

2016 Annual Report

March 31, 2017

2016 ANNUAL REPORT

EXECUTIVE SUMMARY

The Highland Creek Treatment Plant (HCTP) is one of four wastewater treatment facilities operated by the City of Toronto. This facility, located at 51 Beechgrove Drive has a rated capacity of 219,000 m³ per day and serves an equivalent population of approximately 533,000. The Highland Creek Treatment Plant discharges into Lak e Ontario and o perates under En vironmental Compliance Approval (Sewage) No. 8261-99EP4S, issued on October 28, 2015.

The average daily influent flow rate in 2016 was 161.7 ML/day. Influent concentrations of Biological Oxygen Demand (BOD₅), Total Phosphorus (TP) and Suspended Solids (SS) averaged 242 mg/L, 5.5 mg/L and 244.8 mg/L, respectively.

Highland Creek achieved the following effluent quality in 2016:

	ECA ¹	2016 Final Effluent
Suspended Solids (SS)	25 mg/L	14.6 mg/L
Carbonaceous Biological Oxygen Demand (CBOD ₅)	25 mg/L	6.7 mg/L
Total Phosphorus (TP)	1 mg/L	0.7 mg/L
Escherichia Coli (E. Coli)	200 CFU/100mL ³	53.2 CFU/100mL ³
pH	6.0-9.5	6.5
Total Residual Chlorine (Dechlorination)	0.02 mg/L	0.007
SS Loading Rate	5,475 kg/day	2,368 kg/day
CBOD ₅ Loading Rate	5,475 kg/day	1,077 kg/day
TP Loading Rate	219 kg/day	117 kg/day

¹ Referenced from ECA No. 8261-99EP4S, issued on October 28, 2015.

² Geometric Mean

³The arithmetic mean of the monthly geometric mean values.

During 2016, the sludge feed flow to the dewatering centrifuges averaged 1,924m³/day which resulted in 43.1dry tonnes of dewatered solids being genenerated per day.

The plant continued with numerous capital projects. Notable projects included: Biosolids Treatment Upgrades, Headworks and Odour Control Upgrades.

In 2016, polymer consumption for Waste Activated Sludge Thickening and Sludge Dewatering totalled 404 tonnes. Ferrous chloride consumption was 669 tonnes as Fe. Sodi um hypochlorite consumption for effluent d isinfection totalled 2218 m³. Sodium Bisulphate (SBS) consum ption for effluent dechlorination t otalled 433 m³. Total annu al consumption for p otable water, hy dro, and natural gas was 2,649m³, 32.7M kWh, and 7.4M m³, respectively.

The plant operating costs for 2016 totalled \$19.6M. In 2016, the Highland Creek Treatment Plant had 67 full time employees on its establishment. There were 25.5 days lost due to work related injuries.

DI TORONTO Water

HIGHLAND CREEK WASTEWATER TREATMENT PLANT

2016 ANNUAL REPORT

Table of Contents

E	XECUT	IVE SUMMARY	i
1.	INT	RODUCTION	1
2.	OPI	ERATIONS	2
	2.1	Influent	
	2.2	Preliminary Treatment	
	2.3	Primary Treatment	
	2.4	Secondary Treatment	
	2.5	Final Effluent Quality, Disinfection & Dechlorination	
	2.6	Bypasses, Spills and Abnormal Events	
	2.7	Solids Handling	
	2.8	Solids Management	
	2.9 2.10	Complaints	
	2.10	Effluent Suspended Solids Compliance – Action Plan Status 1 Biosolids Master Plan	
	2.10		
	2.10		
	2.10	e	
3.	CA	PITAL PROJECTS & STUDIES	8
4.	MA	INTENANCE	9
	4.1	Flow Meter Calibration Record	Q
	4.2	Solids Handling (Work Area 1)	
	4.3	Liquids Handling (Work Area 2)	
	4.4	Plant Services 1 (Work Area 3)	
	4.5	Plant Services 2 (Work Area 4)	
5.	СН	EMICALS AND UTILITIES	11
	5.1	Chemicals	11
	5.1.	Polymer for WAS Thickening and Biosolids Dewatering	11
	5.1.2		
	5.1.3	$\mathcal{J}_{\mathbf{I}}$	
	5.1.4	1	
	5.2	Utilities	
	5.2.		
	5.2.2	5	
	5.2.3	Natural Gas	12
6.	OPI	ERATIONS AND MAINTENANCE COSTS	13
7.	HU	MAN RESOURCES	14
	7.1	Staffing	
	7.2	Occupational Health & Safety	
	7.3	Staff Training & Development.	
	7.4	Utility Operator Certification	
	7.5	MOECC/MOL Correspondence	

2016 ANNUAL REPORT

APPENDICES

APPENDIX A - Glossary of Abbreviations APPENDIX B – Plant Schematic APPENDIX C – Performance Charts:

- Influent Flows
- Influent SS & BOD₅ Concentrations
- Influent TKN & Total Phosphorous Concentrations
- Effluent SS & CBOD₅ Concentrations
- Effluent Total Phosphorous
- Effluent TKN & Ammonia Concentrations
- Effluent Nitrate + Nitrite Concentrations
- Effluent Total Residual Chlorine
- Effluent E. Coli
- Effluent pH
- Effluent Temperature

APPENDIX D – Influent and Effluent Metal Concentrations APPENDIX E – Analytical Testing Summary APPENDIX F – Influent Flow Meter Calibration Records APPENDIX G – Effluent Suspended Solids Action Plan Correspondence

LIST OF TABLES

Table 1: Influent Parameters	2
Table 2: Primary Treatment Effluent Parameters	3
Table 3: Secondary Treatment Process Parameters	3
Table 4: Annual Average Final Effluent Parameter Limits and Performance	4
Table 5: Monthly Average Final Effluent Parameter Limits and Performance	4
Table 6: Annual Average Secondary Treatment Effluent Limits, Objectives and Performan	ce
Summary	4
Table 7: Solids Handling Process Parameters	5
Table 8: Monthly Utility Consumption for 2014 - 2016	12
Table 9: Operations and Maintenance Costs, 2015 - 2016	13
Table 10: Plant Staffing	14
Table 11: Wastewater Treatment Certificates	16

2016 ANNUAL REPORT

1. INTRODUCTION

The Highland Creek Treat ment Plant is one of f our wastewater treatment facilities operated by the City of Toronto under the responsibility of the Wastewater Treatment section of Toronto Water. The facility is loc ated at 51 Beechgrove Drive, south of Lawrence Avenue East and services an area bounded by Steeles Avenue on the north, Victoria Park Avenue on the west, the Rouge River on the east and Lake Ontario on the south. This area contains an estimated connected population of 533,000. The Highland Creek Treatment Plant has a rated capacity of 219,000 m³ per day.

Major treatment processes include preliminary treatment, primary treatment, secondary treatment, phosphorus removal with ferrous chloride, final effluent disinfection using sodium hypochlorite, and final effluent dechlorinati on using sodium bisulphite. Solids handling processes include sludge stabilization by anaerobic digestion followed by dewatering using high spe ed centrifuges. Two multiple hearth incinerators (norm ally one dut y and one standby) are used for r the disposal of the dewatered biosolids. Numerous auxiliary systems are required for the proper operation of plant processes and include potable water, process water, HVAC, electrical power distribution, natural gas, and instrument air.

The Ministry of the Environm ent and Climate Change (MOECC) has classified the Highland Creek Treatment Plant as a Class IV wastewater treatment facility under Regulation 129/04. The facility operates under Environmental Compliance Approval (Sewage) No. 8261-99EP4S, issued on October 28, 2015.

This report is a summary of plant ope rations and performance in 2016. Highlights of the report include a discussion of effluent quality and summaries of process operations, maintenance, chemical and utility consumption, operational costs and human resources.

2016 ANNUAL REPORT

2. OPERATIONS

2.1 Influent

Wastewater flows to the plant via a common sewer in which the flows from the Morningside Sanitary Trunk Sewer and Highland Creek Sanitary Trunk Sewer systems join. The plant experienced a 1.90% decrease in the daily average influent flow from 2015 to 2016.

A summary of annual flow and influent parameter concentrations for the past three years is shown in Table 1. A comparison of monthly influent flow rates and characteristics for 2016 is illust rated in Appendix C.

Parameter	2016	2015	2014					
Influent Flow [ML/day]	161.8	164.9	170.6					
Total Annual Flow [ML]	59,200	60,208	62,242					
Influent SS [mg/L]	244.8	212.1	247.6					
Influent BOD ₅ [mg/L]	242.2	234.0	232.1					
Influent TP [mg/L]	5.5	5.0	4.9					

Table 1: Influent Parameters

Influent concentrations for eleven (11) select metals have been included in Appendix D and presented against the sewer Bylaw limits for comparison purposes only.

2.2 **Preliminary Treatment**

Raw wastewater enters the Headworks which provides grit and screenings re moval operations. Ferrous chloride is added to the wastewater fo r phosphorous removal. There are five aerated grit channels (18 m x 4.0 m x 4.0 m), each having a Peak Flow Rate of $104,800 \text{ m}^3/\text{day}$, for the removal of grit and inorganic material from the wastewater flow. There are also five clim ber-type bar screens with bars spaced 1.25 cm apart to remove rags and large pieces of debris from the wastew ater. The grit and screenings are hauled to a sanitary landfill site.

The quantity of grit and screenings removed by the aerated grit channels and mechanical bar screens averaged 2.4 tonnes per day in 2016.

2.3 **Primary Treatment**

The next step in the treat ment process is Primary Settling or Clarification where the flow velocity is reduced through the Primary Clarification Tanks a llowing the heavier solids in the wastewater to settle to the bottom. Sludge collectors in the tanks sweep the settled sludge (prim ary sludge or raw sludge) into sludge hoppers located on the bottom of the tank at one end, from where it is pumped for further treatment. There are 12 Prim ary Clarification Tanks: four rectangular tanks (48.4 m x 28.4 m x 3.7 m) in the New Section (Phase 1 and 4), each having a Peak Flow Rate of 82,470 m³/day and eight square tanks (18.3 m x 18.3 m x 3.4 m) in the Old Section, each h aving a Peak Flow Rate of 20,090 m³/day.

Table 2 contains a summary of key primary treatment effluent parameter concentrations and their respective removal efficiencies in 2016 and 2015.

2016 ANNUAL REPORT

Parameter	2016	Primary Removal Efficiency	2015	Primary Removal Efficiency
SS [mg/L]	151	37%	171	19%
BOD ₅ [mg/L]	178	27%1	170	27% ²

Table 2: Primary Treatment Effluent Parameters

¹ In 2016, Primary Effluent BOD₅ was measured and used to calculate the Primary Removal Efficiency.

² In 2015, Primary Removal Efficiency was calculated using Primary Effluent CBOD₅ and Influent BOD₅.

2.4 Secondary Treatment

In Secondary Treatment, Return Activated Sludge f rom the final clarification tanks is m ixed with primary effluent and treated through a conventional, suspended biomass activated sludge process which occurs in the Aeration Tanks. The activated sludge is made up of micro-organisms which are a natural part of wa stewater. In the pre sence of oxy gen, these micro-organisms break down organic solids in the wastewater. Air is supplied to the Aeration Tanks through 1 2 electrically driven blowers. There are a total of 16 Aer ation Tanks each equipped with ceramic fine bubble do me diffusers¹: eight rectangular tanks (36. 0 m x 17.6 m x 4.57 m) in the Old Section and eight circular tanks (22.86 m in diameter and 9.14 m in depth) in the New Section.

The mixed liquor from the Aeration Tanks flows to large quiescent Final Clarification Tanks where the Activated Sludge is al lowed to settle. A controlled quantity of this sludge is returned to the Aeration Tanks in or der to maintain a sufficient sludge concentration. The excess is removed as Waste Activated Sludge (WAS) which is thickened by high speed centrifuges. There are 16 Final Clarification Tanks: eight square tanks (18.3 m x 18.3 m x 3.35 m) in the Old S ection, each having a Peak Flow rate of 16,0 50 m³/day, and eight square tanks (35.0 m x 35.0 m x 3.7 m) in the New Section, each having a Peak Flow Rate of 61,250 m³/day.

A summary of key aeration basin parameters for 2015 to 2016 are shown in Table 3.

Parameter	2016	2015
Aeration Loading [kg BOD ₅ /m ³ ·d]	0.54	0.53 ²
Mixed Liquor Suspended Solids [mg/L]	2736	3,243

2.5 Final Effluent Quality, Disinfection & Dechlorination

Sodium Hypochlorite is used to disinfect the fina l effluent and Sodium Bisulphite is used as the dechlorination agent pri or to discharging into Lake Ontario. The plant outfall is equipped with a number of diffusers and extends approximately 1000 m into the lake from the shore.

In 2016, the Highland Creek Treatment Plant con tinued to produce a high quality effluent which surpassed requirements of the plant's Environmental Compliance Approval (Sewage). The plant also met Federal Government effluent monitoring requirements, including un-ionized ammonia and acute toxicity. A summary of key final effluent parameters for 2015 and 2016 is shown in Table 4. Details of the plant's final effluent characteristics are presented in graphical form in Appendix C.

¹ With exception of the first 2 sections of Aeration Tank 8.

² A correction has been made to the 2015 Aeration Loading value. Note that the unit is $[kg CBOD_5/m^3 d]$.

2016 ANNUAL REPORT

Parameter	ECA Limit ¹	2016	Removal Efficiency	2015	Removal Efficiency
SS [mg/L]	25	14.6	94%	17.4	92%
CBOD ₅ [mg/L]	25	6.7	97% ²	6.2	97% ²
pH	6-9.5	6.5	-	6.5	-
SS Loading Rate [kg/day]	5,475	2368	-	2877	-
CBOD ₅ Loading Rate	5,475	1077		1025	
[kg/day] TP Loading Rate [kg/day]	219	117	-	115	-
Total Residual Chlorine [mg/L] (Dechlorination)	0.02	0.007	-	Bisulphite Presence 0.006 Detected ³	-

Table 4: Annual Average Final Effluent Parameter Limits and Performance

¹Referenced from ECA No. 8261-99EP4S, issued on October 28, 2015.

²CBOD₅ Removal efficiency is calculated by assuming influent CBOD₅ = 0.8 x influent BOD₅.

³ The presence of Bisulphite indicates a Total Residual Chlorine of 0.0 mg/L. This was the case from January – March 2015. Subsequently, the Total Residual Chlorine was measured directly.

Table 5: Monthly Average Final Effluent Parameter Limits and Performance

Parameter	ECA Limit ¹	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec
TP [mg/L]	1.0	0.73	0.72	0.59	0.67	0.69	0.83	0.69	0.90	0.68	0.82	0.65	0.73
Escherichia Coli ² [CFU/100mL]	200	96	6	5	17	61	30	61	35	130	68	88	41

¹ Referenced from ECA No. 8261-99EP4S, issued on October 28, 2015.

² Geometric Mean

Table 6: Annual Average Secondary Treatment Effluent Limits, Objectives and Performance Summary

Parameter	ECA Limit	ECA Objective ¹	2016
SS [mg/L]	25.0	15.0	14.6
CBOD ₅ [mg/L]	25.0	15.0	6.7
TP [mg/L]	1.0	0.9	0.7
TRC [mg/L]	0.02	non-detect	0.007
<i>E. Coli</i> [CFU/100 mL]	200	150	53 ²
pH	6.0-9.5	6.5-8.5	6.5

¹ Referenced from ECA No. 8261-99EP4S, issued on October 28, 2015.

² Arithmetic mean of the monthly geometric mean values.

Final effluent concentrations of eleven (11) select heavy metals have been included in Appendix D.

2.6 Bypasses, Spills and Abnormal Events

There were no bypass events to report in 2016.

Two spills of raw sewage from the Headhouse were reported on J uly 4th and July 15th. The volume was estimated to be less than 1 m³ and was contained on site. The raw sewage was cleaned up along with the affected areas and equipment. Grit classifier operations and drainage system were modified to prevent similar discharges.

2016 ANNUAL REPORT

2.7 Solids Handling

Solids handling and disposal at the Highland Creek Treatment Plant trea ts all prim ary sludge, thickened waste activated sludge (TWAS) as well as scum from the primary and secondary clarifiers. The treatment is performed in the following process areas: anaerobic digestion, intermediate blending and storage, dewatering, incineration and ash handling.

In 2016, anaerobic digestion of pr imary sludge and TWAS was not performed to facilitate cleaning and rehabilitation of the digesters. However, the normal process consists of a digester control building and four primary digesters each measuring 33.5 m in diameter and 7.6 m in depth for a volum e of 6,500 m³ each. This process also accomplishes the following:

- Generation of methane ga s, which can be u sed by the plant for process and space heating requirements.
- Reduction in solids volume
- Pathogen destruction
- Sludge odour mitigation

On average, $3,519 \text{ m}^3/\text{day}$ of WAS was thickened with high speed centrifuges. The WAS contained an average SS concentration of 6,126 mg/L. The TWAS contained an average TS concentration of 3.8%. An average of $1,090 \text{ m}^3/\text{day}$ of primary sludge was pumped to the sludge storage tanks having an average TS concentration of 2.4% and TVS content of 81.9% of TS.

A summary of the solids handling process from 2014 to 2016 can be seen in Table 7.

Parameter	2016	2015	2014
Primary Sludge Treated [m ³ /day]	1,090	1,525	2,150
Primary Sludge TS [%]	2.4	2.8	2.6
Primary Sludge TVS [%]	81.9	81.6	77.9
WAS to Thickening [m ³ /day]	3,519	3,110	2,254
TWAS TS (%)	3.83	5.3	5.7
TWAS Treated [m ³ /day]	474	323	255
WAS to Co-settling [m ³ /day]	-	-	-
WAS SS [mg/L]	6,126	7,358	7,300
Dewatering Centrifuge Feed Flow [m ³ /day]	1,924	2,143	2,065
Dewatering Centrifuge Feed TS [%]	2.3	3.0	2.0
Dewatered Solids TS [%]	26.6	22.8	25.0
Dewatered Solids Disposed [dry tonnes per day]	45.1	57.4	38.5

Table 7: Solids Handling Process Parameters

The blend of Primary Sludge and T WAS is c onditioned with a pol ymer and dewatered by centrifugation. In 2016, an average of $1,924m^3/day$ of sludge was dewatered, resulting in an average of 45.1 dry tonnes per day of dewatered solids being produced. Average TS of centrifuge feed and dewatered sludge cake were 2.3% and 26.6, r espectively. The increase in dewatered solids concentration was attributed to a change of polymer products which improved the overall dewatering process performance.

In 2016 the daily average inflow to the Highland Creek Treatment Plant was 161.8 ML/day. The flow projections for 2017 do not exceed the rated pl ant capacity of 219 ML/day and are expected to generate a sludge volume that will be +/-5% of the given volume for 2016

2.8 Solids Management

Solids cake that is disposed of on-site is incinera ted in one of the two multiple-hearth incinerators. This thermal reduction process produces an ash that is mixed with effluent water from the scrubbers and pumped to one of two ash lagoons. When a lagoon is full, ash is removed and hauled to a landfill site for final disposal. Approximately 3,775 tonnes of ash were removed in 2016.

2.9 Complaints

The Highland Creek Treatment Plant received 4 complaints related to odour. Three of the complaints were logged in June 21st and 22nd. Plant staff addressed the com plaints by cleaning and pumping down primary tank sludge hoppers. T o address the complaint received on August 17th, plant staff adjusted the head house exhaust fan and took measures to reduce odours from the Phase I final tanks.

In the 2015 Annual Report, there was an error in reporting the number of complaints received by the Highland Creek Treatment Plant staff. In 2015, the plant received 5 odour complaints. All complaints were recorded, investigated by City of Toronto staff and, where possible, action was taken immediately.

2.10 Effluent Suspended Solids Compliance – Action Plan Status

The updates to the Action Plan items for the E ffluent Suspended Solid's Compliance Plan (See Appendix G) are as follows:

2.10.1 Biosolids Master Plan

In May 2011, Toronto's City Council directed that a biosolids Beneficial Use Program with Landfill as a contingency opti on be implemented for the HCTP which would req uire the construction of a truck loading facility so that the biosolids genera ted at the HCTP could be trucked away on a daily basis rather than incinerated on site. S ubsequent to Council's consideration of the Biosolids Master Plan (BMP) in May 20 11, additional public meetings were held and several local community members expressed their concerns to the City and the Ministry of the Environment and Climate Change (MOECC) regarding Council's final decision.

After consulting with the MOECC in the summer of 2012, a separate process consistent with Class EA requirements was initiated. As such the BMP was closed and a new Schedule B Class Environmental Assessment specifically for the implementation of the proposed HCTP biosolids management undertakings was recommended to Council.

In early 2014, the City retained Consulting services to undertake the new biosolids Class EA work for the HCTP. The City Project Team for this Class EA included staff from Toronto Public Health (TPH) and the Toronto Energy and Environment Division (EED) in addition to Toronto Water (TW) and Engineering & Construction Services (ECS).

The Schedule B Class EA looked at all viable biosolids management options and included a Health Impact Assessment that was overseen by TPH as well as a Cumulative (Air) Impact Assessment that was overseen by the EED. The results of the Cumulative Impact Assessment and the Health Impact

DI TORONTO Water

HIGHLAND CREEK WASTEWATER TREATMENT PLANT

Assessment were used by the project team to assess all biosolids management options and arrive at a preferred biosolids management strategy for the HCTP.

This project continued throughout 2015 and involved extensive consultation with stakeholders including the public and specifically the surrounding community. A project web site was maintained and kept up to date with relevant project information such as minutes of Public Meetings and technical memorandums. In October 2015, the City's Board of Health adopted the report from the MOH on the Health Impact Assessment of Biosolids Management Plan for HCTP.

In May 2016, City Council received the Executive Summary of the Highland Creek Wastewater Treatment Plant Biosolids Schedule B Class Environmental Assessment Study and endorsed the recommendations. The Environmental Study Report was finalized and submitted to the MOECC in June 2016 for the obligatory 30 day public review period in accordance with the requirements of the Environmental Assessment Act. Subsequently, the MOECC received a Part II Order Request and is currently reviewing this request.

2.10.2 Additional Sludge Dewatering Capacity

A capital project for the sludge dewatering centrifuges is in progress. An engineering consultant was selected in 2007 and the design was completed and tendered for construction in late 2013. Construction is ongoing and expected to be completed by 2017.

2.10.3 Biosolids Truck Loading

A conceptual design of a potential future truck lo ading facility was completed in May 2013. This study is now a reference document for the Class EA for Biosolids Management at the HCTP.

2.10.4 Incineration Operation

In 2007, an engineering consultant was selected to perform the detailed design of the incinerator repairs. A minor repair contract to #1 Incinerator was completed in 2009. The minor repair work for #2 Incinerator is included as part of the Dewatering project noted above in 2.10.2 and is currently ongoing.

2016 ANNUAL REPORT

3. CAPITAL PROJECTS & STUDIES

Under Toronto Water's capital program , the Hi ghland Creek Treatment Plant commenced or continued with the following projects:

- WAS Thickening and Sludge Blending Upgrades
- Biosolids Treatment Unit Upgrades
- Headworks and Odour Control Upgrades
- Plant Services Improvements
- Miscellaneous Electrical Projects Contract 2
- Process Control Building Upgrades
- RAS Pumping, Aeration and Phosphorus Removal
- Electrical Condition Assessment Project #6
- PLC Platform Migration
- Firm Capacity and Liquid Train Upgrades
- Tunnel Concrete Inspection & Repairs

2016 ANNUAL REPORT

4. MAINTENANCE

The Highland Creek Treatment Plant maintenance activities in 2016 were distributed bet ween four Work Areas. Staff from these groups performed a variety of scheduled, preventative, predictive and breakdown maintenance on a diverse spectrum of equipment. The main goal of maintenance activities is to ensure equipment availability and reliability to meet plant process operation requirements.

The following is a summary of significant maintenance activities conducted over the past year. These are considered to be maintenance as per Conditions 10(6) (c) & (j) and Condition 11 of the ECA.

4.1 Flow Meter Calibration Record

Calibration records for flow meters are attached in Appendix F.

4.2 Solids Handling (Work Area 1)

Work Area 1 encompasses the solid s treatment portion of t he plant including sludge d igestion, dewatering, and incineration. The following major maintenance was completed in 2016 in this Work Area:

- Overhauled 3 Ash slurry pumps
- Repaired 2 Ash slurry hoppers
- Refurbished #1 and #2 incinerator quencher/scrubber sprays
- Overhauled 1 sludge grinder
- Replaced sections of ash slurry piping and 4 gate valves
- Removed #1 incinerator clinker (H3 and H4)
- Continuous SCADA upgrades for incinerator, sludge feed, and polymer mixing system

4.3 Liquids Handling (Work Area 2)

Work Area 2 encom passes the liquid treat ment portion of the plant including grit and screening removal, primary clarification, aeration and sec ondary clarification, TWAS, phosphorous removal, effluent disinfection and dechlorination. The following major maintenance was completed in 2016 for Work Area 2:

- Structural repairs to Primary Tanks 9, 10, 11 and 12
- Structural repairs to Final Tank 9,10 and 13
- Various primary and final tank sludge and scum collector repairs
- Structural repairs to Grit Channel 2 and 4
- Repairs to Bar Screens 1, 2, 3, 4 and 5
- Repairs to all Turblex blowers
- Rebuild of Ferrous Chloride pumps and Sodium Hypochlorite pumps
- Scum and Return pump repairs
- New dedicated discharge line for West Grit Cyclone

2016 ANNUAL REPORT

4.4 Plant Services 1 (Work Area 3)

Work Area 3 encompasses various plant support services such as effluent water pumping, instrument air system, buildings and grounds maintena nce and building HVAC systems. The following maintenance was completed in 2016 for Work Area 3:

- Plant roadway lighting upgrades
- Forklifts, Scissor lift and Overhead Cranes annual inspections
- Repaired unlicensed vehicles (personnel vehicles for plant use only)
- Disposed of environmental wastes
- Repaired various potholes on all plant roadways
- Continuous improvement of tunnel and outside building lighting
- Replaced sump pumps in various locations
- Inspection and repairs, as required, for all Back Flow Preventers
- Preventative maintenance on Emergency generators (Headhouse & Solids Disposal Building)
- Repaired and replaced heating valves and piping in various location
- Repaired and replaced heating booster pumps in various locations
- Replaced corroded effluent water piping and valves in various locations
- Repaired and replaced heating coils
- Provide for regular vibration data collection
- Changed all oils in old section clarifier drives
- Installed new grease hoppers in #3 and #4 Primary Clarifiers
- Maintained monthly inspections on fire extinguishers
- Maintained monthly inspections on elevators

4.5 Plant Services 2 (Work Area 4)

Work Area 4 enco mpasses various plant support services such as the digester gas system, boilers, process ventilation, odour control systems and plant fire protection. The follow ing maintenance was completed in 2016 for Work Area 4:

- Serviced 5 boilers and inspected all control systems
- Optimized operations of 4 boiler hot water feed pumps
- Installed new stainless steel effluent water lines in various locations at the plant
- Serviced all 7 ozone generators
- Tested and serviced all plant gas monitoring systems
- Tested and serviced all plant fire hydrants as needed
- Replaced 3 hot water pumps in the plant
- Rebuilt or serviced 6 hot water pumps

2016 ANNUAL REPORT

5. CHEMICALS AND UTILITIES

5.1 Chemicals

Several chemicals are used for a variety of treatment processes at the plant. Major process che micals are discussed below and include:

- Polymer (Solids Dewatering and WAS Thickening)
- Ferrous Chloride (Nutrient Removal)
- Sodium Hypochlorite (Disinfection)
- Sodium Bisulphite (Dechlorination)

5.1.1 Polymer for WAS Thickening and Biosolids Dewatering

Polymer is applied to the sludge feed into the dewatering centrifuges as well as the WAS feed into the thickening centrifuges. In 2016, for the dewatering centrifuges the plant swit ched to an em ulsion polymer from a dry polymer. For the thickening centrifuges a dry polymer is used. The total polymer consumption during 2016 was approximately 404,493 kg,

Polymer was purchased at an average cost of \$2,390 per tonne, plus applicable taxes.

5.1.2 Ferrous Chloride for Phosphorus Removal

Ferrous chloride is applied to the distribution conduits upstream of the aerated grit channels. Ferrous chloride consumption during 2016 was approximately 669 tonne as Iron (Fe). The average ferrous chloride dosage rate was 11.30 mg/L as Fe during the year.

In 2016, ferrous chloride for nutrient rem oval was purchased at an average cost of \$800 per tonne Fe plus applicable taxes.

5.1.3 Sodium Hypochlorite for Disinfection

Sodium hypochlorite is used for final effluent disinfection. Sodium hypochlorite consumption during 2016 was approximately 2,218 m³.

Sodium hypochlorite for disinfection was purchased at an average cost o f \$0.129 per L, plus applicable taxes.

5.1.4 Sodium Bisulphite

Sodium Bisulphite is use d as the dec hlorination agent. The total quantity of so dium bisulphite consumed in 2016 was approximately 433 m^3 .

Sodium Bisulphite was purchased at an average cost of \$228 per tonne, plus applicable taxes.

2016 ANNUAL REPORT

5.2 Utilities

A summary of monthly utility consumption for the previous two years at Highland Creek Treatment Plant is provided in Table 8.

·	v I		
Utility	2016	2015	2014
Water [m ³ / month]	221	260	343
Hydro [kWh/ month]	2,723,233	2,948,442	2,867,574
Gas [m ³ / month]	620,240	881,856	665,847

Table 8: Monthly Utility Consumption for 2014 - 2016

5.2.1 Water

Total potable water consumption was measured to be 1,925 m³ for the period of January to October. It is estimated that the annual potable water consumption was 2,649 m³. This is a 15% decrease in consumption from 2015. The total cost for potable water was \$6,991. The average unit cost of water was \$3.63 per cubic meter.

5.2.2 Hydro

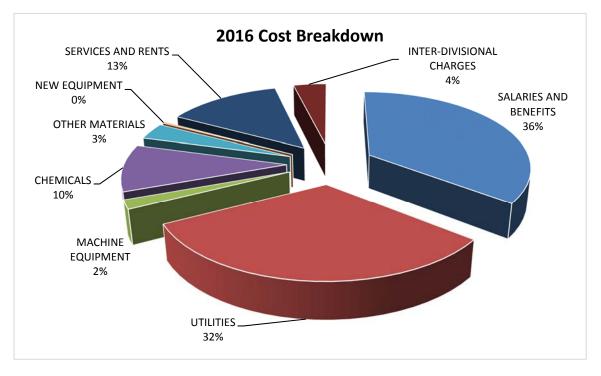
The total electrical energy consumption in 2016 was 32.7M kWh. This is a 7.6% decrease from 2015. The total cost for hydro was \$4.7M. The average unit cost of power was \$0.14 per kWh.

5.2.3 Natural Gas

The total natural gas consumption in 2016 was 7.44M m³. This is a 29.7% decrease from 2015. The total cost for natural gas was \$1.5M. The average unit cost of natural gas was \$0.21 per m³.

The decrease in natural gas consumption aligns with the ongoing construction project involving the shutdown and refurbishment of one of the incinerators.

2016 ANNUAL REPORT


6. OPERATIONS AND MAINTENANCE COSTS

The 2016 pl ant operational costs are broken down into five (5) categories: Salaries & Benefits, Materials & Supplies, New Equipment, Services & Rents and Inter-Divisional Charges. Materials & Supplies is further segreg ated into Utilities (power, natural gas and water), M achine & Equipment Parts, Chemicals and Other Materials & Supplies. The total cost of plant o peration in 2016 was \$19.6M. Overall, operational costs increased by 5% from 2015. A breakdown of annual operational costs for the previous two years is shown in Table 9. The 2016 operating costs are also illustrated below in Figure 1.

Operating Cost	2016	2015
Salaries & Benefits	\$6,965,168	\$6,782,684
Materials & Supplies		
Utilities	\$6,281,734	\$6,789,922
Machine & Equipment Parts	\$369,697	\$483,021
Chemicals	\$1,926,727	\$1,870,827
Other Materials & Supplies	\$675,784	\$864,655
New Equipment	\$51,999	\$11,117
Services & Rents	\$2,599,204	\$885,858
Inter-Divisional Charges	\$750,490	\$1,030,620 ¹
TOTAL PROGRAM COST:	\$19,620,803	\$18,718,704 ¹

Table 9: Operations and Maintenance Costs, 2015 - 2016

¹Values incorrectly reported in 2015 have been corrected as shown.

Figure 1: 2016 Highland Creek Treatment Plant Operations and Maintenance Cost Breakdown

2016 ANNUAL REPORT

7. HUMAN RESOURCES

7.1 Staffing

In 2016, the Highland Creek Treatment Plant ha d 67 positions on their establishment, several of which were vacant. Plant Staffing excluding vacant positions is shown in Table 10.

Table 10: Plant Staffing

Position Title	Number
Plant Manager	1
Senior Engineer	1
Engineer	1
Area Supervisors	4
Electrical & Instrumentation Specialist	1
Electricians	1
Plant Technicians	27
Industrial Millwrights	16
Electrical Instrumentation Control Technicians	7
Wastewater Treatment Plant Workers	6
Support Assistant	1
Engineering Technologist	1

7.2 Occupational Health & Safety

Continuous efforts are made to ensure a safe working environment at the Highland Creek Treatment Plant. The Joint Health and Safety Committee (JHSC) assists management in resolving issues through regular meetings and monthly workplace inspections.

Plant Health and Safety statistics for the Highland Creek Treatment Plant in 2016 were as follows:

Incident	4	
First Aid	1	
Medical Aid	1	
Lost Time	5	
Recurrence	1	
Total	12	

In 2016, total lost days due to work related injuries was 25.5 days.

7.3 Staff Training & Development

The Strategic Planning and Wor kforce Development unit of Toronto Water facilitates training programs that expand the abilities of the staff, resulting in better service to the public.

All Highland Creek Treat ment Plant operations and maintenance staff attended training which was held at various Toronto Water facilities. Course s were eligible for Continuing Education Units (CEU's) from the Ontario Environmental Training Consortium (OETC).

The Highland Creek Tre atment Plant offered its operation and maintenance staff the following training courses in 2016:

2016 ANNUAL REPORT

- a) Technical and Health and Safety Training
 - Cross Connection Specialist Backflow Tester Recertification
 - Transportation of Dangerous Goods
 - Wastewater Laboratory Procedures
 - Electrical Safety for Maintenance Staff
 - Level "C" CPR Renewal
 - Safety in a High Voltage Environment
 - Mathematics for Operators: Module 1
 - Working at Heights
 - Common Wear Items for Plant Machinery
 - Confined Space Entry & Rescue Training Awareness
 - Backflow Prevention Awareness
 - Hot Work Permit System Awareness
 - Lock out, Tag out & Test Awareness
 - Confined Space Awareness
 - Fall Protection Awareness
 - Rigging Safety Awareness
 - Workplace Hazardous Materials Information System WHMIS (MSDS Interpretation)
 - Project Management: Concepts
 - Joint Health and Safety Committees (JHSC) Certification Training Part I Basic
 - Emergency First Aid Level 'A' CPR
 - Scaffolding Awareness
 - Working with Wastewater
 - Conductors
 - Mathematics for Operators: Module 2
 - Standard First Aid Level "C" CPR & AED

b) Other Training

- Customer Service Essentials for Administrative Support and Frontline Staff
- Respect in Our Workplace
- Violence in the Workplace

7.4 Utility Operator Certification

Toronto Water has incorporated the requirement of a Class I operating licence into the job profiles of the skilled trades in the Water and Wastewater Treat ment facilities. As part of this initiative, general operational/process training was delivered in order to prepare staff for the certification examination.

Table 11 summarizes the status of operator certifi cation at the Highland Creek Treatment Plant in 2016.

2016 ANNUAL REPORT

Table 11: Wastewater Treatment Certificates

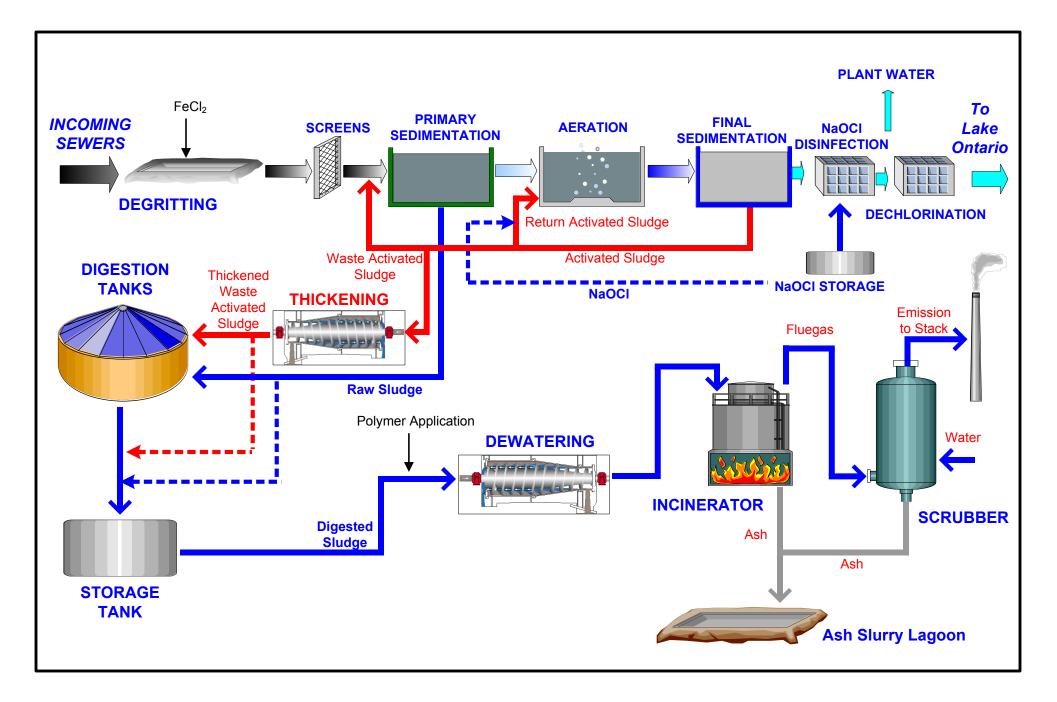
Class Level	Licensed
Class IV	22
Class III	1
Class II	10
Class I	9
O. I. T.	9
TOTAL	51

7.5 MOECC/MOL Correspondence

There were no orders issued by the Ministry of the Environment and Climate Change (MOECC) or the Ministry of Labour (MOL). Notable correspondence with the MOECC in 2016 was as follows:

- Follow up spill reports
- Request for consent to change the point of discharge for odourous air from aeration tanks to accommodate capital work.
- Source testing for CWS pre-test plan and test report
- Incinerator shut down notifications
- Ontario Sewage Treatment Facility Sludge Survey response
- Municipal Wastewater Profile Information form submission
- EPA S. 20.18 order exempting Highland Creek from plant heating system EASR registration
- Comments on Air ECA amendments

Appendix A

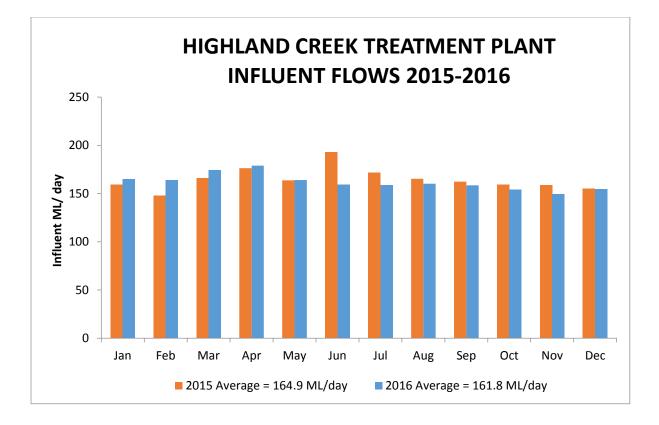

Glossary of Abbreviations

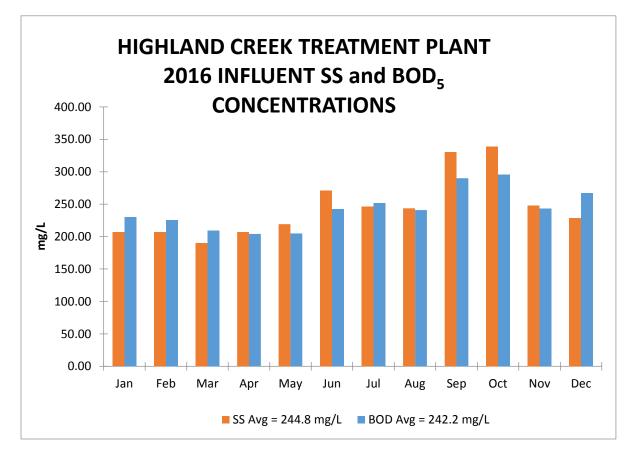
Glossary of Abbreviations

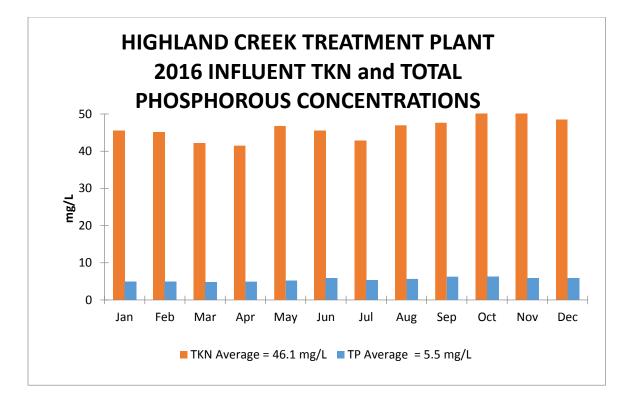
ABTP	Ashbridges Bay Treatment Plant
BOD ₅	Five-Day Biological Oxygen Demand (in some instances this may be referred to as BOD)
CBOD ₅	Five-Day Diological Oxygen Demand (in some instances tins may be referred to as BOD)
CEU	
	Continuing Education Units
CFU	Colony Forming Units
C of A	Certificate of Approval
CPR	Cardiopulmonary Resuscitation
CSO	Combined Sewer Overflow (Tank)
DAF	Air Flotation
D.O.	Dissolved Oxygen
ECA	Environmental Compliance Approval
E. Coli	Escheria Coli
ha	Hectare
HCTP	Highland Creek Treatment Plant
HTP	Humber Treatment Plant
HP	Horsepower
HRT	Hydraulic Retention Time
kg	Kilogram
kg/day	Kilogram per day
kWh	Kilowatt-hour
kWh/month	Kilowatt-hour per month
MWh	Megawatt-hour
m	Metre
m^3	Cubic metre
m ³ /month	Cubic metre per month
M	Million
MCC	Motor Control Centre
mA m a/I	milliamps Millionema non litro
mg/L	Milligrams per litre
mL	Millilitre
ML	Megalitre
ML/day	Megalitre per day
MOECC	Ministry of Environment and Climate Change
No.	Number
Р	Presence
MTI	Mid-Toronto Interceptor Forcemain
NTTP	North Toronto Treatment Plant
SBS	Sodium Bisulphite
SCADA	Supervisory Control and Data Acquisition
STS	Sanitary Trunk Sewer
SS	Suspended Solids
TCR	Total Chlorine Residual
ТР	Total Phosphorus
TS	Total Solids
TSS	Total Suspended Solids
TVS	Total Volatile Solids
TWAS	Thickened Waste Activated Sludge
μg/L	micrograms per litre
WAS	Waste Activated Sludge
11/10	music richtulou bluuge

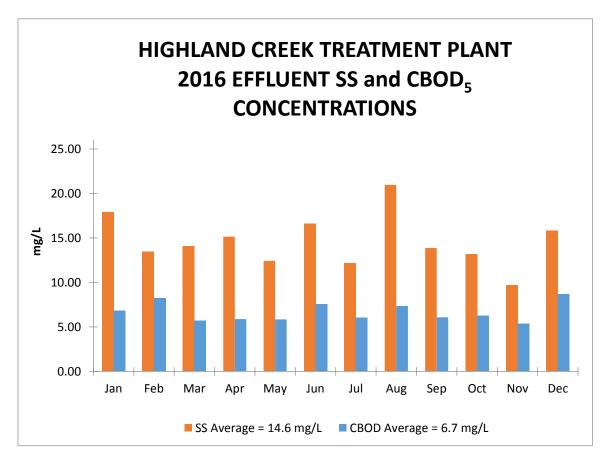
Appendix B

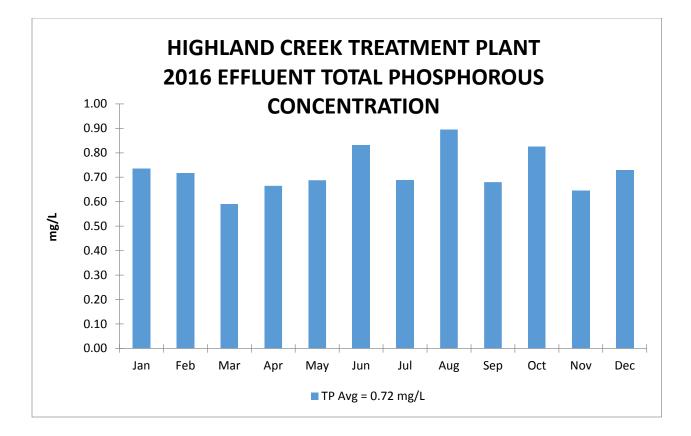
Plant Schematic

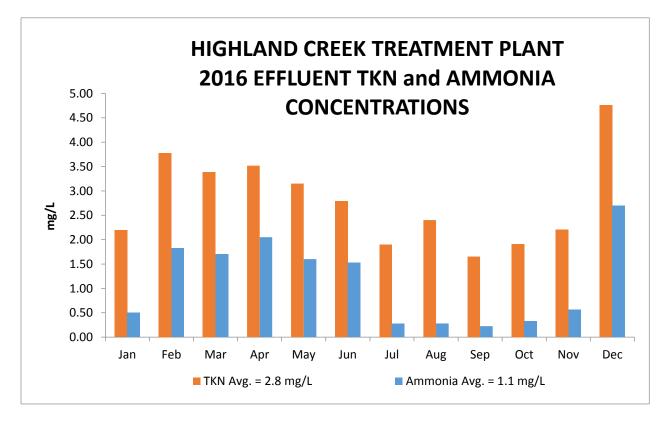



Process Flow Diagram for Highland Creek Wastewater Treatment Plant

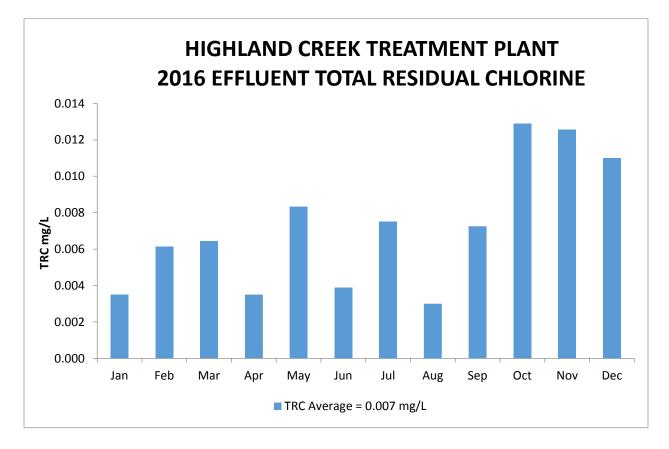

Appendix C

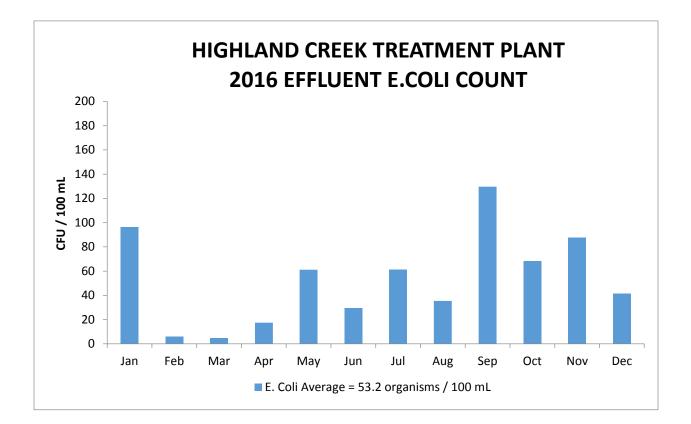

Performance Charts

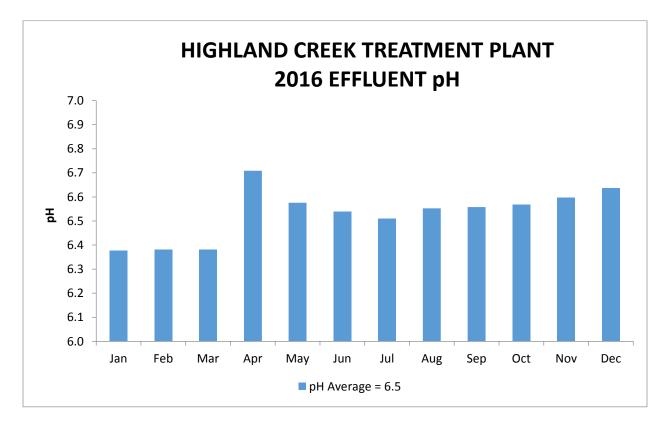

- Influent Flows
- Influent SS & BOD₅ Concentrations
- Influent TKN & Total Phosphorous Concentrations
- Effluent SS & CBOD₅ Concentrations
- Effluent Total Phosphorous
- Effluent TKN & Ammonia Concentrations
- Effluent Nitrate + Nitrite Concentrations
- Effluent Total Residual Chlorine
- Effluent E. Coli
- Effluent pH
- Effluent Temperature

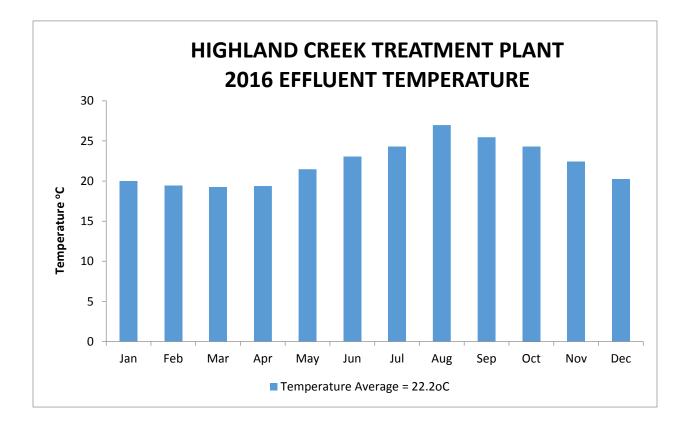












Appendix D

Influent & Effluent Metal Concentrations

TORONTO WATER LABORATORY

Tel: 416-392-2894 Fax: 416-397-0342

Treatment Plant Monthly Metal Analysis for: January 2016

DESCRIPTION	NAME	<u>RESULT</u>	<u>UNITS</u>	LIMITS	NOTES
Highland Creek Treatment Plant					
FINAL EFFLUENT - Monthly Metals @ Dee.	Arsenic	< 0.01	mg/L	0.0200	
	Cadmium	< 0.004	mg/L	0.0080	
	Chromium	< 0.004	mg/L	0.0800	
	Copper	0.0216	mg/L	0.0400	
	Iron	1.59	mg/L		
	Lead	< 0.005	mg/L	0.1200	
	Manganese	0.0675	mg/L	0.0500	
	Mercury	< 0.00006	mg/L	0.0004	
	Nickel	0.00594	mg/L	0.0800	
	Zinc	0.0373	mg/L	0.0400	
INFLUENT - Monthly Metals @ Dee.	Arsenic	<0.01	mg/L	1.0000	
INFLUENT - Monuny Metals @ Dee.					
	Cadmium	< 0.004	mg/L	0.7000	
	Chromium	0.0324	mg/L	4.0000	
	Copper	0.102	mg/L	2.0000	
	Iron	0.843	mg/L		
	Lead	< 0.005	mg/L	1.0000	
	Manganese	0.0621	mg/L	5.0000	
	Mercury	< 0.00006	mg/L	0.0100	
	Nickel	0.00567	mg/L	2.0000	
	Zinc	0.173	mg/L	2.0000	

Notes: All Results in mg/L. These samples are monthly composites. /

<u>Underlined</u> Results have exceeded respective Sanitary or Storm Sewer Bylaw limits of the Sewer Use Bylaw Chapter 681 of the Toronto Municipal Code. limits. /

Date Report Printed: 25-Feb-2016 /

Toronto Water

Central Laboratory (545 Commissioners Street, # Toronto,Ontario, M4M 1A5

TORONTO WATER LABORATORY

Tel: 416-392-2894 Fax: 416-397-0342

Treatment Plant Monthly Metal Analysis for: February 2016

DESCRIPTION	NAME	<u>RESULT</u>	<u>UNITS</u>	LIMITS	NOTES
Highland Creek Treatment Plant					
FINAL EFFLUENT	Arsenic	< 0.01	mg/L	0.0200	
	Cadmium	< 0.004	mg/L	0.0080	
	Chromium	< 0.004	mg/L	0.0800	
	Copper	0.0211	mg/L	0.0400	
	Iron	1.34	mg/L		
	Lead	< 0.005	mg/L	0.1200	
	Manganese	<u>0.0765</u>	mg/L	0.0500	
	Mercury	< 0.00006	mg/L	0.0004	
	Nickel	0.00608	mg/L	0.0800	
	Zinc	0.0388	mg/L	0.0400	
INFLUENT	Arsenic	<0.01	···· - /I	1.0000	
INFLUENI			mg/L		
	Cadmium	< 0.004	mg/L	0.7000	
	Chromium	0.00605	mg/L	4.0000	
	Copper	0.104	mg/L	2.0000	
	Iron	0.677	mg/L		
	Lead	< 0.005	mg/L	1.0000	
	Manganese	0.0660	mg/L	5.0000	
	Mercury	< 0.00006	mg/L	0.0100	
	Nickel	0.00649	mg/L	2.0000	
	Zinc	0.127	mg/L	2.0000	

Notes: All Results in mg/L. These samples are monthly composites. /

<u>Underlined</u> Results have exceeded respective Sanitary or Storm Sewer Bylaw limits of the Sewer Use Bylaw Chapter 681 of the Toronto Municipal Code. limits. /

Date Report Printed: 18-Mar-2016 /

TORONTO WATER LABORATORY Treatment Plant Monthly Metal Analysis for: March 2016

Tel: 416-392-2894 Fax: 416-397-0342

DESCRIPTION	NAME	RESULT	<u>UNITS</u>	LIMITS	NOTES
Highland Creek Treatment Plant					
Monthly Metals at Dee - FINAL EFFLUENT Lab Bas	enAensenic	< 0.01	mg/L	0.0200	
	Cadmium	< 0.004	mg/L	0.0080	
	Chromium	< 0.004	mg/L	0.0800	
	Copper	0.0193	mg/L	0.0400	
	Iron	1.28	mg/L		
	Lead	< 0.005	mg/L	0.1200	
	Manganese	<u>0.0820</u>	mg/L	0.0500	
	Mercury	< 0.00006	mg/L	0.0004	
	Nickel	0.00730	mg/L	0.0800	
	Zinc	0.0370	mg/L	0.0400	
Monthly Metals at Dee INFLUENT	Arsenic	<0.01	mg/L	1.0000	
	Cadmium	< 0.004	mg/L	0.7000	
	Chromium	0.00582	mg/L	4.0000	
	Copper	0.0895	mg/L	2.0000	
	Iron	0.575	mg/L		
	Lead	< 0.005	mg/L	1.0000	
	Manganese	0.0633	mg/L	5.0000	
	Mercury	< 0.00006	mg/L	0.0100	
	Nickel	0.00676	mg/L	2.0000	
	Zinc	0.116	mg/L	2.0000	

Notes: All Results in mg/L. These samples are monthly composites. /

<u>Underlined</u> Results have exceeded respective Sanitary or Storm Sewer Bylaw limits of the Sewer Use Bylaw Chapter 681 of the Toronto Municipal Code. limits. /

Date Report Printed: 03-May-2016 /

TORONTO WATER LABORATORY Treatment Plant Monthly Metal Analysis for: April 2016

Tel: 416-392-2894 Fax: 416-397-0342

		v	v	1	
DESCRIPTION	NAME	<u>RESULT</u>	<u>UNITS</u>	LIMITS	<u>NOTES</u>
Highland Creek Treatment Plant					
FINAL EFFLUENT - Monthly Metals @ Dee.	Arsenic	< 0.01	mg/L	0.0200	
	Cadmium	< 0.004	mg/L	0.0080	
	Chromium	< 0.004	mg/L	0.0800	
	Copper	0.0211	mg/L	0.0400	
	Iron	1.37	mg/L		
	Lead	< 0.005	mg/L	0.1200	
	Manganese	<u>0.0827</u>	mg/L	0.0500	
	Mercury	< 0.00006	mg/L	0.0004	
	Nickel	0.00576	mg/L	0.0800	
	Zinc	0.0347	mg/L	0.0400	
INFLUENT - Monthly Metals @ Dee.	Arsenic	<0.01	mg/L	1.0000	
	Cadmium	< 0.004	mg/L	0.7000	
	Chromium	0.00448	mg/L	4.0000	
	Copper	0.0983	mg/L	2.0000	
	Iron	0.771	mg/L		
	Lead	< 0.005	mg/L	1.0000	
	Manganese	0.0640	mg/L	5.0000	
	Mercury	0.00008200	mg/L	0.0100	
	Nickel	0.00562	mg/L	2.0000	
	Zinc	0.118	mg/L	2.0000	

Notes: All Results in mg/L. These samples are monthly composites. /

<u>Underlined</u> Results have exceeded respective Sanitary or Storm Sewer Bylaw limits of the Sewer Use Bylaw Chapter 681 of the Toronto Municipal Code. limits. /

Date Report Printed: 16-May-2016 /

TORONTO WATER LABORATORY Treatment Plant Monthly Metal Analysis for: May 2016

Tel: 416-392-2894 Fax: 416-397-0342

DESCRIPTION	NAME	<u>RESULT</u>	<u>UNITS</u>	LIMITS	NOTES
Highland Creek Treatment Plant					
FINAL EFFLUENT - Monthly Metals @ Dee.	Arsenic	< 0.01	mg/L	0.0200	
	Cadmium	< 0.004	mg/L	0.0080	
	Chromium	< 0.004	mg/L	0.0800	
	Copper	0.0208	mg/L	0.0400	
	Iron	1.04	mg/L		
	Lead	< 0.005	mg/L	0.1200	
	Manganese	<u>0.0664</u>	mg/L	0.0500	
	Mercury	< 0.00006	mg/L	0.0004	
	Nickel	0.00593	mg/L	0.0800	
	Zinc	0.0334	mg/L	0.0400	
INFLUENT - Monthly Metals @ Dee.	Arsenic	< 0.01	mg/L	1.0000	
	Cadmium	< 0.004	mg/L	0.7000	
	Chromium	0.00538	mg/L	4.0000	
	Copper	0.111	mg/L	2.0000	
	Iron	0.728	mg/L		
	Lead	< 0.005	mg/L	1.0000	
	Manganese	0.0652	mg/L	5.0000	
	Mercury	0.00007700	mg/L	0.0100	
	Nickel	0.00687	mg/L	2.0000	
	Zinc	0.137	mg/L	2.0000	

Notes: All Results in mg/L. These samples are monthly composites. /

<u>Underlined</u> Results have exceeded respective Sanitary or Storm Sewer Bylaw limits of the Sewer Use Bylaw Chapter 681 of the Toronto Municipal Code. limits. /

Date Report Printed: 29-Jun-2016 /

TORONTO WATER LABORATORY Treatment Plant Monthly Metal Analysis for: June 2016

Tel: 416-392-2894 Fax: 416-397-0342

DESCRIPTION	NAME	<u>RESULT</u>	<u>UNITS</u>	LIMITS	NOTES
Highland Creek Treatment Plant					
FINAL EFFLUENT- Monthly Metals at Dee	Arsenic	< 0.01	mg/L	0.0200	
	Cadmium	< 0.004	mg/L	0.0080	
	Chromium	< 0.004	mg/L	0.0800	
	Copper	0.0225	mg/L	0.0400	
	Iron	1.23	mg/L		
	Lead	< 0.005	mg/L	0.1200	
	Manganese	<u>0.0683</u>	mg/L	0.0500	
	Mercury	< 0.00006	mg/L	0.0004	
	Nickel	0.00644	mg/L	0.0800	
	Zinc	0.0374	mg/L	0.0400	
INFLUENT- Monthy Metals at Dee	Arsenic	< 0.01	mg/L	1.0000	
	Cadmium	< 0.004	mg/L	0.7000	
	Chromium	0.00851	mg/L	4.0000	
	Copper	0.123	mg/L	2.0000	
	Iron	1.16	mg/L		
	Lead	< 0.005	mg/L	1.0000	
	Manganese	0.0730	mg/L	5.0000	
	Mercury	0.0001040	mg/L	0.0100	
	Nickel	0.00661	mg/L	2.0000	
	Zinc	0.165	mg/L	2.0000	

Notes: All Results in mg/L. These samples are monthly composites. /

<u>Underlined</u> Results have exceeded respective Sanitary or Storm Sewer Bylaw limits of the Sewer Use Bylaw Chapter 681 of the Toronto Municipal Code. limits. /

Date Report Printed: 29-Jul-2016 /

TORONTO WATER LABORATORY Treatment Plant Monthly Metal Analysis for: July 2016

Tel: 416-392-2894 Fax: 416-397-0342

		-	-	-		
DESCRIPTION	<u>NAME</u>	<u>RESULT</u>	<u>UNITS</u>	LIMITS	<u>NOTES</u>	
Highland Creek Treatment Plant						
FINAL EFFLUENT - Monthly @ Dee.	Arsenic	< 0.01	mg/L	0.0200		
	Cadmium	< 0.004	mg/L	0.0080		
	Chromium	< 0.004	mg/L	0.0800		
	Copper	0.0179	mg/L	0.0400		
	Iron	0.913	mg/L			
	Lead	< 0.005	mg/L	0.1200		
	Manganese	0.0835	mg/L	0.0500		
	Mercury	< 0.00006	mg/L	0.0004		
	Nickel	0.00652	mg/L	0.0800		
	Zinc	0.0382	mg/L	0.0400		
INFLUENT - Monthly @ Dee.	Arsenic	< 0.01	mg/L	1.0000		
	Cadmium	< 0.004	mg/L	0.7000		
	Chromium	0.00747	mg/L	4.0000		
	Copper	0.125	mg/L	2.0000		
	Iron	1.08	mg/L			
	Lead	< 0.005	mg/L	1.0000		
	Manganese	0.0683	mg/L	5.0000		
	Mercury	0.0001000	mg/L	0.0100		
	Nickel	0.00767	mg/L	2.0000		
	Zinc	0.173	mg/L	2.0000		

Notes: All Results in mg/L. These samples are monthly composites. /

<u>Underlined</u> Results have exceeded respective Sanitary or Storm Sewer Bylaw limits of the Sewer Use Bylaw Chapter 681 of the Toronto Municipal Code. limits. /

Date Report Printed: 30-Aug-2016 /

TORONTO WATER LABORATORY Treatment Plant Monthly Metal Analysis for: August 2016

Tel: 416-392-2894 Fax: 416-397-0342

DESCRIPTION	NAME	<u>RESULT</u>	<u>UNITS</u>	LIMITS	<u>NOTES</u>	
Highland Creek Treatment Plant						
FINAL EFFLUENT - Monthly Meatls @ Dee.	Arsenic	< 0.01	mg/L	0.0200		
	Cadmium	< 0.004	mg/L	0.0080		
	Chromium	< 0.004	mg/L	0.0800		
	Copper	0.0190	mg/L	0.0400		
	Iron	1.67	mg/L			
	Lead	< 0.005	mg/L	0.1200		
	Manganese	0.0720	mg/L	0.0500		
	Mercury	< 0.00006	mg/L	0.0004		
	Nickel	0.00966	mg/L	0.0800		
	Zinc	0.0367	mg/L	0.0400		
INFLUENT - Monthly Meatls @ Dee.	Arsenic	<0.01	mg/L	1.0000		
	Cadmium	< 0.004	mg/L	0.7000		
	Chromium	0.00810	mg/L	4.0000		
	Copper	0.121	mg/L	2.0000		
	Iron	0.889	mg/L			
	Lead	< 0.005	mg/L	1.0000		
	Manganese	0.0643	mg/L	5.0000		
	Mercury	0.0001000	mg/L	0.0100		
	Nickel	0.0115	mg/L	2.0000		
	Zinc	0.168	mg/L	2.0000		

Notes: All Results in mg/L. These samples are monthly composites. /

<u>Underlined</u> Results have exceeded respective Sanitary or Storm Sewer Bylaw limits of the Sewer Use Bylaw Chapter 681 of the Toronto Municipal Code. limits. /

Date Report Printed: 03-Oct-2016 /

TORONTO WATER LABORATORY

Tel: 416-392-2894 # Fax: 416-397-0342 #

Treatment Plant Monthly Metal Analysis for: September 2016 (

DESCRIPTION	NAME	<u>RESULT</u>	<u>UNITS</u>	LIMITS	<u>NOTES</u> /
Highland Creek Treatment Plant					
FINAL EFFLUENT - Monthly Metals at Dee.	Arsenic	< 0.01	mg/L	0.0200	
	Cadmium	< 0.004	mg/L	0.0080	
	Chromium	< 0.004	mg/L	0.0800	
	Copper	0.0148	mg/L	0.0400	
	Iron	1.01	mg/L		
	Lead	< 0.005	mg/L	0.1200	
	Manganese	0.0702	mg/L	0.0500	
	Mercury	< 0.00006	mg/L	0.0004	
	Nickel	0.0116	mg/L	0.0800	
	Zinc	0.0398	mg/L	0.0400	
			_		
INFLUENT - Monthly Metals at Dee.	Arsenic	< 0.01	mg/L	1.0000	
	Cadmium	< 0.004	mg/L	0.7000	
	Chromium	0.00806	mg/L	4.0000	
	Copper	0.129	mg/L	2.0000	
	Iron	1.23	mg/L		
	Lead	0.00547	mg/L	1.0000	
	Manganese	0.0714	mg/L	5.0000	
	Mercury	0.0001400	mg/L	0.0100	
	Nickel	0.00688	mg/L	2.0000	
	Zinc	0.175	mg/L	2.0000	

Notes: All Results in mg/L. These samples are monthly composites. /

<u>Underlined</u> Results have exceeded respective Sanitary or Storm Sewer Bylaw limits of the Sewer Use Bylaw Chapter 681 of the Toronto Municipal Code. limits. /

Date Report Printed: 31-Oct-2016 /

TORONTO WATER LABORATORY

Tel: 416-392-2894 Fax: 416-397-0342

Treatment Plant Monthly Metal Analysis for: October 2016

DESCRIPTION	NAME	<u>RESULT</u>	<u>UNITS</u>	LIMITS	<u>NOTES</u>	
Highland Creek Treatment Plant						
EFFLUENT Monthly Metals	Arsenic	< 0.01	mg/L	0.0200		
	Cadmium	< 0.004	mg/L	0.0080		
	Chromium	< 0.004	mg/L	0.0800		
	Copper	0.0118	mg/L	0.0400		
	Iron	0.883	mg/L			
	Lead	< 0.005	mg/L	0.1200		
	Manganese	<u>0.0693</u>	mg/L	0.0500		
	Mercury	< 0.00006	mg/L	0.0004		
	Nickel	0.00627	mg/L	0.0800		
	Zinc	0.0323	mg/L	0.0400		
INFLUENT Montly Metals	Arsenic	<0.01	mg/L	1.0000		
	Cadmium	< 0.004	mg/L	0.7000		
	Chromium	0.00773	mg/L	4.0000		
	Copper	0.134	mg/L	2.0000		
	Iron	2.29	mg/L			
	Lead	0.00570	mg/L	1.0000		
	Manganese	0.0740	mg/L	5.0000		
	Mercury	0.00007800	mg/L	0.0100		
	Nickel	0.00705	mg/L	2.0000		
	Zinc	0.177	mg/L	2.0000		

Notes: All Results in mg/L. These samples are monthly composites. /

<u>Underlined</u> Results have exceeded respective Sanitary or Storm Sewer Bylaw limits of the Sewer Use Bylaw Chapter 681 of the Toronto Municipal Code. limits. /

Date Report Printed: 01-Dec-2016 /

Toronto Water

Central Laboratory (545 Commissioners Street, # Toronto,Ontario, M4M 1A5

TORONTO WATER LABORATORY

Tel: 416-392-2894 Fax: 416-397-0342

Treatment Plant Monthly Metal Analysis for: November 2016

DESCRIPTION	NAME	<u>RESULT</u>	<u>UNITS</u>	LIMITS	NOTES
Highland Creek Treatment Plant					
FINAL EFFLUENT	Arsenic	< 0.01	mg/L	0.0200	
	Cadmium	< 0.004	mg/L	0.0080	
	Chromium	< 0.004	mg/L	0.0800	
	Copper	0.0133	mg/L	0.0400	
	Iron	0.760	mg/L		
	Lead	< 0.005	mg/L	0.1200	
	Manganese	<u>0.0724</u>	mg/L	0.0500	
	Mercury	< 0.00006	mg/L	0.0004	
	Nickel	0.00627	mg/L	0.0800	
	Zinc	<u>0.0447</u>	mg/L	0.0400	
INFLUENT	Arsenic	<0.01	mg/L	1.0000	
	Cadmium	< 0.004	mg/L	0.7000	
	Chromium	0.00815	mg/L	4.0000	
	Copper	0.128	mg/L	2.0000	
	Iron	1.30	mg/L		
	Lead	< 0.005	mg/L	1.0000	
	Manganese	0.0733	mg/L	5.0000	
	Mercury	0.0002240	mg/L	0.0100	
	Nickel	0.00650	mg/L	2.0000	
	Zinc	0.167	mg/L	2.0000	

Notes: All Results in mg/L. These samples are monthly composites. /

<u>Underlined</u> Results have exceeded respective Sanitary or Storm Sewer Bylaw limits of the Sewer Use Bylaw Chapter 681 of the Toronto Municipal Code. limits. /

Date Report Printed: 04-Jan-2017 /

TORONTO WATER LABORATORY

Tel: 416-392-2894 Fax: 416-397-0342

Treatment Plant Monthly Metal Analysis for: December 2016

DESCRIPTION	<u>NAME</u>	<u>RESULT</u>	<u>UNITS</u>	LIMITS	NOTES
Highland Creek Treatment Plant					
FINAL EFFLUENT - Monthly Metals @ Dee.	Arsenic	< 0.01	mg/L	0.0200	
	Cadmium	< 0.004	mg/L	0.0080	
	Chromium	< 0.004	mg/L	0.0800	
	Copper	0.0150	mg/L	0.0400	
	Iron	1.13	mg/L		
	Lead	< 0.005	mg/L	0.1200	
	Manganese	<u>0.0789</u>	mg/L	0.0500	
	Mercury	< 0.00006	mg/L	0.0004	
	Nickel	0.00560	mg/L	0.0800	
	Zinc	0.0346	mg/L	0.0400	
DIFFUTNIT Marshin Matala @ Daa	Arsenic	<0.01		1.0000	
INFLUENT - Monthly Metals @ Dee.			mg/L		
	Cadmium	< 0.004	mg/L	0.7000	
	Chromium	0.00496	mg/L	4.0000	
	Copper	0.103	mg/L	2.0000	
	Iron	1.85	mg/L		
	Lead	< 0.005	mg/L	1.0000	
	Manganese	0.0680	mg/L	5.0000	
	Mercury	0.00008300	mg/L	0.0100	
	Nickel	0.00567	mg/L	2.0000	
	Zinc	0.118	mg/L	2.0000	

Notes: All Results in mg/L. These samples are monthly composites. /

<u>Underlined</u> Results have exceeded respective Sanitary or Storm Sewer Bylaw limits of the Sewer Use Bylaw Chapter 681 of the Toronto Municipal Code. limits. /

Date Report Printed: 16-Jan-2017 /

Appendix E

Analytical Testing Summary

SCAUCE MEM SCAUCE	Toronto Water Laboratory LIMS Sample and Result Counts Client Highland Creek Treatment Plant	Number 9885	r of Sam	From: ples	01	1/01/2016	To:	12/	31/2016															
Adv/CONDUCT O C <thc< th=""> C C C C</thc<>		ALK pH DS COND	BOD5	CBODs	Chlorine	cod	ECOLI	Ferric Chloride	SNOI	Iron	Mercury	METALS	NH3(as N)	Orthophosphate	۰.	pH_15	SPGR	TKN(as N)	Total Solids	Toxicity	TS	TSS	Un-ionized NH3 (as N)	Total
SAUCY NEW D S S S						-	-									_	_							99
PARAPY PARAPY PARAPY PARAPY PARAPY PARAPY PARAPY PARAPY PARAPY PARAPY				Ŭ					-		-												0	104
JACAMOR MAX b: JACAMOR MAX B: JACAMOR MAX B: JACAMOR M		-	-	0	-	-			0						-	_		_					0	100
NANNAN INF C <thc< th=""> C <thc< th=""> <thc< t<="" td=""><td></td><td>-</td><td></td><td>0</td><td>-</td><td></td><td></td><td></td><td>0</td><td>_</td><td></td><td></td><td></td><td></td><td>-</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>100</td></thc<></thc<></thc<>		-		0	-				0	_					-	0							0	100
ONNOR NAX O O O O<				0		-	-	-	Ŭ		-		-	-	0	, v	-		Ň		0		0	100
BARANDE NAME I I I <th< td=""><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>-</td><td></td><td></td><td></td><td>-</td><td>0</td><td></td><td></td><td>94 94</td></th<>		-	-	-	-	-			-						0	-				-	0			94 94
Architek Kaw B I <	AERATION TANK 2E	-	0 0	0	-		0	0	-	0	0	0	0	0	-	0	0	0	0	0	0	94	0	94
UCANTON MAX 27 IC IC IC		-	-	0	0	-	0	0	_			-			Ů	, v			_		-			94 99
Decomponent D <thd< th=""> D D D D</thd<>	AERATION TANK 3W	-	-	0	0	-	0	0	-	0	0	-		-	0	-			0	-	0	101	0	101
PRANTON YANG C C C <th< td=""><td></td><td></td><td></td><td>0</td><td>-</td><td>-</td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td>_</td><td>_</td><td></td><td></td><td></td><td>0</td><td>101</td></th<>				0	-	-			0						-	-		_	_				0	101
DENNEY MAY E D D D D	AERATION TANK 5	-	-	0	-				0		-	-			-					-		106	0	106
PERATOR NAME PERATOR NAME<		-	-	0	0	0	0	0	-			0		-	0	, v			-		0		0	104
Sachur Mart Port B		-	-	-	-	-			-						0				_		0		0	106
SWARTARES UNIT UNIT UNIT UNIT		-		0	-				0	-					0			0	-	-			0	103
STRATEMPIC CARE #19 O		_		0	0		-								6	-		1					0	86 698
SMATERING CAME # 34 MATERING CAME # 34 MATERING CAME # 34 MATERING CAME # 44 MATERING CAME # 44 MATER		-	-	-	-	-			0			-			0		-		_	-	14			14
BYAATBERG CAPIE 419.			-	0	-	-			-						-	-		_	_				_	2
EXAMPRISE CENTRATE IS	DEWATERING CAKE # 413	-		0	0		0	0	0	-		0			0	0					658		_	658
DEWATENDA CENTRATE # 310 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-	-	0	0	-	0	Ů	-			-		-	0	, v			Ň	-		0	0	635
CEMATERING CENTRATE # 143 C <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>-</td> <td></td> <td>_</td> <td>-</td> <td>-</td> <td>7</td> <td>0</td> <td>7</td>				-	-	-			-						0		-		_	-	-	7	0	7
CENATERIA E 444 0			-	0	-				0			-			-					-				13
CCP PE SAMPLE 0 <		-		0	0	0	0	0	-			0		0	0				_		0		0	349
IPRILENT 100 59 0 0 0					3			-						-							0			2,315
OCUMED DEWATERING MUNNO TANK 2. 0 <t< td=""><td></td><td>-</td><td>-</td><td>0</td><td>-</td><td>0</td><td>0</td><td>40</td><td>0</td><td></td><td></td><td></td><td></td><td>-</td><td>v</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>1,632</td></t<>		-	-	0	-	0	0	40	0					-	v						-	-	-	1,632
OCUMED REWATERNO SIMUNG TANK S 0 0 0		-		0	0		-		-		-	0		-	0	0					4		0	4
OCYMERT FUNCEMENS NEAT 0		-	-	0	0	-	-	Ů	-			-		-	0	, v			-					74
PRIMARY EFFLUENT 1:12 30 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0			_	0	-	-			-						-	-		_	_				_	77
PRIMARY EFLUENT 11-12 309 010 1 0 <td></td> <td></td> <td></td> <td>0</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td>0</td> <td><u> </u></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>0</td> <td>78 365</td>				0	-				-	-		-	-		0	<u> </u>				-			0	78 365
PRIMARY EFFLUENT 3 147 40 0	PRIMARY EFFLUENT 11-12	309	101	1	0	101	0	0	0	0	0	0	0	103	0	, v	0	0	0	0	•	368	0	983
PRIMARY EFLUENT 4 150 50 0					-				-		-	-			9		-	_					0	367
PRIMARY EFLUENT 6 156 52 0		150	50	0	0	50	_		0			0		50	9	0		_	_			105	0	414
PRIMARY EFLUENT 7 166 62 0					0		0	0	0			0	0			, v			_		0		0	430
PRIMARY EFFLUENT 5-10 300 101 2 0 103 0<	PRIMARY EFFLUENT 7				0	-	0	0	0			0	0			-			0		0		0	430
RAW SLUDGE 1 1 0 <t< td=""><td></td><td></td><td></td><td></td><td>0</td><td></td><td>-</td><td>-</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>_</td><td>_</td><td>-</td><td></td><td></td><td>0</td><td>422</td></t<>					0		-	-	0							_		_	_	-			0	422
RAW SLUDGE 2 0 <t< td=""><td></td><td>_</td><td>-</td><td></td><td>0</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td>-</td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>0</td><td>169</td></t<>		_	-		0				0			-	-		-						-		0	169
RAW SLUDGE 3 0 <t< td=""><td></td><td>-</td><td></td><td>Ű</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td>0</td><td>Ű</td><td>-</td><td>0</td><td>Ň</td><td></td><td></td><td>4</td><td>-</td><td></td><td></td><td></td><td>189</td></t<>		-		Ű		-	-	-	-			0	Ű	-	0	Ň			4	-				189
RAW SLUDGE 5 0 <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>2</td><td>-</td><td></td><td>-</td><td>-</td><td>173</td></t<>					-	-			-						0				2	-		-	-	173
RAW SLUDGE 6 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td>-</td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td>_</td><td></td><td></td><td></td><td>-</td><td></td><td>0</td><td>0</td><td>150</td></t<>						-		-	-			-		-		_				-		0	0	150
RAW SLUDGE 7 0 <t< td=""><td></td><td></td><td></td><td>_</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>_</td><td></td><td></td><td></td><td></td><td>2</td><td>0</td><td>204</td></t<>				_	-										-	-	_					2	0	204
RAW SLUDGE 9-10 0	RAW SLUDGE 7			-	-	-			-		0				0	_	0	0	3		193	-	-	198
RETURN SLUDGE 1 0			_	0	-	-										-	_	_	3	-			_	198 174
RETURN SLUDGE 2 0	RETURN SLUDGE 1		0 0	0		-		-	-			-					-	-	0	0		88	0	90
RETURN SLUDGE 3 0	RETURN SLUDGE 13-16	-		0	0	-	-	0	-			0		-	0	•			Ű	-	•			97
RETURN SLUDGE 5 0					-	-			-						0									99
RETURN SLUDGE 6 0						-			-			-				_					-		0	99
RETURN SLUDGE 8 0	RETURN SLUDGE 5			_	-		_		_						-	-	_						0	101
RETURN SLUDGE 9-12 0		-	-		-	-			-						0					-	0			99
WAS FEED from VAULT 0			-	_	-	-										_		_	_		2		0	99 99
WAS THICKENING - CENTRIFUGE #1 - TWAS 0	WAS FEED from VAULT	0	0 0	0	-	0	0	0		0	0	0	0	0	-	0	0	0	0	0		189		189
WAS THICKENING - CENTRIFUGE #2 - TWAS 0				Ű	Ŭ	-	-	-	-			-	-	-	ů	•				Ű	•			148 269
WAS THICKENING - CENTRIFUGE #3 - TWAS 0	WAS THICKENING - CENTRIFUGE #2 - TWAS	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2
WAS THICKENING - CENTRIFUGE #4 - CENTRATE 0 </td <td>WAS THICKENING - CENTRIFUGE #3 - CENTRATE WAS THICKENING - CENTRIFUGE #3 - TWAS</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td>29 50</td>	WAS THICKENING - CENTRIFUGE #3 - CENTRATE WAS THICKENING - CENTRIFUGE #3 - TWAS				-												_		_				_	29 50
WAS THICKENING - CENTRIFUGE #5 - CENTRATE 0 </td <td>WAS THICKENING - CENTRIFUGE #4 - CENTRATE</td> <td>0</td> <td>0 0</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>_</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>10</td> <td>0</td> <td>10</td>	WAS THICKENING - CENTRIFUGE #4 - CENTRATE	0	0 0	0	0		0	0	_	0	0	0	0	0		0	0	0	0	0	0	10	0	10
WAS THICKENING - CENTRIFUGE #5 - TWAS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 113 0 111 WAS THICKENING - CENTRIFUGE #6 - CENTRATE 0					-	-			-						-									19
WAS THICKENING - CENTRIFUGE #6 - CENTRATE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-			-	-										_		_	_				_	60 113
	WAS THICKENING - CENTRIFUGE #6 - CENTRATE	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	165	0	165
	WAS THICKENING - CENTRIFUGE #6 - TWAS Total				Ű		Ŭ	Ŭ	0						, v					_		0 6.646	0 34	310 18,538

lons include: CI, SO4, NO3, NO2, Br, Ca, Mg, Na, K Metals by ICP include: Cd, Cr, Cu, Ni, Pb, Zn, Al, Mn, Fe, B Volatlie Total Solids (VS) are done on 80% of Total Solids Volatile Suspend Solids (VSS) are done on 2% of the Total Suspended Solids samples.

TORONTO WATER LABORATORY

Tel: 416-392-2894 ! Fax: 416-397-0342 !

Sampling Point: THC01 INFLUENT &

Group: ALK pH DS COND	Minimum	Maximum	Average	Units	Reporting Limit
Alkalinity	40.30	304.00	269.51	mg/L	<1.6
Conductivity	936.00	1,510.00	1,127.41	μS/cm	<1.5
рН	5.80	7.70	7.43	SU	<0.10
Group: BOD	Minimum	Maximum	Average	Units	Reporting Limit
Biochemical Oxygen Demand (BOD)	2.00	550.00	232.86	mg/L	<2
Group: METALS	Minimum	Maximum	Average	Units	Reporting Limit
Arsenic	0.010000	0.01000	0.01000	mg/L	<0.01
Cadmium	0.004000	0.00400	0.00400	mg/L	< 0.004
Chromium	0.004500	0.03240	0.00979	mg/L	<0.004
Copper	0.089500	0.12500	0.10923	mg/L	<0.004
Iron	0.575000	1.16000	0.84038	mg/L	<0.02
Lead	0.005000	0.00500	0.00500	mg/L	<0.005
Manganese	0.062100	0.07300	0.06578	mg/L	<0.004
Nickel	0.005600	0.01150	0.00716	mg/L	<0.005
Zinc	0.116000	0.17300	0.14713	mg/L	<0.02
Group: Mercury	Minimum	Maximum	Average	Units	Reporting Limit
Mercury	0.000100	0.00010	0.00010	mg/L	< 0.00003
Group: NH3(as N)	Minimum	Maximum	Average	Units	Reporting Limit
Ammonia(as N)	24.00	45.00	32.11	mg/L	< 0.05
Group: P	Minimum	Maximum	Average	Units	Reporting Limit
Phosphorus (HACH)	0.95	9.20	5.31	mg/L	<0.08
Group: TKN(as N)	Minimum	Maximum	Average	Units	Reporting Limit
Total Kjeldahl Nitrogen	31.20	57.90	44.63	mg/L	<0.2
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	24.00	692.00	235.72	mg/L	<2
Volatile Suspended Solids				%	

Sampling Point: THC03 PRI

PRIMARY EFFLUENT 9-10

Group:	ALK pH DS COND	Minimum	Maximum	Average	Units	Reporting Limit
Alkalinity		196.00	294.00	245.45	mg/L	<1.6
Conductivi	ty	897.00	1,800.00	1,148.05	μS/cm	<1.5
pН		7.10	7.70	7.47	SU	<0.10
Group:	BOD	Minimum	Maximum	Average	Units	Reporting Limit
Biochemica	ll Oxygen Demand (BOD)	81.00	295.00	162.79	mg/L	<2
Group:	CBOD	Minimum	Maximum	Average	Units	Reporting Limit
Carbonace	ous Biochemical Oxygen Demand	99.00	214.00	156.50	mg/L	
Group:	COD	Minimum	Maximum	Average	Units	Reporting Limit
Chemical C	Dxygen Demand	73.00	645.00	355.83	mg/L	<10
Group:	Orthophosphate	Minimum	Maximum	Average	Units	Reporting Limit
Orthophos	phate	1.70	8.60	4.60	mg/L	<0.5

Group: TSS Fotal Suspended Solids	Minimum 52.00	Maximum 2,460.00	Average 144.40	Units	Reporting Limit
Volatile Suspended Solids	52.00	2,400.00	144.40	mg/L %	~2
Sampling Point: THC04	PRIMARY EFF	LUENT 11-12		,,,	
I B				T T 1 /	D
Group: ALK pH DS COND	Minimum	Maximum	Average	Units	Reporting Limit
Alkalinity	215.00	285.00	249.20	mg/L	<1.6
Conductivity	966.00	1,690.00	1,144.91	μS/cm	<1.5
	7.10	7.70	7.42	SU	<0.10
Group: BOD	Minimum	Maximum	Average	Units	Reporting Limit
Biochemical Oxygen Demand (BOD)	76.00	410.00	184.96	mg/L	<2
Group: CBOD	Minimum	Maximum	Average	Units	Reporting Limit
arbonaceous Biochemical Oxygen Demand	544.00	544.00	544.00	mg/L	
Group: COD	Minimum	Maximum	Average	Units	Reporting Limit
Chemical Oxygen Demand	73.00	710.00	402.21	mg/L	<10
Group: Orthophosphate	Minimum	Maximum	Average	Units	Reporting Limit
Orthophosphate	0.50	16.00	5.08	mg/L	<0.5
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
otal Suspended Solids	60.00	472.00	176.83	mg/L	<2
olatile Suspended Solids				%	
Sampling Point: THC05	FINAL EFFLU	ENT			
Group: ALK pH DS COND	Minimum	Maximum	Average	Units	Reporting Limit
lkalinity	78.80	139.00	106.09	mg/L	<1.6
Conductivity	880.00	1,320.00	1,019.44	µS/cm	<1.5
Н	7.50	7.90	7.68	SU	<0.10
Group: BOD	Minimum	Maximum	Average	Units	Reporting Limit
Biochemical Oxygen Demand (BOD)	8.00	8.00	8.00	mg/L	<2
Group: CBOD	Minimum	Maximum	Average	Units	Reporting Limit
Carbonaceous Biochemical Oxygen Demand	2.00	28.00	6.56	mg/L	
Group: COD	Minimum	Maximum	Average	Units	Reporting Limit
Chemical Oxygen Demand	24.00	260.00	56.50	mg/L	<10
Group: Chlorine	Minimum	Maximum	Average	Units	Reporting Limit
otal Residual Chlorine	0.90	0.90	0.90	mg/L	<0.01
Group: ECOLI	Minimum	Maximum	Average	Units	Reporting Limit
Coli	0.00	1,800.00	131.48	CFU/100 mL	
Group: IONS	Minimum	Maximum	Average	Units	Reporting Limit
Bromide	0.100000	2.75000	2.41806	mg/L	<0.1
Calcium	33.500000	129.00000	83.99722	mg/L	<0.2
Chloride	86.600000	243.00000	142.79444	mg/L	<0.2
lardness (Calculation)	176.000000	423.00000	270.61111	mg/L	<1
Iagnesium	6.330000	24.40000	14.33139	mg/L	<0.1
litrate(as N)	9.920000	35.60000	16.60056	mg/L	<0.01
litrite(as N)	0.055000	3.46000	0.57406	mg/L	<0.002
otassium	6.250000	24.60000	11.75028	mg/L	<0.05
odium	52.300000	180.00000	101.87778	mg/L	<0.4
ulfate	30.500000	93.70000	52.59722	mg/L	<0.2

Arsenic	0.010000	0.01000	0.01000	mg/L	< 0.01
admium	0.004000	0.00400	0.00400	mg/L	< 0.004
Chromium	0.004000	0.00400	0.00400	mg/L	<0.004
opper	0.017900	0.02250	0.02041	mg/L	< 0.004
on	0.913000	1.67000	1.30413	mg/L	<0.02
ead	0.005000	0.00500	0.00500	mg/L	<0.005
langanese	0.066400	0.08350	0.07486	mg/L	<0.004
lickel	0.005800	0.00970	0.00670	mg/L	<0.005
inc	0.033400	0.03880	0.03669	mg/L	< 0.02
Group: Mercury	Minimum	Maximum	Average	Units	Reporting Limit
lercury	0.000100	0.00010	0.00010	mg/L	<0.00003
Group: NH3(as N)	Minimum	Maximum	Average	Units	Reporting Limit
mmonia(as N)	0.20	2.80	1.05	mg/L	<0.05
roup: Orthophosphate	Minimum	Maximum	Average	Units	Reporting Limit
rthophosphate	0.56	2.30	1.09	mg/L	<0.5
roup: P	Minimum	Maximum	Average	Units	Reporting Limit
hosphorus (HACH)	0.35	2.00	0.72	mg/L	<0.08
Group: TKN(as N)	Minimum	Maximum	Average	Units	Reporting Limit
otal Kjeldahl Nitrogen	1.51	4.25	2.86	mg/L	<0.2
Froup: TSS	Minimum	Maximum	Average	Units	Reporting Limit
otal Suspended Solids	2.00	55.00	15.28	mg/L	<2
Datile Suspended Solids	2.00	55.00	15.26	%	~2
-	Minimum	Maximum	A	Units	Donouting Limit
Group: Toxicity			Average	Units	Reporting Limit
6h_Mortality 6h_LC50	0.00	0.00	0.00	%	
n-ionized Ammonia	0.00	0.00	0.00		
				mg/L	D
Group: Un-ionized NH3(as N)	Minimum	Maximum	Average	Units	Reporting Limit
mmonia(as N)Un-ionized (Calculation)	0.00	0.03	0.01	mg/L	<0.001
Group: pH_15	Minimum	Maximum	Average	Units	Reporting Limit
H_15C	7.20	7.70	7.39	SU	
ampling Point: THC08	RAW SLUDGE	9-10			
roup: TS	Minimum	Maximum	Average	Units	Reporting Limit
otal Solids	0.16	8.40	2.53	%	
olatile Total Solids	62.50	89.30	81.88	%	
Froup: Total Solids	Minimum	Maximum	Average	Units	Reporting Limit
otal Solids	1.90	3.91	2.91	%	
ampling Point: THC09	RAW SLUDGE	11-12			
Group: TS	Minimum	Maximum	Average	Units	Reporting Limit
otal Solids	0.20	10.50	2.48	%	· · · · · 8
olatile Total Solids	33.30	93.80	80.97	%	
Froup: Total Solids	Minimum	Maximum	Average	Units	Reporting Limit
otal Solids	1.91	2.35	2.05	%	Keper ung Limit
ampling Point: THC10	DEWATERING			/0	
1 0	Minimum	Mavimum	ANDROGO	Unite	B onorting Limit
Group: IONS	Minimum	Maximum	Average	Units	Reporting Limit
Bromide	0.550000	0.55000	0.55000	mg/L	<0.1

Calcium	173.000000	173.00000	173.00000	mg/L	<0.2
Chloride	180.000000	180.00000	180.00000	mg/L	<0.2
Hardness (Calculation)	579.000000	579.00000	579.00000	mg/L	<1
Magnesium	35.600000	35.60000	35.60000	mg/L	<0.1
Nitrate(as N)	0.150000	0.15000	0.15000	mg/L	< 0.01
Nitrite(as N)	1.800000	1.80000	1.80000	mg/L	< 0.002
Potassium	49.000000	49.00000	49.00000	mg/L	< 0.05
Sodium	124.000000	124.00000	124.00000	mg/L	<0.4
Sulfate	13.000000	13.00000	13.00000	mg/L	<0.2
Group: METALS	Minimum	Maximum	Average	Units	Reporting Limit
Arsenic	0.057400	0.05740	0.05740	mg/L	< 0.01
Cadmium	0.008000	0.00800	0.00800	mg/L	< 0.004
Chromium	1.360000	1.36000	1.36000	mg/L	< 0.004
Cobalt	0.055600	0.05560	0.05560	mg/L	< 0.004
Copper	12.600000	12.60000	12.60000	mg/L	< 0.004
Lead	0.273000	0.27300	0.27300	mg/L	< 0.005
Molybdenum	0.143000	0.14300	0.14300	mg/L	< 0.01
Nickel	0.376000	0.37600	0.37600	mg/L	< 0.005
Selenium	0.020000	0.02000	0.02000	mg/L	< 0.01
Zinc	11.000000	11.00000	11.00000	mg/L	< 0.02
Group: Mercury	Minimum	Maximum	Average	Units	Reporting Limit
Mercury	0.004200	0.00910	0.00680	mg/L	< 0.00003
Group: NH3(as N)	Minimum	Maximum	Average	Units	Reporting Limit
Ammonia(as N)	65.00	65.00	65.00	mg/L	<0.05
Group: TS	Minimum	Maximum	Average	Units	Reporting Limit
Total Solids	0.60	4.43	2.42	%	
Volatile Total Solids	62.50	89.20	79.15	%	

Sampling Point: THC100

PRIMARY EFFLUENT 8

Group: ALK pH DS COND	Minimum	Maximum	Average	Units	Reporting Limit
Alkalinity	228.00	308.00	268.81	mg/L	<1.6
Conductivity	1,080.00	1,390.00	1,223.24	µS/cm	<1.5
рН	7.00	7.60	7.35	SU	<0.10
Group: BOD	Minimum	Maximum	Average	Units	Reporting Limit
Biochemical Oxygen Demand (BOD)	92.00	228.00	162.14	mg/L	<2
Group: COD	Minimum	Maximum	Average	Units	Reporting Limit
Chemical Oxygen Demand	140.00	485.00	353.65	mg/L	<10
Group: Orthophosphate	Minimum	Maximum	Average	Units	Reporting Limit
Orthophosphate	2.70	11.00	5.59	mg/L	<0.5
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	44.00	168.00	100.81	mg/L	<2
Volatile Suspended Solids				%	

Sampling Point: THC101 RAW SLUDGE 1

TS Units Group: Minimum Maximum Average **Reporting Limit Total Solids** 0.29 4.90 % 2.56 Volatile Total Solids 60.00 91.70 81.93 % **Total Solids Reporting Limit** Group: Minimum Maximum Average Units **Total Solids** 0.76 0.95 0.86 %

Group: TS	Minimum	Maximum	Average	Units	Reporting Limit
Total Solids	0.32	6.03	2.60	%	
Volatile Total Solids	66.70	88.50	82.97	%	
Group: Total Solids	Minimum	Maximum	Average	Units	Reporting Limit
Total Solids	0.75	0.86	0.81	%	
Sampling Point: THC103	RAW SLUDGE	3			
Group: TS	Minimum	Maximum	Average	Units	Reporting Limit
Total Solids	0.20	5.90	2.90	%	
Volatile Total Solids	57.10	88.90	81.56	%	
Group: Total Solids	Minimum	Maximum	Average	Units	Reporting Limit
Total Solids	0.83	0.87	0.85	%	
Sampling Point: THC104	RAW SLUDGE	4			
Group: TS	Minimum	Maximum	Average	Units	Reporting Limit
Total Solids	0.20	5.30	2.69	%	_
Volatile Total Solids	62.50	86.84	81.42	%	
Group: Total Solids	Minimum	Maximum	Average	Units	Reporting Limit
Total Solids	0.88	1.01	0.95	%	
Sampling Point: THC105	RAW SLUDGE	5			
Group: TS	Minimum	Maximum	Average	Units	Reporting Limit
Total Solids	0.10	6.00	2.25	%	
Volatile Total Solids	50.00	93.30	81.12	%	
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	6,220.00	6,220.00	6,220.00	mg/L	<2
Volatile Suspended Solids	74.40	74.40	74.40	%	
Group: Total Solids	Minimum	Maximum	Average	Units	Reporting Limit
Fotal Solids	1.01	2.12	1.60	%	
Sampling Point: THC106	RAW SLUDGE	6			
Group: TS	Minimum	Maximum	Average	Units	Reporting Limit
Total Solids	0.20	7.00	2.80	%	
Volatile Total Solids	57.10	87.20	80.99	%	
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	2,560.00	2,560.00	2,560.00	mg/L	<2
Volatile Suspended Solids	77.00	77.00	77.00	%	
Group: Total Solids	Minimum	Maximum	Average	Units	Reporting Limit
Total Solids	1.21	2.41	1.87	%	
Sampling Point: THC107	RAW SLUDGE	7			
Group: TS	Minimum	Maximum	Average	Units	Reporting Limit
Total Solids	0.19	4.50	2.20	%	
	50.00	88.90	81.27	%	
Volatile Total Solids	50.00	00.70	01.27	, 0	

Total Suspended Solids	4,250.00	4,250.00	4,250.00	mg/L	<2
Volatile Suspended Solids	76.00	76.00	76.00	%	
Group: Total Solids	Minimum	Maximum	Average	Units	Reporting Limit
Total Solids	0.91	2.23	1.59	%	
Sampling Point: THC108	RAW SLUDGE	8			
Group: TS	Minimum	Maximum	Average	Units	Reporting Limit
Total Solids	0.20	4.40	1.85	%	
Volatile Total Solids	60.00	90.00	81.10	%	
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	3,840.00	3,840.00	3,840.00	mg/L	<2
Volatile Suspended Solids	77.10	77.10	77.10	%	
Group: Total Solids	Minimum	Maximum	Average	Units	Reporting Limit
Total Solids	0.82	2.18	1.47	%	
Sampling Point: THC109	DEWATERING	CAKE # 413			
Group: TS	Minimum	Maximum	Average	Units	Reporting Limit
Total Solids	19.90	38.50	26.86	%	
Volatile Total Solids	70.60	86.80	81.60	%	
Sampling Point: THC110	DEWATERING	CENTRATE #	# 413		
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	270.00	10,110.00	998.28	mg/L	<2
Volatile Suspended Solids				%	
Sampling Point: THC111	DEWATERING	CAKE # 414			
Group: TS	Minimum	Maximum	Average	Units	Reporting Limit
Total Solids	18.06	63.83	27.04	%	
Volatile Total Solids	73.30	93.20	81.71	%	
Sampling Point: THC112	DEWATERING	CENTRATE #	ŧ 414		
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	220.00	27,340.00	1,053.43	mg/L	<2
Volatile Suspended Solids				%	
Sampling Point: THC13	AERATION TA	NK 1E			
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	1,480.00	2,750.00	2,036.22	mg/L	<2
Volatile Suspended Solids	75.00	85.00	78.76	%	
Sampling Point: THC14	AERATION TA	NK 1W			
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	1,420.00	2,650.00	1,916.49	mg/L	<2
Volatile Suspended Solids	75.00	86.60	79.02	%	
volatile Suspended Solids					
Sampling Point: THC15	AERATION TA	NK 2E			

Total Suspended Solids	1,340.00	2,470.00	1,884.86	mg/L	<2
Volatile Suspended Solids	75.60	85.10	79.06	%	
Sampling Point: THC1	6 AERATION TA	NK 2W			
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	1,260.00	2,400.00	1,844.59	mg/L	<2
Volatile Suspended Solids	74.90	86.60	79.06	%	
Sampling Point: THC1	7 AERATION TA	NK 3E			
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	1,217.00	3,510.00	2,266.33	mg/L	<2
Volatile Suspended Solids	73.60	85.20	77.87	%	
Sampling Point: THC1	8 AERATION TA	NK 3W			
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	1,590.00	3,410.00	2,278.72	mg/L	<2
Volatile Suspended Solids	74.50	84.60	78.20	%	
Sampling Point: THC1	9 AERATION TA	NK 4E			
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	470.00	3,710.00	2,126.92	mg/L	<2
Volatile Suspended Solids	74.90	87.20	79.69	%	
Sampling Point: THC2	0 AERATION TA	NK 4W			
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	500.00	3,810.00	2,222.05	mg/L	<2
Volatile Suspended Solids	74.70	92.00	78.93	%	
Sampling Point: THC2	1 AERATION TA	NK 5			
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	1,580.00	4,310.00	2,916.05	mg/L	<2
Volatile Suspended Solids	74.50	83.30	77.81	%	
Sampling Point: THC2	2 AERATION TA	NK 6			
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	1,440.00	4,860.00	1,914.47	mg/L	<2
Volatile Suspended Solids	72.60	88.50	79.15	%	
Sampling Point: THC2	3 AERATION TA	NK 7			
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	1,520.00	4,960.00	2,339.49	mg/L	<2
Volatile Suspended Solids	74.50	84.90	78.79	%	
Sampling Point: THC24	4 AERATION TA	NK 8			
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	1,540.00	5,190.00	2,138.72	mg/L	<2
Volatile Suspended Solids	72.80	86.00	78.18	%	

Sampling Point:	THC25	AERATION TA	NK 9				
Group: TSS		Minimum	Maximum	Average	Units	Reporting Limit	
Total Suspended Solids		1,800.00	5,000.00	3,297.30	mg/L	<2	
Volatile Suspended Solids		73.30	82.90	77.33	%		
Sampling Point:	THC26	AERATION TA	NK 10				
Group: TSS		Minimum	Maximum	Average	Units	Reporting Limit	
Total Suspended Solids		1,910.00	5,030.00	3,480.54	mg/L	<2	
Volatile Suspended Solids		70.20	83.40	77.32	%		
Sampling Point:	THC27	AERATION TA	NK 11				
Group: TSS		Minimum	Maximum	Average	Units	Reporting Limit	
Total Suspended Solids		2,460.00	4,750.00	3,890.27	mg/L	<2	
Volatile Suspended Solids		72.90	83.00	77.12	%		
Sampling Point:	THC28	AERATION TA	NK 12				
Group: TSS		Minimum	Maximum	Average	Units	Reporting Limit	
Total Suspended Solids		2,330.00	5,470.00	4,023.82	mg/L	<2	
Volatile Suspended Solids		73.30	80.70	77.04	%		
Sampling Point:	THC29	AERATION TANK 13					
Group: TSS		Minimum	Maximum	Average	Units	Reporting Limit	
Total Suspended Solids		1,780.00	4,990.00	3,368.97	mg/L	<2	
Volatile Suspended Solids		73.20	89.80	79.25	%		
Sampling Point:	THC30	AERATION TA	NK 14				
Group: TSS		Minimum	Maximum	Average	Units	Reporting Limit	
Total Suspended Solids		2,850.00	6,230.00	3,864.62	mg/L	<2	
Volatile Suspended Solids		74.70	89.80	79.31	%		
Sampling Point:	THC31	AERATION TA	NK 15				
Group: TSS		Minimum	Maximum	Average	Units	Reporting Limit	
Total Suspended Solids		1,830.00	4,540.00	3,240.51	mg/L	<2	
Volatile Suspended Solids		74.00	89.60	79.62	%		
Sampling Point:	THC32	AERATION TA	NK 16				
Group: TSS		Minimum	Maximum	Average	Units	Reporting Limit	
Total Suspended Solids		2,270.00	4,630.00	3,541.03	mg/L	<2	
Volatile Suspended Solids		72.20	88.30	79.44	%		
Sampling Point:	THC38	HCTP FE SAM	PLE				
Group: Ferric Ch	loride	Minimum	Maximum	Average	Units	Reporting Limit	
Absolute Difference		0.00	0.01	0.01			
Bill of Lading #		82,351,914.00	82,442,260.00	82,399,657.25			
Specific Gravity		1.21	1.31	1.26			
Supplier Specific Gravity		1.20	1.31	1.26			

Group: METALS Iron	Minimum 133,000.000000	Maximum 144,000.00000	Average 138,500.00000	Units mg/L	Reporting Limit				
Group: SPGR	Minimum	Maximum	Average	Units	Reporting Limit				
Specific Gravity	1.27	1.27	1.27	Onits	Reporting Limit				
Sampling Point: THC39	RETURN SLUE	OGE 1							
Group: TS	Minimum	Maximum	Average	Units	Reporting Limit				
Total Solids	3.17	3.17	3.17	%					
Volatile Total Solids Group: TSS	82.72 Minimum	82.72 Maximum	82.72	% Units	Reporting Limit				
Total Suspended Solids	2,340.00	7,430.00	Average 3,850.00	mg/L	<2 Keporting Limit				
Volatile Suspended Solids	75.90	80.80	77.63	%					
Sampling Point: THC40	RETURN SLUE)GE 3							
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit				
Total Suspended Solids	164.00	8,710.00	4,280.10	mg/L	<2				
Volatile Suspended Solids	73.50	82.00	77.03	%					
Sampling Point: THC41	RETURN SLUE	OGE 5							
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit				
Total Suspended Solids	2,500.00	9,630.00	5,975.41	mg/L	<2				
Volatile Suspended Solids	74.50	80.90	76.46	%					
Sampling Point: THC42	RETURN SLUE	RETURN SLUDGE 7							
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit				
Fotal Suspended Solids	2,490.00	6,770.00	4,480.00	mg/L	<2				
Volatile Suspended Solids	75.30	79.80	77.54	%					
Sampling Point: THC43	RETURN SLUE	OGE 9-12							
Group: TS	Minimum	Maximum	Average	Units	Reporting Limit				
Fotal Solids	4.30	4.30	4.30	%					
Volatile Total Solids	84.70	84.70	84.70	%	Dopostin - I inti				
Group: TSS Fotal Suspended Solids	Minimum 5,900.00	Maximum 11,710.00	Average 8,538.42	Units mg/L	Reporting Limit				
Volatile Suspended Solids	73.50	85.30	76.30	%	<u>~</u>				
Sampling Point: THC44	RETURN SLUD	OGE 13-16							
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit				
Fotal Suspended Solids	4,730.00	11,040.00	8,358.46	mg/L	<2				
Volatile Suspended Solids	73.20	80.40	78.13	%					
Sampling Point: THC49	RETURN SLUE	OGE 2							
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit				
Total Suspended Solids	2,330.00	6,750.00	3,845.28	mg/L	<2				
Volatile Suspended Solids	75.80	80.70	77.73	%					

Group: TSS		Minimum	Maximum	Average	Units	Reporting Limit
Fotal Suspended Solids		1,140.00	8,240.00	4,558.97	mg/L	<2
Volatile Suspended Solids		70.20	82.30	77.51	⁰∕₀	
Sampling Point: Tl	HC51	RETURN SLUI	OGE 6			
Group: TSS		Minimum	Maximum	Average	Units	Reporting Limit
otal Suspended Solids		2,540.00	6,760.00	3,801.35	mg/L	<2
Volatile Suspended Solids		73.70	80.70	77.94	%	
Sampling Point: Tl	HC52	RETURN SLUI	OGE 8			
Group: TSS		Minimum	Maximum	Average	Units	Reporting Limit
otal Suspended Solids		1,750.00	6,580.00	4,202.22	mg/L	<2
olatile Suspended Solids		75.10	80.30	77.07	%	
Sampling Point: Tl	HC56	POLYMER DE	WATERING M	IIXING TANK 1	l.	
Group: TS		Minimum	Maximum	Average	Units	Reporting Limit
otal Solids		0.55	0.61	0.59	%	
Sampling Point: T	HC57	POLYMER DE	WATERING M	IIXING TANK 2	2.	
Group: TS		Minimum	Maximum	Average	Units	Reporting Limit
otal Solids		0.32	0.81	0.50	%	
Sampling Point: T	HC58	POLYMER DE	WATERING M	IIXING TANK 3	3	
Group: TS		Minimum	Maximum	Average	Units	Reporting Limit
otal Solids		0.43	1.80	0.53	%	
Sampling Point: T	HC62	DEWATERING	CAKE # 314			
Group: TS		Minimum	Maximum	Average	Units	Reporting Limit
otal Solids		24.20	30.80	27.23	%	
olatile Total Solids		73.80	82.56	79.04	%	
Sampling Point: Tl	HC63	DEWATERING	CENTRATE #	¢ 314		
Group: TSS		Minimum	Maximum	Average	Units	Reporting Limit
otal Suspended Solids		520.00	7,110.00	2,090.77	mg/L	<2
Sampling Point: T	HC65	WAS THICKEN	NING - CENTR	RIFUGE #1 - CE	NTRATE	
Group: TSS		Minimum	Maximum	Average	Units	Reporting Limit
otal Suspended Solids		180.00	9,890.00	1,216.60	mg/L	<2
olatile Suspended Solids					%	
Sampling Point: T	HC66	WAS THICKEN	NING - CENTR	RIFUGE #1 - TW	VAS	
Group: TS		Minimum	Maximum	Average	Units	Reporting Limit
Cotal Solids		1.50	6.30	3.88	%	
olatile Total Solids		70.43	83.50	74.55	⁰∕₀	
Sampling Point: Tl	HC69	WAS THICKEN	NING - CENTR	RIFUGE #2 - TW	VAS	
Group: TS		Minimum	Maximum	Average	Units	Reporting Limit
$\mathbf{D}_{acc} = 10 \text{ of } 14$						Drinted on: 02/22/2017

Total Solids		3.60	3.60	3.60	%					
Volatile Total Solids		79.07	79.07	79.07	%					
Sampling Point:	THC71	WAS THICKENING - CENTRIFUGE #3 - CENTRATE								
Group: TSS		Minimum	Maximum	Average	Units	Reporting Limit				
Total Suspended Solids		170.00	12,400.00	1,935.00	mg/L	<2				
Volatile Suspended Solids					%					
Sampling Point:	THC72	WAS THICKEN	NING - CENTR	RIFUGE #3 - TW	VAS					
Group: TS		Minimum	Maximum	Average	Units	Reporting Limit				
Total Solids		1.00	7.20	5.03	%					
Volatile Total Solids		71.20	75.80	73.65	%					
Sampling Point:	THC74	WAS THICKEN	NING - CENTF	RIFUGE #4 - CE	ENTRATE					
Group: TSS		Minimum	Maximum	Average	Units	Reporting Limit				
Total Suspended Solids		300.00	4,070.00	1,379.00	mg/L	<2				
Sampling Point:	THC75	WAS THICKEN	NING - CENTR	RIFUGE #4 - TV	VAS					
Group: TS		Minimum	Maximum	Average	Units	Reporting Limit				
Total Solids		2.80	6.00	4.55	%					
Volatile Total Solids		73.13	75.80	74.53	%					
Sampling Point:	THC77	WAS THICKEN	NING - CENTF	RIFUGE #5 - CE	ENTRATE					
Group: TSS		Minimum	Maximum	Average	Units	Reporting Limit				
Total Suspended Solids		14.00	5,330.00	869.52	mg/L	<2				
Volatile Suspended Solids					%					
Sampling Point:	THC78	WAS THICKEN	NING - CENTR	RIFUGE #5 - TW	VAS					
Group: TS		Minimum	Maximum	Average	Units	Reporting Limit				
Total Solids		1.80	6.50	3.91	%					
Volatile Total Solids		72.40	76.90	74.33	%					
Sampling Point:	THC80	WAS THICKEN	NING - CENTF	RIFUGE #6 - CE	ENTRATE					
Group: TSS		Minimum	Maximum	Average	Units	Reporting Limit				
Total Suspended Solids		50.00	11,830.00	1,041.64	mg/L	<2				
Volatile Suspended Solids					%					
Sampling Point:	THC81	WAS THICKEN	NING - CENTF	RIFUGE #6 - TW	VAS					
Group: TS		Minimum	Maximum	Average	Units	Reporting Limit				
Total Solids		0.70	7.10	3.87	%					
Volatile Total Solids		62.70	77.53	74.23	%					
Sampling Point:	THC84	DEWATERING	CAKE # 310							
Group: TS		Minimum	Maximum	Average	Units	Reporting Limit				
-				0		- 0				
Total Solids		25.90	29.00	27.40	%					

Sampling Point: THC85	t: THC85 DEWATERING CENTRATE # 310						
Group: TSS Total Suspended Solids	Minimum 230.00	Maximum 970.00	Average 604.29	Units mg/L	Reporting Limit		
Sampling Point: THC88	DEWATERING	CAKE # 313					
Group: TS	Minimum	Maximum	Average	Units	Reporting Limit		
Total Solids	26.53	26.53	26.53	%			
Volatile Total Solids	82.35	82.35	82.35	%			
Sampling Point: THC90	WAS FEED from	m VAULT					
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit		
Total Suspended Solids	300.00	8,200.00	6,331.80	mg/L	<2		
Volatile Suspended Solids	74.60	96.70	77.37	%			
Sampling Point: THC91	POLYMER TH	ICKENING					
Group: TS	Minimum	Maximum	Average	Units	Reporting Limit		
Total Solids	0.08	1.13	0.22	%			
Sampling Point: THC92	POLYMER TH	ICKENING NI	EAT				
Group: TS	Minimum	Maximum	Average	Units	Reporting Limit		
Total Solids	0.18	2.16	1.02	%			
Sampling Point: THC93	PRIMARY EFF	LUENT 1					
Group: ALK pH DS COND	Minimum	Maximum	Average	Units	Reporting Limit		
Alkalinity	236.00	293.00	269.30	mg/L	<1.6		
Conductivity	976.00	1,440.00	1,198.27	µS/cm	<1.5		
рН	7.10	7.70	7.42	SU	<0.10		
Group: BOD	Minimum	Maximum	Average	Units	Reporting Limit		
Biochemical Oxygen Demand (BOD)	79.00	237.00	164.81	mg/L	<2		
Group: COD	Minimum	Maximum	Average	Units	Reporting Limit		
Chemical Oxygen Demand	58.00	495.00	315.35	mg/L	<10		
Group: Orthophosphate	Minimum	Maximum	Average	Units	Reporting Limit		
Orthophosphate	2.80	11.00	6.10	mg/L	<0.5		
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit		
Total Suspended Solids	64.00	148.00	107.59	mg/L	<2		
Volatile Suspended Solids				%			
Sampling Point: THC94	PRIMARY EFFLUENT 2						
Group: ALK pH DS COND	Minimum	Maximum	Average	Units	Reporting Limit		
Alkalinity	234.00	300.00	274.05	mg/L	<1.6		
Conductivity	965.00	1,500.00	1,221.49	μS/cm	<1.5		
pH Communication POD	7.00	7.70	7.40	SU	<0.10		
Group: BOD	Minimum	Maximum	Average	Units	Reporting Limit		
Biochemical Oxygen Demand (BOD)	87.00	228.00	166.63	mg/L	<2 Dan antina Limit		
Group: COD	Minimum	Maximum	Average	Units	Reporting Limit		
Chemical Oxygen Demand	60.00	520.00	347.30	mg/L	<10		

Group: Orthophosphate	Minimum	Maximum	Average	Units	Reporting Limit
Orthophosphate	2.90	11.00	6.30	mg/L	<0.5
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	60.00	152.00	109.80	mg/L	<2
Volatile Suspended Solids				%	

Sampling Point: THC95

PRIMARY EFFLUENT 3

Group: ALK pH DS COND	Minimum	Maximum	Average	Units	Reporting Limit
Alkalinity	236.00	299.00	272.81	mg/L	<1.6
Conductivity	968.00	1,490.00	1,221.06	μS/cm	<1.5
рН	6.80	7.80	7.41	SU	<0.10
Group: BOD	Minimum	Maximum	Average	Units	Reporting Limit
Biochemical Oxygen Demand (BOD)	86.00	255.00	167.95	mg/L	<2
Group: COD	Minimum	Maximum	Average	Units	Reporting Limit
Chemical Oxygen Demand	58.00	485.00	339.67	mg/L	<10
Group: Orthophosphate	Minimum	Maximum	Average	Units	Reporting Limit
Orthophosphate	2.10	11.00	6.18	mg/L	<0.5
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	56.00	184.00	107.15	mg/L	<2
Volatile Suspended Solids				%	

Sampling Point: THC96

PRIMARY EFFLUENT 4

Group: ALK pH DS COND	Minimum	Maximum	Average	Units	Reporting Limit
Alkalinity	241.00	297.00	270.27	mg/L	<1.6
Conductivity	986.00	1,460.00	1,210.70	µS/cm	<1.5
pH	7.20	7.70	7.41	SU	<0.10
Group: BOD	Minimum	Maximum	Average	Units	Reporting Limit
Biochemical Oxygen Demand (BOD)	31.00	256.00	157.76	mg/L	<2
Group: COD	Minimum	Maximum	Average	Units	Reporting Limit
Chemical Oxygen Demand	59.00	510.00	343.51	mg/L	<10
Group: Orthophosphate	Minimum	Maximum	Average	Units	Reporting Limit
Orthophosphate	2.60	11.00	6.09	mg/L	<0.5
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	32.00	152.00	104.16	mg/L	<2
Volatile Suspended Solids				%	

Sampling Point: THC97

PRIMARY EFFLUENT 5

Group:	ALK pH DS COND	Minimum	Maximum	Average	Units	Reporting Limit
Alkalinity		246.00	313.00	277.53	mg/L	<1.6
Conductivi	ty	1,090.00	1,420.00	1,249.47	μS/cm	<1.5
pН		7.00	7.70	7.38	SU	<0.10
Group:	BOD	Minimum	Maximum	Average	Units	Reporting Limit
Biochemica	al Oxygen Demand (BOD)	85.00	263.00	154.50	mg/L	<2
Group:	COD	Minimum	Maximum	Average	Units	Reporting Limit
Chemical C	Dxygen Demand	50.00	475.00	350.79	mg/L	<10
Group:	Orthophosphate	Minimum	Maximum	Average	Units	Reporting Limit
Orthophos	phate	2.70	11.00	5.79	mg/L	<0.5
Group:	TSS	Minimum	Maximum	Average	Units	Reporting Limit

Total Suspended Solids	32.00	184.00	102.26	mg/L	<2
Volatile Suspended Solids				%	
Sampling Point: THC98	PRIMARY EFF	TLUENT 6			
Group: ALK pH DS COND	Minimum	Maximum	Average	Units	Reporting Limit
Alkalinity	247.00	310.00	275.89	mg/L	<1.6
Conductivity	1,090.00	1,410.00	1,241.84	µS/cm	<1.5
pH	7.00	7.70	7.37	SU	<0.10
Group: BOD	Minimum	Maximum	Average	Units	Reporting Limit
Biochemical Oxygen Demand (BOD)	75.00	227.00	155.05	mg/L	<2
Group: COD	Minimum	Maximum	Average	Units	Reporting Limit
Chemical Oxygen Demand	155.00	495.00	346.58	mg/L	<10
Group: Orthophosphate	Minimum	Maximum	Average	Units	Reporting Limit
Orthophosphate	2.60	24.00	6.09	mg/L	<0.5
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	16.00	168.00	100.91	mg/L	<2
Volatile Suspended Solids				%	
Sampling Point: THC99	PRIMARY EFF	LUENT 7			
Group: ALK pH DS COND	Minimum	Maximum	Average	Units	Reporting Limit
Alkalinity	245.00	311.00	272.03	mg/L	<1.6
Conductivity	1,090.00	1,390.00	1,227.63	µS/cm	<1.5
рН	7.00	7.70	7.36	SU	<0.10
Group: BOD	Minimum	Maximum	Average	Units	Reporting Limit
Biochemical Oxygen Demand (BOD)	71.00	247.00	156.26	mg/L	<2
Group: COD	Minimum	Maximum	Average	Units	Reporting Limit
Chemical Oxygen Demand	175.00	540.00	343.16	mg/L	<10
Group: Orthophosphate	Minimum	Maximum	Average	Units	Reporting Limit
Orthophosphate	2.60	17.00	5.87	mg/L	<0.5
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	32.00	164.00	100.81	mg/L	<2
Volatile Suspended Solids				%	
Sampling Point: THR88	WAS THICKEN	NING - CENTR	RIFUGE #6 - CE	NTRATE	
Group: TSS	Minimum	Maximum	Average	Units	Reporting Limit
Total Suspended Solids	2,800.00	3,740.00	3,270.00	mg/L	<2
Note: Averages are based on raw data l					

Note: Averages are based on raw data !

Note: Minimum values are normally reported as < the reporting limit for that parameter. !

Note: Average is calculated for ECOLI, if Geometric Mean is required ask the lab for a separate data file.

Appendix F

Influent Flow Meter Calibration Records

Date: 03/12/2016 Type: Parshall Flume, Ultrasonic Flow Transd. Location: Phase 1 Primary 9-10 <u>Ins</u>trument No. PRM-FIT-5112 Temperature Compensation : Yes Exponential Factor: U = 1.587 Maximum Head : <u>58.67</u> Range: <u>0-1600 litres /sec</u> Output : <u>4-20 mA</u> Throat size : <u>5 Feet (152.4 c.m)</u> Blanking Distance: <u>60.87 cm</u> Overall Distance : <u>119.787cm</u>

Rarnge	Head	Cal.C	Dutput	Actual	(local	Actual	
%	cm	mA -	L/sec	mA	L/sec	Remote	
						m3/sec	
0	0	4.01	0	4.03	4	0	
8.25	12.19	5.32	132	5.6	165	0.17	
22.44	22.86	7.59	359	7.91	396	0.4	
32.57	28.96	9.21	521	9.65	561	0.56	
60.38	42.88	13.66	966	14.08	1011	1.0	
98.13	57.91	19.7	1570	20.03	1591	1.6	
100	58.67	20	1600	20.73	1613	1.61	

Make Aux.. Equipment Used : <u>Target Transducer</u> Model
<u>XRS-5C SIEMENS</u> MILTRONICS

Milltronics Programmer

<u>OCM-3</u>

<u>General comments:</u> Parshall Flume cleaned and inspected, check zero readings, still have flow of 26 litres per seconds due to Gate leakage

Checked By : Lam Chu and Peter Wang

Date: 04/29/2016 Type: Parshall Flume, Ultrasonic Flow Transd. Location: Phase 4 Primary 11-12 <u>Instrument No. PRM-FIT-5142</u> Temperature Compensation : Yes Exponential Factor: U = 1.607

Maximum Head : <u>43.43</u> Range: <u>0-1600 litres /sec</u> Output : <u>4-20 mA</u> Throat size : <u>8 Feet</u> Blanking Distance: <u>76.11 cm</u> Overall Distance : <u>120 cm</u>

Rarnge	Head	Cal.C	utput	Actual	(local)	Actual	
%	ст	mA	L/sec	mA	L/sec	Remote	m3/sec
0	0	4	0.0	4.03	0	0	
8.13	9.14	5.3	130	5.5	141	0.14	
16.188	13.72	6.5	250	6.35	243	0.24	
21.875	16.76	7.5	350	7.57	356	0.36	
31.875	21.34	9.1	510	9.23	522	0.52	
61.25	32.00	13.8	980	13.81	982	0.98	
95.625	42.68	19.3	1530	19.88	1576	1.58	
100	43.43	20	1600	20.13	1608	1.6	

	Make
Aux Equipment Used :	Target Transducer
	Milltronics Programmer

Model <u>XRS-5C SIEMENS MILTRONICS</u> <u>OCM-3</u>

<u>General comments:</u> Parshall Flume cleaned and inspected, check zero readings, still have flow of 35 litres per seconds due to Gate Leakage.

Checked By : Lam Chu and Peter Wang

Date: 05/17/2016 Type: Parshall Flume, Ultrasonic Flow Transd. Location: Old Plant, Primary 5-8 <u>Ins</u>trument No. PRM-FIT-5002 Temperature Compensation : Yes Exponential Factor: U = 1.550

 $\begin{array}{l} \text{Maximum Head}: \underline{79.43 \text{ cm}}\\ \text{Range: } \underline{0-1000 \text{ litres /sec}}\\ \text{Output}: \underline{4-20 \text{ mA}}\\ \text{Throat size}: \underline{2 \text{ Feet}}\\ \text{Blanking Distance: } \underline{57.07 \text{ cm}}\\ \text{Overall Distance}: \underline{136.5 \text{ cm}}\\ \end{array}$

From	Rarnge	Head	Cal.Ou	tput	Actual	(local)	Actual
wall	%	cm	mA L/	/sec	mA	L/sec	Remote
					·		m3/sec
53 6/8"	0	0	4	0	4	0	0
45 7/8"	11	19.81	5.76	110	5.63	103	0.1
41 6/8"	22	30.48	7.52	220	7.35	214	0.21
38"	34	39.62	9.44	340	9.23	330	0.33
30 2/8	" 64	59.57	14.24	640	13.72	613	0.61
29 6/8	" 66	60.96	14.56	660	14.30	634	0.63
22 3/8	" 100	79.43	20	1000	19.58	975	0.98

Make Aux.. Equipment Used : <u>Target Transducer</u> <u>Milltronics Programmer</u> Model XRS-5C SIEMENS MILTRONICS <u>OCM-3</u>

General comments: Zero Flow at meter reading is 21/sec due to Gate Leakage

Checked By : Lam Chu and Frank Gao

Date: 05/17/2016 Type: Parshall Flume, Ultrasonic Flow Transd. Location: Old Plant, Primary 5-8 <u>Instrument No. PRM-FIT-5003</u> Temperature Compensation : Yes Exponential Factor: U = 1.550

Maximum Head : <u>79.43 cm</u> Range: <u>0-1000 litres /sec</u> Output : <u>4-20 mA</u> Throat size : <u>2 Feet</u> Blanking Distance: <u>57.07 cm</u> Overall Distance : <u>136.5cm</u>

From	Rarnge	Head	Cal.Ou	tput	Actual	(local)	Actual
wall	%	cm	mA L	/sec	mA	L/sec	Remote
							m3/sec
53 6/8"	0	0	4	0	4	0	0
		40.04		4.4.0			
45 7/8"	11	19.81	5.76	110	6.11	126	0.13
41 6/8"	22	30.48	7.52	220	7.69		0.00
410/0	22	30.46	1.32	220	7.09	231	0.23
38"	34	39.62	9.44	340	9.53	350	0.35
30 2/8	" 64	59.57	14.24	640	14.33	645	0.65
29 6/8'	" 66	60.96	14.56	660	14.68	674	0.67
22 0,0				000	11.00	071	0.07
22 3/8	" 100	79.43	20	1000	20.06	1007	1.0

Make	Model
Aux Equipment Used : <u>Target Transducer</u>	XRS-5C SIEMENS MILTRONICS
Milltronics Programmer	OCM-3

General comments: Zero Flow at meter reading is 13/sec due to Gate Leakage

Checked By: Lam Chu and Frank Gao

Date: 10/15/2016 Type: Parshall Flume, Ultrasonic Flow Transd. Location: Old Plant, Primary 5-8 <u>Ins</u>trument No. PRM-FIT-5002 Temperature Compensation : Yes Exponential Factor: U = 1.550

Maximum Head : <u>79.43 cm</u> Range: <u>0-1000 litres /sec</u> Output : <u>4-20 mA</u> Throat size : <u>2 Feet</u> Blanking Distance: <u>57.07 cm</u> Overall Distance : <u>136.5cm</u>

From	Rarnge	Head	Cal.Ou	tput	Actual	(local)	Actual
wall	%	cm	mA L/	/sec	mA	L/sec	Remote
							m3/sec
53 6/8"	, 0	0	4	0	A	0	0
33 0/0	0	0	4	0	4	0	0
45 7/8"	<u>' 11</u>	19.81	5.76	110	5.77	110	0.11
41 6/8"	· 22	30.48	7.52	220	7.5	219	0.22
38"	34	39.62	9.44	340	9.4	336	0.34
30 2/8	" 64	59.57	14.24	640	14.22	638	0.64
29 6/8	" 66	60.96	14.56	660	14.57	661	0.66
22 3/8	" 100	79.43	20	1000	19.53	963	0.96

Aux.. Equipment Used : <u>Target Transducer</u> <u>Milltronics Programmer</u> Model XRS-5C SIEMENS MILTRONICS <u>OCM-3</u>

General comments: Zero Flow at meter reading is 15/sec due to Gate Leakage

Checked By : Lam Chu and Frank Gao

Date: 10/15/2016 Type: Parshall Flume, Ultrasonic Flow Transd. Location: Old Plant, Primary 5-8 <u>Ins</u>trument No. PRM-FIT-5003 Temperature Compensation : Yes Exponential Factor: U = 1.550 Maximum Head : <u>79.43 cm</u> Range: <u>0-1000 litres /sec</u> Output : <u>4-20 mA</u> Throat size : <u>2 Feet</u> Blanking Distance: <u>57.07 cm</u> Overall Distance : <u>136.5cm</u>

From	Rarnge	Head	Cal.Ou	tput	Actual	(local)	Actual
wall	%	cm	mA L	/sec	mA	L/sec	Remote
							m3/sec
53 6/8"	0	0	4	0	4	0	0
45 7/ 8"	11	19.81	5.76	110	5.8	114	0.11
41 6/8"	22	30.48	7.52	220	7.55	223	0.22
38"	34	39.62	9.44	340	9.21	325	0.33
30 2/8"	64	59.57	14.24	640	14.16	633	0.63
29 6/8*	66	60.96	14.56	660	14.55	658	0.66
22 3/8"	100	79.43	20	1000	20.01	998	1.0

Make Aux.. Equipment Used : <u>Target Transducer</u> <u>Milltronics Programmer</u> Model XRS-5C SIEMENS MILTRONICS <u>OCM-3</u>

General comments: Zero Flow at meter reading is 18/sec due to Gate Leakage

Checked By: Lam Chu and Frank Gao

Date: 12/17/2016 Type: Parshall Flume, Ultrasonic Flow Transd. Location: Phase 1 Primary 9-10 <u>Instrument No. PRM-FIT-5112</u> Temperature Compensation : Yes Exponential Factor: U = 1.587

Maximum Head : <u>58.67</u> Range: <u>0-1600 litres /sec</u> Output : <u>4-20 mA</u> Throat size : <u>5 Feet (152.4 c.m)</u> Blanking Distance: <u>60.87 cm</u> Overall Distance : <u>119.787cm</u>

Rarnge	Head	Cal.	Output	Actual	(local	Actual	
%	cm	mA	L/sec	mA	L/sec	Remote	
		-				m3/sec	
0	0	4.01	0	4.03	4	0	
8.25	12.19	5.32	132	5.36	135	0.14	
22.44	22.86	7.59	359	7.64	365	0.37	
32.57	28.96	9.21	521	9.87	531	0.53	
60.38	42.88	13.66	966	14.03	989	0.99	
98.13	57.91	19.7	1570	19.83	1588	. 1.59	_
100	58.67	20	1600	20.05	1608	1.61	

Make Aux.. Equipment Used : <u>Target Transducer</u> Model
<u>XRS-5C SIEMENS MILTRONICS</u>

Milltronics Programmer

OCM-3

<u>General comments</u>: Parshall Flume cleaned and inspected, check zero readings, still have flow of 36 litres per seconds due to Gate leakage

Checked By : Lam Chu and Frank Gao

Appendix G

Effluent Suspended Solids Action Plan

Correspondence

Martin Shigeishi, P. Eng Plant Manager Highland Creek Treatment Plant Tel: 416 392-4762 Fax: 416 392-2362 mshibeis@toronto.ca

Toronto Water

April 20th, 2005

Mr. Raymond Valentine Senior Environmental Officer Ministry of the Environment Central Region Toronto District Office 5775 Yonge Street 8th Floor Toronto, Ontario M2M 4J1

RE: Highland Creek Treatment Plant - Effluent Suspended Solids Compliance

Dear Mr. Valentine:

Further to the discussions that occurred last year, this report outlines the cause and identifies the projects that have been initiated to help achieve continuous compliance with respect to the effluent suspended solids concentration at the Highland Creek Treatment Plant. For 2004, the annual average daily concentration and loading rate of effluent suspended solids at the Highland Creek Treatment Plant were 29 mg/L and 4721 kg/day respectively.

Root Cause

The solids inventory in the plant had been high in the month of December 2003. However, this situation was being managed and by the end of December, solids concentrations were returning to normal levels. Unfortunately the adverse weather conditions that occurred throughout the month of January 2004 caused some of the clarifier mechanisms in the Final Settling Tanks to freeze periodically and fail. Despite the ongoing physical efforts to manually break the ice that was forming on the clarifier surfaces, poor solids capture resulted. Compounding this situation was the fact that the Sludge Disposal Building was shut down for three consecutive days from January 14th to 16th inclusive, which caused the solids inventory to increase once again. Other operational problems in the Sludge Disposal Building, mainly related to aging dewatering and incineration equipment, occurred on February 17th to 19th, March 10th, April 26th, May 19th, August 12th, November 22nd and December 21st and 22nd. Together, these process interruptions resulted in lost throughput totaling approximately 395 dry tonnes. During these times, this sludge remained in our primary clarifiers and overloaded the secondary treatment. Consequently, the characteristics of the mixed liquor varied and the final effluent quality was prone to periods of poor settling.

Action Plan

There are a number of actions presently in place, both long term and short term, to help achieve continuous compliance with respect to the effluent suspended solids concentration in the future. These include the following:

1. Biosolids & Residuals Master Plan (BRMP)

The preferred plant strategy to manage the Highland Creek Treatment Plant biosolids is to continue with the on-site incineration and replace the existing multiple hearth incinerators with fluidized bed units. The implementation plan, as outlined in the City of Toronto Biosolids & Residuals Master Plan Executive Summary (September 2004), was to initiate the design and construction in 2005, with completion within 4 to 6 years. The 30-day public review period for this master plan, required under the Class Environmental Assessment Master Planning process, was scheduled to close on September 16th, 2004 but has been extended to late in 2005. Until the public review is complete, the BRMP cannot be brought to the Works Committee of City Council for approval and the implementation cannot begin.

2. Additional Sludge Dewatering Capacity

Our Capital Budget presently includes approved funding to install two (2) new dewatering centrifuges in the Sludge Disposal Building. The technical specification for these units has been completed and they will be purchased in 2005. A separate installation contract will be tendered early in 2006 and completed in early 2007.

3. Waste Activated Sludge Thickening Improvements

Our Capital Budget presently includes approved funding to install Waste Activated Sludge (WAS) thickening centrifuges in place of the decommissioned Dissolved Air Flotation Tanks. Despite study recommendations received from a consulting engineer to continue co-settling the WAS in the primary clarifiers and optimize performance, we believe that separate handling of the WAS will improve plant performance in a more consistent manner. Modifications and other preparatory work in the existing building will begin this year along with the development of the technical specifications for the thickening centrifuges. The centrifuge units will then be purchased in 2006. A separate installation contract will be tendered early in 2007 and completed in 2008. In the meantime, we will continue to co-settle in the primary clarifiers and optimize the performance where possible.

4. Optimization of Anaerobic Digestion Tanks

The four new anaerobic digestion tanks are in service and the commissioning activities are nearly complete. We will be monitoring the operation closely in order to optimize the process performance and determine whether the solids reduction is having a positive impact on our ability to effectively manage the sludge disposal given the current incineration and dewatering equipment.

5. Incineration Operation

Normally, one incinerator is in service while the other unit is out of service for maintenance. Where possible, our strategy to help reduce high sludge inventory has been to extend the overlapping run times when one unit is being taken out of service and the other is being brought into service. This strategy of increasing the throughput is limited however, given the age and condition of the incinerators and related ancillary equipment. We are not always able to achieve extended periods of overlapping operation due to maintenance requirements. If you require any additional information, please call me at (416) 392-4762.

Yours truly,

pSr Λ

M. Shigeishi, P. Eng Plant Manager Highland Creek Treatment Plant

cc. L. Di Gironimo, Director - Wastewater Treatment

Ontario

Ministry of the Environment Central Region Toronto District Office

June 13, 2005

Ministère de l'Environnement Région du Centre Bureau de district de Toronto 5775 Yonge St. 8th Floor Toronto, Ontario M2M 4J1 Tel. (416) 328-6700 Fax (416) 325-6346

5775, rue Yonge 8e étage Toronto (Ontario) M2M 4J1

Toronto Works & Emergency Services Toronto Water - Wastewater Treatment Highland Creek Treatment Plant 51 Beechgrove Drive Toronto, Ontario M1E 3Z3

Attention: Mr. Martin Shigeishi, P. Eng. Plant Manager

Dear Mr. Shigeishi:

Re: Highland Creek Treatment Plant - Effluent Suspended Solids Compliance

Thank you for your letter of April 20, 2005, identifying the causes of, and the Action Plan to deal with, the exceedence of the suspended solids limit for 2004 in the plant effluent.

The annual average final effluent suspended solids limit of 25 mg/l in Certificate of Approval No.1477-595KKC, was exceeded by an annual average for 2004 of 29 mg/l.

This constitutes a contravention of Section 53(5) of the Ontario Water Resources Act, which states,

No person shall use or operate sewage works for which an approval is required under subsection (1) unless the required approval has been granted and complied with.

It is the Ministry's intention to enshrine the City's Action Plan in a voluntary compliance program. In consideration that the time horizons for the items in the Action Plan are in terms of years, it is therefore required that copies of:

a) your April 20, 2005 letter to me,

b) this letter to you, and

.../2

c) annual progress reports on each item in the Action Plan be bound in future Annual Reports for the Highland Creek Treatment Plant, until all the action items have been completed.

The items identified in the Action Plan are:

Biosolids and Residuals Master Plan (BRMP) Continuation of on-site incineration and replacement of the existing multiple hearth incinerators with fluidized bed units, as proposed in the Biosolids and Residuals Master Plan, and to be ratified by City Council.

2. Additional Sludge Dewatering Capacity

Purchase and installation of two (2) new dewatering centrifuges in the Sludge Disposal Building.

- 3. Waste Activated Sludge Thickening Improvements Building modifications, purchase, and installation of Waste Activated Sludge thickening centrifuges.
- Optimization of Anaerobic Digestion Tanks Completion of commissioning of the new anaerobic digestion tanks, and optimization of process performance.

5. Incineration Operation

Extension of overlapping of run times for the existing incinerators, as far as practicable. (Reported as a percentage of the year when overlapping occurred)

I look forward to receiving your letter of acknowledgment and intention to comply with the terms of this voluntary compliance program, by June 30, 2005.

Thank you for your attention to this matter.

Yours truly,

ine en

Ray Valentine Senior Environmental Officer

cc. K.Willson - MOE, TDO