0.40	0.35	
Actuated g/C Ratio	0.36 8.0	6.1	7.6	0.30 7.8	6.1	6.1	7.6	6.9		6.9	6.9	
Clearance Time (s)									7.8			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	207	1545	604	208	1530	424	352	1428	723	154	1741	
v/s Ratio Prot	0.06	0.20	c0.09	c0.07	0.21	0.40	c0.13	0.32	0.05	0.06	0.27	
v/s Ratio Perm	0.23		0.28	0.28		0.10	4.05		0.27	c0.41		
v/c Ratio	0.76	0.68	0.93	0.92	0.69	0.33	1.25	0.80	0.67	1.18	0.79	
Uniform Delay, d1	32.6	43.6	40.5	33.4	43.7	38.4	63.6	37.2	28.1	36.6	41.6	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	15.3	1.2	21.4	41.3	1.3	0.5	132.8	4.7	2.5	129.7	3.7	
Delay (s)	47.9	44.8	61.9	74.7	45.0	38.9	196.5	41.9	30.6	166.3	45.3	
Level of Service	D	D	E	E	D	D	F	D	С	F	D	
Approach Delay (s)		50.8			47.6			71.3			59.4	
Approach LOS		D			D			E			E	
Intersection Summary												
HCM 2000 Control Delay			58.2	Н	CM 2000	Level of	Service		E			
HCM 2000 Volume to Cap	acity ratio		1.07									
Actuated Cycle Length (s)			141.7		um of los				24.6			
Intersection Capacity Utiliz	ation		108.8%	IC	U Level	of Service)		G			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

Lane Configurations		٦	→	4	+	1	Ť	1	ŧ				
Teffic Volume (vph) 36 1482 29 1357 6 10 219 15 Future Volume (vph) 36 1482 29 1357 6 10 219 15 Lane Group Flow (vph) 36 1482 29 1357 6 10 219 15 Lane Group Flow (vph) 36 1482 29 1357 6 10 219 15 Lane Group Flow (vph) 36 1589 31 1614 6 35 231 73 Tum Type Perm NA Perm NA Perm NA Perm NA Perm NA Perm NA Permited Phases 2 6 6 8 4 4 1 3 5 Permited Phases 2 6 6 8 8 4 4 5 Detector Phase 2 2 6 6 8 8 4 4 5 Switch Phase 2 2 6 6 8 8 4 4 5 Detector Phase 2 2 6 6 8 8 4 4 5 Detector Phase 2 2 7 6 6 8 8 4 4 5 Switch Phase 2 2 7 7 7 0 7 0 7 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	ane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø1	Ø3	Ø5	Ø7
Teffic Volume (vph) 36 1482 29 1357 6 10 219 15 Future Volume (vph) 36 1482 29 1357 6 10 219 15 Lane Group Flow (vph) 36 1482 29 1357 6 10 219 15 Lane Group Flow (vph) 36 1482 29 1357 6 10 219 15 Lane Group Flow (vph) 36 1589 31 1614 6 35 231 73 Tum Type Perm NA Perm NA Perm NA Perm NA Perm NA Perm NA Permited Phases 2 6 6 8 4 4 1 3 5 Permited Phases 2 6 6 8 8 4 4 5 Detector Phase 2 2 6 6 8 8 4 4 5 Switch Phase 2 2 6 6 8 8 4 4 5 Detector Phase 2 2 6 6 8 8 4 4 5 Detector Phase 2 2 7 6 6 8 8 4 4 5 Switch Phase 2 2 7 7 7 0 7 0 7 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	ane Configurations	5	≜1 ₀	5	≜t ₀	5	î,	۲	î,				
Fulure (vph) 36 1482 29 1357 6 10 219 15 Lane Group Flow (vph) 38 1569 31 1614 6 35 231 73 Tum Type Perm NA Perm NA Perm NA Perm NA Protected Phases 2 6 8 4 1 3 5 Permited Phases 2 6 6 8 4 Detector Phase 2 2 6 6 8 4 4 Switch Phase 2 2 6 6 8 8 4 4 Switch Phase 2 2 6 6 7 0.7 7.0 7.0 7.0 1.0 1.0 1.0 1.0 1.0 1.1 Minimum Split (s) 75.0 75.0 75.0 35.0 35.0 35.0 35.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0		36											
Tum Type Perm NA Perm NA Perm NA Perm NA Protected Phases 2 6 8 4 1 3 5 Permitted Phases 2 6 8 4 4 1 3 5 Permitted Phases 2 2 6 8 4 4 5 Permitted Phases 2 2 6 6 8 8 4 4 5 Permitted Phases 2 2 6 6 8 8 4 4 5 Minimum Initial (s) 23.0 23.0 23.0 7.0 7.0 7.0 7.0 1.0		36	1482	29	1357	6	10	219	15				
Tum Type Perm NA Perm NA Perm NA Perm NA Protected Phases 2 6 8 4 1 3 5 Permitted Phases 2 6 8 4 4 1 3 5 Permitted Phases 2 2 6 8 4 4 5 Permitted Phases 2 2 6 6 8 8 4 4 5 Permitted Phases 2 2 6 6 8 8 4 4 5 Minimum Initial (s) 23.0 23.0 23.0 7.0 7.0 7.0 7.0 1.0	ane Group Flow (vph)	38	1569	31	1614	6	35	231	73				
Protected Phases 2 6 8 4 1 3 3 5 Permitted Phases 2 6 8 4 Permitted Phases 2 6 8 4 Permitted Phases 2 2 6 8 8 4 Switch Phase Switch Phase Detector Phase 2 2 6 6 8 8 4 Switch Phase Switch		Perm	NA	Perm	NA	Perm	NA	Perm	NA				
Detector Phase 2 2 6 6 8 8 4 4 Switch Phase Minimum Initial (s) 23.0 23.0 23.0 23.0 7.0 7.0 7.0 1.0	Protected Phases		2		6		8		4	1	3	5	1
Switch Phase Minimum Initial (s) 23.0 23.0 23.0 23.0 7.0 7.0 7.0 1.0	Permitted Phases	2		6		8		4					
Switch Phase Minimum Initial (s) 23.0 23.0 23.0 23.0 7.0 7.0 7.0 1.0	Detector Phase	2	2	6	6	8	8	4	4				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Switch Phase												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Vinimum Initial (s)	23.0	23.0	23.0	23.0	7.0	7.0	7.0	7.0	1.0	1.0	1.0	1.0
Total Split (s) 75.0 75.0 75.0 75.0 75.0 35.0 35.0 35.0 35.0 5.0 5.0 5.0 5.0 5.0 10tal Split (%) 62.5% 62.5% 62.5% 29.2% 29.2% 29.2% 29.2% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4%													5.0
Total Split (%) 62.5% 62.5% 62.5% 29.2% 29.2% 29.2% 29.2% 4% 4% 4% 4% Yellow Time (s) 3.3<		75.0				35.0							5.0
Yellow Time (s) 3.3 3.4 3.4 <td></td> <td>4%</td>													4%
All-Red Time (s) 2.9 2.9 2.9 2.9 3.4 3.4 3.4 3.4 0.0 <td></td> <td>2.0</td>													2.0
Lost Time Adjušt (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													0.0
Total Lost Time (s) 6.2 6.2 6.2 6.2 6.2 6.7 6.7 6.7 Lead/Lag Optimize? Yes Yes <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>										0.0	0.0	0.0	0.0
Lead/Lag Lag Yes	Total Lost Time (s)												
Lead-Lag Optimize? Yes Yes<						••••				Lead	Lead	Lead	Lead
Recall Mode None None None None Max													Yes
vic Ratio 0.57 0.77 0.36 0.82 0.02 0.07 0.61 0.15 Control Delay 48.4 18.3 24.1 20.0 30.2 16.1 41.2 12.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													
Control Delay 48.4 18.3 24.1 20.0 30.2 16.1 41.2 12.7 Queue Delay 0.0 0.0 0.2 0.0 0.0 0.0 0.0 Total Delay 48.4 18.3 24.1 20.2 30.2 16.1 41.2 12.7 Queue Length 50th (m) 4.2 110.4 2.9 118.6 0.9 1.6 39.2 2.3 Queue Length 95th (m) #2.2.1 135.2 11.2 146.4 4.3 9.6 72.4 13.7 Internal Link Dist (m) 520.0 187.5 166.1 235.9 11.8 12.3 Starvation Cap Reductn 0 0 187.5 166.1 41.0 12.7 Base Capacity (vph) 82 2485 104 2397 390 475 380 491 Starvation Cap Reductn 0 0 183.0 0										Nono	None	Home	Horic
Queue Delay 0.0 0.0 0.2 0.0 0.0 0.0 0.0 Total Delay 48.4 18.3 24.1 20.2 30.2 16.1 41.2 12.7 Queue Length 50th (m) 4.2 110.4 2.9 118.6 0.9 1.6 39.2 2.3 Queue Length 95th (m) #22.1 113.52 112.1 146.4 4.3 9.6 72.4 13.7 Internal Link Dist (m) 520.0 187.5 166.1 235.9 23.9 Tum Bay Length (m) 30.0 31.0 15.0 41.0 41.0 Base Capacity (vph) 82 2485 104 2397 390 475 380 491 Starvation Cap Reductn 0													
Total Delay 48.4 18.3 24.1 20.2 30.2 16.1 41.2 12.7 Queue Length 50th (m) 4.2 110.4 2.9 118.6 0.9 1.6 39.2 2.3 Queue Length 50th (m) #2.2 113.2 114.6 4.3 9.6 72.4 13.7 Internal Link Dist (m) 520.0 187.5 116.1 235.9 Tum Bay Length (m) 30.0 31.0 15.0 41.0 Base Capacity (vph) 82 2485 104 2397 390 475 386 491 Starvation Cap Reductn 0 0 183 0													
Queue Length 50th (m) 4.2 110.4 2.9 118.6 0.9 1.6 39.2 2.3 Queue Length 95th (m) #22.1 135.2 11.2 146.4 4.3 9.6 72.4 13.7 Internal Link Dist (m) 520.0 187.5 166.1 235.9 Tum Bay Length (m) 30.0 31.0 15.0 41.0 Base Capacity (vph) 82 2485 104 2397 390 475 380 491 Starvation Cap Reductn 0 0 183 0 0 0 0 0 0 Storage Cap Reductn 0 15 <td></td>													
Queue Length 95th (m) #22.1 135.2 11.2 146.4 4.3 9.6 72.4 13.7 Internal Link Dist (m) 520.0 187.5 166.1 235.9 235.9 Tum Bay Length (m) 30.0 31.0 15.0 41.0 Base Capacity (vph) 82 2485 104 2397 390 475 380 491 Starvation Cap Reductn 0 0 183 0 0 0 0 0 0 Splitback Cap Reductn 0													
Internal Link Dist (m) 520.0 187.5 166.1 235.9 Tum Bay Length (m) 30.0 31.0 15.0 41.0 Base Capacity (vph) 82 2485 104 2397 390 475 380 491 Starvation Cap Reducth 0 0 183.0 0 0 0 0 Spillback Cap Reducth 0 0 0 0 0 0 0 Spillback Cap Reducth 0 0 0 0 0 0 0 Spillback Cap Reducth 0 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 0 Reduced v/c Ratio 0.46 0.63 0.30 0.73 0.02 0.07 0.61 0.15 Intersection Summary Extraction Cycle Length: 120 Actuated Cycle Length: 69.1 Natural Cycle: 90 Control Type: Semi Act-Uncoord # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Spils and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East <td></td>													
Turn Bay Length (m) 30.0 31.0 15.0 41.0 Base Capacity (vph) 82 2485 104 2397 390 475 380 491 Starvation Cap Reductn 0 0 0 183 0 0 0 Splitback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.46 0.63 0.30 0.73 0.02 0.07 0.61 0.15 Intersection Summary Cycle Length: 99.1 Natural Cycle: 90 Natural Cycle: 90 Control Type: Semi Act-Uncoord # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East # # # # # # # # #		<i>πLL</i> .1		11.2		т.5		12.7					
Base Capacity (vph) 82 2485 104 2397 390 475 380 491 Starvation Cap Reductn 0 0 0 183 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 Reduced v/c Ratio 0.46 0.63 0.30 0.73 0.02 0.07 0.61 0.15 Intersection Summary Cycle Length: 120 Actuated Cycle Length: 99.1 Natural Cycle: 90 Control Type: Semi Act-Uncoord # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East # 10 0 0 0 0 0 0 0 0 Sale 25 0 0 0 0 0 0 0 0 0 0 Sale 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		30.0	520.0	31.0	107.5	15.0	100.1	41.0	200.0				
Starvation Cap Reductn 0 0 183 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.46 0.63 0.30 0.73 0.02 0.07 0.61 0.15 Intersection Summary			2485		2307		475		/01				
Spillback Cap Reductn 0 <td></td>													
Storage Cap Reductn 0				-		-		-	-				
Reduced v/c Ratio 0.46 0.63 0.30 0.73 0.02 0.07 0.61 0.15 Intersection Summary Cycle Length: 120 Actuated Cycle Length: 99.1 Natural Cycle: 90 Control Type: Semi Act-Uncoord # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East									-				
Actuated Cycle Length: 99.1 Actuated Cycle Length: 99.1 Natural Cycle: 90 Control Type: Semi Act-Uncoord # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East # 100 Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East # 25 51 25 52 35 53 35 54 4 55 35 55													
Cycle Length: 120 Actuated Cycle Length: 99.1 Natural Cycle: 90 Control Type: Semi Act-Uncoord # 9 Sth percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4:		0.40	0.05	0.50	0.75	0.02	0.07	0.01	0.15				
Actuated Čycle Length: 99.1 Natural Cycle: 90 Control Type: Semi Act-Uncoord # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East	ntersection Summary												
Natural Cycle: 90 Control Type: Semi Act-Uncoord # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East # 10 51 55 55 55 55 55 55 55 55 55	Cycle Length: 120												
Control Type: Semi Act-Uncoord # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Splits and Phase & Sh	Actuated Cycle Length: 99.	1											
 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Image: Application of the state of the stat	Vatural Cycle: 90												
 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East Image: Application of the state of the stat	Control Type: Semi Act-Und	coord											
Splits and Phases: 3: Bessarion Road/Burbank Drive & Sheppard Avenue East			pacity, qu	ieue may	be longer	r.							
#kg β4 5s 75s s 5s s 5s	Queue shown is maximu	im after two	cycles.		Ť								
#kg β4 5s 75s s 5s s 5s													
5s 5s 5s 5s 5s 75s	Splits and Phases: 3: Bes	ssarion Roa	ad/Burbar	nk Drive 8	Sheppar	d Avenue	East						
5s 5s 5s 5s 5s 75s	11 1								11				
5s 75s 5s 35s 4	[−] 02								7 Fg +1	Ø4			
	5 s 75 s							9	is 35 s				
	1 g V Ø6								¥1,~(Ø8			

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

Synchro 11 Report 01/18/2024 - Page 5

HCM Signalized Intersection Capacity Analysis 3: Bessarion Road/Burbank Drive & Sheppard Avenue East

2023 Existing PM

	٦	→	\mathbf{r}	4	+	•	•	Ť	۲	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations	ľ	∱î ≽		ľ	A1≱		ľ	¢Î		ľ	4Î	
Traffic Volume (vph)	36	1482	9	29	1357	177	6	10	23	219	15	5
Future Volume (vph)	36	1482	9	29	1357	177	6	10	23	219	15	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)	6.2	6.2		6.2	6.2		6.7	6.7		6.7	6.7	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	0.99		1.00	0.98		1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		0.99	1.00		0.98	1.00	
Frt	1.00	1.00		1.00	0.98		1.00	0.90		1.00	0.88	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1560	3537		1772	3408		1811	1590		1708	1560	
Flt Permitted	0.07	1.00		0.08	1.00		0.71	1.00		0.73	1.00	
Satd. Flow (perm)	117	3537		149	3408		1353	1590		1320	1560	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.9
Adj. Flow (vph)	38	1560	9	31	1428	186	6	11	24	231	16	5
RTOR Reduction (vph)	0	0	Ű	0	8	0	Ő	17	0	0	41	Ŭ
Lane Group Flow (vph)	38	1569	0	31	1606	0	6	18	0	231	32	
Confl. Peds. (#/hr)	35	1505	86	86	1000	35	8	10	17	17	52	
Heavy Vehicles (%)	17%	3%	0%	3%	4%	5%	0%	0%	9%	5%	0%	9
Turn Type	Perm	NA	070	Perm	NA	570	Perm	NA	570	Perm	NA	
Protected Phases	Pellili	NA 2		Pelli	NA 6		Pelli	NA 8		Penn	NA 4	
Permitted Phases	2	2		6	0		8	0		4	4	
Actuated Green, G (s)	57.4	57.4		57.4	57.4		28.6	28.6		28.6	28.6	
Effective Green, g (s)	57.4	57.4		57.4	57.4		28.6	28.6		28.6	28.6	
Actuated g/C Ratio	0.58	0.58		0.58	0.58		0.29	0.29		0.29	0.29	
Clearance Time (s)	6.2	6.2		6.2	6.2 3.0		6.7	6.7		6.7	6.7	
Vehicle Extension (s)	3.0	3.0		3.0			3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	67	2052		86	1977		391	459		381	451	
v/s Ratio Prot		0.44			c0.47			0.01			0.02	
v/s Ratio Perm	0.32			0.21			0.00			c0.17		
v/c Ratio	0.57	0.76		0.36	0.81		0.02	0.04		0.61	0.07	
Uniform Delay, d1	13.0	15.7		11.0	16.5		25.1	25.3		30.3	25.5	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	10.6	1.7		2.6	2.7		0.1	0.2		7.0	0.3	
Delay (s)	23.5	17.4		13.6	19.1		25.2	25.4		37.3	25.8	
Level of Service	С	В		В	В		С	С		D	С	
Approach Delay (s)		17.5			19.0			25.4			34.5	
Approach LOS		В			В			С			С	
Intersection Summary												
HCM 2000 Control Delay			19.7	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capad	city ratio		0.78									
Actuated Cycle Length (s)			98.9	S	um of lost	time (s)			16.9			
Intersection Capacity Utilizat	tion		77.6%		U Level				D			
Analysis Period (min)			15									

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

	≯	-	\mathbf{r}	1	+	1	1	1	1			
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBR	SBL	SBR	Ø3	Ø7	
Lane Configurations	٦	^	1	۲	≜t ≽	۲	1	۲	1			_
Traffic Volume (vph)	16	1303	198	209	1068	273	201	265	59			
Future Volume (vph)	16	1303	198	209	1068	273	201	265	59			
Lane Group Flow (vph)	17	1357	206	218	1238	284	209	276	61			
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	Over	Perm	Perm			
Protected Phases		2		1	6		1			3	7	
Permitted Phases	2		2	6		8		4	4			
Detector Phase	2	2	2	1	6	8	1	4	4			
Switch Phase					-							
Minimum Initial (s)	30.0	30.0	30.0	6.0	30.0	26.0	6.0	26.0	26.0	1.0	1.0	
Minimum Split (s)	36.6	36.6	36.6	14.7	36.6	34.7	14.7	34.7	34.7	5.0	5.0	
Total Split (s)	53.0	53.0	53.0	26.0	79.0	36.0	26.0	36.0	36.0	5.0	5.0	
Total Split (%)	44.2%	44.2%	44.2%	21.7%	65.8%	30.0%	21.7%	30.0%	30.0%	4%	4%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	2.0	2.0	
All-Red Time (s)	3.3	3.3	3.3	5.4	3.3	5.4	5.4	5.4	5.4	0.0	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	6.6	6.6	6.6	8.7	6.6	8.7	8.7	8.7	8.7			
Lead/Lag	Lag	Lag	Lag	Lead		Lag	Lead	Lag	Lag	Lead	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	Max	Max	Max	None	Max	Max	None	Max	Max	None	None	
v/c Ratio	0.11	0.89	0.31	0.78	0.57	0.70	0.69	0.70	0.13			
Control Delay	23.6	39.8	8.4	45.7	13.4	50.4	30.7	51.0	0.6			
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Total Delay	23.6	39.8	8.4	45.7	13.4	50.4	30.7	51.0	0.6			
Queue Length 50th (m)	2.3	147.3	7.6	32.3	77.4	58.7	16.6	57.1	0.0			
Queue Length 95th (m)	7.7	#201.8	24.0	57.7	95.4	88.4	40.8	86.7	0.0			
Internal Link Dist (m)		216.6			562.9							
Turn Bay Length (m)	37.0		42.0	160.0					50.0			
Base Capacity (vph)	155	1518	668	328	2169	407	346	393	470			
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0			
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0			
Storage Cap Reductn	0	0	0	0	0	0	0	0	0			
Reduced v/c Ratio	0.11	0.89	0.31	0.66	0.57	0.70	0.60	0.70	0.13			
Intersection Summary												
Cycle Length: 120												-
Actuated Cycle Length: 115												
Natural Cycle: 105												
Control Type: Semi Act-Unco	ord											
 95th percentile volume ex 		nacity du	ouo mav	he longe	r							
Queue shown is maximum			ouomay	be longer								
Quodo onomino maximan		<i>b</i> 030100.										
Splits and Phases: 4: Prove	ost Drive	Ambrose	Road & S	Sheppard	Avenue E	ast						
	- A-							4 人				_
€ Ø1	↔ ø	2					1	(Pg) 🔻	Ø4			
26 s	53 s						5 :	s 36 s				
₹ø6									Ø8			
- <u>-</u>									00			_

HCM Signalized Intersection Capacity Analysis 4: Provost Drive/Ambrose Road & Sheppard Avenue East

EBT

11

1303 16

6.6

0.95

1.00

1.00

1.00

1.00

3510

1.00

0.96

0

4%

NA

2

49.7

49.7

0.43

6.6

c0.39

0.90

1.00

8.6

38.8

36.3

D

D

 \mathbf{i}

0.87

1.00

0.85

1.00

1358

1.00

1358

0.96

206

85

121

57

5%

2

49.7

49.7

0.43

6.6

3.0

586

0.09

0.21

20.4

1.00

0.8 12.2

21.2

32.0

0.84

115.0

15

94.7%

С

Perm pm+pt

1.00

1.00

1.00

0.95

1789

0.07

129 3436

0.96

218

218

57

2%

1

6

72.4

72.4

0.63

8.7

3.0

283 2163

0.09

0.39

0.77

32.2

1.00

44.4

D

0

0.99

1.00

0.98

1.00

3436

1.00

0.96

1112

1231

4%

NA

6

72.4

72.4

0.63

6.6

3.0

c0.36

0.57

12.3

1.00

1.1

13.4

B

В

Sum of lost time (s)

ICU Level of Service

HCM 2000 Level of Service

18.0

0.96

125 284

0

0 284

31

2%

٦

EBL

16 1303

1900 1900

6.6

1.00

1.00

0.99

1.00

0.95

1517

0.23

361 3510

0.96

17 1357

0

17 1357

31

19%

Perm

2

49.7

49.7

0.43

6.6

3.0 3.0

156 1516

0.05

0.11

19.5 30.2

1.00

1.4

20.9

С

Movement

Lane Configurations Traffic Volume (vph)

Future Volume (vph)

Ideal Flow (vphpl)

Total Lost time (s)

Lane Util. Factor

Frpb, ped/bikes

Flpb, ped/bikes

Flt Protected

Flt Permitted

Adj. Flow (vph)

Satd. Flow (prot)

Satd. Flow (perm)

Peak-hour factor, PHF

RTOR Reduction (vph)

Lane Group Flow (vph)

Confl. Peds. (#/hr)

Heavy Vehicles (%)

Protected Phases

Permitted Phases

Actuated Green, G (s)

Effective Green, g (s)

Actuated g/C Ratio

Clearance Time (s)

Vehicle Extension (s)

Lane Grp Cap (vph)

v/s Ratio Prot

v/c Ratio

Delay (s)

v/s Ratio Perm

Uniform Delay, d1

Progression Factor

Level of Service

Approach LOS

Approach Delay (s)

Intersection Summary

HCM 2000 Control Delay

Actuated Cycle Length (s)

Analysis Period (min) c Critical Lane Group

Intersection Capacity Utilization

HCM 2000 Volume to Capacity ratio

Incremental Delay, d2

Turn Type

Frt

2023 Existing PM

SBR

59

59

1.00

0.96

1.00

0.85

1.00

1567

1.00

1567

0.96

61

47

22

0%

Perm

27.3

27.3

0.24

8.7

3.0

371

0.01

0.04

33.8

1.00

0.2

34.0

С

0.96

0

0

0 14

0%

1900 8.7

N.

1.00

0.94

1.00

0.95

0.95

1664

0.96

276

0

46

3%

27.3

27.3

0.24

8.7

3.0

395

c0.17

0.70

40.1

1.00

9.9

49.9

D

47.0

D

.

1.00

1.00

0.85

1.00

1570 1664

1.00

1570

0.96

209

114

46

4%

Over Perm

1

14.0

14.0

0.12

8.7

3.0

191

0.06

0.50

47.2

1.00

2.0

49.2

D

С

26.0

F

0.96

0

0

0 95 276

0%

•	1	•			I	1	*	÷
EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
7	٦	At≯		ሻ		1	٦	
198	209	1068	120	273	0	201	265	0
198	209	1068	120	273	0	201	265	0
1900	1900	1900	1900	1900	1900	1900	1900	1900
6.6	8.7	6.6		8.7		8.7	8.7	
1.00	1.00	0.95		1.00		1.00	1.00	

1.00

0.97

1.00

0.95

1720

0.95

1720

0.96

0

22

3%

8

27.3

27.3

0.24

8.7

3.0

408

0.17

0.70

40.1

1.00

9.5

49.5

D

49.4

D

Perm

4 . ٠

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

Synchro 11 Report 01/18/2024 - Page 8

	≯	-	\mathbf{i}	1	-	1	1	1	1	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Configurations	۲	^	1	۲.	^	ሻሻ	^	1	3	4 4 16	
Traffic Volume (vph)	239	1109	459	243	961	421	1362	379	98	1004	
Future Volume (vph)	239	1109	459	243	961	421	1362	379	98	1004	
Lane Group Flow (vph)	241	1120	464	245	1116	425	1376	383	99	1239	
Turn Type	pm+pt	NA	pm+ov	pm+pt	NA	Prot	NA	pm+ov	Perm	NA	
Protected Phases	5	2	3	<u> </u>	6	3	8	<u> </u>		4	
Permitted Phases	2		2	6				8	4		
Detector Phase	5	2	3	1	6	3	8	1	4	4	
Switch Phase		_									
Minimum Initial (s)	6.0	43.0	6.0	6.0	43.0	6.0	43.0	6.0	43.0	43.0	
Minimum Split (s)	14.5	50.0	13.7	14.1	50.0	13.7	50.1	14.1	50.1	50.1	
Total Split (s)	17.0	52.0	30.0	17.0	52.0	30.0	81.0	17.0	51.0	51.0	
Total Split (%)	11.3%	34.7%	20.0%	11.3%	34.7%	20.0%	54.0%	11.3%	34.0%	34.0%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	5.2	3.7	4.4	4.8	3.7	4.4	3.8	4.8	3.8	3.8	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	7.5	6.0	6.7	7.1	6.0	6.7	6.1	7.1	6.1	6.1	
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lead	0.1	Lead	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	Max	None	Max	Max	
v/c Ratio	1.37	0.72	0.66	1.38	0.73	0.80	0.76	0.48	1.29	0.80	
Control Delav	225.2	49.4	27.5	231.3	49.2	73.6	33.1	17.0	236.1	50.6	
Queue Delay	225.2	49.4	27.5	231.3	49.2	0.0	1.9	0.0	230.1	0.0	
Total Delay	225.2	49.4	27.5	231.3	49.2	73.6	35.0	17.0	236.1	50.6	
	~74.7	108.2	73.7	~77.3	49.2	62.4	165.6	49.4	~37.0	120.3	
Queue Length 50th (m)	~74.7 #130.0		106.0		123.9	82.3	198.6	49.4 72.7		120.3	
Queue Length 95th (m)	#130.0	124.9	106.0	#133.3		82.3		12.1	#76.0		
Internal Link Dist (m)	100.0	562.9	400.0	407.0	569.3	450.0	219.7		404.0	317.1	
Turn Bay Length (m)	166.0	4005	130.0	187.0	4570	152.0	4040	700	134.0	4550	
Base Capacity (vph)	176	1605	710	177	1576	554	1818	796	77	1558	
Starvation Cap Reductn	0	0	0	0	0	0	278	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.37	0.70	0.65	1.38	0.71	0.77	0.89	0.48	1.29	0.80	
Intersection Summary											
Cycle Length: 150											
Actuated Cycle Length: 148	8.8										
Natural Cycle: 150											
Control Type: Semi Act-Und	coord										
 Volume exceeds capaci 	itv. aueue i	s theoretic	callv infini	te.							
Queue shown is maximu											
# 95th percentile volume			ieue mav	be longe	r.						
Queue shown is maximu			,								
Quodo chomino maxime											
	slie Street &	Sheppar	rd Avenue	e East							
Splits and Phases: 5: Les											
Splits and Phases: 5: Les					Ø 3			Ø4			

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates Synchro 11 Report 01/18/2024 - Page 9 HCM Signalized Intersection Capacity Analysis 5: Leslie Street & Sheppard Avenue East 2023 Existing PM

	≯	-	\mathbf{r}	4	-	•	•	t	1	1	Ŧ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	^	1	5	^		ሻሻ	^	1	۲	^	
Traffic Volume (vph)	239	1109	459	243	961	144	421	1362	379	98	1004	223
Future Volume (vph)	239	1109	459	243	961	144	421	1362	379	98	1004	223
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.5	6.0	6.7	7.1	6.0		6.7	6.1	7.1	6.1	6.1	
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91		0.97	0.95	1.00	1.00	0.91	
Frpb, ped/bikes	1.00	1.00	0.89	1.00	0.99		1.00	1.00	0.85	1.00	0.98	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	0.98	1.00	
Frt	1.00	1.00	0.85	1.00	0.98		1.00	1.00	0.85	1.00	0.97	
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1823	5193	1455	1787	5065		3541	3614	1393	1790	4966	
Flt Permitted	0.11	1.00	1.00	0.11	1.00		0.95	1.00	1.00	0.13	1.00	
Satd. Flow (perm)	211	5193	1455	204	5065		3541	3614	1393	252	4966	
Peak-hour factor, PHF	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Adj. Flow (vph)	241	1120	464	245	971	145	425	1376	383	99	1014	225
RTOR Reduction (vph)	0	0	51	0	10	0	0	0	12	0	23	0
Lane Group Flow (vph)	241	1120	413	245	1106	0	425	1376	371	99	1216	0
Confl. Peds. (#/hr)	93		148	148		93	70		152	152	1210	70
Heavy Vehicles (%)	0%	1%	0%	2%	0%	1%	0%	1%	0%	0%	1%	2%
Turn Type	pm+pt	NA	pm+ov	pm+pt	NA	170	Prot	NA	pm+ov	Perm	NA	270
Protected Phases	5	2	3	1	6		3	8	1	1 GIIII	4	
Permitted Phases	2	2	2	6	0		5	0	8	4	-	
Actuated Green, G (s)	52.3	43.8	65.0	52.7	43.8		21.2	73.9	82.8	45.0	45.0	
Effective Green, g (s)	54.3	44.8	67.0	54.7	44.8		22.2	74.9	84.8	46.0	46.0	
Actuated g/C Ratio	0.36	0.30	0.45	0.37	0.30		0.15	0.50	0.57	0.31	0.31	
Clearance Time (s)	8.5	7.0	7.7	8.1	7.0		7.7	7.1	8.1	7.1	7.1	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	179	1563	655	180	1524		528	1819	793	77	1535	
v/s Ratio Prot	0.09	0.22	0.09	c0.09	0.22		0.12	c0.38	0.03	11	0.24	
v/s Ratio Perm	0.09	0.22	0.09	c0.09	0.22		0.12	0.50	0.03	c0.39	0.24	
v/c Ratio	1.35	0.72	0.63	1.36	0.73		0.80	0.76	0.24	1.29	0.79	
Uniform Delay, d1	38.6	46.3	31.4	38.1	46.5		61.2	29.6	18.8	51.4	47.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	188.2	1.00	2.0	194.1	1.00		8.7	3.0	0.4	197.2	4.3	
Delay (s)	226.8	47.9	33.4	232.2	48.3		69.9	32.6	19.2	248.6	4.3 51.3	
Level of Service	220.0 F	47.5 D	55.4 C	232.2 F	40.5 D		03.3 E	52.0 C	13.2 B	240.0 F	D	
Approach Delay (s)		67.9	U		81.4		L	37.5	D		65.9	
Approach LOS		07.5 E			61.4 F			57.5 D			65.5 E	
		6						0			2	
Intersection Summary		_	00.0		014 0000	Laural at f	Dan dan	_		_		
HCM 2000 Control Delay			60.3	Н	CIVI 2000	Level of S	Service		E			
HCM 2000 Volume to Capa	acity ratio		1.25	~		time (a)			00.0			_
Actuated Cycle Length (s)			148.8		um of lost				26.3			
Intersection Capacity Utiliza	ation		144.0% 15	IC	U Level o	of Service			Н			_
Analysis Period (min)			15									

c Critical Lane Group

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

	٦	-	\mathbf{r}	∢	+	•	1	Ť	1	ŧ	1	
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBT	SBR	Ø3
ane Configurations		ર્સ	1		र्भ	1	5	^	1	^	1	
Traffic Volume (vph)	172	Ö	651	157	1	74	386	2043	111	1551	129	
uture Volume (vph)	172	0	651	157	1	74	386	2043	111	1551	129	
ane Group Flow (vph)	0	176	664	0	161	76	394	2085	113	1583	132	
Turn Type	Perm	NA	pm+ov	Perm	NA	Perm	pm+pt	NA	Perm	NA	Perm	
Protected Phases		4	5		8		5	2		6		3
Permitted Phases	4		4	8		8	2		2		6	
Detector Phase	4	4	5	8	8	8	5	2	2	6	6	
Switch Phase												
Ainimum Initial (s)	7.0	7.0	6.0	7.0	7.0	7.0	6.0	25.0	25.0	25.0	25.0	1.0
Vinimum Split (s)	45.8	45.8	13.9	45.8	45.8	45.8	13.9	30.9	30.9	30.9	30.9	5.0
Fotal Split (s)	46.0	46.0	35.0	46.0	46.0	46.0	35.0	89.0	89.0	54.0	54.0	5.0
Fotal Split (%)	32.9%	32.9%	25.0%	32.9%	32.9%	32.9%	25.0%	63.6%	63.6%	38.6%	38.6%	4%
Yellow Time (s)	3.0	3.0	3.4	3.0	3.0	3.0	3.4	3.4	3.4	3.4	3.4	2.0
All-Red Time (s)	4.8	4.8	4.5	4.8	4.8	4.8	4.5	2.5	2.5	2.5	2.5	0.0
ost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Fotal Lost Time (s)		7.8	7.9		7.8	7.8	7.9	5.9	5.9	5.9	5.9	
_ead/Lag	Lag	Lag	Lead	Lag	Lag	Lag	Lead			Lag	Lag	Lead
ead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes			Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	None	Max	Max	Max	Max	None
r/c Ratio		0.79 70.4	0.95 52.1		0.82 76.3	0.19 4.5	0.86 53.0	0.58 11.6	0.10 1.8	0.75 35.0	0.21 5.4	
Control Delay		0.0	52.1 0.0		0.0	4.5	0.0	0.0	0.0	0.0	5.4 0.0	
Queue Delay Total Delay		70.4	52.1		76.3	4.5	53.0	11.6	1.8	35.0	5.4	
Queue Length 50th (m)		40.0	52.1 118.7		36.8	4.5	73.5	85.2	0.0	117.3	5.4 0.0	
Queue Length 95th (m)		65.2	#176.8		61.6	7.1	#145.9	132.2	6.9	158.3	13.2	
nternal Link Dist (m)		126.3	#170.0		53.3	1.1	#140.0	213.2	0.9	219.7	10.2	
Furn Bay Length (m)		120.5			55.5		155.0	215.2	182.0	213.1	180.0	
Base Capacity (vph)		356	705		315	573	469	3574	1126	2099	623	
Starvation Cap Reductn		0	0		0	0	405	0	0	2000	020	
Spillback Cap Reductn		0	0		0	Ő	0	0	0	0	0	
Storage Cap Reductn		0	0		Ű	0	Ű	Ű	Ű	Ű	Ő	
Reduced v/c Ratio		0.49	0.94		0.51	0.13	0.84	0.58	0.10	0.75	0.21	
ntersection Summary												
Cycle Length: 140												
Actuated Cycle Length: 121	2											
Natural Cycle: 130	.2											
Control Type: Semi Act-Unc	oord											
 95th percentile volume e 		nacity di	ielie mav	he longer								
Queue shown is maximu			iouo may	be longer								
		0,000.										
Splits and Phases: 6: Les	lie Street 8	Esther S	Shiner Bou	ulevard/N	orth York	General	Hospital					
							14	A				
[™] Ø2								(🔍 Ø4				
89 s							5 S	46 s				
🗙 ø5	1	Ø6					- 1 A	V Ø8				
35 s	54	s					5 s	46 s				

Timings	
6: Leslie Street & Esther Shiner Boulevard/North York General Hospital	

Lane Group	Ø7
Lane Configurations	
Traffic Volume (vph)	
Future Volume (vph)	
Lane Group Flow (vph)	
Turn Type	
Protected Phases	7
Permitted Phases	
Detector Phase	
Switch Phase	
Minimum Initial (s)	1.0
Minimum Split (s)	5.0
Total Split (s)	5.0
Total Split (%)	4%
Yellow Time (s)	2.0
All-Red Time (s)	0.0
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	Lead
Lead-Lag Optimize?	Yes
Recall Mode	None
//c Ratio	
Control Delay	
Queue Delay	
Total Delay	
Queue Length 50th (m)	
Queue Length 95th (m)	
Internal Link Dist (m)	
Turn Bay Length (m)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Intercontion Cummon	
Intersection Summary	

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates Synchro 11 Report 01/18/2024 - Page 12

2023 Existing PM

6: Leslie Street & E	٨	_	~	~	+	•	•	t	*	5	T	1
		-	•	•		-	1			-	•	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		र्भ	1		र्भ	1	<u> </u>	***	1		<u></u>	i
Traffic Volume (vph)	172	0	651	157	1	74	386	2043	111	0	1551	12
Future Volume (vph)	172	0	651	157	1	74	386	2043	111	0	1551	12
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)		7.8	7.9		7.8	7.8	7.9	5.9	5.9		5.9	5.
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00	0.91	1.00		0.91	1.0
Frpb, ped/bikes		1.00	0.98		1.00	0.98	1.00	1.00	1.00		1.00	0.8
Flpb, ped/bikes		0.99	1.00		0.98	1.00	1.00	1.00	1.00		1.00	1.0
Frt		1.00	0.85		1.00	0.85	1.00	1.00	0.85		1.00	0.8
Flt Protected		0.95	1.00		0.95	1.00	0.95	1.00	1.00		1.00	1.0
Satd. Flow (prot)		1760	1587		1774	1600	1825	5193	1585		5193	137
Flt Permitted		0.61	1.00		0.54	1.00	0.07	1.00	1.00		1.00	1.0
Satd. Flow (perm)		1126	1587		999	1600	135	5193	1585		5193	137
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.9
Adj. Flow (vph)	176	0	664	160	1	76	394	2085	113	0	1583	13
RTOR Reduction (vph)	0	0	38	0	0	61	0	0	35	0	0	7
Lane Group Flow (vph)	0	176	626	0	161	15	394	2085	78	0	1583	5
Confl. Peds. (#/hr)	9		29	29		9	89					8
Heavy Vehicles (%)	3%	0%	1%	1%	0%	0%	0%	1%	3%	0%	1%	2
Turn Type	Perm	NA	pm+ov	Perm	NA	Perm	pm+pt	NA	Perm		NA	Per
Protected Phases		4	5		8		5	2			6	
Permitted Phases	4		4	8		8	2		2			
Actuated Green, G (s)		24.0	50.5		24.0	24.0	83.4	83.4	83.4		49.0	49
Effective Green, g (s)		24.0	50.5		24.0	24.0	83.4	83.4	83.4		49.0	49
Actuated g/C Ratio		0.20	0.42		0.20	0.20	0.69	0.69	0.69		0.40	0.4
Clearance Time (s)		7.8	7.9		7.8	7.8	7.9	5.9	5.9		5.9	5
Vehicle Extension (s)		3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3
Lane Grp Cap (vph)		223	661		197	317	462	3576	1091		2101	55
v/s Ratio Prot		220	c0.21		107	011	0.19	0.40	1001		0.30	
v/s Ratio Perm		0.16	0.19		0.16	0.01	c0.40	0.10	0.05		0.00	0.0
v/c Ratio		0.79	0.95		0.82	0.05	0.85	0.58	0.07		0.75	0.1
Uniform Delay, d1		46.1	34.0		46.5	39.3	35.6	9.8	6.2		30.9	22
Progression Factor		1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.0
Incremental Delay, d2		16.7	22.6		22.4	0.1	14.1	0.7	0.1		2.6	0
Delay (s)		62.9	56.6		68.8	39.4	49.8	10.5	6.3		33.4	22
Level of Service		02.5 E	50.0 E		60.0 E	00.4 D	43.0 D	B	0.5 A		00.4 C	22
Approach Delay (s)		58.0	L.		59.4	U	U	16.3	~		32.6	
Approach LOS		50.0 E			55.4 E			10.5 B			52.0 C	
		C			2			0			U	
Intersection Summary												
HCM 2000 Control Delay			29.9	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.94						00.5			
Actuated Cycle Length (s)			121.1		um of lost				23.6			
Intersection Capacity Utiliza	ition		105.6%	IC	U Level	ot Service	•		G			
Analysis Period (min) c Critical Lane Group			15									

c Critical Lane Group

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

Synchro 11 Report 01/18/2024 - Page 13

Timings						2023 Existing PM
7: 241-255 Esther	Shiner Boule	evard Drivewa	ay/Old L	eslie Str	reet &	Esther Shiner Boulevard
	*			*	L.	1

	•	-	-	-	1	T.	-	÷				
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø1	Ø3	Ø5	Ø7
Lane Configurations	۲	A	۲	- † 1>	۲	¢Î	٦	4Î				
Traffic Volume (vph)	34	486	1	441	2	1	333	3				
Future Volume (vph)	34	486	1	441	2	1	333	3				
Lane Group Flow (vph)	36	516	1	541	2	5	351	62				
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA				
Protected Phases		2		6		8		4	1	3	5	7
Permitted Phases	2		6		8		4					
Detector Phase	2	2	6	6	8	8	4	4				
Switch Phase												
Minimum Initial (s)	24.0	24.0	24.0	24.0	7.0	7.0	7.0	7.0	1.0	1.0	1.0	1.0
Minimum Split (s)	30.7	30.7	30.7	30.7	32.8	32.8	32.8	32.8	5.0	5.0	5.0	5.0
Total Split (s)	31.7	31.7	31.7	31.7	27.8	27.8	27.8	27.8	5.0	5.0	5.0	5.0
Total Split (%)	45.6%	45.6%	45.6%	45.6%	40.0%	40.0%	40.0%	40.0%	7%	7%	7%	7%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	2.0	2.0	2.0
All-Red Time (s)	3.7	3.7	3.7	3.7	3.8	3.8	3.8	3.8	0.0	0.0	0.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
Total Lost Time (s)	6.7	6.7	6.7	6.7	6.8	6.8	6.8	6.8				
Lead/Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	Max	Max	Max	Max	None	None	None	None
v/c Ratio	0.12	0.38	0.00	0.41	0.00	0.01	0.61	0.09				
Control Delay	14.1	15.3	12.0	14.8	11.0	8.2	20.5	4.4				
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
Total Delay	14.1	15.3	12.0	14.8	11.0	8.2	20.5	4.4				
Queue Length 50th (m)	2.7	22.3	0.1	22.3	0.2	0.1	31.2	0.2				
Queue Length 95th (m)	8.0	33.2	0.9	33.6	1.2	1.8	56.0	6.0				
Internal Link Dist (m)		258.8		126.3		94.1		280.8				
Turn Bay Length (m)	42.0		62.0		50.0		36.0					
Base Capacity (vph)	326	1420	322	1388	555	678	571	667				
Starvation Cap Reductn	0	0	0	0	0	0	0	0				
Spillback Cap Reductn	0	0	0	0	0	0	0	0				
Storage Cap Reductn	0	0	0	0	0	0	0	0				
Reduced v/c Ratio	0.11	0.36	0.00	0.39	0.00	0.01	0.61	0.09				

Intersection Summary Cycle Length: 69.5 Actuated Cycle Length: 63.5 Natural Cycle: 75 Control Type: Semi Act-Uncoord

Splits and Phases: 7: 241-255 Esther Shiner Boulevard Driveway/Old Leslie Street & Esther Shiner Boulevard

₩ø1		<u>.</u>	Ø3	Ø4	
5 s	31.7 s	5 s		27.8 s	
₩ø₅	₩ Ø6	1	Ø7	I Ø8	
5 5	31.7 s	5 s		27.8 s	

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

	≯	-+	\mathbf{i}	1	←	•	•	t	-	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	≜ î≽		۲	≜t }		ň	4		5	f.	
Traffic Volume (vph)	34	486	4	1	441	73	2	1	4	333	3	56
Future Volume (vph)	34	486	4	1	441	73	2	1	4	333	3	56
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.7	6.7		6.7	6.7		6.8	6.8		6.8	6.8	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	0.99		1.00	0.98		1.00	0.97	
Flpb, ped/bikes	0.99	1.00		0.94	1.00		0.99	1.00		0.98	1.00	
Frt	1.00	1.00		1.00	0.98		1.00	0.88		1.00	0.86	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1804	3606		1721	3480		1801	1654		1762	1547	
Flt Permitted	0.44	1.00		0.46	1.00		0.72	1.00		0.75	1.00	
Satd. Flow (perm)	829	3606		825	3480		1358	1654		1399	1547	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	36	512	4	1	464	77	2	1	4	351	3	59
RTOR Reduction (vph)	0	1	4	0	19	0	0	2	0	0	35	(
Lane Group Flow (vph)	36	515	0	1	522	0	2	3	0	351	27	(
Confl. Peds. (#/hr)	19	515	89	89	522	19	20	5	21	21	21	20
Heavy Vehicles (%)	0%	1%	0%	0%	1%	8%	0%	0%	0%	2%	0%	49
Turn Type	Perm	NA	070	Perm	NA	070	Perm	NA	070	Perm	NA	/
Protected Phases	Feilii	2		Feilii	6		Feilii	8		Feilii	4	
Permitted Phases	2	2		6	0		8	0		4	4	
Actuated Green, G (s)	24.0	24.0		24.0	24.0		26.0	26.0		26.0	26.0	
Effective Green, g (s)	24.0	24.0		24.0	24.0		26.0	26.0		26.0	26.0	
Actuated g/C Ratio	0.38	0.38		0.38	0.38		0.41	0.41		0.41	0.41	
Clearance Time (s)	6.7	6.7		6.7	6.7		6.8	6.8		6.8	6.8	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	313	1362		311	1315		556	677		572	633	
v/s Ratio Prot	313			311	c0.15		556	0.00		572	0.02	
v/s Ratio Perm	0.04	0.14		0.00	CU.15		0.00	0.00		c0.25	0.02	
v/c Ratio	0.04	0.38		0.00	0.40		0.00	0.00		0.61	0.04	
Uniform Delay, d1	12.8	14.3		12.3	14.5		11.1	11.1		14.8	11.3	
Progression Factor	1.00 0.2	1.00 0.2		1.00 0.0	1.00 0.2		1.00 0.0	1.00 0.0		1.00 4.9	1.00 0.1	
Incremental Delay, d2	13.0	14.5		12.3	14.7			11.1		4.9	11.4	
Delay (s) Level of Service	13.0 B	14.5 B		12.3 B	14.7 B		11.1 B	II.I B		19.7 B	11.4 B	
	D	р 14.4		D	ы 14.6		D	D 11.1		D	ם 18.4	
Approach Delay (s) Approach LOS		14.4 B			14.0 B			B			10.4 B	
		D			D			D			D	
Intersection Summary			15.0		CM 2000		Convine		В			
HCM 2000 Control Delay	aite nati-		15.6	H	GIVI 2000	Level of S	Service		В			
HCM 2000 Volume to Capad	uny ratio		0.55	•		1			47.5			
Actuated Cycle Length (s)	e		63.5		um of lost				17.5 C			
Intersection Capacity Utiliza Analysis Period (min)	แบท		64.6% 15	IC	U Level C	of Service			U			

c Critical Lane Group

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

Synchro 11 Report 01/18/2024 - Page 15

Timings 8: Blue Ridge Road & Sheppard Avenue East

2023 Existing PM

	≯	-	\mathbf{i}	1	Ļ	•	1	1	4
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBR	SBL	SBR
Lane Configurations	۲	† †	1	3	đħ	۲.	1	۲.	1
Traffic Volume (vph)	10	1489	260	6	1504	144	8	55	17
Future Volume (vph)	10	1489	260	6	1504	144	8	55	17
Lane Group Flow (vph)	11	1618	283	7	1671	157	9	60	18
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	Perm	Perm
Protected Phases		2			6				
Permitted Phases	2		2	6		4	4	8	8
Detector Phase	2	2	2	6	6	4	4	8	8
Switch Phase									
Minimum Initial (s)	22.0	22.0	22.0	22.0	22.0	7.0	7.0	7.0	7.0
Minimum Split (s)	32.8	32.8	32.8	32.8	32.8	43.2	43.2	43.2	43.2
Total Split (s)	76.0	76.0	76.0	76.0	76.0	44.0	44.0	44.0	44.0
Total Split (%)	63.3%	63.3%	63.3%	63.3%	63.3%	36.7%	36.7%	36.7%	36.7%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5	4.9	4.9	4.9	4.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.8	5.8	5.8	5.8	5.8	8.2	8.2	8.2	8.2
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	Max	Max	Max	Max	Max	None	None	None	None
v/c Ratio	0.08	0.63	0.24	0.05	0.65	0.63	0.04	0.24	0.07
Control Delay	6.8	9.0	3.0	6.0	9.3	51.8	4.4	39.4	11.1
Queue Delay	0.0	0.4	0.0	0.0	0.2	0.0	0.0	0.0	0.0
Total Delay	6.8	9.3	3.0	6.0	9.5	51.8	4.4	39.4	11.1
Queue Length 50th (m)	0.6	71.6	6.7	0.3	76.1	28.4	0.0	10.3	0.0
Queue Length 95th (m)	2.8	110.5	17.1	2.0	117.6	48.2	1.5	21.6	4.7
Internal Link Dist (m)		187.5			216.6				
Turn Bay Length (m)	30.0		40.0	30.0					
Base Capacity (vph)	141	2582	1197	153	2575	636	585	636	585
Starvation Cap Reductn	0	409	0	0	246	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.08	0.74	0.24	0.05	0.72	0.25	0.02	0.09	0.03
Intersection Summary									

Cycle Length: 120 Actuated Cycle Length: 100.7 Natural Cycle: 90 Control Type: Semi Act-Uncoord

Splits and Phases: 8: Blue Ridge Road & Sheppard Avenue East

	[≪] \∕Ø4
76 s	44 s
★ ø6	A 98
76 s	44 s

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

	٠			_						``	1	,
	<i>y</i>	-	•	1	•		1	1	~	`₩	÷	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	٦	- † †	1	٦	A1⊅		٦		1	ሻ		i
Traffic Volume (vph)	10	1489	260	6	1504	33	144	0	8	55	0	1
Future Volume (vph)	10	1489	260	6	1504	33	144	0	8	55	0	1
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)	5.8	5.8	5.8	5.8	5.8		8.2		8.2	8.2		8
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95		1.00		1.00	1.00		1.0
Frt	1.00	1.00	0.85	1.00	1.00		1.00		0.85	1.00		0.8
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95		1.00	0.95		1.0
Satd. Flow (prot)	1789	3579	1601	1789	3567		1789		1601	1789		160
FIt Permitted	0.10	1.00	1.00	0.11	1.00		0.95		1.00	0.95		1.0
Satd. Flow (perm)	195	3579	1601	213	3567		1789		1601	1789		160
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.9
Adj. Flow (vph)	11	1618	283	7	1635	36	157	0	9	60	0	1
RTOR Reduction (vph)	0	0	42	0	1	0	0	0	8	0	0	1
ane Group Flow (vph)	11	1618	241	7	1670	0	157	0	1	60	0	
Turn Type	Perm	NA	Perm	Perm	NA		Perm		Perm	Perm		Per
Protected Phases		2			6							
Permitted Phases	2		2	6			4		4	8		
Actuated Green, G (s)	72.7	72.7	72.7	72.7	72.7		14.0		14.0	14.0		14
Effective Green, q (s)	72.7	72.7	72.7	72.7	72.7		14.0		14.0	14.0		14
Actuated g/C Ratio	0.72	0.72	0.72	0.72	0.72		0.14		0.14	0.14		0.1
Clearance Time (s)	5.8	5.8	5.8	5.8	5.8		8.2		8.2	8.2		8
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0		3.0	3.0		3
Lane Grp Cap (vph)	140	2583	1155	153	2575		248		222	248		22
v/s Ratio Prot	140	0.45	1100	100	c0.47		210			210		~~~
v/s Ratio Perm	0.06	0.10	0.15	0.03	00.11		c0.09		0.00	0.03		0.0
v/c Ratio	0.08	0.63	0.13	0.05	0.65		0.63		0.00	0.24		0.0
Uniform Delay, d1	4.1	7.1	4.6	4.0	7.3		40.9		37.4	38.6		37
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00		1.00	1.00		1.0
Incremental Delay, d2	1.1	1.2	0.4	0.6	1.3		5.2		0.0	0.5		0
Delay (s)	5.2	8.3	5.0	4.6	8.6		46.1		37.4	39.1		37
Level of Service	A	0.0 A	0.0 A	4.0 A	0.0 A		-10.1 D		D	D		01
Approach Delay (s)	А	7.8	А	А	8.6		U	45.6	U	U	38.7	
Approach LOS		A			A			40.0 D			D	
Intersection Summary												
HCM 2000 Control Delay			10.4	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capad	city ratio		0.65		2 2000				5			
Actuated Cycle Length (s)	,		100.7	S	um of lost	time (s)			14.0			
Intersection Capacity Utiliza	tion		71.4%		U Level o				C			
Analysis Period (min)			15	i.c.					5			

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

Synchro 11 Report 01/18/2024 - Page 17

Timings 9: Rean Drive/Hawksbury Drove & Sheppard Avenue East

2023 Existing PM

	٦	-	\mathbf{r}	4	+	×	•	t	1	Ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ľ	- † †	1	ľ	<u></u>	1	ľ	ĥ	ľ	¢Î	
Traffic Volume (vph)	81	1336	79	80	1344	129	38	28	160	52	
Future Volume (vph)	81	1336	79	80	1344	129	38	28	160	52	
Lane Group Flow (vph)	88	1452	86	87	1461	140	41	114	174	117	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	NA	
Protected Phases		2			6			4		8	
Permitted Phases	2		2	6		6	4		8		
Detector Phase	2	2	2	6	6	6	4	4	8	8	
Switch Phase											
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	27.0	27.0	27.0	27.0	27.0	27.0	26.0	26.0	26.0	26.0	
Total Split (s)	102.0	102.0	102.0	102.0	102.0	102.0	42.0	42.0	42.0	42.0	
Total Split (%)	70.8%	70.8%	70.8%	70.8%	70.8%	70.8%	29.2%	29.2%	29.2%	29.2%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	3.0	3.0	3.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	7.0	7.0	7.0	7.0	
Lead/Lag											
Lead-Lag Optimize?											
Recall Mode	Max	Max	Max	Max	Max	Max	None	None	None	None	
v/c Ratio	0.46	0.56	0.07	0.45	0.56	0.12	0.19	0.33	0.79	0.35	
Control Delay	18.6	10.2	1.6	18.1	10.2	3.1	47.4	26.0	76.2	35.4	
Queue Delay	0.0	1.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	18.6	12.0	1.6	18.1	10.2	3.1	47.4	26.0	76.2	35.4	
Queue Length 50th (m)	8.4	81.8	0.0	8.2	82.7	3.6	9.2	12.4	43.9	18.7	
Queue Length 95th (m)	29.3	130.1	5.5	28.5	131.3	12.0	19.9	29.2	69.4	36.0	
Internal Link Dist (m)		131.5			520.0			90.0		77.4	
Turn Bay Length (m)	30.0			40.0		40.0	35.0				
Base Capacity (vph)	193	2600	1186	195	2600	1186	331	486	335	486	
Starvation Cap Reductn	0	934	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.46	0.87	0.07	0.45	0.56	0.12	0.12	0.23	0.52	0.24	
Intersection Summary											

Cycle Length: 144 Actuated Cycle Length: 132.5

Natural Cycle: 75 Control Type: Semi Act-Uncoord

Splits and Phases: 9: Rean Drive/Hawksbury Drove & Sheppard Avenue East

	<i>∞</i> 4
102 s	42 s
₩ Ø6	↓ _{Ø8}
102 s	42 s

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

9: Rean Drive/Haw	ksbury	DIOVE	a one	ppuru	•									
	٦	-	\mathbf{r}	4	+	•	1	1	1	1	ŧ	~		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF		
Lane Configurations	۲	† †	1	۲.	^	1	۲	el 🗍		۲	4Î			
Traffic Volume (vph)	81	1336	79	80	1344	129	38	28	77	160	52	5		
Future Volume (vph)	81	1336	79	80	1344	129	38	28	77	160	52	5		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	7.0	7.0		7.0	7.0			
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00			
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.89		1.00	0.92			
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00			
Satd. Flow (prot)	1789	3579	1601	1789	3579	1601	1789	1675		1789	1739			
Flt Permitted	0.14	1.00	1.00	0.14	1.00	1.00	0.66	1.00		0.67	1.00			
Satd. Flow (perm)	266	3579	1601	269	3579	1601	1251	1675		1266	1739			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.9		
Adj. Flow (vph)	88	1452	86	87	1461	140	41	30	84	174	57	6		
RTOR Reduction (vph)	0	0	23	0	0	23	0	49	0	0	29			
ane Group Flow (vph)	88	1452	63	87	1461	117	41	65	0	174	88			
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	0	Perm	NA			
Protected Phases	Feilii	2	Fellil	Feilii	6	Feilii	Feilli	4		Feilii	8			
Protected Phases Permitted Phases	2	2	2	6	0	6	4	4		8	0			
	2 96.3	06.2	96.3	96.3	96.3	96.3	23.2	23.2		o 23.2	23.2			
Actuated Green, G (s)		96.3												
Effective Green, g (s)	96.3	96.3	96.3	96.3	96.3	96.3	23.2	23.2		23.2	23.2			
Actuated g/C Ratio	0.73	0.73	0.73	0.73	0.73	0.73	0.18	0.18		0.18	0.18			
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	7.0	7.0		7.0	7.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0			
Lane Grp Cap (vph)	193	2601	1163	195	2601	1163	219	293		221	304			
v/s Ratio Prot		0.41			c0.41			0.04			0.05			
v/s Ratio Perm	0.33		0.04	0.32		0.07	0.03			c0.14				
v/c Ratio	0.46	0.56	0.05	0.45	0.56	0.10	0.19	0.22		0.79	0.29			
Uniform Delay, d1	7.4	8.3	5.1	7.3	8.4	5.3	46.6	46.9		52.3	47.5			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00			
Incremental Delay, d2	7.6	0.9	0.1	7.2	0.9	0.2	0.4	0.4		16.7	0.5			
Delay (s)	15.0	9.2	5.2	14.5	9.2	5.5	47.0	47.3		69.0	48.0			
Level of Service	В	А	Α	В	Α	Α	D	D		E	D			
Approach Delay (s)		9.3			9.2			47.2			60.6			
Approach LOS		А			А			D			E			
ntersection Summary														
HCM 2000 Control Delay			14.8	Н	CM 2000	Level of \$	Service		В					
HCM 2000 Volume to Capa	city ratio		0.61											
Actuated Cycle Length (s)			132.5	S	um of lost	time (s)			13.0					
Intersection Capacity Utiliza	tion		73.0%	IC	U Level o	of Service			D					
Analysis Period (min)			15											
c Critical Lane Group														

c Critical Lane Group

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

Synchro 11 Report 01/18/2024 - Page 19

Timings 10: Barberry Place & Sheppard Avenue East

2023 Existing PM

	٦	-	4	+	1	1	1	Ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	4 4 1>	ሻ	4 † Ъ	٦	ĥ	٦	4	
Fraffic Volume (vph)	138	1427	22	1347	81	14	59	10	
uture Volume (vph)	138	1427	22	1347	81	14	59	10	
ane Group Flow (vph)	150	1627	24	1550	88	40	64	111	
urn Type	pm+pt	NA	pm+pt	NA	Perm	NA	Perm	NA	
rotected Phases	5	2	1	6		4		8	
ermitted Phases	2		6		4		8		
etector Phase	5	2	1	6	4	4	8	8	
witch Phase									
/linimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
/linimum Split (s)	9.5	30.0	9.5	30.0	40.0	40.0	40.0	40.0	
Total Split (s)	13.0	57.0	13.0	57.0	40.0	40.0	40.0	40.0	
otal Split (%)	11.8%	51.8%	11.8%	51.8%	36.4%	36.4%	36.4%	36.4%	
ellow Time (s)	2.0	4.0	2.0	4.0	3.0	3.0	3.0	3.0	
II-Red Time (s)	2.0	2.0	2.0	2.0	4.0	4.0	4.0	4.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Lost Time (s)	4.0	6.0	4.0	6.0	7.0	7.0	7.0	7.0	
ead/Lag	Lead	Lag	Lead	Lag					
ead-Lag Optimize?	Yes	Yes	Yes	Yes					
Recall Mode	None	Max	None	Max	None	None	None	None	
/c Ratio	0.49	0.47	0.09	0.52	0.53	0.17	0.36	0.38	
Control Delay	11.1	8.3	4.5	12.1	47.9	19.9	40.7	13.0	
Queue Delay	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	
Total Delay	11.1	8.3	4.5	12.3	47.9	19.9	40.7	13.0	
Queue Length 50th (m)	5.7	33.6	0.8	53.3	14.2	2.3	10.1	1.7	
Queue Length 95th (m)	18.5	74.7	3.2	75.1	28.6	11.0	21.7	15.5	
nternal Link Dist (m)		235.0		131.5		99.4		60.3	
urn Bay Length (m)	40.0		25.0		50.0		25.0		
ase Capacity (vph)	320	3473	334	2986	484	655	517	673	
tarvation Cap Reductn	0	0	0	576	0	0	0	0	
pillback Cap Reductn	0	0	0	0	0	0	0	0	
torage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.47	0.47	0.07	0.64	0.18	0.06	0.12	0.16	

Intersection Summary Cycle Length: 110 Actuated Cycle Length: 88.1 Natural Cycle: 80 Control Type: Semi Act-Uncoord

Splits and Phases: 10: Barberry Place & Sheppard Avenue East

Ø1	A 102	₫ ø4
13 s	57 s	40 s
	₹ø6	↓ Ø8
13 s	57 s	40 s

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

10: Barberry Place										A . \ I				
	≯	→	\mathbf{r}	4	-	•	1	1	1	1	Ŧ	-		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF		
ane Configurations	ň	^		۲	^		۲	eî 🗧		۲	4Î			
Traffic Volume (vph)	138	1427	70	22	1347	79	81	14	23	59	10	92		
uture Volume (vph)	138	1427	70	22	1347	79	81	14	23	59	10	92		
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	4.0	6.0		4.0	6.0		7.0	7.0		7.0	7.0			
ane Util. Factor	1.00	0.91		1.00	0.91		1.00	1.00		1.00	1.00			
rt	1.00	0.99		1.00	0.99		1.00	0.91		1.00	0.86			
It Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00			
Satd. Flow (prot)	1789	5106		1789	5099		1789	1707		1789	1629			
It Permitted	0.11	1.00		0.13	1.00		0.69	1.00		0.73	1.00			
Satd. Flow (perm)	215	5106		250	5099		1291	1707		1377	1629			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92		
dj. Flow (vph)	150	1551	76	24	1464	86	88	15	25	64	11	100		
RTOR Reduction (vph)	0	3	0	0	4	0	0	22	0	0	88	(
ane Group Flow (vph)	150	1624	0	24	1546	0	88	18	0	64	23	C		
urn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA			
Protected Phases	5	2		1	6			4			8			
Permitted Phases	2	-		6	Ŭ		4			8	Ŭ			
Actuated Green, G (s)	66.3	59.9		56.4	54.0		11.3	11.3		11.3	11.3			
Effective Green, q (s)	66.3	59.9		56.4	54.0		11.3	11.3		11.3	11.3			
Actuated g/C Ratio	0.73	0.66		0.62	0.60		0.12	0.12		0.12	0.12			
Clearance Time (s)	4.0	6.0		4.0	6.0		7.0	7.0		7.0	7.0			
/ehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0			
ane Grp Cap (vph)	301	3375		196	3039		161	212		171	203			
/s Ratio Prot	c0.05	0.32		0.00	0.30		101	0.01		17.1	0.01			
/s Ratio Perm	c0.32	0.52		0.00	0.50		c0.07	0.01		0.05	0.01			
/c Ratio	0.50	0.48		0.07	0.51		0.55	0.09		0.05	0.12			
Jniform Delay, d1	6.1	7.6		6.6	10.6		37.2	35.1		36.4	35.2			
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00			
ncremental Delay, d2	1.00	0.5		0.3	0.6		3.8	0.2		1.00	0.3			
Delay (s)	7.4	0.5 8.1		0.5 6.9	11.2		3.0 41.0	35.3		37.8	35.5			
evel of Service	7.4 A	0.1 A		0.9 A	B		41.0 D	35.3 D		37.0 D	35.5 D			
	A	8.1		A	в 11.2		U	39.2		U	36.3			
Approach Delay (s)		0.1 A			B			39.2 D			30.3 D			
		~			D			U			U			
ntersection Summary														
ICM 2000 Control Delay			11.8	Н	CM 2000	Level of S	Service		В					
ICM 2000 Volume to Capa	acity ratio		0.52											
ctuated Cycle Length (s)			90.6	S	um of lost	time (s)			17.0					
ntersection Capacity Utiliza	ation		60.7%	IC	CU Level o	of Service			В					
nalysis Period (min)			15											
Critical Lane Group														

c Critical Lane Group

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

Synchro 11 Report 01/18/2024 - Page 21 Timings 11: Wilfred Ave & Sheppard Avenue East 2023 Existing PM

⊁ \$ 1 t Ť ← -+ 1 Lane Group EBL EBT WBL WBT NRI NBT SBL SBT Lane Configurations .**≜**î⊳ **۸**۴ 4 4 Traffic Volume (vph) 1767 1264 103 21 18 14 8 Future Volume (vph) 18 1767 8 1264 14 8 103 21 Lane Group Flow (vph) 20 1948 9 1433 0 35 0 168 Perm Turn Type Perm NA NA Perm NA Perm NA Protected Phases 8 2 Permitted Phases 2 6 4 8 Detector Phase 2 2 6 4 4 8 6 8 Switch Phase Minimum Initial (s) 23.0 23.0 23.0 23.0 7.0 7.0 7.0 7.0 Minimum Split (s) 33.6 33.6 33.6 33.6 35.8 35.8 35.8 35.8 Total Split (s) 74 0 74.0 74.0 74.0 36.0 36.0 36.0 36.0 Total Split (%) 67.3% 67.3% 67.3% 67.3% 32.7% 32.7% 32.7% 32.7% Yellow Time (s) 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 All-Red Time (s) 2.3 2.3 2.3 2.3 2.5 2.5 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.6 5.6 5.6 5.6 5.8 5.8 Lead/Lag Lead-Lag Optimize? Recall Mode Max Max None None None None None None 0.10 0.76 0.11 0.13 v/c Ratio 0.56 0.69 Control Delay 6.9 11.9 9.4 8.1 26.1 50.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 6.9 11.9 9.4 8.1 26.1 50.3 Queue Length 50th (m) 1.0 100.2 55.9 27.6 0.4 3.8 Queue Length 95th (m) 4.4 170.2 2.9 94.7 12.0 48.5 Internal Link Dist (m) 149.2 363.8 136.1 104.8 28.0 24.0 Turn Bay Length (m) Base Capacity (vph) 200 2564 82 2555 494 453 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.10 0.76 0.11 0.56 0.07 0.37

Intersection Summary Cycle Length: 110

Actuated Cycle Length: 96.7 Natural Cycle: 90

Control Type: Semi Act-Uncoord

Splits and Phases: 11: Wilfred Ave & Sheppard Avenue East

74 s	36 s
₹ø6	↓ ™ø8
74 s	36 s

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

	срра	ppard Avenue East												
	۶	-	$\mathbf{\hat{z}}$	4	+	•	٠	1	1	1	Ŧ	4		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF		
ane Configurations	1	A		ľ	A			\$			\$			
Traffic Volume (vph)	18	1767	25	8	1264	54	14	8	10	103	21	30		
Future Volume (vph)	18	1767	25	8	1264	54	14	8	10	103	21	30		
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.6	5.6		5.6	5.6			5.8			5.8			
ane Util. Factor	1.00	0.95		1.00	0.95			1.00			1.00			
Frt	1.00	1.00		1.00	0.99			0.96			0.97			
Fit Protected	0.95	1.00		0.95	1.00			0.98			0.97			
Satd. Flow (prot)	1789	3571		1789	3556			1766			1774			
Fit Permitted	0.15	1.00		0.06	1.00			0.86			0.78			
Satd. Flow (perm)	279	3571		116	3556			1556			1427			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	20	1921	27	9	1374	59	15	9	11	112	23	33		
RTOR Reduction (vph)	0	1	0	0	2	0	0	9	0	0	9	(
ane Group Flow (vph)	20	1947	0	9	1431	0	0	26	0	0	159	(
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA			
Protected Phases	•	2		0	6		4	4		0	8			
Permitted Phases	2 69.4	69.4		6 69.4	69.4		4	15.9		8	45.0			
Actuated Green, G (s)	69.4 69.4	69.4 69.4		69.4 69.4	69.4 69.4			15.9			15.9 15.9			
Effective Green, g (s)	0.72	0.72		0.72	0.72			0.16			0.16			
Actuated g/C Ratio Clearance Time (s)	5.6	5.6		5.6	5.6			5.8			5.8			
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0			
ane Grp Cap (vph)	200	2562		83	2552			255			234			
/s Ratio Prot	200	c0.55		00	0.40			200			204			
//s Ratio Perm	0.07	50.55		0.08	0.40			0.02			c0.11			
//c Ratio	0.07	0.76		0.00	0.56			0.02			0.68			
Jniform Delay, d1	4.2	8.5		4.2	6.4			34.3			38.0			
Progression Factor	1.00	1.00		1.00	1.00			1.00			1.00			
ncremental Delay, d2	1.0	2.2		0.6	0.3			0.2			7.6			
Delay (s)	5.1	10.7		4.8	6.7			34.5			45.6			
_evel of Service	А	В		А	А			С			D			
Approach Delay (s)		10.6			6.7			34.5			45.6			
Approach LOS		В			А			С			D			
ntersection Summary														
HCM 2000 Control Delay			10.9	H	CM 2000	Level of S	Service		В					
HCM 2000 Volume to Capacity	ratio		0.74											
Actuated Cycle Length (s)			96.7		um of lost	(-)			11.4					
ntersection Capacity Utilizatio	n		72.6%	IC	U Level o	of Service			С					

231011 ReNew Sheppard Existing Road Network.syn R.J. Burnside & Associates

Appendix B

Supplemental Information: Active Transportation Needs and Opportunities

Appendix B – Supplemental Information: Active Transportation Opportunities

Date:	March 2, 2023	Project No.: 300055817.000
Project Name:	Toronto ReNew Sheppard East	
Client Name:	City of Toronto (City)	
From:	R.J. Burnside & Associates Limite	d

1.0 Introduction

A preliminary needs and opportunities assessment was conducted on the active transportation network within and in close vicinity to the ReNew Sheppard Study Area. Major opportunities are shown below and grouped into three categories, including enhancing north-south corridors, providing quieter alternatives, and improving off-road trails.

2.0 Enhancing North-South Corridors

Because Sheppard Avenue will be improved through the Sheppard Avenue reconstruction project with proposed separated cycling facilities, there is an opportunity to enhance north-south roadways to improve connectivity. Sheppard Avenue can act as the main spine of the active transportation network, while the north-south roadways can feed into this spine. North-south roadways that can contribute to this network include Bayview Avenue, Leslie Street, and Bessarion Road.

Bessarion Road is a 26 m road with sidewalks on either side and a boulevard. The road end contains a walking path to Talara Park. Due to its available municipal right-of-way, connectivity between the park and Sheppard Avenue and an existing pedestrian trail, the characteristics of Bessarion Road facilitate an opportunity to enhance the active transportation environment. Bessarion Road is shown in Figure 1.

Figure 1: Bessarion Road within ReNew Sheppard (Image adapted from Google Earth)

Figure 2: Bayview Avenue

Bayview Avenue is a major 4-lane arterial that widens up to seven lanes at the Bayview Avenue and Sheppard intersection. During the AM and PM peak hours, Bayview Avenue is a congested corridor with high auto traffic volumes partly driven by the Highway 401-Bayview Avenue interchange. Bayview Avenue includes a sidewalk on both sides with an edge zone separating the sidewalk from the travel lanes, as illustrated in Figure 2.

Leslie Street is a 4-lane major arterial that widens up to seven lanes at the Leslie Street and Sheppard Avenue intersection. During the AM and PM peak hours, Leslie Street has high auto traffic volumes partly driven by the Highway 401-Leslie Street interchange. Leslie Street contains sidewalks on both sides. On the west side, there is a narrow edge zone to buffer pedestrians from vehicles. On the east side, there is a planting buffer separating the sidewalk from the travel lane.

3.0 Providing Quieter Alternatives

With the City's vision of considering every street for cycling upgrades, there are a few parallel routes that can enhance the active transportation network. Sheppard Avenue is a major arterial with high auto volumes. These parallel routes leverage the local neighbourhood streets, which have significantly fewer auto volumes and can be considered quieter alternatives.

These routes include:

- Irvington Avenue via a connection from Bayview Avenue.
- The entire road segment of Bayview Mews Lane connecting west to Spring Garden Avenue.
- Old Leslie Street and Esther Shiner Boulevard to connect North York General Hospital to / from the south side of Sheppard Avenue.

On Bayview Avenue, south of Sheppard Avenue, is a pedestrian connection, connecting to Irvington Avenue, as illustrated in Figure 3. Irvington Avenue connects to Sheppard East Park via two more local streets (Calvin Avenue and Irvin Avenue), also illustrated in Figure 3 Irvington Avenue is currently a 2-lane local residential street with no sidewalks on either side until Wilfred Avenue.

Figure 3: Bayview Avenue Pedestrian Connection (Adapted from Google Earth)

Within the study area, North York General Hospital is a key destination, employment area, and institution providing medical services to the city. Leslie Station entrances and exits are spaced widely apart. Connections from all the entrances and exits of Leslie Station should be reviewed to ensure that employees and visitors can safely access the hospital with a high degree of comfort. The Sheppard Avenue and Leslie Street intersection is a large intersection that carries lots of automobile traffic. Alternative active transportation routes to the hospital can be taken by pedestrians or cyclists using various bridges and Esther Shiner Boulevard, as shown in Figure 4. The bridge connecting Esther Shiner Boulevard and North York General Hospital can also be accessed by a staircase along Leslie Street.

These routes consist of much less automobile traffic and could be a more comfortable alternative to walking along Sheppard Avenue and Leslie Street. Improving the pedestrian environment along these alternative routes should be further explored.

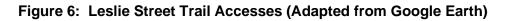
Figure 4: North York General Hospital and Leslie Station

4.0 Enhance Off-road Trails

The active transportation network consists of both off-road and on-road trails. The benefits of off-road trails include:

- Enhances connectivity to the overall active transportation network.
- Provides more comfort than on-road routes since trails are separated from automobile traffic, potentially increasing use, and promoting healthy communities.
- Allows riders and pedestrians to explore the city's ravines and green space, creating an enjoyable and vibrant community.

Opportunities to enhance off-road trails include:


- Improve the East Don Parkland trail connection under Sheppard Avenue and Leslie Street, as the south portion of the trail currently has no connection to the north section.
- Ensure trail connectivity is safe and accessible.
- Provide more information about parks and trails using wayfinding and signage.
- Adding additional trail crossings where feasible.

Behind 1220 Sheppard Avenue East is an informal pedestrian trail that traverses steeply to the East Don Parkland Trail, as illustrated in Figure 5. This office building is also shown relative to Leslie Street and Sheppard Avenue in Figure 6.

120 Sheppard Nenue Informal Trait Connection East Den Parkland Trait On Valley River

Figure 5: Informal Trail Connection Behind 1220 Sheppard Avenue

Leslie Street has many trail accesses to the East Don Parkland Trail, which runs adjacent to the Don Valley River, as illustrated in Figure 6. These characteristics of Leslie Street facilitate an opportunity to enhance the active transportation environment.

Appendix C

Supplemental Information: Transit Needs and Opportunities

Appendix C – Supplemental Information: Transit Needs and Opportunities

Date:	March 2, 2023	Project No.: 300055817.000
Project Name:	Toronto ReNew Sheppard East	
Client Name:	City of Toronto (City)	
From:	R.J. Burnside & Associates Limite	d

1.0 Introduction

A preliminary needs and opportunities assessment was conducted on the transit network within and in close vicinity to the ReNew Sheppard Study Area. Supplemental information is provided on bus boarding and alighting, the existing transit capacity analysis, and observations from a site visit on pedestrian amenities at TTC stations.

2.0 Bus Boarding and Alighting

TTC data for the bus routes within the Study Area were provided by the City. Gaps occur in the max volume, which can be seen in the figures below, as data was not provided for locations where no boardings were recorded.

The 85 Sheppard East bus route operates along Sheppard Avenue East, and the operations per bus stop are shown in Figure 1, Figure 2, Figure 3, and Figure 4.

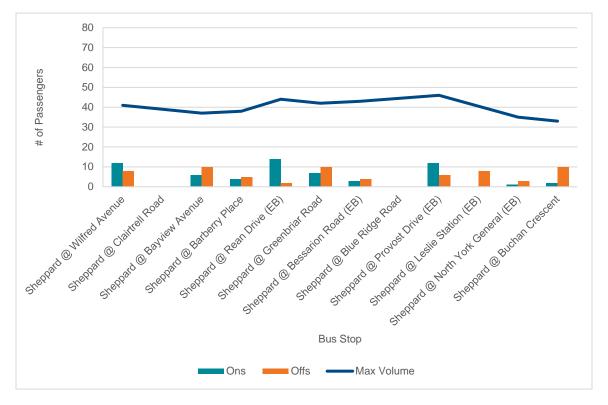
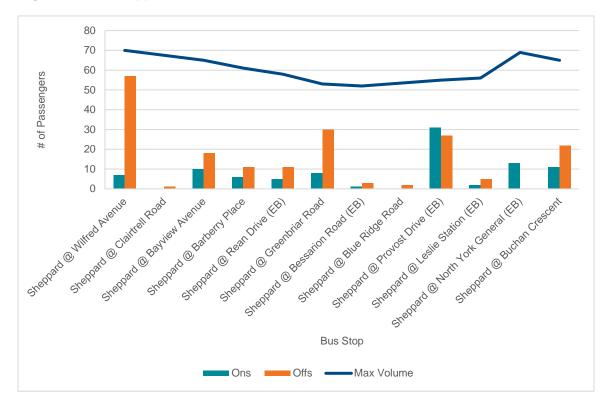



Figure 1: 85 Sheppard East Eastbound – Fall 2019 AM

Figure 2: 85 Sheppard East Eastbound – Fall 2019 PM

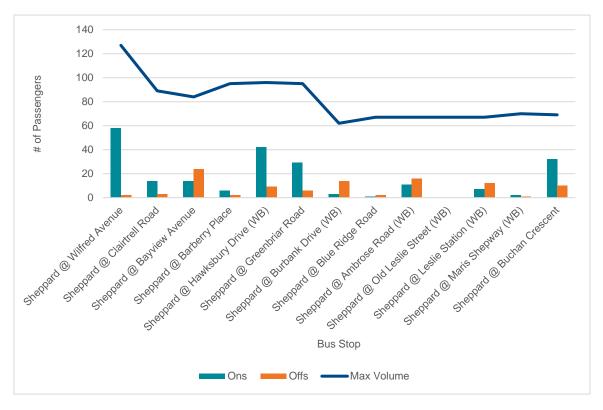
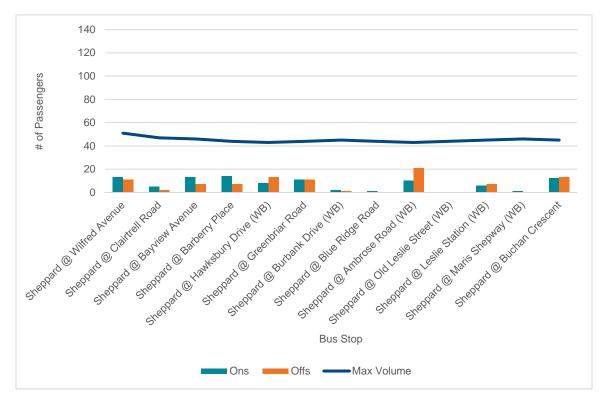



Figure 3: 85 Sheppard East Westbound – Fall 2019 AM

Figure 4: 85 Sheppard East Westbound – Fall 2019 PM

The 51 Leslie bus route operates along Leslie Street, and the operations per bus stop are shown in Figure 5, Figure 6, Figure 7, and Figure 8.

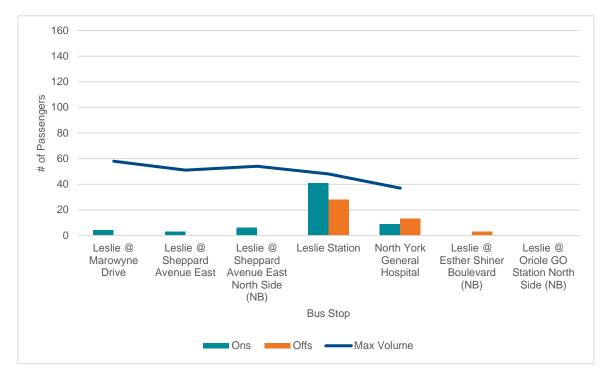
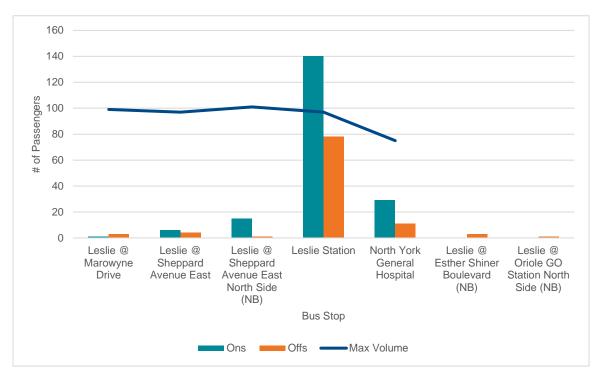



Figure 5: 51 Leslie Northbound – Fall 2019 AM

Figure 6: 51 Leslie Northbound – Fall 2019 PM

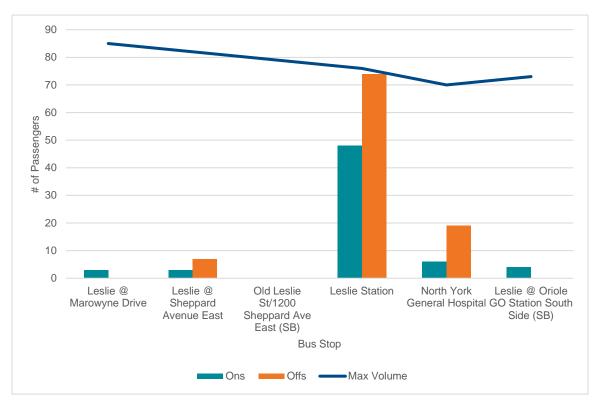
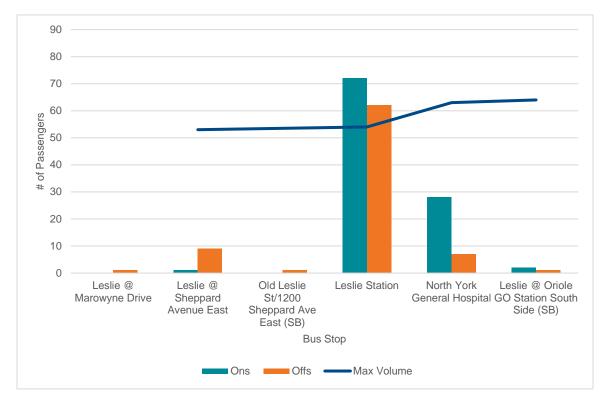



Figure 7: 51 Leslie Southbound – Fall 2019 AM

Figure 8: 51 Leslie Southbound – Fall 2019 PM

The 51 Bayview bus route operates along Bayview Avenue, and the operations per bus stop are shown in Figure 9, Figure 10, Figure 11, and Figure 12.

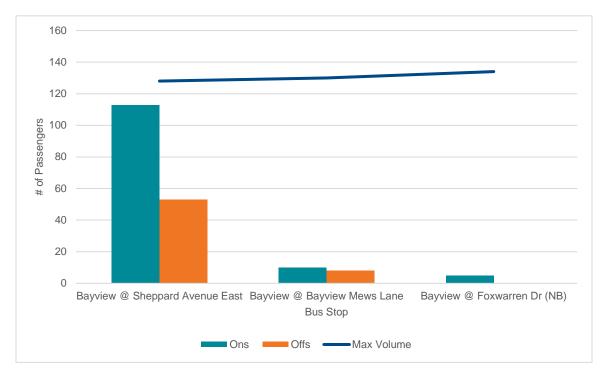
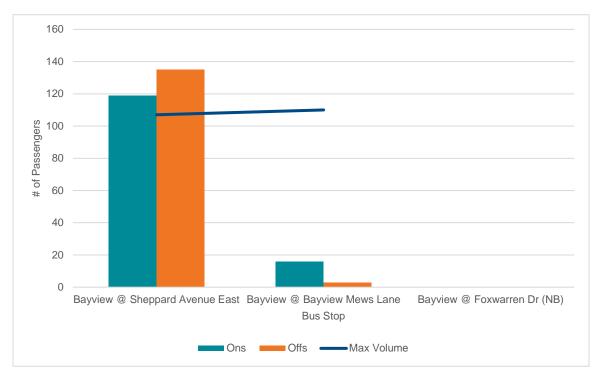



Figure 9: 11 Bayview Northbound – Fall 2019 AM

Figure 10: 11 Bayview Northbound – Fall 2019 PM

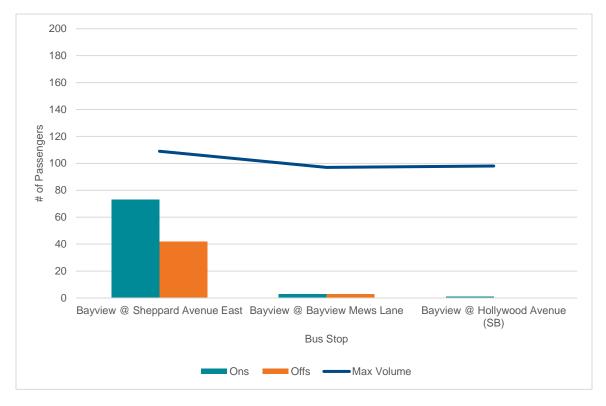
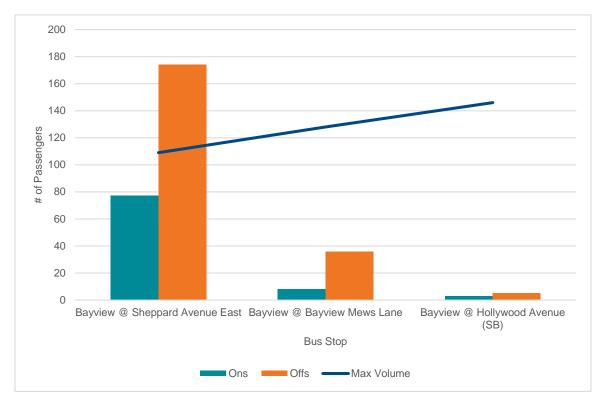



Figure 11: 11 Bayview Southbound – Fall 2019 AM

Figure 12: 11 Bayview Southbound – Fall 2019 PM

3.0 Existing Transit Capacity Analysis

The v/c ratios for each bus were calculated using the 2019 greatest max volume and capacity within the study area, as shown in Table 1 and Table 2. Bus capacity was determined by multiplying the peak number of buses serving stops per hour by the peak crowding standard of 50.

Bus	Max volume [veh/hr]	Total Capacity [veh/hr]	v/c ratio	Max volume [veh/hr]	Total Capacity [veh/hr]	v/c ratio
	E/B	E/B	E/B	W/B	W/B	W/B
85 Sheppard East	46	250	0.18	127	250	0.51
	N/B	N/B	N/B	S/B	S/B	S/B
51 Leslie	58	150	0.39	85	150	0.57
11 Bayview	134	250	0.54	109	250	0.44

 Table 1: Bus Capacity Analysis – 2019 AM Existing Conditions

Bus	Max volume [veh/hr]	Total Capacity [veh/hr]	v/c ratio	Max volume [veh/hr]	Total Capacity [veh/hr]	v/c ratio
	E/B	E/B	E/B	W/B	W/B	W/B
85 Sheppard East	70	200	0.35	51	200	0.26
	N/B	N/B	N/B	S/B	S/B	S/B
51 Leslie	101	150	0.67	64	150	0.43
11 Bayview	110	250	0.44	146	250	0.58

The existing transit capacity analysis indicated that the buses operated below pedestrian capacity.

4.0 Pedestrian Amenities at TTC Stations

A site visit was conducted by the project team to gain an understanding of the pedestrian comfort and amenities at each TTC Bus Station. Observations are documented below.

4.1 Bayview Station

Bayview Station does not have park-and-ride / kiss-and-ride facilities for cars, so the main modes of access and egress to and from this station are walking, cycling, and bus. The north-east corner of Bayview Station contains many design elements supporting active transportation. Bike lockers are provided, as shown in Figure 13.

Figure 13: Bike Lockers at Bayview Station

Bike racks with a small overhead canopy to protect from the weather are provided, as shown in Figure 14.

Figure 14: Bike Racks at Bayview Station

A large canopy for riders to wait and to be protected from the sun, rain, and other adverse weather conditions and benches are located near a self-service bike repair stand, as shown in Figure 15. A community message board is located to the left of the pillar supporting the canopy, which may be a good opportunity to incorporate wayfinding and mapping.

Figure 15: Large Canopy and Bike Repair Kit at Bayview Station

As outlined above, design elements currently exist at Bayview Station to make this station an attractive place to visit. These design elements are a good starting point to build on the concept of a local mobility hub.

There are places for improvement. The northwest corner of Bayview Avenue and Sheppard Avenue does not have the same level of amenities for riders waiting for buses, as shown in Figure 16. To keep the sidewalks clear, bus riders wait under the much smaller canopy; however, due to the frequency of the bus service and demand, pedestrians are often observed to be tightly squeezed under this area, especially during winter conditions. The edge zone provides limited separation between the sidewalk and the travel lane.

Figure 16: Northwest Corner of Bayview Avenue and Sheppard Avenue

4.2 Bessarion Station

Bessarion Station does not have park-and-ride / kiss-and-ride facilities for cars, so the main modes of access and egress to and from this station are walking, cycling, and bus. A small canopy exists for transit users for resting or waiting for the 85 Sheppard bus, as shown in Figure 17. There are no bicycle racks.

Figure 17: Bessarion Station Entrance

4.3 Leslie Station

With the proposed relocation of the Oriole GO Station to Leslie Station, there will be increased interconnection between the Regional and local transit services. The need to develop Leslie Station as a local mobility hub is vital as higher-order modal transitions are provided. Comfortable, connected, and accessible pedestrian connections are important to facilitate the modal transition between local and Regional services. This strategy can help facilitate more use of the Regional or local transit services for commuting trips, especially to the downtown central business district.

R.J. Burnside & Associates Limited