SOIL & GROUNDWATER QUALITY ASSESSMENT GARDINER EXPRESSWAY DISMANTLING TORONTO, ONTARIO

Prepared For:

URS COLE SHERMAN

Prepared by:

SHAHEEN & PEAKER LIMITED

Project: SP3201C August 22, 2001 250 Galaxy Boulevard Etobicoke, Ontario M9W 5R8 Tel: (416) 213-1255

FAX: (416) 213-1260

S & P

SHAHEEN & PEAKER LIMITED

CONSULTING ENGINEERS AND SCIENTISTS

250 GALAXY BOULEVARD ETOBICOKE, ONTARIO M9W 5R8 TEL. (416) 213-1255 FAX. (416) 213-1260

E-MAIL: INFO@SHAHEENPEAKER.CA
WEB SITE: WWW.SHAHEENPEAKER.CA

August 22, 2001

URS Cole Sherman 75 Commerce Valley Drive East, Thornhill, Ontario L3T 7N9

Attention: Keith Hutchinson, P. Eng.

Project Manager

Dear Mr. Hutchinson:

SOIL & GROUNDWATER QUALITY ASSESSMENT GARDINER EXPRESSWAY DISMANTLING TORONTO, ONTARIO

Shaheen and Peaker Limited (S&P) was retained by URS Cole Sherman to carry out a Soil & Groundwater Quality Assessment along Lakeshore Boulevard East between Carlaw Avenue and Leslie Street in Toronto, Ontario. The work was requested by the City of Toronto (City) in order to assess the environmental quality of the subsurface soil and groundwater in the vicinity of proposed landscaped areas along the north boulevard of Lakeshore Boulevard East and at the southeast corner of Leslie Street and Lakeshore Boulevard East.

Geo-Canada Limited (a division of S& P) has previously completed two environmental investigations as part of the Gardiner Expressway Dismantling project. These included:

File No G97-0502 - Geotechnical Investigation report, dated November 1997. This report included limited environmental testing of soil to provide preliminary data for disposal of surplus excavated soil.

File No G99-1003 - Geotechnical and Geo-Environmental Investigation report, dated March 2000. This report included environmental testing to provide data for the disposal of surplus excavated soil from the construction of a noise barrier and bicycle path along

the north boulevard of Lakeshore Boulevard East between Carlaw Avenue and Leslie Street.

Both of the previous studies identified the presence of hydrocarbon impacted soil at the test locations.

The Scope of Work for this assessment included: drilling and test pit programs; soil and groundwater sampling; laboratory analysis; and reporting. The results of the soil and groundwater chemical analyses were evaluated using the 'Generic Approach' methodology of the "Guideline for Use at Contaminated Sites in Ontario" (Guideline), published by the Ontario Ministry of the Environment (MOE), February 1997.

Based on the results of this Soil and Groundwater Quality Assessment, S&P concluded the following:

- Visual and olfactory evidence of hydrocarbon and/or PAH impact was detected in the subsurface soil at 10 of the 14 sampling locations;
- The concentrations of metals (beryllium, chromium, copper, lead and zinc), benzene, toluene and xylenes and Total Petroleum Hydrocarbons (gasoline/diesel and heavy oils) exceeded the Table B criteria for industrial/commercial land use at eight of the sampling locations;
- The concentrations of chromium, xylenes and Total Petroleum Hydrocarbons (gasoline/diesel and heavy oils) exceeded the Table D criteria for industrial/commercial land use at four of the sampling locations;
- The results of the assessment indicate that the groundwater at the subject property meets the applicable MOE Guideline for metals; and
- The results of the Regulation 347 leachate extraction (as amended by Reg. 558/00 in effect as April 1, 2001) and analyses indicate that the hydrocarbon impacted fill soil contacted at test pit TP7 (TP7 SA3), located at the southeast corner of Leslie Street and Lakeshore Boulevard East, should be classified as a hazardous waste for transportation and disposal purposes if removed from their current location.

It should be noted that there is no Table D criterion (applies to soil at greater than 1.5 m depth) for lead impacted soil and as such, the Table B criterion (applies to soil at less

than 1.5 m depth) of 1,000 μ g/g should be considered as an appropriate remediation criteria unless a Site Specific Risk Assessment is carried out.

Based on the result of the Soil & Groundwater Quality Assessment, consideration should be given to conducting a Site Specific Risk Assessment to develop appropriate remediation criteria and a remedial action plan for the redevelopment of the subject site. Further investigation is warranted to delineate the extent of any soil impairment present at the subject site in order to complete a Site Specific Risk Assessment.

We trust that the foregoing meets your current requirements. Please contact our office if you have any further questions.

Yours very truly,

Shaheen & Peaker Limited

David J. Baigent, P.Eng. Senior Project Manager

TABLE OF CONTENTS

1. INTROD	UCTION	1
2. BACKGF 2.1 Site D 2.2 Previo	escription	
3.1 Utility 3.2 Drilling 3.3 Soil S 3.4 Groun 3.5 Labora	METHODS Clearance g and Test Pits ampling Procedures and Protocols dwater Monitoring atory Analyses a for Evaluating Soil and Groundwater Quality	8
4.1 Gener	ral Physical Characteristics of Soil	10
	JSIONS AND RECOMMENDATIONS	
6. LIMITAT	IONS	14
	TABLES	
TABLE 1 TABLE 2 TABLE 3 TABLE 4 TABLE 5 TABLE 6 TABLE 7	SUMMARY OF VOCS IN SOIL SUMMARY OF TPH AND BTEX IN SOIL SUMMARY OF BASE NEUTRAL EXTRACTABLES AND PCBS IN SOIL SUMMARY OF METAL SCAN AND PH IN SOIL SUMMARY OF REG. 347 ANALYSIS (INORGANICS) SUMMARY OF REG. 347 ANALYSIS (VOLATILE ORGANIC COMPOUNDS) SUMMARY OF METAL SCAN AND PH IN GROUNDWATER	
	DRAWINGS	
DRAWING 1	BOREHOLE AND TEST PIT LOCATION PLAN	
	APPENDICES	
APPENDIX B	BOREHOLE LOGS TEST PIT LOGS LABORATORY CERTIFICATES OF ANALYSIS	

SOIL & GROUNDWATER QUALITY ASSESSMENT GARDINER EXPRESSWAY DISMANTLING TORONTO, ONTARIO

1. INTRODUCTION

Shaheen and Peaker Limited (S&P) was retained by URS Cole Sherman to carry out a Soil & Groundwater Quality Assessment along Lakeshore Boulevard East between Carlaw Avenue and Leslie Street in Toronto, Ontario. The work was requested by Mr. George Rozanski, P.Eng., Project Manager for the City of Toronto, in order to assess the environmental quality of the subsurface soil and groundwater in the vicinity of proposed landscaped areas along the north boulevard of Lakeshore Boulevard East and at the southeast corner of Leslie Street and Lakeshore Boulevard East.

Authorization to proceed with this work was provided by Mr. Kieth Hutchinson, P.Eng. of URS Cole Sherman.

2. BACKGROUND

2.1 Site Description

The subject site is located in an industrial/commercial area in the city of Toronto and consists of two parcels of land, the north boulevard of Lakeshore Boulevard East between Carlaw Avenue and Leslie Street; and the southeast corner of Lakeshore Boulevard East and Leslie Street. The subject site is currently under construction that includes: grading, installation of stormwater drainage and landscaping. This construction work is being carried out in conjunction with the dismantling of the eastern portion of the Gardiner Expressway (now complete) and the reconstruction and widening of Lakeshore Boulevard East (in progress). A bicycle path currently occupies the subject property. The remaining areas of the subject site are either grass covered or bare ground with the exception of some trees along the north edge of the boulevard along Lakeshore Boulevard East and at the southeast corner of Lakeshore Boulevard East and Leslie Street.

2.2 Previous Environmental Investigations

Geo-Canada Limited (a division of S& P) has previously completed two environmental investigations as part of the Gardiner Expressway Dismantling project. These include:

File No G97-0502 - Geotechnical Investigation report, dated November 1997. This report included limited environmental testing of soil to provide preliminary data for disposal of surplus excavated soil from the reconstruction of Lakeshore Boulevard East between the Don Roadway and Leslie Street.

Two of the four soil samples submitted for inorganics and metals analyses during the November 1997 investigation were taken from the granular base layer of Lakeshore Boulevard East, the other two samples were taken from shallow (i.e. less than 1.5 m depth) deposits of sand fill and native sands and silts. The results of the laboratory analyses were evaluated using the 'Generic Approach' methodology of the "Guideline for Use at Contaminated Sites in Ontario" (Guideline), published by the Ontario Ministry of the Environment (MOE), revised February 1997. All four of these soil samples were found to meet the Table D criteria from the Guideline.

Of the five samples submitted for TPH and Leachate analysis, four of the samples were taken from fill deposits at depths greater than 1.5 m. All four of these samples were impacted by hydrocarbons, but only one sample (from a depth of 2.3 to 2.7 m), exceeded the Table D criteria.

The November 1997 report concluded that the hydrocarbon impacted soil encountered did not pose a health risk due to its depth and the presence of asphalt pavement that would act to encapsulate the impacted soil.

File No G99-1003 - Geotechnical and Geo-Environmental Investigation report, dated March 2000. This report included environmental testing to provide data for the disposal of surplus excavated soil from the construction of a noise barrier and bicycle path along the north boulevard of Lakeshore Boulevard East between Carlaw Avenue and Leslie Street.

The one soil sample submitted for inorganics and metals analysis was found to meet the Table D criteria. The four samples submitted for TPH analysis were taken from fill deposits at depths greater than 1.5 m. All four of these samples were impacted by hydrocarbons, but meet the Table D criteria. VOCs and PAHs were detected in the one soil sample analyzed for these parameters, but the sample met the Table D criteria. PCBs were not detected in the sample submitted for analysis.

The March 2000 report concluded that hydrocarbon impacted soil was present on-site, but that the impacted soil was contacted at a depth of more than 1.5 m.

2.3 Scope of Work

To meet the objective of this assessment, a Scope of Work was developed consisting of: drilling and test pit programs; soil and groundwater sampling; laboratory analysis; and reporting as described in the following sections.

The scope of work focussed on the following issues:

- Potential impact from the former Canadian Metal Co. Ltd. plant located immediately north of the subject site;
- Potential impacts from the former A. R. Clarke & Co. Ltd. Tannery located immediately north of the subject site; and
- General fill quality.

The work plan included the following activities:

- Drill six boreholes, four along the north boulevard and one in the centre median
 of Lakeshore Boulevard East and one at the southeast corner of Leslie Street
 and Lakeshore Boulevard East:
- Excavate eight test pits, six along the north boulevard of Lakeshore Boulevard
 East and two at the southeast corner of Leslie Street and Lakeshore Boulevard
 East;
- Install five groundwater monitoring wells, four along the north boulevard of Lakeshore Boulevard East and one at the southeast corner of Leslie Street and Lakeshore Boulevard East; and
- Laboratory analysis of selected soil and groundwater samples.

3. STUDY METHODS

3.1 Utility Clearances

Prior to initiating the drilling and test pit programs, the locations of the proposed boreholes, test pits and monitoring wells were selected jointly by S&P and the City of Toronto and the drilling locations cleared for public underground utilities.

3.2 Drilling and Test Pits

A drilling program was conducted at the site on July 11 and 12, 2001 and consisted of drilling six boreholes to a maximum depth of 6.6 m. The drilling was carried out by Geo-Environmental Drilling Inc. of Milton, Ontario using a truck mounted CME 75 drilling rig under the direct supervision of experienced S&P field personnel.

A test pit program was conducted at the site on July 11, 2001 and consisted of excavating eight test pits to a maximum depth of 4.0m. The test pits were excavated by A. J. Maddix construction Ltd. Of Toronto, Ontario using a Case 590 rubber tired backhoe under the direct supervision of experienced S&P field personnel.

The locations of the boreholes and test pits are shown on **Drawing 1** and the borehole logs and test pit logs are presented in **Appendix A and B**, respectively.

Soil samples were collected from each borehole using a 50mm outer diameter (OD) split spoon sampler at frequent depth intervals through the fill and native soil. Soil samples were collected using shovels and scoops from each layer of fill and native soil encountered in the test pits. Soil samples recovered from the boreholes and test pits were examined for soil classification and for aesthetic (visual and olfactory) evidence of environmental impact. Soil samples collected in the field were transferred to glass jars and airtight zip lock plastic bags.

The collected soil samples were transported to the S&P's laboratory for further examination. Headspace combustible vapour measurements (excluding methane) were made within the plastic sample bags using a Trace-techtor™ combustible vapour meter calibrated to hexane, with the methane elimination setting enabled. Headspace measurements were made after the samples had been stored indoors for at least two

hours and the samples equilibrated to room temperature. The headspace monitoring was performed on the samples as a preliminary screening for hydrocarbons or volatile organic compounds (VOCs).

The samples selected for laboratory analysis were placed in laboratory supplied jars and kept in refrigerated conditions until submitted to the analytical laboratory. The selection of soil samples for laboratory analysis was based on an evaluation of: headspace readings; presence of organic and foreign matter; and soil staining.

The ground surface elevations at the borehole and monitoring well locations were surveyed by S&P personnel and referenced to the following City of Toronto benchmark:

Benchmark #157 (Rec.#1780) located on the wall of the Brewers Retail Distribution Centre on the west side of Leslie Street just south of Lakeshore Boulevard East (Geodetic elevation 76.986 metres).

3.3 Soil Sampling Procedures and Protocols

The following precautions were taken by S&P while collecting soil samples to prevent cross-contamination and maintain sample integrity:

- A clean split spoon sampler was used by the drilling contractor to drill the boreholes;
- The split spoon soil sampler, shovels and scoops were washed prior to each sampling event with phosphate free detergent in water, rinsed with municipal water and subsequently rinsed with distilled water;
- New disposable vinyl lab gloves were worn when removing the soil cores from the sampler and placing the samples in plastic bags and glass jars for chemical analysis; and
- Samples selected for laboratory analysis were stored under refrigerated conditions in the field and at S&P's laboratory until delivery to the analytical laboratory.

3.4 GROUNDWATER MONITORING

Groundwater monitoring wells were installed in five of the boreholes (BH601, BH602, BH603, BH604 and BH 605) to permit groundwater observations and to obtain groundwater samples for laboratory analysis. The monitoring wells were constructed of 50 mm diameter Schedule 40 Polyvinyl Chloride (PVC) screen with a factory machined slot width of 0.25 mm and completed with a PVC riser pipe. All the pipe sections were wrapped in plastic, which was removed just prior to installation to minimize the potential for contamination. The base of each well was covered with a PVC cap to prevent the influx of sediment. Clean filter sand (silica sand) was placed in the annular space between the well and the well bore to about 0.5-0.6 m above the screen level to obtain relatively sediment free water. A bentonite seal was added to the annular space above the sand pack to an approximate thickness of 0.6 to 0.8 m to prevent infiltration of surface water. Lubricants or glue were not used in the monitoring well construction. The construction of the groundwater monitoring wells is illustrated on the borehole logs presented in **Appendix A**.

A groundwater sample was collected from each monitoring well. The monitoring well was first developed and purged (using a dedicated foot valve installed in the monitoring well) prior to sampling to remove standing water, filter pack water and allow for the influx of fresh formation water into the monitoring well. Three standing well volumes were removed from each well or purged until the well was dry. Groundwater samples were collected in laboratory supplied containers and placed in a chilled cooler for storage and transport to the laboratory for analysis.

3.5 Laboratory Analyses

The laboratory analyses were performed by PSC Analytical Services (PSC) of Mississauga, Ontario. The following is a summary of the laboratory analyses completed:

Soil

- Volatile Organic Compounds (VOCs) two soil samples
- Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) four soil samples
- Total Petroleum Hydrocarbons from the gasoline, diesel and heavy oil ranges

(TPH) - four soil samples

- Base Neutral Extractables (BNEs) including Polycyclic Aromatic Hydrocarbons (PAHs) – two soil samples
- Polychlorinated Biphenyls (PCBs) two soil samples
- Metal Scan and pH twelve soil samples
- Regulation 347 leachate extraction (as amended by Reg. 558/00, in effect as April 1, 2001) and analysis for inorganics and VOCs – two soil samples
- Ignitability one soil sample

Groundwater

Metal scan and pH – five groundwater samples

3.6 Criteria for Evaluating Soil and Groundwater Quality

The results of the soil and groundwater chemical analyses were evaluated using the 'Generic Approach' methodology of the "Guideline for Use at Contaminated Sites in Ontario" (Guideline), published by the Ontario Ministry of the Environment (MOE), February 1997. This document presents generic soil and groundwater criteria derived from an effects and background based approach. The applicable generic criteria provided in the Guideline were used to assess whether concentrations of contaminants in soil and groundwater were sufficiently elevated to require restoration (remedial action) using the generic approach. The Guideline provides the following summary of the generic approach to site restoration:

"The generic approach involves use of soil and groundwater quality criteria which have been developed to provide protection against the potential adverse effects to human health, ecological health and the natural environment. The criteria may be applied to agricultural, residential/parkland and industrial/commercial land uses. Criteria are also provided for potable and non-potable groundwater use as well as fine to medium texture and coarse soils.

The potable criteria ensure that groundwater may be used as a source of drinking water. The non-potable criteria offers protection against vapours from groundwater and to aquatic life in receiving surface water."

The generic soil, groundwater and sediment criteria for the different land use categories and groundwater conditions are summarized in Tables A to F of the MOE Guideline document. The selection of a specific set of generic criteria for the subject site was based on the decision process outlined in the MOE guideline document. The decision process is as follows:

- A. Is the site a potentially sensitive site?
- B. What is the intended land use?
- C. Is the soil coarse textured or fine textured?

A. Is the site a potentially sensitive site?

A site must satisfy one of three conditions listed by the MOE to be classified as potentially sensitive. These conditions are listed below and discussed with respect to the subject site:

(i) Does the site have or potentially have an effect on sensitive sites listed in the MOE Guideline?

The MOE identifies sensitive sites as nature reserves, areas of natural or scientific interest, environmentally sensitive areas, fish habitats, endangered species habitats, wetlands or provincial parks.

The subject site is situated in an industrial/commercial area of the city of Toronto and is presently used as a roadway (Lakeshore Boulevard East). According to topographic map 30M/11 (7th Edition), the ground surface in the vicinity of the subject site slopes gently to the southwest towards the Toronto Harbour and Lake Ontario. The Ship Channel and the Turning Basin that drain into the Toronto Harbour are located approximately 400 m south of the subject site. Groundwater flow is inferred to be in a southerly direction towards the Ship Channel and the Turning Basin.

Based on the distance separating the subject site from the Ship Channel and the Turning Basin and the environmental history of the surrounding area, it is unlikely that the site would be considered a sensitive site.

(ii) Are there less than two metres of overburden and soil overlying bedrock or in a contaminant plume area downgradient of the site?

The drilling program confirmed that the total depth of overburden fill and native soil was greater than the minimum of 2 metres stated in the MOE Guideline.

(iii) <u>Is the pH of the soil less than 5 or greater than 9 for surface soil or less than 5 or greater than 11 for subsurface soil.</u>

The pH of the soil samples submitted for analysis were 7.24 to 8.30 and is therefore within the allowable limits for both surface soil (less than 1.5 m depth) and subsurface soil.

Based on these considerations, it is concluded that the subject site is not a potentially sensitive site.

B. What is the intended land use?

The site is currently used as a roadway and the City of Toronto indicated it's intent to continue similar usage of the site. In the opinion of S&P, the land use of the roadway and road allowance in an industrial/commercial area should be considered industrial/commercial land use.

C. Is the soil coarse textured or fine textured?

The generic criteria for coarse textured material were applied to the site. The criteria for coarse textured material are more stringent than those that apply to medium/fine textured material.

In summary, the subject site was identified as non-sensitive and is supplied by municipal water. The texture of surficial soils encountered on site is considered to be coarse textured. Based on these considerations, the MOE Table B criteria for

industrial/commercial land use in a non-potable groundwater condition for coarse textured soils were used to evaluate the environmental quality of the surface soil (less than 1.5 m depth) and groundwater encountered at the site. The MOE Table D criteria for industrial/commercial land use in a non-potable groundwater condition for coarse textured soils were used to evaluate the environmental quality of the subsurface soil (greater than 1.5 m depth).

4. FINDINGS OF THE ASSESSMENT

4.1 General Physical Characteristics of Soil

The soil and groundwater conditions encountered in the boreholes and test pits are provided in the individual borehole logs and test logs in **Appendix A and B**, respectively. The following is a general description of the findings:

The boreholes and test pits encountered an extensive deposit of fill soil across the entire site. The fill deposit generally consists of three fill layers, an upper fill layer of sandy silt to gravely sand fill with organic matter (topsoil), a middle fill layer of sand to gravely sand fill and a lower fill layer of sandy silt to clayey silt fill. Ash, cinders, glass, steel, plastic, paper, reinforced concrete, concrete fragments, brick fragments, railway ties, wood, roots, grass and topsoil pockets were observed in samples of the fill taken from the boreholes and test pits. The thickness of the fill deposit varied from 0.8 m to more than 3.3 m. Hydrocarbon odours and black hydrocarbon staining was detected in samples of the fill from borehole BH605 and test pits TP1, TP2, TP6, TP7 and TP8. An unidentified organic type odour was detected in the fill at test pit TP6. An oily sheen was observed on fill samples from test pit TP2 and TP7. Free phase liquid hydrocarbons (free product) were observed in the fill at test pit TP7.

A stratum of native organic silt and peat was contacted below the fill at all of the borehole and test pit locations except test pits TP1, TP6 and TP8. This stratum consists of grey to dark grey and black sandy to clayey organic silt with interbedded lenses and layers of dark brown fibrous peat. Traces of grass and roots were observed in the organic silt indicating that this stratum was likely a surficial deposit prior to fill placement. The thickness of this stratum varies from 0.6 to 3.0 m. Hydrocarbon odours

and TP7 SA3) exceed the Table B criteria for TPH (gasoline/diesel) and TPH (heavy oil). All three of these samples exceed the Table B and Table D criteria for TPH (heavy oil). Further, that one of these samples (TP7 SA3) also exceeded the Table B criteria for Benzene, Toluene and Xylenes and the Table D criteria for TPH (gasoline/diesel) and Xylenes.

The results of the laboratory analysis of soil samples for BNEs (including PAHs) and PCBs are summarized in **Table 3**. The results of these analyses indicate that both of the soil samples analyzed (TP5 SA3 and TP7 SA3) exceed the Table B criteria for Benzo(a)pyrene. Further, that one of these samples (TP7 SA3) exceeds the Table B criteria for a total of 14 BNE compounds (including Benzo(a)pyrene) and this sample also exceeds the Table D criteria for a total of 12 BNE compounds (including Benzo(a)pyrene). PCBs were not detected in either of the samples submitted for laboratory analysis.

The results of the laboratory analyses of the soil samples for pH and metals are summarized in **Table 4**. The results of these analyses indicate that seven of the twelve soil samples analyzed (BH602 SS2, BH603 SS1, TP3 SA3, TP4 SA2, TP5 SA1, TP6 SA3 and TP7 SA2) exceed the Table B criteria for one or more metals including beryllium, chromium, copper, lead and zinc. Further, that one of these samples (TP3 SA3) also exceeded the Table D criterion for chromium (8,400 μ g/g vs. the Table D criterion of 5,000 μ g/g). Lead concentrations were found to vary from 97 to 12,200 μ g/g vs. the Table B criterion for lead of 1,000 μ g/g. It should be noted that there is no Table D criterion for lead.

Table 5 and 6 presents a summary of the results of the Regulation 347 leachate extraction (as amended by Reg. 558/00, in effect as April 1, 2001) and analysis of inorganics and VOCs. The results of these analyses indicate that the leachate from the soil sample from test pit TP7 (TP7 SA3) exceeds the Schedule 4 concentration for Benzene (0.538 mg/L vs. the criteria of 0.5 mg/L). The concentrations of inorganic parameters and other VOCs in the leachate met the Schedule 4 parameters in both of the samples submitted for analysis.

Groundwater

The results of the groundwater analyses for the pH and metals are summarized in **Table 7.** The results indicate that the concentrations of metals in the groundwater samples met the Table B criteria.

5. CONCLUSIONS AND RECOMMENDATIONS

Based on the results of this Soil and Groundwater Quality Assessment, S&P concluded the following:

- Visual and olfactory evidence of hydrocarbon and/or PAH impact was detected in the subsurface soil at 10 of the 14 sampling locations;
- The concentrations of metals (beryllium, chromium, copper, lead and zinc), benzene, toluene and xylenes and TPH (gasoline/diesel and heavy oils) exceeded the Table B criteria for industrial/commercial land use at eight of the sampling locations;
- The concentrations of chromium, xylenes and TPH (gasoline/diesel and heavy oils) exceeded the Table D criteria for industrial/commercial land use at four of the sampling locations;
- The results of the assessment indicate that the groundwater at the subject property meets the applicable MOE Guideline for metals; and
- The results of the Regulation 347 leachate extraction (as amended by Reg. 558/00, in effect as April 1, 2001) and analyses indicate that the hydrocarbon impacted fill soil contacted at test pit TP7 (TP7 SA3) should be classified as a hazardous waste for transportation and disposal purposes if removed from their current location.

It should be noted that there is no Table D criterion for lead impacted soil and as such, the Table B criterion of 1,000 μ g/g should be considered as an appropriate remediation criteria unless a Site Specific Risk Assessment is carried out.

Based on the result of the Soil & Groundwater Quality Assessment, consideration should be given to conducting a Site Specific Risk Assessment to develop appropriate remediation criteria and a remedial action plan for the redevelopment of the subject site. Further investigation is warranted to delineate the extent of any soil impairment present at the subject site in order to complete a Site Specific Risk Assessment.

6. LIMITATIONS

This assessment was conducted as per the terms of reference described in this report for the account of URS Cole Sherman. The findings of the boreholes and test pits are believed to be representative of the area of investigation and are based on facts and information determined by Shaheen & Peaker Limited during the execution of this project. Soil and groundwater conditions at locations other than the boreholes may vary from conditions encountered at the borehole locations. The findings in this report are limited to the environmental conditions on the site. This report was prepared for the exclusive use of URS Cole Sherman, the City of Toronto and their legal council. Any use which a Third Party makes of this report, or any reliance on decisions to be made based on it, are the responsibility of such Third Parties. Shaheen & Peaker Limited accepts no responsibility for damages, if any, suffered by any Third Party as a result of decisions made or actions based on this report.

SHAHEEN & PEAKER LIMITED

prepared by:

Sergiy N. Tchernikov, M.Sc. Hydrogeologist reviewed by:

> David J. Baigent, P.Eng Senior Project Manager

TABLES

TABLE 1: SUMMARY OF VOCS IN SOIL

Parameter	Table B	Table D	TP2-SA7	BH605-SS3
Parameter	I/C	I/C	(3.2-3.5m)	(1.5-2.1m)
Chloromethane	N/V	N/V	<	<
Vinyl Chloride	0.003	0.094	<	<
Bromomethane	0.061	4.5	<	<
Chloroethane	N/V	N/V	<	<
Trichlorofluoromethane	N/V	N/V	<	<
Dichloroethylene, 1,1-	0.0024	0.07	<	<
Acetone	3.8	3.8	<	<
Methylene chloride	140	740	<	<
(Dichloromethane)				
Dichloroethylene,Trans-1,2-	4.1	4.1	<	<
Methyl Tert Butyl Ether (MTBE)	120	410	<	<
Dichloroethane, 1,1-	22	390	<	<
Dichloroethylene, cis-1,2-	2.3	2.3	<	<
Methyl Ethyl Ketone (MEK)	38	38	<	<
Chloroform	0.79	11	<	<
Trichloroethane, 1,1,1-	26	34	<	<
Carbon Tetrachloride	0.10	3.3	<	<
Benzene	5.3	89	<	0.1
Dichloroethane, 1,2-	0.022	0.16	<	<
Trichloroethylene	1.1	3.9	<	<
Dichloropropane, 1,2-	0.019	0.23	<	<
Bromodichloromethane	25	90	<	<
Dichloropropene, 1,3-	0.0066	0.10	<	<
Methyl Isobutyl Ketone (MIBK)	658	69	<	<
Toluene	34	510	<	0.4
Trichloroethane, 1,1,2-	3.1	12	<	<
Tetrachloroethylene	0.45	0.45	<	<
Dibromochloromethane (Chlorodibromomethane)	18	67	<	<
Ethylene Dibromide (Dibromoethane, 1,2)	0.0056	0.038	<	<
Chlorobenzene	8.0	40	<	0.2
Tetrachloroethane, 1,1,1,2-	0.019	0.46	<	<
Ethylbenzene	290	2500	<	0.2
Xylenes	34	460	0.3	0.6
Stryene	1.2	16	<	<
Bromoform	14	19	<	<
Tetrachioroethane, 1,1,2,2-	0.037	0.22	<	<
Dichlorobenzene, 1,2- (o-DCB)	30	500	<	<
Dichlorobenzene, 1,3- (m-DCB)	30	500	<	<
Dichlorobenzene, 1,4- (p-DCB)	30	230	<	<

Units are in µg/g (ppm)
Table B & D, I/C = Surface and Subsurface Soil Criteria (respectively) for Industrial/Commercial land use for coarse textured soil in a non-potable groundwater condition, from MOE Guideline for Use at Contaminated Sites in Ontario, Revised on February 1997

N/V = No available criteria

< = less than method detection limit

TABLE 2: SUMMARY OF TPH AND BTEX IN SOIL

Parameter	Table B I/C	Table D I/C	BH601 SS5 (3.0-3.6m)	BH602 SS4 (2.25-2.85m)	TP5 SA3 (0.8-1.5m)	TP7 SA3 (1.2-1.9m)
TPH Gasoline Range (C5-C10)	1000	5000	31	<	100	3,200
TPH Diesel Range (C11-C24)			2,000	110	2,800	18,000
TPH Heavy Oil Range (C25-C50)	5000	5000	6,000	800	9,400	9,700
Benzene	5.3	89	0.03	<	<	18.4
Toluene	34	510	0.36	<	0.05	35.6
Ethylbenzene	290	2500	0.33	<	0.54	181
Xylenes	34	460	1.20	<	1.73	700

NOTES:

Units are in µg/g (ppm)

< = less than Method Detection Limit

Table B & D, I/C = Surface and Subsurface Soil Criteria (respectively) for Industrial/Commercial land use for coarse textured soil in a potable groundwater condition from MOE Guideline for Use at Contaminated Sites In Ontario, Revised on February 1997

Bold = Concentration exceeds Table B criteria

700 = Concentration exceeds Table D criteria

TABLE 3: SUMMARY OF BASE NEUTRAL EXTRACTABLES AND PCBs in Soil

Parameter	Table B I/C	Table D I/C	TP5 SA3 (0.8-1.5m)	TP7 SA3 (1.2-1.9m)
Total PCBs		N/V	<	<
Acenaphthene	1300	1300	2.9	51.2
Acenaphthylene	840	840	0.9	264
Anthracene	28	28	6.3	281
Benzo(a)anthracene	40	170	6.3	271
Benzo(a)pyrene	1.9	7.2	5.8	267
Benzo(b)fluoranthene	19	72	7.4	343
Benzo(g,h,i)perylene	40	53	1.3	35.3
Benzo(k)fluoranthene	19	37	3.3	150
Biphenyl, 1,1-	4.3	4.3	<	<
Bis (2-Chloroethyl)ether	0.66	0.66	<	<
Bis (2-Chloroisopropyl)ether	0.82	4.7	<	<
Bis (2-Ethylhexyl)phthalate	330	500	<	<
Chloroaniline, p-	1.3	1.3	<	<
Chrysene	19	72	8.4	243
Dibenzo(a,h)anthracene	1.9	7.2	<	12.0
Dichlorobenzene, 1,2-(o-DCB)	30	500	<	<
Dichlorobenzene, 1,3-(m-DCB)	30	500	<	<
Dichlorobenzene, 1,4-(p-DCB)	30	230	<	<
Dichlorobenzidine, 3,3'-	1.3	2.7	<	<
Diethyl Phthalate	0.71	0.71	<	<
Dimethyl Phthalate	0.7	0.7	<	<
Dinitrotoluene, 2,4-	1.8	6.6	<	<
Fluoranthene	40	840	16.3	923
Fluorene	350	350	4.0	379
Hexachlorobutadiene	0.38	4.3	<	<
Hexachloroethane	3.8	42	<	<
Hexachlorobenzene	0.76	2.8	<	<
Indeno(1,2,3-cd)pyrene	19	70	1.7	47.4
Methylnaphthalene, 1-*	280	1600*	4.3	198
Methylnaphthalene, 2-*	280	1600*	3.3	385
Naphthalene	40	1300	4.1	2140
Phenanthrene	40	150	21.8	1310
Pyrene	250	250	17.7	671
Trichlorobenzene, 1,2,4-	30	770	<	<

Units are in μg/g (ppm)

Table B & D, I/C = Surface and Subsurface Soil Criteria (respectively) for Industrial/Commercial land use for coarse textured soil in non-potable groundwater condition, from MOE Guideline for Use at Contaminated Sites in Ontario, Revised on February 1997.

N/V = No available criteria

Parameters with no Table B & D criteria not shown except PCBs (see Laboratory Certificates of Analysis)

< = less than method detection limit

^{*2-}methyl naphthalene soil criterion is applicable to 1-methyl naphthalene with the provision that if both are detected in the soil, the sum of the two concentrations cannot exceed the soil criterion.

Bold = Concentration exceeds Table B criteria

^{671 =} Concentration exceeds Table D criteria

TABLE 4: SUMMARY OF METAL SCAN AND PH IN SOIL (CONTINUED)

			TP2-	TP3-	TP4-	TP5-	TP6-
Parameter	Table B	Table D	SA2	SA3	SA2	SA1	SA3
	I/C	I/C	(0.35-	(0.4-	(0.4-	(0-0.5m)	(0.9-
			0.6m)	0.6m)	0.8m)		2.3m)
рH	5.0-9.0	5.0- 11.0	7.41	7.72	8.06	7.50	8.30
Aluminum (Al)	N/V	N/V	3080	5020	2070	4500	11500
Barium (Ba)	1500	4100	99	487	44	122	103
Beryllium (Be)	1.2	3.1	<0.2	0.2	<0.2	0.3	0.6
Cadmium (Cd)	12	41	0.8	8.2	1	6.2	0.6
Calcium (Ca)	N/V	N/V	58000	101000	91200	57500	46000
Chromium (Cr)	750	5000	28	8440	39	41	22
Cobalt (Co)	80	3400	3	3	3	3	7
Copper (Cu)	225	2500	42	201	44	143	269
Iron (Fe)	N/V	N/V	12400	19300	11200	10000	18900
Lead (Pb)	1000	N/V	378	12200	1970	2420	260
Magnesium (Mg)	N/V	N/V	6160	3460	3670	4520	7220
Manganese (Mn)	N/V	N/V	202	283	191	200	414
Molybdenum (Mo)	40	550	<3	4	<3	<3	<3
Nickel (Ni)	150	710	11	20	8	16	20
Phosphorus (P)	N/V	N/V	637	3090	627	971	885
Potassium (K)	N/V	N/V	476	379	551	762	1850
Silver (Ag)	40	240	<1	<1	1	<1	<1
Sodium (Na)	N/V	N/V	125	824	100	306	1370
Strontium (Sr)	N/V	N/V	81.6	279	120	85.6	78
Titanium (Ti)	N/V	N/V	151	116	148	167	287
Vanadium (V)	200	910	14	14	18	17	24
Zinc (Zn)	600	5000	286	1090	96	446	134

Units are in µg/g (ppm)

Table B & D, I/C = Surface and Subsurface Soil Criteria for Industrial/Commercial land use for coarse textured soil in a non-potable groundwater condition, from MOE Guideline for Use at Contaminated Sites in Ontario, Revised February 1997

N/V = No available criteria

Bold = Concentration exceeds Table B criteria

8440 = Concentration exceeds Table D criteria

TABLE 4: SUMMARY OF METAL SCAN AND PH IN SOIL (CONTINUED)

Parameter	Table B	Table D	TP7-SA2	TP8-SA2
- arameter	I/C	I/C	(0.8-1.2m)	(0.8-2.0m)
рH	5.0-9.0	5.0–11.0	7.76	7.24
Aluminum (Al)	N/V	N/V	15600	4380
Barium (Ba)	1500	4100	481	217
Beryllium (Be)	1.2	3.1	1.7	0.3
Cadmium (Cd)	12	41	1.6	5.6
Calcium (Ca)	N/V	N/V	38400	33500
Chromium (Cr)	750	5000	23	69
Cobalt (Co)	80	3400	7	4
Copper (Cu)	225	2500	208	167
Iron (Fe)	N/V	NV	66000	15600
Lead (Pb)	1000	N/V	97	431
Magnesium (Mg)	N/V	N/V	3330	2880
Manganese (Mn)	N/V	N/V	169	140
Molybdenum (Mo)	40	550	4	<3
Nickel (Ni)	150	710	35	22
Phosphorus (P)	N/V	N/V	691	2030
Potassium (K)	N/V	N/V	1490	460
Silver (Ag)	40	240	<1	<1
Sodium (Na)	N/V	N/V	1040	162
Strontium (Sr)	N/V	N/V	354	57
Titanium (Ti)	N/V	N/V	795	172
Vanadium (V)	200	910	42	12
Zinc (Zn)	600	5000	208	513

Units are in μg/g (ppm)

Table B & D, I/C = Surface and Subsurface Soil Criteria for Industrial/Commercial land use for coarse textured soil in a non-potable groundwater condition, from MOE Guideline for Use at Contaminated Sites in Ontario, Revised February 1997

N/V = No available criteria

Bold = Concentration exceeds Table B criteria

TABLE 5: SUMMARY OF REG. 347 ANALYSIS (INORGANIC) AS AMMENDED BY REG. 558/00 IN EFFECT AS OF APRIL 1, 2001

Parameter	Reg. 347 Schedule 4 Leachate Quality Criteria Non-Hazardous	TP7-SA3 (1.2-1.9m)	TP5-SA3 (0.7-1.5m)
Arsenic	2.5	<0.2	<0.2
Arsenie		\0.2	-0.2
Barium	100.0	0.9	0.9
Boron 500.0		<0.1	0.2
Cadmium 0.5		<0.05	<0.05
Chromium 5.0		<0.1	0.1
Cyanide	20.0	0.01	<0.01
Fluoride	150.0	0.2	0.2
Lead	5.0	0.6	<0.1
Mercury	0.1	<0.01	<0.01
Nitrate + Nitrite (as Nitrogen)		<0.2	<0.2
Selenium	1.0	<0.1	<0.1
Silver	5.0	<0.01	<0.01

NOTES:

Units are mg/L of Leachate (ppm)

Limits for non-hazardous waste are from Reg 347 (amended in October 2000). Hazardous waste will require registration, non-hazardous waste will not require registration. Note that this is only a portion of the Schedule 4 list of parameters.

TABLE 6: SUMMARY OF REG. 347 ANALYSIS (VOLATILE ORGANIC COMPOUNDS)
AS AMMENDED BY REG. 558/00 IN EFFECT AS OF APRIL 1, 2001

	Reg. 347 Schedule 4 Leachate Quality Criteria	TP7-SA3	TP5-SA3
Parameter	Non-Hazardous	(1.2-1.9m)	(0.7-1.5m)
Benzene	0.5	0.538	<
Carbon Tetrachloride	0.5	<	<
Chlorobenzene	8.0	<	<
Chloroform	10.0	<	<
1,2-dichlorobenzene 20.0		<	<
1,4-dichlorobenzene	0.5	<	<
1,2-dichloroethane	0.5	<	<
1,1-dichloroethylene	1.4	<	<
Methyl Ethyl Ketone	200.0	<	<
Methylene Chloride	5.0	<	<
Tetrachloroethylene 3.0		. <	<
Trichloroethylene	5.0	<	<
Vinyl Chloride	0.2	<	<

Units are in mg/L of Leachate (ppm)

<= not detected (less than Method Detection Limit)

Limits for non-hazardous waste are from Reg 347 (amended in October 2000). Hazardous waste will require registration, non-hazardous waste will not require registration.

Note that this is only a portion of the Schedule 4 list of parameters.

Bold = Exceeds Schedule 4 criteria

TABLE 7: SUMMARY OF METAL SCAN AND PH IN GROUNDWATER

Parameter	Table B Criteria	BH601	BH602	BH603	BH604	BH605
pН	N/V	6.86	7.09	6.91	6.84	6.61
Aluminum (Al)	N/V	23	<50	10	14	<5
Antimony (Sb)	16,000	<0.5	<0.5	1	<0.5	<0.5
Arsenic (As)	480	3	<20	3	6	<2
Barium (Ba)	23000	255	637	299	65	760
Beryllium (Be)	53	<1	<10	<1	<1	<1
Bismuth (Bi)	N/V	<1	<10	<1	<1	<1
Boron (B)	50,000	237	116	598	1550	233
Cadmium (Cd)	11	<0.1	<0.1	<0.1	0.1	<0.1
Calcium (Ca)	N/V	324000	381000	241000	106000	419000
Chromium (Cr)	2000	<5	<50	<5	<5	<5
Cobalt (Co)	100	15.5	13.3	7.8	8.8	11.5
Copper (Cu)	23	4.3	<5.0	0.9	2.2	<0.5
Iron (Fe)	N/V	200	900	70	370	37800
Lead (Pb)	32	0.7	<5.0	<0.5	<0.5	<0.5
Magnesium (Mg)	N/V	49600	166000	106000	28900	76100
Manganese (Mn)	N/V	1580	2050	1420	1310	2290
Mercury (Hg)	0.12	<0.05	<0.05	<0.05	<0.05	<0.05
Molybdenum (Mo)	7300	10	<10	15	16	7
Nickel (Ni)	1600	24	<10	10	12	5
Phosphorus (P)	N/V	<50	<500	<50	<50	<50
Potassium (K)	N/V	12.50	72.00	20.60	31.30	17.30
Selenium (Se)	50	<2	<20	<2	<2	<2
Silicon (Si)	N/V	11800	13700	7010	11100	18400
Silver (Ag)	1.2	<0.1	<1.0	<0.1	<0.1	<0.1
Sodium (Na)	N/V	80400	1510000	591000	127000	484000
Strontium (Sr)	N/V	1020	969	669	356	1340
Tin (Sn)	N/V	6	<10	2	<1	<1
Titanium (Ti)	NV	<5	<50	<5	<5	<5
Thallium (TI)	NV	0.022	<0.5	<0.05	<0.05	<0.05
Uranium (U)	NV	15.4	4.9	11.4	3.4	4.0
Vanadium (V)	200	2.1	<5.0	<5.0	0.6	<5.0
Zinc (Zn)	1100	23	<50	10	14	15

Units are in μg/L (ppb)

Table B criteria are nonpotable groundwater criteria contained in Table B of the "Guideline For Use At Contaminated Sites In Ontario", MOE, revised 1997.

N/V = no available criteria

DRAWINGS

Project: SP3201C URS Cole Sherman

APPENDIX A BOREHOLE LOGS

Pr	roject No.	<u>SP3201C</u> Lo	g of	ŀ	30 1	reh	ole	<u>B</u>]	H	<u> 500</u>		RE wing No		SED
Pi	roject:	Soil and Groundwater Qua	lity Ass	es	sme	nţ					s	heet No	o. <u>1</u>	_ of _1
Lo	ocation:	Gardiner Expressway Disn	nanting	, T	oron	to, On	tario							
D	ate Drilled: rill Type: atum:	July 11, 2001 Solid Stem Auger Geodetic	uger		Shelby	l) Value ic Cone Te	st	0 Z 0 Z		Natural Plastic Undrain	Moisture and Liqui ned Triaxi in at Failu	id Limit ial at	ding ————————————————————————————————————	□ × →
G W L	S Y M B O L	Soil Description	ELEV. m 76.34	DWPTH	Gilcai	20 4 Strength			MPa	25 Nati	50 5 ural Moist erg Limits	our Readin 00 7: ure Conter 5 (% Dry W	50 nt % (eight)	S Natural M Unit P Weight KN/m³
	matt	elly sand, some silt, with organic er, dark brown and grey, no ormal odour or stains	70.34	0	0				E 1.4 - 1.1.3 1.1.3 1.1.3 1.1.3 1.1.3 1.1.3			-! 4 ± i	4 5 1-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	sand fibro	ANIC SILT ly to clayey, lenses of dark brown us peat, grey to dark grey, moist, bnormal odour or stains	75.44	16	00mm! 	datel							7 (() 1 () 1 () 2 () 3 () 3 () 4 () 4 () 4 ()	
				2	0 4 4			-1	1-1-4 1-1-4 1-1-2 1-1-2 1-1-3 1-1-3 1-1-3 1-1-3			-4 + 1-1-	4 + 1-1: 4 +	
				1/6	Omm:									
_	, som	Y SAND e organic matter, dark grey to	73.04	3	0 + +	1	+ i - i - i + i + i + i + i + i + i + i	- + + ;- + - - + ;- + - - + ;- +	F:		-1-1 + -	-1 + + 1- -1 + + 1- -1 + + 1- -1 + + 1- -1 + + 1-	4 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	
-3-		ish brown, moist to wet, no ormal odour or stains	72.6	9 4	1				LU LU		11111		3 1 1.1 1 1 1 1 1	
10/01	_		_		9 7 +		F:77 F:77 F:77 F:77	-1-1 tr1 -1-1 tr1 -1-1 tr1	FID TITE FID FID FID	[[]]	- - - - - - - - - -	-14 +1	4 + 1-1	
T 05/	END	OF BOREHOLE	71.24	5	111	1 1 1 1 1	1111	11111	1 1	1111	1111	1111	1111	
LAGWGL02 SP3201C.GPJ LAGWGL02.GDT 05/10/01						1		6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						

S & P

Time	Water Level (m)	Depth to Cave (m)
At completion	3.65	

roject:	Soil and Groundwater Qua	lity Ass	es	smen	t					SI	heet No). <u>1</u>	_ 0	of _1
ocation:	Gardiner Expressway Disn	nanting,	, T	oronto	o, Ont	ario								
ate Drilled:	July 12, 2001 Hollow Stem Auger			SPT (N) Value U			Combustible Vapour Reading Natural Moisture Plastic and Liquid Limit				□ X ·	ı		
atum:	Geodetic Geodetic		-	Dynamic Shelby Tu Field Van	ıbe	•	□ ‡			ned Triaxi in at Failu ometer		⊕		
S>MBO	Soil Description	ELEV.	DEPTH	20 Shear S) 4(trength			MPa	2 Nat	50 50 ural Moisto perg Limits	our Readin 00 75 ure Conter i (% Dry W	50 nt %	M P L	Natur Unit Weigl
orga (d and gravel, some silt, with inic matter, brown and grey, damp loist, no abnormal odour or stains	76.71	0		0. 		0: - - -: - -: -: -: -:	2 		0 2	3 3	1	0/////////////////////////////////////	
_		_	1					7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7					VIIIIIII	
sand	GANIC SILT dy to clayey, grey to dark grey, es of dark brown fibrous peat,	74.91	5 2		+ + 1-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			+ + - + + - + + - - + - -			-1 + 1-1		VIIIIIII	
	st to wet, moderate hydrocarbon ur 3.3-3.6m, no stains			O	1001 1123 1123 1123 1123 1123 1123 1123								VIIIIIIII	
		_	3	O++-	4 +1-4 -	FI-1 + FI-1 + FI-1 + FI-1 + FI-1 +	-1 -1 + 11 -1 + 11 -1 + 11 -1 + 1-	+ + + + + + + + + + + + + + + + + + +	F1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	- 1-1 + F - 1-1 + F - 1-1 + F - 1-1 + F	-1 + -11 -	+ + - + + - + + - + + - + + -	VIIIIIIII	
	AYEY SILT	72.51	4	0				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					M	
trac	e sand and gravel, occassional d lenses, brown, grey below 5.2m, abnormal odour or stains				7 [] 7 [] 7 [] 7 [] 7 [] 7 [] 7 [] 8 []	FI 7 F	-1							
			9					1 LI.1 1 LI.1 1 LI.1 1 LI.1 1 LI.1		114. 114. 114.		- 4 k 1-1 - 1 k 1-1 - 1 k 1-1 - 1 k 1 1		
			6		1111			1 (1) 1 (1) 1 (1) 1 (1) 1 (1)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

Time	Water Level (m)	Depth to Cave (m)
At completion July 16, 2001	Dry 2.06	

Project No. SP3201C

Log of Borehole <u>BH602</u>

REVISED

										Dia	wing No	· –	
Project:	Soil and Groundwater Qual					****		-		S	heet No	o	1 of
_ocation:	Gardiner Expressway Dism	nanting,	To	oront	o, Or	tario							
Date Drilled: Drill Type: Datum:	July 12, 2001 Hollow Stem Auger Geodetic			Auger S SPT (N) Dynamik Shelby ¹ Field Va	Value Cone Te Tube	est	0 0	_	Natura Plastic Undrai % Stra	ustible Va al Moisture c and Liqu ined Triax ain at Faila rometer	id Limit ial at	- ⊢-	□ × → ⊕
S Y M BO	Soil Description	ELEV.	DEPTH		Strength			30 MPa	Na Atter	250 5 tural Moist berg Limit	our Readir 00 7: ure Conter s (% Dry W	50 nt %	NA NA
orga and	d and gravel, some slag, with inic mattler, pockets of clayey silt sandy silt, grey to dark grey, dampoist, no abnormal odour or stains	76.60	0	0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		.2 . 1	kapagaa kabada pataba aabada tabbi	10	20 3	0	10/////////////////////////////////////
ORC	- SANIC SILT	75.40	1	O 11				100					
lens	dy to clayey, grey to dark grey, es of dark brown fibrous peat, st to wet, hydrocarbon odour, no ns	75.05	2	→ + + + + + + + + + + + + + + + + + + +			-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	+ +-1-4 - 4 +-1-4 - 4 +-1-4 - 2 1-1-4	FITT	ىدادىدا ئىلىداد	-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	+ + 1- + + 1 + 1-1 + 1-1-	
				_						, Luit			
SIL' som grey	-		3	- 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1	- + + 1-1							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
som	ry SAND e organic matter, grey to dark n, moist to wet, no abnormal odour tains	73.10	4	-1-4 + 1 -1-3 + 1 -1 -1-3 + 1 -1-3 + 1 -1-3 + 1 -1-3 + 1 -1-3 + 1 -1-3 + 1 -1-3 + 1	1111	E144 L444 L444 L444 L444 L444 L444		. 1 E. 1 1 E E. 1 E E. 1 E E.				111	
					7 (; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		13						
			5	الماليا			14 L1-	- 4 F 1-4 - 4 F 1-4 - 1 E 1-4		-1-(-	1 - 4 - 6 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	. 1 L t	
									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			111	1 1 1
1.1 1 1		1	6	111	(7 F ()	0.03	1117	1111	111	T TVET		111	
		70.00		Þ. F	r area	rini	10.15	m maran		т (т. т. т. і	r mara	7 11	_ //J

Time	Water Level (m)	Depth to Cave (m)
At completion	4.40	
July 16, 2001	1.46	1
September 7, 2001	1.61	l
September 26, 2001	1.59	1
October 2, 2001	1.55	

Project:	Soil and Groundwater Qual	ity Ass	es	smen	t					S	Sheet N	o. <u>1</u>	_ 0	f <u>1</u>
Location:	Gardiner Expressway Dism	anting,	T	oronto	o, On	tario								
Date Drilled: Drill Type:	July 12, 2001 Hollow Stem Auger						0 0	•	Natura Plastic Undrai	I Moistur and Liqu ned Tria:	uid Limit xial at	ding 	×	
Datum:	Geodetic			Shelby T Field Var			ŧ s	1		in at Fail ometer	lure	4		
SY M BOL	Soil Description	ELEV. m 76.18	DEPTH	2 Shear S			0 8	0 MPa	Na Atter	50 ! tural Mois berg Limit	ture Conte ts (% Dry V	'50 nt %	MPL	Natura Unit Weigh
orgal grey abnot	and gravel, trace wood, with nic matter, pockets of clayey silt, to dark grey, moist to wet, no armal odour or stains SANIC SILT by to clayey, grey to dark grey, es of dark brown fibrous peat, wet, bnormal odour or stains YEY SILT e sand, brown to brownish grey, bnormal odour or stains	75.16	2	On the second se		C J L C J J C J J C J J C C		# 1 1 1 1 1 1 1 1 1 1						
				1:3 T () 1:3 T () 1:3 T () 1:3 T ()	0	7 (1) T	13 E C 13 E C 13 E C 13 E C	7 F (2)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		e are		

Time	Water Level (m)	Depth to Cave (m)
At completion	3.15	
July 16, 2001	0.95	
September 7, 2001	1.16	
September 26, 2001	1.04	
October 2, 2001	1.02	

Project No.	SP3201C L0	g of	ľ	sor	en	ote	R	H	<u>5U4</u>	-	RE' ving No.	VIS	}E	D
Project:	Soil and Groundwater Qua	lity Ass	es	smen	t					St	heet No.	_1_	of _	1
Location:	Gardiner Expressway Dism	nanting,	T	oronte	o, On	tario	 							
Date Drilled:	July 11, 2001	2001					⋈			stible Vap	our Readin	-	□ X	
Drill Type:	Hollow Stem Auger			SPT (N) Dynamic		st	0 🛭			and Liquid ed Triaxia			Ф	
Datum:	Geodetic			Shelby T Field Var			□ †		% Strain Penetro	n at Failu meter	ге	⊕		
s G Y		ELEV.	DEP			N Value			Combus 25		our Reading (ppm) 5	Natu M Un	
G M B C L	Soil Description	m 76.38	PTH 0	2 Shear S			0.:	MPa	Natu	ıral Moistu erg Limits	re Content % (% Dry Weig		Weight Weight	ght
FILL sand cond dark	PSOIL dy silt, some gravel, wood and crete, with organic matter, brown to common down, damp, no abnormal odour tains	76.28	0	<u> </u>		1-1-1-1 1-1-1-1 1-1-1-1 1-1-1-1 1-1-1-1						+ 1-1 1-1 1-	2 VIIIIIII	_
sand lens	GANIC SILT dy to clayey, grey to dark grey, ses of dark brown fibrous peat, st to wet, hydrocarbon odour, no ns	75.48 75.01	10	7 1 1 7 7 7 7 7 7 7	7 () () () () () () () () () (1						
			2	-!				# FI # 4 # FI # FI # FI # FI # FI # FI #					WILLIAM VIIIIMA VIIIMI	
grey odo	AYEY SILT ne to trace sand, brown to brownish y, grey below 6m, no abnormal ur or stains	72.48	4					1 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
		_	6									1144	,	
ENI	D OF BOREHOLE	69.78	\dagger	1111	1111	1 1 1 1	1:11	1 1 1 1 1 1 1 1	1111	1 1 1 1	1111			

Time	Water Level (m)	Depth to Cave (m)
At completion	3.05	
July 16, 2001	1.28	
September 7, 2001	1.52	
September 26, 2001	1. 3 8	
October 2, 2001	1.37	

Project:	Soil and Groundwater Qua	lity Ass	es	smer	nt					S	heet No	o. <u>1</u>	_	of <u>1</u>				
ocation:	Gardiner Expressway Dism	anting.	<u>, T</u>	oroni	o, On	tario												
Date Drilled:	July 11, 2001	ulv 11. 2001				ulv 11. 2001 Auger Sample ⊠							Combustible Vapour Reading Natural Moisture					
Orill Type:	Hollow Stem Auger		_	SPT (N) Dynamic	Value Cone Te	st	0 0	•		and Liqu ned Triax		⊢	-€)				
Datum:	Geodetic		_	Shelby Tield Va			□ • \$)		in at Faili ometer	ıre	4						
S Y M B O	Soil Description	ELEV.	DEP		20 4	N Value	0 8	0	2	50 5	our Readin 00 75 ure Conter	00	S A M P	Natura Unit				
L		m 75.98	H		Strength 0			MPa	Attert	berg Limit	s (% Dry W	eight)	LL	Weigh kN/m ³				
trace matt	ly silt to clayey silt, some gravel, e brick and wood, with organic er, grey to dark grey, damp to wet, _			0				1 1 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			4 4 6 5 A 1 (a) 1 1 (b) 1 2 5 5 4 1 5 5						
sligh	t hydrocarbon odour, no stains																	
	-	74.7	7	0		11111 121111 1211111 1211111	"	1111 1100 1100 1100 1100				1111 1111 1111 1111 1111						
				——————————————————————————————————————		F1-4 + F1-4 + F1-4 + F1-4 +	-1 1 + 1- -1 1 + 1- -1 1 + 1- -1 1 + 1-	4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	1-1-1-1 1-1-1-1-1 1-1-1-1-1 1-1-1-1-1	- 1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	-1 + 1 + 11 + 1 + 11 + 1 + 11 - 1 + 1 +	4 + 3-1 4 + 3-1 4 + 3-1 4 + 3-1						
	•		2	.+.i.1 .+.i.1 .1.1	J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	UUA UUA UUA UUA	_1_1		1 L i 2 L i 2 L i 1 L i 1 L i						
	GANIC SILT	73.28		0				1.14										
lense	ly to clayey, grey to brownish grey, es of dark brown fibrous peat, st to wet, no abnormal odour or is		1/6	00mm++	+ +	F:1T F:1T F:1T F:1T	787 (187 4 (187) -4 (187) -1 (188) -1 (188)	7 (1) (1) 7 (1) (1) 7 (1) (1) 7 (1) (1) 7 (1) (1) 7 (1) (1)	F 173 3 F 173 7 F 173 7 F 173 9 4	-1-4 + 1		T F f + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +						
	-			-1-4 # 1 -1-1 # 1 -1-1 # 1 -1-1 # 1	JILU.		11.1 L.L. 11.1 L.L.	2.00				4.4.4.4	7 11/1					
			45	Omm:	1100		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				- ! ! ! ! . ! . ! . ! . ! . ! . ! . ! .							
SILT		71.18				1131 1231 1111 1111 1111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 ((() () () () () () () () (-1-1-1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 F 17						
SILT —grey	Y SAND , wet, no abnormal odour or stains -			-1-4-4-4 -1-4-4-4 -1-4-4-4 -1-4-4-4	- 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1:1:1:1	- - + - - - + - - - + - - -	1 1 1-1 1 1 1-1	F			1 to 10 (-1 to 10 (-1 to 10) -1 to 10 (-1 to 10)						
				O: 1:		11.11		1111										
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 () ()	1 (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
				O T		1117 11117 11117	rand and rand and rand and	7		10171		1101						
¥ 1 1 1 1 1	•	69.38	1		1	100	1	1	L			1-77	111	.t				

Time	Water Level (m)	Depth to Cave (m)
At completion	1.70	
July 16, 2001	1.06	
September 7, 2001	1.15	
September 26, 2001	1.22	
October 2, 2001	1.21	<u> </u>

APPENDIX B TEST PIT LOGS

5		gof				_ -		_			ving No			
Project: Location:	Soil and Groundwater Qual Gardiner Expressway Dism					tario				SI	heet No). <u>1</u>	_ 01	
Date Drilled:	July 11, 2001 Rubber Tire Backhoe Geodetic	ariting,		Auger Sa SPT (N)	imple Value Cone Te ube		<u>⊗</u>		Natural Plastic Undrain	Moisture and Liqui ned Triaxi n at Failu	d Limit ial at	ing	□ × ↔	
SY M BOL	Soil Description	ELEV. m 76.39	DEPTH	2 Shear S	0 4 Strength	N Value	0 80	MPa	25 Nati	50 50 ural Moiste erg Limits	our Reading 00 75 ure Content (% Dry W	it %	M P L	Natur Unit Weigl
price moi gray moi gray moi con edg dep	dy silt, trace gravel, cinders, glass, k and concrete fragments, brown, st, no abnormal odour or stains vel, some sand and silt, grey, st, no abnormal odour or stains, vay ties at 0.5m depth d, some silt, trace gravel and brick ments, brown and dark brown, st, no abnormal odour or stains, crete pad at 2.7m depth at west e of test pit, railway ties at 2.3m th at east edge of test pit	73.89 73.49 73.19	2 2 3										多 多 多	

Time	Water Level (m)	Depth to Cave (m)
At completion	2.70	

Pr	oject No.	SP3201C Log	gof	Ί	e.	S	t P	it	. '	Γŀ	2	•							
Pr	oject:	Soil and Groundwater Qual	ity Asse	es:	sm	en	ıt								awing Sheet		1	0	f 1
Lo	cation:	Gardiner Expressway Dism						ıtar	io										
E×	ite Drilled cavated	t: July 11, 2001 By: Rubber Tire Backhoe Geodetic		-	SPT Dyna Shell	(N) mic by T	ample Value Cone To ube ne Test	est		2 0			Combus Natural Plastic Undrain % Strain	Moistu and Lic ed Tria n at Fa	ire quid Lim axial at iilure			□ × →	
e G	S Y M B O L	Soil Description	ELEV.	DEPTH	Sh		t0 Strength	N ∨ 40	alue 60			°a.	Combus 25 Nate Atterb	iO unal Moi	spour Re 500 isture Co ids (% D	750 Intent try Weig	*	SAMPLE	Natural Unit Weight
	Fisatisis as a significant of the state of t	LL and, some silt, brown, moist, no conormal odour or stains lty sand, trace wood, steel, glass, sh, cinders, plastic and brick agments, dark grey, moist, black ains, faint unidentified odour and, some silt, greenish grey, moist, o abnormal odour or stains Ity sand, trace wood, steel, glass, sh, cinders, gravel and brick agments, black, wet, hydrocarbon dour rganic silt, trace roots and grass, rey, wet, no abnormal odour or stains ity sand, trace gravel, steel, wood nd brick fragments, black, wet, oily heen and strong hydrocarbon odour EAT brous, dark brown, moist, no bnormal odour or stains IND OF TEST PIT IEST PIT WAS BACKFILLED IPON COMPLETION	76.47 76.12 75.87 74.97 73.87 73.67	0 1	Sh		Strength	0.1			0.2		Atterb	erg Lim	20	y Weige	and the second s	(3 (3 (3 (3 mmr	kN/m³
									4 4 1 1 1 7 2 7 6 6 6 6 1 4 6 1 1 6 2 1 1 4 5 1 4 5 1	6 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1				

S & P

Time	Water Level (m)	Depth to Cave (m)
At completion	2.80	
	1	

Project	No.	SP3201C L	og (of	T	Cest Pit	<u>T</u>	<u>P3</u>	.				
Project: Locatio		Soil and Groundwater C)		Drawing N	-	1_	of	1
Date Dr Excava Datum:	ted By:	July 11, 2001 Rubber Tire Backhoe Geodetic				Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Field Vane Test	<u>o</u>	⊠ □ •	Combustible Vapour Re Natural Moisture Plastic and Liquid Limit Undrained Triaxial at % Strain at Failure Penetrometer	ading -	>	□ × ⊕	
SY M BOL		Soil Description		ELEV. m	DEPTH	N Value 20 40 Shear Strength	је 60	80 MPa	Combustible Vapour Read 250 500 Natural Moisture Conl Atterberg Limits (% Dry	750 tent %	— <u> </u>	Na Na U	Jnit

	ş			р					N Value	;			T	Combus 25		our Readii	ng (ppm) 50	S A M	Natural
G W L	S> ¥ BO	Soil Description	ELEV. m	DEPTH			20 Stren	40)	60	80	MPa	+	Natu	ral Moist	ure Conte s (% Dry V	nt % Veight\	M _P	Unit Weight
Ĺ	L		76.21	Ĥ	Ľ	(real	Suen	O.	1		0.			10			30	101	Weight kN/m³
	<u></u>	TOPSOIL	76.06	Ĭ	1:	1 ((T T T	144	-;-;-		1			÷F]-:-:-		-:-:-	35	6	
	\bowtie	FILL silty sand, brown, moist, no abnormal	75.81		-	7 7 7	1			1.	-1-1-		Ė	1			1 1 1 1 1 1	6	
	\bowtie	ے odour or stains ۔			Ŀ	: : :	拦			1		-777	1		1111	1-2-2-2-2	1::-::	(Cr	
	₩	wood fibre, some sand and silt, dark	75.61		7	1 1 1 1 1 1 1 1 1		-;-;-	-			- C C T		3 3 - 1 - 2		-:	3355	3	
	\bowtie	\orangeish brown \sand, trace silt, brown	75.41		÷	 T T T	1:-		1111	1:			: 1	1			1:::::	М	
		_ORGANIC SILT		1	L	111	10			1		-777				1-1-1-1	11111	4	
	\vdash	trace roots, lenses of dark brown fibrous peat, moist to wet, no abnormal			1	+ + + +	155									1-1-1-1	1333		
		odour or stains			ŀ	111	1:-			1	-;-;-		:				177		
	[-]	-				777	1	111		1	1 1 1	111	:1					-	
	-					111	433						110					0	
					Ė	F 1 1	133							iditt			10000		
	┝═┤	<u> </u>	1	2	1	111	1:	-1.1	1111				+	1 1 1 1 1 1 1 1 1 1 1 1 1				-	
	 				[:	4 4 4	132	-1-1-		1			-	17777 444-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	1	1-1-1-1	1	-	
						111		-1-1-							1111				
			†		H	111		-1-1-			332.	- 1, 1, 1		13.1.1	1111			T	
					1:		:				-1-1-1-					1-1-1-1		m	
					H			:			777			1111				-	ļ
		- 	1	3		11.	1 -	-1-1-	- L L L		1.1.1.			1-1-1-1-	1111			-	
			72.91		1:	++-				: 1	-i-i-i-			-i-i-i-		1-1	1 -1 -1 -1	1	
		END OF TEST PIT			1						111								
		TEST PIT WAS BACKFILLED			1:						111			1 1 1 1					
		UPON COMPLETION				1 1		1 1 1			1 1 1			1 1 1 1					
						1 (111			1 1 1 1 1 1	1 1		1111					
						1 1			1:::		111	1::		1 1 1 1	1:::				ļ
						1 1			111										
						1 1													
						1 1		1 1 1			 								
								1 1 1										:	1
2								: : :	1:::			1::	: :						
3															1				1
								1 1 1			 								
3	1					1 1 1		1 1 1			 		1 1						
0.7070				1				111											
3																			
5						((1 1 1			1 1 1 1								
								1 1 1	1:::				1 1						
3132010.											1 1 1 1		1 (1::::					
- 1				1									11						
20													::						
								1 1 1			1111		::						

Time	Water Level (m)	Depth to Cave (m)
At completion	Dry	

								•	<u>TP</u>			Dra	wing N	lo.			
Project:	Soil and Groundwater Qua	ity Ass	es	sme	ent	t						8	Sheet N	lo.	_1	_ c	of _1_
Location:	Gardiner Expressway Dism	anting,	T	oro	ntc	o, On	tar	io									
Date Drilled				Auger SPT (Q		Natura	Moistur	spour Reare e uid Limit	ading	 	□ X ←	
Excavated	By: Rubber Tire Backhoe			Dyna Shelb		Cone Te	st					ned Tria in at Fai			⊕		
Datum:	Geodetic		_		-	e Test			• •		Penetr				•		
S Y M B O	Soil Description	ELEV.	DWATT		20 ear S	0 4	N V.	alue 60) 80) MPa	2	50	pour Read 500 sture Contr ts (% Dry	750		SAMPLES	Natural Unit Weight
si gr	ILL Ity sand, some topsoil with roots and rass, brown, damp, no abnormal dour or stains	76.22 75.82	0	11	: 1	0	.1	T T T T T T T T T T T T T T T T T T T	0.	2			20	30		š E	kN/m³
Si Si	and, some silt, brown, moist	75.42		- F F				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				- F T T T T T T T T T T T T T T T T T T				E	
W-a	inders, orangeish brown	74.72	1	11	1 2 2			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-		1 1 4		1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	en	
se le	RGANIC SILT ome clay, trace of grass and roots, enses of peat, dark grey, wet, no bnormal odour or stains				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1 1 1		en.	
tr	ILTY SAND ace of organic matter, grey, wet, no bnormal odour or stains	74.12	1	11	111									4 - 1 - 1	-1-1-1		
Y		73.5	52											1 1 1			7
E	ND OF TEST PIT	73.22	+	 	11		1	111	1111	1 1 1 1					111	†	1
	TEST PIT WAS BACKFILLED IPON COMPLETION							1 1 1						6			

S	ΔT	p
D	X	T

Time	Water Level (m)	Depth to Cave (m)
At completion	2.70	

Pı	ojec	t No.	SP3201C Log	g of	1	Γ	es	t	P	i	t į	<u>T</u>	<u>P</u>	<u>5</u>			D	raw	ing !	No.				
Pı	rojec	at:	Soil and Groundwater Qual	ity Ass	es	sr	ner	nt								_		Sh	eet !	No.	_	1_	of	1
Lo	ocati	on:	Gardiner Expressway Dism	anting	, T	or	ont	Ο,	On	ıta	rio													
E			July 11, 2001 y: Rubber Tire Backhoe Geodetic		-	SP Dy Sh	ger S PT (N) namk nelby *	Vai CC Tub	lue one Te e	est		0			Na Pla Un %	tural Istic a drain Straii	Mois and L ed Ti	ture iquid iaxia aiture			<u>-</u>	→ ⊕ •	_	
G W L	S Y M B O		Soil Description	ELEV.	DEP			20		N 40	Value 6	0	80			25 Natu	o Iral M	500 oistur	e Cor	750	%) AND LES	N	atural Unit
ľ	B C L		our becampain	m 76.36	H		Shear	Stre	-	0,1			0,2	MPa 2	^	tterb	ergLi O	mits (% Dr	We 30	ght)	E	k k	/eight N/m³
		∑ poc	L y sand, trace gravel, topsoil ckets, brown, damp, no abnormal our or stains	75.86			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.000	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 t	- F 1 :			1 1 1	5		2	
	\bigotimes		nd, trace silt	75.56			r ; 1		: 4 4 -1-1-1-				-;-	CCTT				1 1 -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	1 1 1 1 1 1 1 1 1 1 1 2 2 1 1	· k	7	
	<u>××</u>		GANIC SILT	75.50					-1-1-1			17			133						1-1-1		1	
		and	d grass, black, wet, slight drocarbon odour					1 1 1 1			- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	!-!- !-!- !-!-		c		- 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-(-;-;-; -(-;-;-;-;-;-;-;-;-;-;-;-;-;-;-	1			n	
							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-,-,-,			111	;-;- ;-;-		1 1 1 1				- - - - - - - - - - - - - -		111			
					2	2			1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1				1 - 1 - 1 - 1 - 1 - 1 - 1					1 - 1			1 4 1		m	
	-	_ _SIL	TY SAND	73.96		t	111	;	, -, - , - , , _ , _ , _ ,				-1-1-			-;-;-		411		[[3 3 3		\dashv	
		gre	ndy silt to silty sand, some clay, ey, moist to wet, no abnormal odour stains	72.26		1			- - - - - - - - -				-1-1-							· · · · · · · · · · · · · · · · · · ·			m	
		EN	ID OF TEST PIT	73.36	1	*							11		Ħ						Ħ		1	
TESTPIT SP3201C.GPJ LAGWGL02.GDT 25/07/01		TE	ST PIT WAS BACKFILLED ON COMPLETION				T		1				; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;					1 4 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		

~		_
S	&	P

Time	Water Level (m)	Depth to Cave (m)
At completion	Dry	
	1	

Project N	No. <u>SP3201C</u> Lo	g of	Τ	e:	st	P	i	t :	<u>T</u>	<u>'P</u>	6	ı			D		ing				
Project:	Soil and Groundwater Qua						_							_		Sh	eet	No	. <u>1</u>	_ '	of _1
Date Dri Excavate Datum:		manting,	-	Auger SPT (San N) V nic (y Tu	nple alue Cone Te		<u>rio</u>	<u>C</u>				Na Pla Un %	tural	Mois and I ed T n at I	iture Liquid riaxia Failur			ng 	×	
SYM BOL	Soil Description	ELEV. m 76.81	DEPTH	She	20 ar St	rength	N '	Value 60	0	80	MF	°a	Combustible Vapour Re 250 500 Natural Moisture Co Atterberg Limits (% D		0 ire Co (% Di	750		SAMPLES	Natur Unit Weig kN/m		
	FILL gravel and sand, some silt, brown, damp, no abnormal odour or stains	76.31	0			1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1	7		- 1 1 - 1 1 - 1 1 - 1 1		-1		1 3 1 1 3 7 7 7 7 1 3 7 7 7 7 1 3 7 7 7 7 7 7 4 7 7 7 7 7	en	X
	clayey silt, some sand, trace gravel, wood, ash, cinders, glass, bricks, concrete and reinforced concrete, brown, moderate unidentified odour,	75.91 	1									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						< 1			, , , , , , , , , , , , , , , , , , ,
	_no stains		2		1 1 1							1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4									
	dark grey, wet, hydrocarbon odour and pockets of black staining	74.51		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-1.5						6	
Y	_	73.7 73.51	1 3	- L L	1111	_{_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_		. <u>L L L</u>	1			. L L	7.7	-1-1-	- 1 -			. L L		-	
	END OF TEST PIT TEST PIT WAS BACKFILLED UPON COMPLETION																1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

S & P

Time	Water Level (m)	Depth to Cave (m)
At completion	3.10	

		•	g of						_				Dr	awing	No.			
Projec	ct:	Soil and Groundwater Qua	lity Ass	es	sm	ner	nt							Shee	t No.	_1	_ c	of <u>1</u>
Locati	ion:	Gardiner Expressway Disn	nanting,	<u>T</u>	ord	ont	o, On	taric	_			·····						
Data I	Drilled:	July 11, 2001		-	Aug	er S	ample			\boxtimes				/apour	Readir	ng	□ ×	
		: Rubber Tire Backhoe		SPT (N) Value O Dynamic Cone Test											—€)		
Datun	-	Geodetic		_	She	elby T	Tube ne Test					% Stra	ined III ain at Fa rometer	ailure		⊕)	
				_	rici	u va	ile rest			\$ 								
G M BO		Soil Description	ELEV.	DWP				N Valu 10	60 60	80		Na Na	50 tural Mo	apour Re 500 sisture C	750 ontent	%	SAMP	Natural Unit
r o			m 76.42	H	SI	hear	Strength	.1	. [0.1	MPa 2	Atter	berg Lin	20	Ory We	ight)	E S	Weight kN/m³
		sand, trace gravel, wood, paper, ers, concrete, brown, moist, no ormal odour or stains				1 1 3 L 1 2 F 1 3 L 1 1 F 1 3			1 - 7 - 1				F 5 7				ET.	
			75.62			, , , , , ,	1-1-1-1-	117	-	1-				4 1 - 1	1 1			
	black	k, strong hydrocarbon and entified odours				111	12-1-1-1			11-1-1- 11-1-1-							en.	
	XL	ey silt, trace gravel, wood, steel,	75.22	1	11. 11.	111			-	1 (1 7 -(-1-1- 2 -2 -1-1-	1111		+++	1-5		1 1 1 3 7 -, -, -, - 3 3 3 3 1	Ľ	
	💢 glass	s, black, wet, oily sheen, liquid se hydrocarbons (free product),				1 1 1 1 1 3 1 1 1	7777			77-1-(*) 111-1-1-		1 2 2 2 2 2		77-53	.[]	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	con.	
	stror	ng hydrocarbon odour	74.52			:	4-1-1-1									44-1-5		
$ \otimes$	silty	silty sand, black, oily sheen, strong hydrocarbon odour		2		111			1	1 2 2 1		1 1 1 1			- 1 1	1 - 1 - 1 - 1	-	
$ \otimes$	∑ nyar	ocarbon odour			1	+ + +			+ + + + + + + + + + + + + + + + + + + +			1 -1 -1 -1	-			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m	
$ \otimes$	X -		-			111		LLL	1	1 1 1 1	1111	1		-1-1	_ (1		\ - 	
		SANIC SILT	73.72			111				1-1-1-1		1				4 -1 -1 -1		
		es of fibrous peat, black, wet, ng hydrocarbon odour	-	3	1	111	1 - 1 - 1 - 1		1	1 1 1 1	- L 1. L 1 1 1 1 1 - L L L L	1 1 1 1			- L L .	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	<u>-</u>				1 + 12	111			+ -			144-	Щ; ; -}-				-	1
▼	-	2/ 0 4 N D	72.822.8	2	+	111			1	3-1-1-		1				1 1 1 1		
	som	Y SAND e silt, dark grey, wet, hydrocarbon			1 - 1 - 1	1111	1 -1 -1 -1		+ +	1-1-1-		0:		1111			m	
	END	OF TEST PIT	72.42	+	1	111		1111		1111					1 1 1	1 1 1 1	+	
		T PIT WAS BACKFILLED				1 1 1				1 1 1 1					2 1 1 1 1 1 1 1 1	1 1 1 1		
	UPC	ON COMPLETION			1	t t t		1 1 1		1 2 1 1	1 1 1 1	1 1 1			1 1 1	1 1 1 1		
_					1	1 1 1	1 1 1 1 1				1 1 1 1	1000		1 1 1	6 1 1 6 1 1 6 1 1	1 1 1 1		
2/08/0						1 1 1	1 1 1 1 1			1111	1 1 1 1	1 1 1		1 1 1 1 4 1 1 1 1	1 1 1	1 1 1 1		
2 103						11	1 1 1 1		1 1	1 1 1 1	1 1 1 1	1111			1 1 1			
GLUZ						1 1				1 1 1 1					1 1 1			
LAGN					1 1 1	1 1				1 1 1 1					1 1 1			
SP3201C, GPJ LAGWGL02, GDT 22/08/01															111			
93201(1 1									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
						1 1			1 1				1 1 1		1 1 1 1 1 1 1 1 1 1 1 1	1 1 1		
TESTPIT						::			1 1									

Time	Water Level (m)	Depth to Cave (m)
At completion	3.6	

Pr	oject I	No.	SP3201C Log	g of	7	[es	st]	Pi	it	•	Γ	P	8														
Pr	oject:		Soil and Groundwater Qual	ity Ass	es	sn	ner	nt										D		ring No leet No			of 1						
Lo	cation	ι:	Gardiner Expressway Dism																										
Ex	ate Dri ccavat atum:	ted By: Rubber Tire Backhoe			Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Field Vane Test								Combustible Vapour Rea Natural Moisture Plastic and Liquid Limit Undrained Triaxial at % Strain at Failure Penetrometer			1 Limit al at	x X A)										
e W L	S Y M B O L		Soil Description	ELEV.	DEPTH	1 5	Shear	20 Str	engt	40	N Val	ue 60	<u></u>	80	MP	a	25 Nati	50 ural M	50 loistu	ur Readir 0 7 ire Conte (% Dry V	50 nt %	SAMPLES	Natural Unit Weight kN/m³						
		plast fragn odou	sand, trace gravel, topsoil, steel, ic, reinforced concrete and brick nents, brown, moist, no abnormal r or stains	76.52	0		1			0				0.2				0 	20		30	S En							
			s, strong unidentified odour -	75.32	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		1		1																	(a)	
Ĭ		black hydro	v, wet, oily sheen, strong ocarbon odour		75.32 75.12	2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 4 -	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -							F T .			100		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
		or st		74.52	3	3		4 4 4		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1	3 3 .	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
		TES	OF TEST PIT T PIT WAS BACKFILLED IN COMPLETION							1 1 1 1 1 1 1 1 1 1		1																	

S	&	P
		_

Time	Water Level (m)	Depth to Cave (m)
At completion	2.2	

APPENDIX C

LABORATORY CERTIFICATES OF ANALYSES

Charte Geo-Carrada SERVICES

iject Reference: SP3201C

VOLATILE ORGANIC COMPOUNDS

Date:

18-Jul-01

Nork Order: 2156586

Vatrix: Soil

Units: micrograms/gram (ug/g) dry weight

Compound	EQL ug/g	TP2-SA7	TP2-SA7 Dup.	BH605-SS3
C loromethane	1.0	nd	nd	nd
Vinyl Chloride	0.5	nd	nd	nd
₽romomethane	1.0	nd	nd	nd
(loroethane	0.5	nd	nd	nd
inchlorofluoromethane	0.2	nd	nd	nd
Acetone	10.0	nd	nd	nd
1 -Dichloroethene	0.1	nd	nd	nd
Lichloromethane (Methylene Chloride)	0.5	nd	nd	nd
trans-1,2-Dichloroethene	0.1	nd	nd	nd
f sthyl-t-Butyl Ether	0.1	nd	nd	nd
' I-Dichloroethane	0.1	nd	nd	nd
Methyl Ethyl Ketone (MEK)	5.0	nd 	nd	nd
cin-1,2-Dichloroethene	0.1	nd	nd d	nd
(ıloroform 1,2-Dichloroethane	0.1 0.1	nd	nd d	nd - d
1.1,1-Trichloroethane	0.1	nd nd	nd nd	nd nd
(arbon Tetrachloride	0.1	nd	nd	nd nd
Lenzene	0.05	nd	nd	0.1
1,2-Dichloropropane	0.00	nd	nd	nd
ichloroethene (Trichloroethylene)	0.1	nd	nd	nd
omodichloromethane	0.1	nd	nd	nd
cis-1,3-Dichloropropene	0.1	nd	nd	nd
** ethyl Isobutyl Ketone (MIBK)	5.0	nd	nd	nd
ins-1,3-Dichloropropene	0.1	nd	nd	nd
1,1,2-Trichloroethane	0.1	nd	nd	nd
Toluene	0.1	nd	nd	0.4
Hexanone	5.0	nd	nd	nd
bromochloromethane	0.1	nd	nd	nd
1,2-Dibromoethane (Ethylene dibromide)	0.1	nd	nd	nd
trachloroethene (Perchloroethylene)	0.1	nd	nd	nd
1,1,2-Tetrachloroethane	0.1	nd	nd	nd
Chlorobenzene	0.1	nd	nd	0.2
hylbenzene	0.1	nd	nd	0.2
-Xylene & p-Xylene	0.1	0.3	0.6	0.5
Bromoform	0.1	nd	nd	nd
Styrene 13.3 Tetroopheroothene	0.1	nd d	rid d	nd t
1,2,2-Tetrachloroethane	0.1	nd	nd	nd 0.4
u-Xylene 1,3-Dichlorobenzene	0.1 0.1	nd nd	nd	0.1
4-Dichlorobenzene	0.1	nd nd	nd nd	nd nd
2-Dichlorobenzene	0.1	nd	nd	nd
Surrogate Standard Recoveries			IIu	IIG
ibromofluoromethane (70-130%)	(Control	1 Limits) 88%	88%	91%
oluene-d8 (70-130%)		98%	92%	96%
4-Bromofluorobenzene (70-130%)		96% 121%	92% 117%	121%
. 5.0110110010001100110 (70 10070)		12 1 70	111 70	12170

nt: Geo-Canada SERVICES

i ject Reference: SP3201C

Nork Order: 2156586

√1rix: Soil

VOLATILE ORGANIC COMPOUNDS

Date:

18-Jul-01

Units: micrograms/gram (ug/g) dry weight

		Method Blank			S	piked Met	hod Blank	
	EQL		Upper		. %	Lower	Upper	
Compound	ug/g	Result	Limit	Accept	Recovery	Limit	Limit	Accept
O promethane	1.0	nd	1.0	yes	103	60	140	yes
Vinyl Chloride	0.5	nd	0.5	yes	107	60	140	yes
3romomethane	1.0	nd	1.0	yes	98	60	140	yes
3 oroethane	0.5	nd	0.5	yes	127	60	140	yes
Tuchlorofluoromethane	0.2	nd	0.2	yes	91	60	140	yes
Acetone	10.0	nd	10.0	yes	66	60	140	yes
1 -Dichloroethene	0.1	nd	0.1	yes	91	70	130	yes
Chloromethane (Methylene Chloride)	0.5	nd	0.5	yes	80	70	130	yes
rans-1,2-Dichloroethene	0.1	nd	0.1	yes	92	70	130	yes
N thyl-t-Butyl Ether	0.1	nd	0.1	yes	87	70	130	yes
1 -Dichloroethane	0.1	nd	0.1	yes	92	70	130	yes
Methyl Ethyl Ketone (MEK)	5.0	nd	5.0	yes	71	60	140	yes
zin.1,2-Dichloroethene	0.1	nd	0.1	yes	92	70	130	yes
C loroform	0.1	nd	0.1	yes	92	70	130	yes
1,2-Dichloroethane	0.1	nd	0.1	yes	94	70	130	yes
1.1,1-Trichloroethane	0.1	nd	0.1	yes	91	70	130	yes
C rbon Tetrachloride	0.1	nd	0.1	yes	96	70	130	yes
Be∩zene	0.05	nd	0.05	yes	95	70	130	yes
1,2-Dichloropropane	0.1	nd	0.1	yes	94	70	130	yes
1 chloroethene (Trichloroethylene)	0.1	nd	0.1	yes	97	70	130	yes
E >modichloromethane	0.1	nd	0.1	yes	92	70	130	yes
cis-1,3-Dichloropropene	0.1	nd	0.1	yes	92	70	130	yes
N* thyl Isobutyl Ketone (MIBK)	5.0	nd	5.0	yes	96	60	140	yes
t ns-1,3-Dichloropropene	0.1	nd	0.1	yes	96	70	130	yes
1,1,2-Trichloroethane	0.1	nd	0.1	yes	99	70	130	yes
Toluene	0.1	nd	0.1	yes	99	70	130	yes
2 lexanone	5.0	nd	5.0	yes	93	60	140	yes
Lipromochloromethane	0.1	nd	0.1	yes	97	70	130	yes
1,2-Dibromoethane (Ethylene dibromide)	0.1	nd	0.1	yes	102	70	130	yes
1 trachloroethene (Perchloroethylene)	0.1	nd	0.1	yes	97	70	130	yes
1,1,2-Tetrachloroethane	0.1	nd	0.1	yes	94	70	130	yes
Chlorobenzene	0.1	nd	0.1	yes	98	70	130	yes
Finylbenzene	0.1	nd	0.1	yes	95	70	130	yes
r Xylene & p-Xylene	0.1	nd	0.1	yes	94	70	130	yes
Bromoform	0.1	nd	0.1	yes	102	70	130	yes
Styrene Styrene	0.1	nd	0.1	yes	97	70	130	yes
1,2,2-Tetrachloroethane	0.1	nd	0.1	yes	111	70	130	yes
o-Xylene	0.1	nd	0.1	yes	92	70	130	yes
1,3-Dichlorobenzene	0.1	nd	0.1	yes	98	70	130	yes
1-Dichlorobenzene	0.1	nd	0.1	yes	103	70	130	yes
2-Dichlorobenzene	0.1	nd	0.1	yes	103	70	130	yes
Surrogate Standard Recoveries	(Control			<i>y</i>	1			,
bromofluoromethane	(OUTION	99%	7 0 -130%	yes	97	70	130	yes
Nuene-d8		99%	70-130%	yes	98	70 70	130	yes
4-Bromofluorobenzene		99%	70-130%	yes yes	102	70 70	130	yes
. D. STRORIGO ODOTILORO		3370	10-100/0	703	1 102	70	130	y Co

Client: Geo-Canada

VOLATILE ORGANIC COMPOUNDS

Date: 18-Jul-01

Project Reference: SP3201C Work Order: 2156586

Matrix: Soil

Legend:

EQL = Estimated Quantitation Limit for undiluted samples

nd = Not Detected Above EQL

Dup. = Duplicate

* = Detected below EQL but passed compound identification criteria

Date of sample receipt: July 13, 2001
Date of sample analysis:July 17 & 18, 2001

Analytical Method:

Due to a level of petroleum hydrocarbon compounds beyond the appropriate range, the samples could not be analysed by the low level direct purge method. The samples were preextracted in methanol and the extracts analysed by high level purge & trap (US EPA Method 5035) gas chromatography/mass spectrometry using US EPA Method 8260B (modified).

Note: Estimated quantitation limit is the lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

NOTE: All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analysis done. Your samples will be retained by PAS for a period of 30 days following reporting or as per specific contractual arrangement.

Job Approved By:

Dinesh Rangarajan M.Sc.

Chemist

RECEIVED JUL \$ 1 2001

20-Jul-2001

7

οŧ Н

Copy: Page:

Attn: David Baigent Project: SP3201C

250 Galaxy Blvd. Etobicoke, ON

M9W 5R8

GEO-CANADA

Received: 13-Jul-2001 12:05

PO #: SP3201C

Final Status: Gamn] Ag רייט Job: 2156586

	ΩΙ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	Toluene HS-GC/PID ug/g	<0.02 0.36 <0.02 96.08		
	Benzene HS-GC/PID ug/g	<pre></pre>		
	TPH-Diesel GC/FID ug/g	110 2000 113 100%		
Les	TPH-Gas HS-GC/FID ug/g	<10 31 <10 100%	o-Xylene HS-GC/PID ug/g	<pre>< 0.02 0.61 < 0.02 < 0.02 94.0% 100.%</pre>
Soil Samples	TPH-Gas+Diesel Calc. ug/g	110 2000 < 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m-&p-Xylenes o-X HS-GC/PID HS-G ug/g ug	<pre>< 0.04 0.59 < 0.04 97.0% 100.%</pre>
	TPH-Heavy Oils T SM 5520F ug/g	800 6000 100 96%	Ethylbenzene m-8 HS-GC/PID HS	<pre><0.02 0.33 <0.02 98.0% 100.%</pre>
	Sample Id	BH602-SS4 BH601-SS5 Blank QC Standard (found) QC Standard (expected)	Sample Id	BH602-SS4 BH601-SS5 Blank QC Standard (found) QC Standard (expected)

20-Jul-2001

0 0

οŧ

Н

Copy: Page:

GEO-CANADA 250 Galaxy Blvd. Etobicoke, ON M9W 5R8 Attn: David Baigent Project: SP3201C

Received: 13-Jul-2001 12:05 PO #: SP3201C

Final

Status:

Job: 2156586

	Toluene HS-GC/PID ug/g	35.6 0.05 <0.02 96.0%		
	Benzene HS-GC/PID ug/g	18.4 < 0.02 < 0.02 108.%		
	TPH-Diesel GC/FID ug/g	18000 2800 2800 113% 100%		
les	TPH-Gas HS-GC/FID ug/g	3200 100 <10 100% 100%	o-Xylene HS-GC/PID ug/g	164. 0.89 <0.02 94.0% 100.%
Soil Samples	TPH-Gas+Diesel Calc. ug/g	21000 2900 <10	m-&p-Xylenes o- HS-GC/PID HS- ug/g	536. 0.84 <0.04 97.0%
	TPH-Heavy Oils SM 5520F ug/g	9700 9400 < 100 96% 100%	Ethylbenzene m- HS-GC/PID F ug/g	181. 0.54 <0.02 98.0% 100. %
	Sample Id	TP7-SA3 TP5-SA3 Blank QC Standard (found) QC Standard (expected)	Sample Id	TP7-SA3 TP5-SA3 Blank QC Standard (found) QC Standard (expected)

uient: Geo-Canada

Project Reference: SP3201C ork Order Number: 2156586B

atrix: Soil

BASE-NEUTRAL EXTRACTABLES

Date: 20-Jul-01

dum. oon		N	lethod Blank		Spike	d Method B	lank	
	EQL		Upper		%	Lower	Upper	
ompound	μg/g	Result	Limit	Accept	Recovery	Limit	Limit	Accept
bis(2-Chloroethyl)ether	0.1	nd	0.1	yes	68	31	110	yes
3-Dichlorobenzene	0.1	nd	0.1	yes	61	30	108	yes
4-Dichlorobenzene	0.1	nd	0.1	yes	63	31	108	yes
2-Dichlorobenzene	0.1	nd	0.1	yes	64	32	111	yes
bis(2-Chloroisopropyl)ether	0.1	nd	0.1	yes	79	36	126	yes
exachioroethane	0.1	nd	0.1	yes	75	28	106	yes
-Nitrosodi-n-Propylamine	0.1	nd	0.1	yes	78	38	118	yes
Nitrobenzene	0.1	nd	0.1	yes	65	35	112	yes
Isophorone	0.1	nd	0.1	yes	72	44	114	yes
is(2-Chloroethoxy)methane	0.1	nd	0.1	yes	70	41	116	yes
,2,4-Trichlorobenzene	0.1	nd	0.1	yes	64	31	113	yes
Naphthalene	0.1	nd	0.1	yes	67	36	110	yes
p-Chloroaniline	0.2	nd	0.2	yes	64	38	142	yes
lexa chl orobutadiene	0.1	nd	0.1	yes	61	32	112	yes
-Methylnaphthalene	0.1	nd	0.1	yes	62	42	107	yes
1-Methylnaphthalene	0.1	nd	0.1	yes	64	44	110	yes
Hexachlorocyclopentadiene	0.5	n d	0.5	yes	49	27	117	yes
-Chloronaphthalene	0.1	nd	0.1	yes	59	41	111	yes
Biphenyl	0.1	nd	0.1	yes	70 70	4 5	99	yes
Acenaphthylene	0.1	nd	0.1	yes	72	50	113	yes
Dimethyl Phthalate	0.2	nd	0.2	yes	69 77	55 56	112	yes
:,6-Dinitrotoluene	0.1	nd	0.1	yes	77	56	114	yes
. cenaphthene	0.1	nd	0.1	yes	64	49 50	105	yes
2,4-Dinitrotoluene	0.1	nd	0.1	yes	75 68	59 54	118 108	yes
Fluorene	0.1	nd	0.1	yes	68 66	54 56	100	yes
-Chlorophenyl Phenyl Ether	0.1	nd	0.1	yes	66 60	56 56	111	yes
Diethyl Phthalate	0.2	nd	0.2	yes	69 70	60	119	yes yes
N-Nitrosodiphenylamine	0.1	nd	0.1	yes	68	53	120	yes
1-Bromophenyl Phenyl Ether	0.1	nd	0.1	yes	69	49	124	yes
-lexachlorobenzene	0.1	nd	0.1 0.1	yes	69	55	112	yes
Phenanthrene	0.1	nd	0.1	yes	72	56	114	yes
Anthracene	0.1 0.2	nd	0.1	yes	71	52	123	yes
di-n-Butyl Phthalate	0.2	nd nd	0.2	yes	71	60	119	yes
Fluoranthene	0.1	nd	0.1	yes	74	54	122	yes
Pyrene	0.1	nd	0.1	yes yes	7 4 78	49	128	yes
Benzyl Butyl Phthalate 3enzo(a)anthracene	0.2	nd	0.1	yes	74	57	121	yes
Chrysene	0.1	nd	0.1	yes	72	57	120	yes
3,3'-Dichlorobenzidine	0.5	nd	0.5	yes	74	43	189	yes
bis(2-Ethylhexyl)phthalate	0.5	nd	0.5	yes	78	53	134	yes
di-n-octyl Phthalate	0.5	nd	0.5	yes	85	5 3	134	yes
Benzo(b)fluoranthene	0.1	nd	0.1	yes	79	56	124	yes
Benzo(k)fluoranthene	0.1	nd	0.1	yes	80	5 6	113	yes
Benzo(a)pyrene	0.1	nd	0.1	ýes	80	5 9	124	yes
indeno(1,2,3-cd)pyrene	0.1	nd	0.1	yes	60	53	137	y e s
Dibenzo(a,h)anthracene	0.1	nd	0.1	yes	63	55	135	yes
Benzo(ghi)perylene	0.1	nd	0.1	yes	58	5 8	129	yes
Surrogate Standard Recoveri	es:	•						
Nitrobenzene-d5		59%	20-111%	yes	66	20	111	yes
2-Fluorobiphenyl		66%	20-113%	yes	68	20	113	yes
Terphenyl-d14		67%	53-117%	yes	78	53	117	yes
. +		- · · ·	• • • •	•				-

BASE-NEUTRAL EXTRACTABLES

Date: 20-Jul-01

Client: Geo-Canada Project Reference: SP3201C

Work Order Number: 2156586B

Matrix: Soil

Legend: EQL = Estimated Quantitation Limit

Units = Micrograms per gram (µg/g) dry weight

nd = Not detected above EQL

DF = Dilution Factor

Date received: July 13, 2001 Date extracted: July 18, 2001 Date analysed: July 18 - 20, 2001

Analytical Method:

The soil samples (10 grams wet weight) were mixed with sodium sulfate and extracted with a 1:1 mixture of acetone:dichloromethane. Analysis was performed by gas chromatography/mass spectrometry using US EPA Method 8270C (modified).

Report Discussion:

Since some target compounds present were at a level above the calibration range of the instrument, the samples were run at a dilution factor to avoid exceeding the calibration range and to reduce the contamination to the equipment. The quantitation limits for these samples are higher than the EQL's for undiluted samples as indicated above. The amounts reported have been corrected for the dilution factors that were used.

(1) Recoveries for the flagged surrogates in the sample TPS5-sa3 were lower than typical. This is likely due to interfences during quantitation caused by elevated sample background.

Note: Estimated quantitation limit is the lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

NOTE: All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analysis done. Your samples will be retained by PAS for a period of 30 days following reporting or as per specific contractual arrangement.

Job Approved By:

Tasha Sutherland

Chemist

20-Jul-2001

of

Copy: Page:

250 Galaxy Blvd. Etobicoke, ON M9W 5R8 GEO-CANADA

Attn: David Baigent Project: SP3201C

Received: 13-Jul-2001 12:05 PO #: SP3201C

2156586							Status:	Final
			Soil Sar	Samples				
	на	Aq	Al	Ва	Ве	Ca	СĠ	GO
	SM 4500B	ICAP	ICAP	ICAP	ICAP	ICAP	ICAP	ICAP
Sample Id	pH Units	mdd	mad	mdd	mdd	mdd	mdd	mdd
	7,81	, ,	4	N	0.3	88800	<0.5	ß
•			4	ന	6.0	26200	•	4,
ı		· \	. 0	9	•	73400	•	4,
	7.57	, ,	11000	237	9.0	44300	0.8	7
BH004-334	•		99	7	4.0	53200	9.9	ហ
מוני מוני			0	σ	<0.2	58000	•	m
א כ ו		; , ,	0	487	0.2	101000	•	m
ı	•	ļ -	O	4		91200	•	ന
֓֞֝֞֜֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֡֓֓֡֓֡֓֡֡֓֡֓	. ת		(A)	N		57500	•	m
TRO-DAT	8.30	1,	7	103	9.0	46000	9.0	7
1 :	7		Φ	ω		38400	•	7
i			43	Н	•	33500	•	4
TP8=SAZ	• 1		V	· V		Ŋ	•	
ank	, -		74	Ŋ		99	•	28
Standard	, 0		. (4)	N		6210	•	25
VC Standard (expected) Repeat BH601-SS1	7.0	। ਜ ∨	5610	129	•	80	0.5	ហ

20-Jul-2001

of

Copy: Page:

GEO-CANADA 250 Galaxy Blvd. Etobicoke, ON M9W 5R8 Attn: David Baigent Project: SP3201C

Received: 13-Jul-2001 12:05

Job: 2156586

PO #: SP3201C

Final

Status:

			Soil Samples	mples				
	Cr ICAP	CAP TCAP	Fe ICAP	K ICAP	Mg ICAP	Mn ICAP	Mo ICAP	Na ICAP
Sample Id	wdd	wdd	mdd	mdd	mad	mdd	wdd	mdd
	30	83	21800	_	- α	Ŋ	^	322
מ ממ	1620	0	93	∞	₩	0	<3	\circ
DE002-224	128	376	86	∞	N	4	<3	ın
י מנ מנ	9 6	· 🛛	18	N	0	S	<3	0
ı	12.0	143	97	99	N	4	<3	\vdash
1 K	, « , «	4	12400	476	6160	202	~ 3	N
TPZ - SAZ	8440	201	93	-	せ	ω	4	\sim
TF5 - DAS	64.6	4	12	S	v	σ	~ 3	0
T.F.4 - D.A.2	, 4	4	00	9	ഥ	0	~	30
TFO-CAL	22	269	89	85	N	Н	~	_
	8 6	0	9	σ	ന	Ø	4	40
TF/ DAG	6	9	56	9	œ	4,	<3	യ
TF8=5A2	3 7	V	V	0	<20	^	<3	വ
Blank	, 4 Ι α		0	64	-	23	~	0
Standard (4 4 7 4		110	n	8060	1140	<3	ന
VC Standard (expected) Repeat BH601-SS1	28	80	22300	97			~	ന

20-Jul-2001

of

Copy: Page:

250 Galaxy Blvd. Etobicoke, ON M9W 5R8 GEO-CANADA

Attn: David Baigent Project: SP3201C

Received: 13-Jul-2001 12:05 PO #: SP3201C

Job: 2156586

Status:

	Zn ICAP	mdd	312	N	_	σ	ω	ω	1090	96	446	က	208	Н	~ 2	134	126	C	7
	V ICAP	mdd	24	16	18	31	21	14	14	18	17	24	42	12		45			
	ri ICAP	mdd	せ	ω	∞	\sim	0	S	116	4	9	7	σ	~		9		•	4,
ıples	Sr ICAP	mdd		114.	65.7		88.3	81.6	~	120.	5	78.0	354.			25.8	v	•	112.
Soil Samples	Pb ICAP	mdd	461	1300	5440	264	504	378	12200	σ	2420	ี	97	431	V 22	2.4	, ,	7 7	452
	P ICAP	mdd	648	445	1210	935	1640	637	3090	627	971	885	691	2030	<20	000	10	0 7 0	~
	N1 ICAP	mad							201			20							
		Sample Id	PHF01-881	מ מ מ	מ מ נ	4 1 2 2	ייייייייייייייייייייייייייייייייייייי	1 K	156-552 703-683) 4	154-552 705-631	エポラーフない	150-150-1 1107-150-1	17/25/2017 17/25/2017	150-556	T.		Standard	Repeat BH601-SS1

20-Jul-2001

5

Page: Copy:

ð

250 Galaxy Blvd. GEO-CANADA

NO Etobicoke, M9W 5R8 Attn: David Baigent

Received: 13-Jul-2001 12:05

Status:

Project: SP3201C

PO #: SP3201C

2156586 Job: Note: Sample TP7 SA3 was releached and re-analysed for Pb and Ba. Values obtained were 0.2 and 0.6 mg/L for Pb and 0.8 and 1.1 mg/L for Ba

professional standards using accepted testing methodologies and QA/QC Philip Analytical is limited in liability to the actual period of 30 days following reporting or as per specific contractual Your samples will be retained by PASC for cost of the pertinent analyses done unless otherwise agreed upon by All work recorded herein has been done in accordance with normal arrangement. arrangements. procedures. contractual

Job approved by:

Signed:

Mike Muneswar

Ménager, Environmental Inorganic Services

20-Jul-2001

oŧ Copy:

Page:

Received: 13-Jul-2001 12:05 PO #: SP3201C

Attn: David Baigent Project: SP3201C

GEO-CANADA 250 Galaxy Blvd. Etobicoke, ON M9W 5R8

Status:
Ø
2156586
Job:

Final

	B Ba ICP/MS ICP/MS mg/L mg/L	0.1 0.2 0.1 0.5 0.5 1.0 0.5	
	Se ICP/MS mg/L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	As ICP/MS mg/L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	U ICP/MS mg/L <0.01 <0.01 0.04 0.04
lch	HG ICP/MS mg/L	<pre></pre>	Ag ICP/MS mg/L <0.01 <0.01 0.03 0.03
TCLP Leach	Free CN- SM 4500I mg/L	0.01 0.01 0.06 0.06	Pb ICP/MS mg/L 0.6 <0.1 <0.1 0.5 0.5
	NO2+NO3-N COBAS mg/L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cr ICP/MS mg/L <0.1 <0.1 0.5 0.5
	F-] SM 4500F mg/L	00000	Cd ICP/MS mg/L <0.05 <0.05 <0.05 0.50 0.50
	Sample Id	TP7-SA3 TP5-SA3 Blank QC Standard (found) QC Standard (expected) Repeat TP7-SA3	Sample Id TP7-SA3 TP5-SA3 Blank QC Standard (found) QC Standard (expected) Repeat TP7-SA3

REGULATION 558 TCLP VOLATILE ORGANIC COMPOUNDS

Client:Geo-Canada

Project Reference: SP3201C

Work Order: 2156586 Matrix: TCLP Leachate

Legend: EQL = Estimated Quantitation Limit

nd = Not Detected Above EQL

Date of sample receipt: July 13, 2001 Date of TCLP Leach: July 17, 2001 Date of sample analysis: July 18, 2001

Analytical Method:

The samples were extracted using a Zero Headspace Extraction device as described in US EPA Method 1311 - Toxicity Characteristic Leaching Procedure (TCLP). The TCLP leachates were analysed by purge & trap gas chromatography/mass spectrometry according to US EPA Method 8260B.

Note: Estimated quantitation limit is the lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

NOTE: All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analysis done. Your samples will be retained by PAS for a period of 30 days following reporting or as per specific contractual arrangement.

Job Approved By:

Dinesh Rangarajan M.Sc.

Chemist

Date: 19-Jul-01

24-Jul-2001

1

GEO-CANADA 250 Galaxy Blvd. Etobicoke, ON M9W 5R8

Page: Copy: 2 of 2

Attn: David Baigent

Received: 23-Jul-2001 12:24

Project: SP3201C

PO #:

Job: 2156949

Status: Final

Ignitability:

Burning Rate Test

Tested sample was formed into a strip 250 mm long by 20 mm wide and 10 mm high. The flame was applied to one end of the strip and the timing was started. The flame was held there for 2 minutes.

Sample

Ignition Time (sec.) Burning Rate (mm/min.)

TP7-SA3

No Ignition

0

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done unless otherwise agreed upon by contractual arrangement. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.

Job approved by:

Signed:

Siebert, B.Sc.

Project Manager

ANALYTICAL SERVICES GEO-CANADA

MACCENTED JOLS 0 2001

23-Jul-2001

7

oŧ

Н Page: Copy:

250 Galaxy Blvd. Etobicoke, ON M9W 5R8

Attn: David Baigent Project: SP3201C

Received: 16-Jul-2001 16:39

PO #:

Final		
Status:		
	Revised Final Report	Water Samples
	0/00517 : 000	

As B Ba Be ICP/MS ICP/MS ICP/MS Mg/L mg/L mg/L	0.003 0.237 0.255 <0.001 <0.020 0.116 0.637 <0.010 0.003 0.598 0.299 <0.010 0.006 1.55 0.065 <0.001 <0.012 0.233 0.760 <0.001 0.512 0.755 0.502 <0.002 <0.005 <0.005 0.048 0.049 0.052	0.050 0.050 0.237 0.253
A1 ICP/MS mg/L	0.002 0.0050 0.0010 0.0014 0.005 0.005 0.005	1.00
AG ICP/MS mg/L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0030
Hg SW 7470 mg/L	A A A A A A A A A A A A A A A A A A A	0.00100
PH SM 4500B PH Units	66.7.6 66.7.6 66.9.9 7.6.1.1.6 7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	7.00
Sample Id	BH601 BH602 BH603 BH604 BH605 Sample+Spike (found) Sample+Spike (expected) Blank	<pre>QC Standard (expected) Denest RH601</pre>

analytical services

23-Jul-2001

0 0

Page: Copy:

οĘ

GEO-CANADA 250 Galaxy Blvd. Etobicoke, ON M9W 5R8

Received: 16-Jul-2001 16:39

Attn: David Baigent Project: SP3201C

PO #:

2156676 Job:

Revised Final Report

Water Samples

Final

Status:

Sample Id	Bi ICP/MS mg/L	Ca ICP/MS mg/L	Cd ICP/MS mg/L	CO ICP/MS mg/L	Cr ICP/MS mg/L	Cu ICP/MS mg/L	Fe ICP/MS mg/L	K ICP/MS mg/L
100 Ha	100.07	324	<0.0001	0.0155	<0.005	0.0042	0.20	12.5
TOSHE	0.00	38	<0.0010	0.0133	<0.050	<0.0050	06.0	72.0
5002 511602	70.01	241.	<0.0001	0.0078	<0.005	0.0009	0.07	20.6
Broos	100.07	106.	0.0001	0.0088	<0.005	0.0022	0.37	31.3
DAGO 4	100.07	419.	<0.0001	0.0115	<0.005	<0.0005	37.8	17.3
BROUD Gammle, Grite (felled)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	0.511	0.533	0.502	0.493	0.78	i [
sample+Spine (round)	1	f i	0.500	0.515	0.500	0.504	0.10	i i
מאיקט ויי	70.007	<0.5	<0.0001	<0.0001	<0.00>	<0.0005	<0.03	<0.1
Digits Of standard (folled)	0.051	7.7	0.0479	0.0485	0.048	0.0477	90.0	1.0
Ac Brandard (round)	0.050	0.5	0.0500	0.0500	0.050	0.0500	0.05	1.0
Kepeat BH601	<0.001	314.	<0.0001	0.0151	<0.005	0.0043	0.20	12.5

23-Jul-2001

m 0

οĘ

Page: Copy:

GEO-CANADA 250 Galaxy Blvd. Etobicoke, ON M9W 5R8 Received: 16-Jul-2001 16:39

Attn: David Baigent Project: SP3201C

2156676

Job:

PO #:

Revised Final Report

Water Samples

Final

Status:

Sample Id	Mg ICP/MS mg/L	Mn ICP/MS mg/L	MO ICP/MS mg/L	Na ICP/MS mg/L	Ni ICP/MS mg/L	P ICP/MS mg/L	Pb ICP/MS mg/L	Sb ICP/MS mg/L
10240	49.6	1.57	0.010	79.9	0.024	<0.05	0.0007	<0.0005
DAGOL	166.	2.05	<0.010	1510.	<0.010	<0.50	<0.0050	<0.0050
DEC 2	106.	1.42	0.015	591.	0.010	<0.05	<0.0005	0.0010
	28.9	1.31	0.016	127.	0.012	<0.05	<0.0005	<0.0005
	76.1	2.29	0.007	484.	0.005	<0.05	<0.0005	<0.0005
process (found)	48.7	2.04	0.549	1 1	0.527	1 1	0.508	0.554
sample+bpike (round)	4.07	2.07	0.510	1 1	0.524	!!	0.500	0.500
planterprive (experced)	10.00 V	<0.00	<0.001	<0.1	<0.001	<0.05	<0.0005	<0.0005
Digits Of Otenderd (found)	1.02		0.056	4.9	0.048	0.09	0.0485	0.0539
Of otendard (persotted)	00.1	0	0.050	5.0	0.050	0.10	0.0500	0.0500
Repeat BH601	49.0	1.58	0.010	80.4	0.023	<0.05	0.0007	<0.000>

00000

2002

23-Jul-2001

4 0

οŧ

Page: Copy:

GEO-CANADA 250 Galaxy Blvd. Etobicoke, ON M9W 5R8

Received: 16-Jul-2001 16:39

PO #:

Attn: David Baigent Project: SP3201C

1	7							Status:	Final
1000	0/00CT7 : 000		R	Revised Final Report	nal Repor	ι			
				Water Samples	ples				
		50 H70 M0	Si TOD/MG	Sn Tob/Ms	Sr TCP/MS	Ti ICP/MS	T1 ICP/MS	U ICP/MS	V ICP/MS
	Sample Id	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
100010		700	11.8	0.006	1.02	<0.005	0.00021	0.0154	0.0021
		020.07	13.7	<0.010	0.969	<0.050	<0.00050	0.0049	<0.0050
		<0.000	7.01	0.002	0.669	<0.005	<0.00005	0.0114	<0.0050
		<0.00	 H H H	<0.001	0.356	<0.005	<0.00005	0.0034	9000.0
D0004		<0.002	ω	<0.001	1.34	<0.005	<0.00005	0.0040	<0.0050
	BASOS Germal O. Smike (found)	0.488	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! !	1	0.524	0.531	0.532	0.510
Sampl	etapine (round)	004.0	1	! !	1	0.500	0.500	0.515	0.502
Sampl	e+phrve	70.00	<0.05	<0.001	<0.001	<0.005	<0.00005	<0.0001	<0.0005
מושלם	bidin Od otenderd (found)	0.045	0.12	0.053	0.047	0.050	0.0959	0.0498	0.0487
אר מיני מיני	Of Standard (Tound)	0.050	0.10	0.050	0.050	0.050	0.100	0.0500	0.0500
A C C C C C C C C C C C C C C C C C C C		<0.00	11.7	0.006	0.986	<0.005	0.00022	0.0149	0.0018
1) 111									

23-Jul-2001

5 2

of Copy:

Page:

Attn: David Baigent Project: SP3201C

250 Galaxy Blvd. Etobicoke, ON M9W 5R8

GEO-CANADA

ANALYFICAL SERVICES

Received: 16-Jul-2001 16:39

PO #:

Status:

Fina1

2156676 Job:

Revised Final Report

Water Samples

ICP/MS

mg/L Sample Id 0.023

<0.050

0.010 0.014 0.015 0.511

(found)

Sample+Spike Sample+Spike

BH605

BH602 BH603 BH604

BH601

Blank

<0.00>

(expected)

0.047 0.050 0.022

(expected)

QC Standard (found) QC Standard (expect Repeat BH601

23-Jul-2001

9 0

Page: Copy:

ξŌ

250 Galaxy Blvd. GEO-CANADA

Etobicoke, ON

M9W 5R8

Attn: David Baigent Project: SP3201C

2156676

Job:

Received: 16-Jul-2001 16:39

PO #:

Final Status:

> Sample BH602 was run for ICP/MS metals at an extra dilution due EQLs were adjusted accordingly. to matrix interference. Note:

professional standards using accepted testing methodologies and ${\sf QA/QC}$ contractual arrangement. Your samples will be retained by PASC for a Philip Analytical is limited in liability to the actual period of 30 days following reporting or as per specific contractual cost of the pertinent analyses done unless otherwise agreed upon by All work recorded herein has been done in accordance with normal arrangements. procedures.

Job approved by:

Signed:

Rallph Siebert, B.Sc.