

APPENDIX J





## **Geotechnical Investigation**

Proposed Road Extension Between Rean Drive and Kenaston Gardens City of Toronto, Ontario

Prepared For:

## **Morrison Hershfield Limited**



GeoPro Project No.: 16-1359-01

Report Date: November 18, 2016

Professional, Proficient, Proactive

T: (905) 237-8336 E: office@geoproconsulting.ca



Units 57, 40 Vogell Road, Richmond Hill, Ontario L4B 3N6

# **Table of Contents**

| 1 | INTRODUCTION1 |                                                                      |  |
|---|---------------|----------------------------------------------------------------------|--|
| 2 | FIELD         | AND LABORATORY WORK                                                  |  |
|   | 2.1           | Borehole and Core Investigation 2                                    |  |
|   | 2.2           | Laboratory Testing                                                   |  |
| 3 | SUBS          | URFACE CONDITIONS2                                                   |  |
|   | 3.1           | Soil Conditions                                                      |  |
|   | 3.2           | Groundwater Conditions 4                                             |  |
| 4 | LABO          | RATORY TEST RESULTS                                                  |  |
|   | 4.1           | Grain Size Analysis Results                                          |  |
|   | 4.2           | Asbestos Analysis Results                                            |  |
| 5 | DISCU         | JSSION AND RECOMMENDATIONS                                           |  |
|   | 5.1           | Site and Project Description                                         |  |
|   | 5.2           | Existing Pavement Condition                                          |  |
|   | 5.3           | Traffic Data Analysis                                                |  |
|   | 5.4           | Pavement Design 6                                                    |  |
|   | 5.5           | Pavement Design for Road Extension Section and Laneway Widening Area |  |
|   | 5.6           | Existing Pavement Rehabilitations                                    |  |
|   | 5.6.1         | Partial-depth Hot Mix Asphalt Resurfacing Option9                    |  |
|   | 5.6.2         | Full-depth Hot Mix Asphalt Resurfacing Option9                       |  |
|   | 5.6.3         | Full-depth Base Repairs                                              |  |
|   | 5.7           | Drainage Improvements                                                |  |
|   | 5.8           | General Pavement Recommendations11                                   |  |
|   | 5.8.1         | Pavement Materials 11                                                |  |

|   | 5.8.2 | Asphalt Cement Grade                              | 11  |
|---|-------|---------------------------------------------------|-----|
|   | 5.8.3 | Tack Coat                                         | 11  |
|   | 5.8.4 | Compaction                                        | 11  |
|   | 5.8.5 | Pavement Tapers                                   | 11  |
|   | 5.8.6 | Subgrade Preparation                              | 11  |
|   | 5.8.7 | Construction                                      | 12  |
|   | 5.8.8 | Reuse and Disposal of Existing Pavement Materials | 12  |
|   | 5.8.9 | Maintenance                                       | 13  |
| 6 | CHEIV | IICAL ANALYSIS OF SELECTED SOIL SAMPLES           | .13 |
|   | 6.1   | Soil Sample Submission                            | 13  |
|   | 6.2   | Soil Analytical Results                           | 14  |
|   | 6.2.1 | O.Reg. 153/04 Results                             | 14  |
|   | 6.2.2 | TCLP Results                                      | 14  |
|   | 6.3   | Discussion of Analytical Results                  | 15  |
| 7 | MON   | ITORING AND TESTING                               | .16 |
| 8 | CLOS  | URE                                               | .16 |

| <b>Drawings</b><br>Site Plan and Borehole Location Plan | <b>No.</b><br>1 |
|---------------------------------------------------------|-----------------|
| Enclosures                                              | No.             |
| Notes on Sample Description                             | 1A              |
| Explanation of Terms Used in the Record of Boreholes    | 1B              |
| Borehole Logs                                           | 2 to 11         |
| Figures                                                 | No.             |
| Grain Size Analysis Curves                              | 1 to 4          |
|                                                         |                 |

#### Appendix A Asbestos Analysis Results

Appendix B Chemical Testing Results

#### Limitations to the Report

#### 1 INTRODUCTION

GeoPro Consulting Limited (GeoPro) was retained by Morrison Hershfield Limited (the Client) to conduct a geotechnical investigation for the proposed road extension from Rean Drive to Kenaston Gardens, in the City of Toronto, Ontario. The total length of the proposed project is approximately 250 m.

The purpose of this geotechnical investigation was to obtain information on the existing subsurface conditions by means of a limited number of boreholes, in-situ tests and laboratory tests of soil samples to provide required geotechnical design information. Based on GeoPro's interpretation of the obtained data, geotechnical comments and recommendations related to the project designs are provided.

This report is prepared with the condition that the design will be in accordance with all applicable standards and codes, regulations of authorities having jurisdiction, and good engineering practice. Furthermore, the recommendations and opinions in this report are applicable only to the proposed project as described above. On-going liaison and communication with GeoPro during the design stage and construction phase of the project is strongly recommended to confirm that the recommendations in this report are applicable and/or correctly interpreted and implemented. Also, any queries concerning the geotechnical aspects of the proposed project shall be directed to GeoPro for further elaboration and/or clarification.

This report is provided on the basis of the terms of reference presented in our approved proposal prepared based on our understanding of the project. If there are any changes in the design features relevant to the geotechnical analyses, or if any questions arise concerning the geotechnical aspects of the codes and standards, this office should be contacted to review the design. It may then be necessary to carry out additional borings and reporting before the recommendations of this report can be relied upon.

This report deals with geotechnical issues only. The geo-environmental (chemical) aspects of the subsurface conditions, including the consequences of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources were not investigated and were beyond the scope of this assignment. However, limited chemical testing was carried out on selected soil samples for excess soil disposal purposes.

The site investigation and recommendations follow generally accepted practice for geotechnical consultants in Ontario. Laboratory testing, for most part, follows ASTM or CSA Standards or modifications of these standards that have become standard practice in Ontario.

This report has been prepared for the Client only. Third party use of this report without GeoPro's consent is prohibited. The limitations to the report presented above form an integral part of the report and they must be considered in conjunction with this report.

#### 2 FIELD AND LABORATORY WORK

#### 2.1 Borehole and Core Investigation

Field work for the geotechnical investigation was carried out on September 28, 2016, during which time ten (10) boreholes (Boreholes BH1 to BH10) were advanced to a depth of about 2.0 m below the existing ground surface. The borehole locations are shown on Borehole Location Plan, Drawing 1.

The boreholes were advanced using truck-mounted continuous flight auger equipment supplied by a specialist drilling subcontractor and operated under the supervision of a GeoPro engineering staff. Soil samples were recovered at regular intervals of depth using a 50 mm O.D. split-spoon sampler driven into the soil in accordance with the Standard Penetration Test (SPT) procedure described in ASTM D1586 - 11 Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils.

Groundwater condition observations were made in the open boreholes during drilling and upon completion of drilling. All boreholes were backfilled and sealed upon completion of drilling.

It should be noted the elevations at the as-drilled borehole locations were not available at the time of preparing the report. The borehole locations plotted on the Borehole Location Plan, Drawing 1 were based on the measurement of the site features and should be considered to be approximate.

Seven (7) asphalt concrete samples were collected and submitted to Paracel Laboratories Ltd. and AGAT Laboratories for observation/testing of the presence of asbestos. The asbestos analysis results are provided in Appendix A.

#### 2.2 Laboratory Testing

In the laboratory, each soil sample was examined as to its visual and textural characteristics by the project engineer. Moisture content determinations were carried out on all subsoil samples. Six samples of the granular base/subbase materials were analyzed for comparison with the City of Toronto Standard Specifications TS 1010 gradation requirements, and five subgrade soil samples were tested for grain size analysis to assess their drainage characteristics and frost susceptibility. The complete laboratory test results are attached in Figures 1 to 4.

#### **3** SUBSURFACE CONDITIONS

The borehole locations are shown on Drawing 1. Notes on sample descriptions are presented in Enclosure No. 1A. Explanations of terms used in the boreholes logs are presented in Enclosure No. 1B. The subsurface conditions in the boreholes (Boreholes BH1 to BH10) are presented in the individual borehole logs (Enclosure Nos. 2 to 11 inclusive). Detailed descriptions of the major soil strata encountered in the boreholes drilled at the site are provided in the following.

#### 3.1 Soil Conditions

#### Existing Pavement Structure

A flexible pavement structure was observed in all of the boreholes. The range and average thickness of pavement structure is summarized in the following table.

|                      | Pavement Structure                       |                                                  |                         |  |
|----------------------|------------------------------------------|--------------------------------------------------|-------------------------|--|
| Section              | Asphalt Concrete Range<br>(Mean)<br>(mm) | Granular<br>Base/Subbase Range<br>(Mean)<br>(mm) | Total Thickness<br>(mm) |  |
| Kenaston Gardens     | 220 – 280                                | 390                                              | 610 - 670               |  |
| (BH1 and BH2)        | (250)                                    |                                                  | (640)                   |  |
| Barberry Place       | 180 - 210                                | 370 - 390                                        | 550 - 600               |  |
| (BH3 and BH4)        | (195)                                    | (380)                                            | (575)                   |  |
| Private Road/Laneway | 80 - 140                                 | 370 - 610                                        | 490 - 700               |  |
| (BH5 to BH9)         | (104)                                    | (466)                                            | (570)                   |  |
| Rean Drive<br>(BH10) | 200                                      | 420                                              | 620                     |  |

#### Fill Materials

Fill materials consisting of sand, sand and silt, sand and gravel, sandy silt and clayey silt were encountered below the granular base/subbase in all boreholes and extended to depths ranging from about 1.1 m to 2.0 m below the existing ground surface. Boreholes BH1, BH3 and BH10 were terminated in these fill materials. For cohesionless fill materials, SPT N values ranging from 6 to 53 blows per 300 mm penetration indicated a loose to very dense relative density. For cohesive fill materials, SPT N value of 29 blows per 300 mm penetration indicated a very stiff consistency. The in-situ moisture content measured in the soil samples ranged from approximately 5% to 19%.

## Silty Fine Sand

Silty fine sand deposit was encountered below the fill materials in Borehole BH2 and extended to a depth of about 2.0 m below the existing ground surface. Borehole BH2 was terminated in this deposit. SPT N value of 65 blows per 300 mm penetration indicated a very dense relative density. The natural moisture content measured in this soil sample was approximately 8%.

## Sandy Silt Till and Sand and Silt Till

Sandy silt till and sand and silt till deposits were encountered below the fill materials in Boreholes BH4 to BH9 and extended to a depth of about 2.0 m below the existing ground surface. Boreholes BH4 to BH9 were terminated in these deposits. SPT N values ranging from 14 to 49 blows per 300 mm penetration indicated a compact to dense relative density. The natural moisture content measured in the soil samples ranged from approximately 7% to 14%.

#### 3.2 Groundwater Conditions

All the boreholes were open and dry upon the completion of drilling. It should be noted that the groundwater levels can vary and are subject to seasonal fluctuations in response to weather events.

#### 4 LABORATORY TEST RESULTS

#### 4.1 Grain Size Analysis Results

Sieve analyses were completed on six samples of the recovered granular base/subbase materials, and the results were compared to TS 1010 Granular A and Granular B Type I specifications. The grain size distribution curves for these samples are presented in Figures 1 and 2, and a summary of the results is provided in the following table.

| Sample | TS 1010 Granular A                     | TS 1010 Granular B Type I                    |
|--------|----------------------------------------|----------------------------------------------|
|        | Does not meet TS 1010 due to excessive | Does not meet TS 1010 due to excessive fines |
| BHIASI | percentages passing all sieves         | (15.3% passing 0.075 mm sieve)               |
|        | Does not meet TS 1010 due to excessive | Does not meet TS 1010 due to excessive fines |
|        | percentages passing all sieves         | (16.1% passing 0.075 mm sieve)               |
|        | Does not meet TS 1010 due to excessive | Does not meet TS 1010 due to excessive fines |
|        | percentages passing all sieves         | (13.7% passing 0.075 mm sieve)               |
|        | Does not meet TS 1010 due to excessive | Does not meet TS 1010 due to excessive fines |
|        | percentages passing all sieves         | (15.6% passing 0.075 mm sieve)               |
|        | Does not meet TS 1010 due to excessive | Does not meet TS 1010 due to excessive fines |
| BH/ASI | percentages passing most sieves        | (14.7% passing 0.075 mm sieve)               |
|        | Does not meet TS 1010 due to excessive | Does not meet TS 1010 due to excessive fines |
| BUAST  | percentages passing most sieves        | (13.0% passing 0.075 mm sieve)               |

Grain size analysis of five subgrade samples confirmed the visual description of the subgrade soils. In addition, the soil was examined and compared to frost susceptibility characteristics in accordance with the MTO Pavement Design and Rehabilitation Manual. The summarized results are provided in the following table, and the grain size distribution curves of these samples are presented in Figures 3 and 4.

| Soil Sample | Description                            | Susceptibility of Frost Heaving |
|-------------|----------------------------------------|---------------------------------|
| BH1 SS3     | Sandy Silt, some Clay                  | Low                             |
| BH3 SS2     | Sand and Silt, some Clay, trace Gravel | Low                             |
| BH6 SS3     | Sand and Silt, some Clay, trace Gravel | Low                             |
| BH7 SS2     | Sand and Silt, some Clay, trace Gravel | Low                             |
| BH9 SS2     | Sand and Silt, some Clay, trace Gravel | Low                             |

## 4.2 Asbestos Analysis Results

Seven (7) asphalt concrete samples were submitted to Paracel Laboratories Ltd. (Paracel) and AGAT Laboratories (AGAT) in Mississauga, Ontario to determine if asbestos fibres are present in the existing asphalt concrete. To analyze for asbestos in asphalt samples, Paracel uses PLM visual estimation in accordance with EPA 600/R-93/116 method, and AGAT uses a method modified from EPA/NIOSH methodology protocols and typically expresses results using semi-qualitative ranges.

Based on the analytical results, no asbestos was identified in the seven asphalt samples that were analyzed. Therefore, the asphalt concrete in the pavement structure at this site would not be considered as an asbestos containing material. The existing asphalt concrete may be reused in recycled hot -mix asphalt mixtures. The asbestos analysis test results are attached in Appendix A.

## 5 DISCUSSION AND RECOMMENDATIONS

This report contains the findings of GeoPro's geotechnical investigation, together with geotechnical engineering recommendations and comments. These recommendations and comments are based on factual information and are intended only for use by the design engineers. The number of boreholes may not be sufficient to determine all factors that may affect construction methods and costs. Subsurface conditions between and beyond the boreholes may differ from those encountered at the borehole locations, and conditions may become apparent during construction that could not be detected or anticipated at the time of the site investigation. The anticipated construction conditions are also discussed, but only to the extent that they may influence design decisions. The construction methods discussed, however, express GeoPro's opinion only and are not intended to direct contractors on how to carry out construction. Contractors should also be aware that the data and interpretation presented in this report may not be sufficient to assess all factors that may have an effect on construction.

The design drawings of the project were not available when this report was prepared. Once the design drawings and detailed site plan are available, this report will be reviewed by GeoPro, and further recommendations will be provided as needed.

## 5.1 Site and Project Description

It is understood that this proposed new east-west street connection will be built between Rean Drive and Kenaston Gardens, within the vicinity of the southeast quadrant of the Sheppard Avenue East and Bayview Avenue intersection and north of Highway 401, in order to improve pedestrian and cycling access to the TTC's Bayview subway station and neighborhood amenities as well as shops and services along Sheppard Avenue East. Within the project limits, the road between Rean Drive and Barberry Place may need widening for west portion of the laneway and a new road extension will be constructed between Barberry Place and Kenaston Gardens.

## 5.2 Existing Pavement Condition

Based on our site investigation, the existing pavement between Rean Drive and Barberry Place consisted of asphalt concrete with an average thickness of about 104 mm (ranging from about 80 mm to 140 mm) overlying granular base and subbase materials with an average thickness of about 466 mm.

In general, the existing pavement on this section was observed to be in fair condition. The most significant distresses are intermittent low to medium severity transverse cracking, few low severity edge cracking, few low severity segregation and few low to medium severity patching.

This existing roadway was designed and constructed to an urban cross-section (curb and catchbasins). The overall surface drainage is generally considered to be fair. Observations along the length of the roadway indicate that the pavement surface water generally follows along the existing pavement grades and is being directed to the concrete curb and to catch basins. However, drainage is impaired by surface distresses, with unsealed cracks allowing surface water to infiltrate into the underlying pavement and subgrade. The catch basins were observed to be in fair to good condition.

#### 5.3 Traffic Data Analysis

Proposed extension road from Rean Drive to Kenaston Gardens is considered to be a Local Throughway, the client provided estimated AADT of about 300 - 400 with assumed less than 3 percent heavy trucks.

The traffic data was interpreted by GeoPro to estimate the number of Equivalent Single Axle Loads (ESALs) for pavement design purposes. Traffic loading repetitions were determined for the 15-year pavement design life period that is considered typical for municipal pavements of this type. On this basis, the ESAL applications during the design period were calculated in accordance with the Appendix D of MTO MI-183 Adaption and Verification of AASHTO Pavement Design Guide for Ontario Conditions. This traffic data and the ESALs are presented in the following table.

| Parameters                             | Traffic Data |
|----------------------------------------|--------------|
| AADT (2016)                            | 400          |
| Commercial Vehicle Percentage          | 3.0%         |
| Annual Growth Rate                     | 1.5%         |
| Estimated Total Design ESALs (15-Year) | 27,900       |

#### 5.4 Pavement Design

The subgrade soils along the length of subject roadway section generally consisted of cohensionless silty sand/sandy silt till/sand and silt till to cohesive clayey silt based on GeoPro's borehole information. The resilient modulus of subgrade has been assumed to be 20 MPa. The pavement designs were developed based on the 1993 AASHTO Guide for Design of Pavement

Structures and MTO MI-183 Adaption and Verification of AASHTO Pavement Design Guide for Ontario Conditions. The pavement design parameters are summarized in the following table.

| Design Parameters                                 | Values                                       |  |  |  |  |
|---------------------------------------------------|----------------------------------------------|--|--|--|--|
| Design Life                                       | 15 Years                                     |  |  |  |  |
| ESALs over Analysis Period                        | 27,900                                       |  |  |  |  |
| Initial Serviceability Index                      | 4.2                                          |  |  |  |  |
| Terminal Serviceability Index                     | 2.0                                          |  |  |  |  |
| Reliability Level, %                              | 90                                           |  |  |  |  |
| Overall Standard Deviation                        | 0.45                                         |  |  |  |  |
| Design Subgrade Resilient Modulus, MPa            | 20                                           |  |  |  |  |
| Calculated Design Structure Number                | 69                                           |  |  |  |  |
| Existing Pavements                                |                                              |  |  |  |  |
| Layer Coefficient of Asphaltic Concrete           | 0.28                                         |  |  |  |  |
| Layer Coefficient of Granular Base/Subbase Course | 0.09                                         |  |  |  |  |
| Drainage Coefficients of Base and Subbase Courses | 0.9                                          |  |  |  |  |
| Road Extension Section/Lanew                      | Road Extension Section/Laneway Widening Area |  |  |  |  |
| Layer Coefficient of Hot Mix Asphalt              | 0.42                                         |  |  |  |  |
| Layer Coefficient of Granular Base Course         | 0.14                                         |  |  |  |  |
| Layer Coefficient of Granular Subbase Course      | 0.09                                         |  |  |  |  |
| Drainage Coefficients of Base and Subbase Courses | 1.0                                          |  |  |  |  |

## 5.5 Pavement Design for Road Extension Section and Laneway Widening Area

Based on the expected traffic and the type and strength of subgrade soil, the proposed road extension section (between Barberry Place and Kenaston Gardens) and laneway widening area (west portion of the laneway between Rean Drive and Barberry Place) should be carried out in general accordance with City of Toronto Drawing T-216.02.6, Flexible Pavement for All Road Classifications, and the recommended pavement structures are shown in the following table.

| <b>Pecommended</b> Elevible | <b>Davament Structures</b> | for Extension Pos | and Lanoway | Widoning  |
|-----------------------------|----------------------------|-------------------|-------------|-----------|
| Recommended riexible        | Pavement Structures        | IOI EXLENSION ROC | and Laneway | vvidening |

|                 |                     | Thickness of Pavement, mm                                       |                                                  |  |
|-----------------|---------------------|-----------------------------------------------------------------|--------------------------------------------------|--|
| Material        |                     | Extension Road<br>(between Barberry Place<br>and Kenaston Road) | Widening Laneway<br>(West portion of<br>Laneway) |  |
| Hot-Mix Asphalt | HL 3 Surface Course | 40                                                              | 40                                               |  |
| (TS 1150)       | HL 8 Binder Course  | 60                                                              | 60                                               |  |
|                 | Granular A Base     | 150                                                             | 150                                              |  |

| Granular Material<br>(TS 1010) Granular B Type I Subb |                        | 250 | 280 <sup>1</sup> |
|-------------------------------------------------------|------------------------|-----|------------------|
| Tota                                                  | al Thickness           | 500 | 530              |
| Constructed Pave                                      | ment Structural Number | 86  | 88               |
| Design Sti                                            | ructural Number        | 69  | 69               |

Note 1: Minimum thickness of subbase; the subbase thickness should match the existing subbase depth of the adjacent pavement structure to be rehabilitated

The construction sequence should be carried out as follows:

- Completely remove the existing topsoil and any other obviously deleterious materials;
- Excavate subgrade to the depth required to accommodate the new pavement structure; the prepared subgrade should be carefully proof-rolled in the presence of the geotechnical engineer; any soft or wet areas or other obviously deleterious materials must be excavated and properly replaced with TS 1010 Granular B Type I material; the finished subgrade level in the widening area must be at least at the same elevation or lower than the subgrade elevation of existing adjacent pavement;
- Backfilling of sub-excavated areas and fine grading may be carried out using TS 1010 Granular B Type I. All backfill materials should be placed in uniform lifts not exceeding 200 mm loose thickness and compacted to at least 98 percent Standard Proctor Maximum Dry Density (SPMDD). The finished subgrade should be provided with a grade of 3 percent towards the positive drainages;
- Place a minimum of 250 mm (road extension section) and average 280 mm (laneway widening area) TS 1010 Granular B Type I subbase course; place in loose lifts not exceeding 200 mm thickness, compact to 100 percent of SPMDD; the subbase thickness should match the existing subbase depth of the adjacent pavement in widening area;
- Place 150 mm of TS 1010 Granular A base course compacted to 100 percent of SPMDD; and
- Place 100 mm thickness of hot-mix asphalt (one lift of 60 mm of TS 1150 HL 8 binder course and one lift of 40 mm of TS 1150 HL 3 surface course), produced and placed in accordance with TS 310. The surface of the completed pavement should be provided with a grade of 2 percent.

The constructed pavement Structural Number is 86/88, which is greater than the Design Structural Number (69). As such, the pavements are structurally adequate for the expected traffic loads in the 15-year design period.

#### 5.6 Existing Pavement Rehabilitations

Based on the results of the pavement condition survey, the borehole information, laboratory testing, pavement structural capacity analysis and the assumed traffic, the existing pavement

structure between Rean Drive and Barberry Place is generally considered to be adequate to accommodate the anticipated traffic for the remaining design life of the pavement. The existing pavement can be left as is, or alternatively, a conventional partial-depth mill and hot-mix asphalt overlay with full-depth crack repairs and localized structural improvements is considered the most cost effective rehabilitation option for this section to address the primary distresses and to restore the functional serviceability or extend the design life of the pavement. A full-depth hot-mix asphalt resurfacing may be considered as an alternative option for this section as well.

## 5.6.1 Partial-depth Hot Mix Asphalt Resurfacing Option

The partial-depth hot-mix asphalt resurfacing along with localized structural improvements should be carried out in general conformance with the City of Toronto Drawing T-216.02.6, Flexible Pavement for All Road Classifications and the general procedures are provided as follows:

- Mill to remove 50 mm of the existing asphalt concrete and dispose of off-site (the existing asphalt concrete can be reused in recycled hot-mix asphalt mixtures);
- The milled surface should be provided with a continuous centre-to-edge cross fall of 2 percent;
- Complete full-depth repairs (in accordance with Section 5.6.3 below) to any areas exhibiting structural failure (high severity alligator cracking, longitudinal cracking and soft localized areas, for instance);
- Complete crack repairs to any longitudinal or transverse cracks that are observed to extend into the underlying asphalt concrete; and
- Place one 50 mm lift of TS 1150 HL 3 hot-mix asphalt, produced and placed in accordance with TS 310.

The milled surface should be properly cleaned (power broomed and/or washed, as necessary) and tack coated using SS-1 emulsified asphalt prior to placement of any new hot-mix asphalt.

This mill and overlay option should be adequate to restore the pavement ride quality, address the existing distresses and extend the design life. However, some reflective cracking should be expected to occur within the first two to three years that will require crack sealing to prevent the ingress of moisture into the pavement.

## 5.6.2 Full-depth Hot Mix Asphalt Resurfacing Option

Should a full-depth hot-mix asphalt resurfacing be considered for this section of the road, it should be carried out in general conformance with the City of Toronto Drawing T-216.02.6, Flexible Pavement for All Road Classifications and as follows:

• Remove the existing asphalt concrete completely (approximately average of 90 mm in the west/east portions and 130 mm in the middle portion) and disposal off-site (the existing asphalt concrete can be reused in recycled hot-mix asphalt mixtures);

- Regrade and re-compact the existing granular material to 100 percent of SPMDD; the granular base course should be properly prepared, shaped and graded to the designed elevation and to provide with a continuous centre-to-edge cross-fall of 2 percent. The prepared granular material surface should be carefully proof rolled in the presence of the geotechnical engineer, and any soft or wet areas or other obviously deleterious materials excavated and properly replaced with Granular A material; and
- Place a minimum of two lifts of hot-mix asphalt (one 60 mm lift of OPSS 1150 HL 8 binder course and one 40 mm lift of OPSS 1150 HL 3 surface course). The surface of the completed pavement should be provided with a grade of 2 percent.

## 5.6.3 Full-depth Base Repairs

All localized pavement areas found to be structurally deficient should be repaired using the following full-depth base repairs procedure prior to overlaying.

- After completion of the milling operations, carefully sawcut the limits of the area to be repaired and remove the existing asphalt concrete, granular base/subbase to the exposed subgrade. The exposed subgrade should be inspected and excavated as necessary to provide a competent subgrade for the specified base repair pavement structure. Any additional soft, wet or deteriorated subgrade material must be removed and replaced with approved subgrade material;
- Place sufficient TS 1010 granular subbase (Granular B Type II or 50 mm crushed aggregate) followed by 150 mm of Granular A or equivalent meeting TS 1010 Granular A requirements. The granular base and subbase should be place in loose lifts not exceeding 200 mm thickness, compact to 100 percent of SPMDD; and
- The hot-mix asphalt concrete binder and surface courses should be placed at the same time as the overlay of the remaining roadway sections (in accordance with the recommendations in Sections 5.6.1 and 5.6.2 provided above).

## 5.7 Drainage Improvements

Control of surface water is an important factor in achieving a good pavement service life. Therefore, we recommend that provisions be made to drain the new pavement subgrade and its granular layers. It is understood that the proposed extension road/widening area are anticipated to consist of typical urban section (concrete curb/gutter and catchbasins). To provide positive drainage across the pavement platform, the surface of pavement should be sloped at a grade of 2 percent and the pavement subgrade should be sloped at a grade of 3 percent towards the subdrains. Subdrains should be designed and constructed in accordance with T-216.02-8, *Roadway Subdrains*, and the subdrain pipe should be connected to a positive outlet.

#### 5.8 General Pavement Recommendations

#### 5.8.1 Pavement Materials

The following hot-mix asphalt mix types should be selected:

- HL 3 Surface Course; and
- HL 8 Binder Course

These hot mix asphalt mixes should be designed and produced in conformance with TS 1150 requirements.

Granular A and Granular B Type I material should be used as base course and subbase course, respectively. Both Granular A and Granular B Type I material should meet TS 1010 specifications.

## 5.8.2 Asphalt Cement Grade

Performance graded asphalt cement PGAC 58-28 conforming to TS 1101 requirements is recommended for the HMA binder and surface courses.

#### 5.8.3 Tack Coat

A tack coat (SS1) should be applied to all construction joints prior to placing hot-mix asphalt to create an adhesive bond. Prior to placing hot-mix asphalt, SS1 tack coat must also be applied to all existing surfaces and between all new lifts in accordance with OPSS 308 requirements.

## 5.8.4 Compaction

All granular base and subbase materials should be placed in uniform lifts not exceeding 200 mm loose thickness and compacted to 100 percent of the material SPMDD at ±2 percent of the materials Optimum Moisture Content (OMC). Hot-mix asphalt should be placed and compacted in accordance with TS 310 specifications.

#### 5.8.5 Pavement Tapers

At the limits of construction, appropriate tapering of the pavement thickness to match the existing pavement structure should be implemented in accordance with OPSS and the applicable local municipality specifications.

## 5.8.6 Subgrade Preparation

All topsoil, organics, soft/loose and otherwise disturbed soils should be stripped from the subgrade area. The exposed subgrade soils will be disturbed by construction traffic when wet;

especially if site work is carried out during periods of wet weather. Under inclement weather conditions, an adequate granular working surface may be required to facilitate construction traffic as well as to minimize subgrade disturbance and to protect its integrity.

Immediately prior to placing the granular subbase, the exposed subgrade should be compacted and then proofrolled with a heavy rubber tired vehicle (such as a loaded gravel truck) in conjunction with inspection by a geotechnical engineer from GeoPro. The subgrade should be inspected for signs of rutting or displacement. Areas displaying signs of rutting or displacement should be recompacted and retested, or the material should be subexcavated and replaced with well-compacted clean fill materials approved by the geotechnical engineer from GeoPro.

The fill materials may consist of either granular material or local inorganic soils provided that its moisture content is within ±2 percent of OMC. Fill should be placed and compacted in accordance with TS 501 and the final 300 mm of the subgrade should be compacted to 98 percent of SPMDD.

## 5.8.7 Construction

Once the subgrade has been inspected, proof-rolled and approved, the granular base and subbase course materials should be placed in layers not exceeding 200 mm (uncompacted loose lift thickness) and should be compacted to at least 98% of their respective SPMDD. The grading of the material should conform to City of Toronto Specifications.

The placing, spreading and rolling of the asphalt should be in accordance with OPS specifications, or as required by the local authorities. Frequent field density tests should be carried out on both the asphalt and granular base and subbase materials to ensure that the required degree of compaction is achieved.

## 5.8.8 Reuse and Disposal of Existing Pavement Materials

It should be noted that gradation analyses of the selected samples of the existing granular base and subbase materials do not meet the TS 1010 granular A and B Type I gradation specifications with excessive content of fines. Therefore, the existing excavated granular materials could not be reused as subbase/base materials, however, they can be reused as subgrade material to replace soft, wet or otherwise disturbed areas identified during proofrolling.

If deemed practical during construction, the existing asphalt may be pulverized and reused as granular base and subbase materials, provided it can be processed to meet the OPSS Granular A and B Type I gradation specifications. It should be noted that the process of pulverizing asphalt typically generates fines, and as such, the pulverized materials should only be utilized in the lower lift of the subbase. The existing asphalt could also be salvaged and utilized as Recycled Asphalt Pavement (RAP) in the production of the binder course of the new hot-mix asphalt.

#### 5.8.9 Maintenance

Routine maintenance should be considered to extend the life of the pavement. Systematic routine preventative maintenance is strongly recommended for all newly constructed pavements. Crack routing and sealing will generally be required within 2 to 3 years after pavement construction. As the pavement ages, it will also be necessary to patch areas of medium to high severity distresses, such as potholes and ravelling.

#### 6 CHEMICAL ANALYSIS OF SELECTED SOIL SAMPLES

#### 6.1 Soil Sample Submission

At the time of the sampling, no obvious visual or olfactory evidence of environmental impact (i.e. staining or odours) was observed at the sampling locations.

In order to provide information on the chemical quality of the subsurface soils, the following soil samples were submitted to ALS Environmental Laboratories in Richmond Hill, Ontario ("ALS"), for chemical analyses:

- Seven (7) soil samples were submitted for analyses of the parameters including metals, inorganics, Polycyclic Aromatic Hydrocarbons (PAHs), Petroleum Hydrocarbons (PHCs) and Volatile Organic Compounds (VOCs).
- A composite soil sample was submitted for Toxicity Characteristic Leaching Procedures (TCLP) analysis to characterize soil quality for landfill disposal purposes.

| Sample ID | Soil Depth<br>(mBGS) | Primary Soil                        | Analytical Parameters         |
|-----------|----------------------|-------------------------------------|-------------------------------|
| BH1 SS2   | 0.76 – 1.22          | Fine Sand to Clayey Silt Fill       | Metals/Inorganics, PAHs       |
| BH2 SS3   | 1.52 – 1.98          | Silty Fine Sand                     | PHCs/VOCs                     |
| BH4 SS2   | 0.76 – 1.22          | Clayey Silt Fill to Sandy Silt Till | Metals/Inorganics, PAHs       |
| BH 5 SS2  | 0.76 – 1.22          | Clayey Silt Fill                    | Metals/Inorganics, PAHs       |
| BH6 SS3   | 1.52 – 1.98          | Sand and Silt Till                  | PHCs/VOCs                     |
| BH8 SS2   | 0.76 - 1.22          | Sandy Silt Fill                     | Metals/Inorganics, PAHs       |
| BH10 SS2  | 0.76 – 1.22          | Sand and Gravel Fill                | Metals/Inorganics, PAHs       |
| TCLP      | Composite            | -                                   | Metals/Inorganics, VOCs, PAHs |

A copy of the soil analytical results is provided in the Laboratory Certificates of Analysis, attached in Appendix B.

## 6.2 Soil Analytical Results

## 6.2.1 O.Reg. 153/04 Results

Seven (7) soil samples were analysed for the parameters including metals, inorganics, PAHs, PHCs and VOCs under Ontario Regulation 153/04 ("O. Reg. 153/04") as amended.

The soil analytical results were compared with the Ontario Ministry of the Environment and Climate Change ("MOECC") "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 2011, Table 1: Full Depth Background Site Condition Standards for Residential/Parkland/Institutional/Industrial/Commercial/Community Property Uses ("2011 MOECC Table 1 Standards"); Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition ("2011 MOECC Table 2 Standards"), and Table 3: Full Depth Generic Site Condition Standards in a non-potable Ground Water Condition ("2011 MOECC Table 3 Standards").

Based on a comparison of the analytical results to the 2011 MOECC Standards, no exceedances were found for metals, PAHs, PHCs and VOCs in the soil samples analysed. However, exceedances were noted for Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR) in a number of soil samples analysed.

| Soil Sample<br>ID | Parameter | Detected<br>Value | MOECC Table 1<br>Standards<br>Guideline Value | MOECC Table 2<br>and 3 Standards<br>(R/P/I) Guideline<br>Value | MOECC Table 2<br>and 3 Standards<br>(I/C/C) Guideline<br>Value |
|-------------------|-----------|-------------------|-----------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| BH1 SS2           | SAR       | 8.91              | <u>2.4</u>                                    | <u>5.0</u>                                                     | 12.0                                                           |
| BH4 SS2           | EC        | 0.596 mS/cm       | <u>0.57</u> mS/cm                             | 0.7 mS/cm                                                      | 1.4 mS/cm                                                      |
|                   | EC        | 1.22 mS/cm        | <u>0.57</u> mS/cm                             | <u>0.7</u> mS/cm                                               | 1.4 mS/cm                                                      |
| впр 222           | SAR       | 2.83              | <u>2.4</u>                                    | 5.0                                                            | 12.0                                                           |
|                   | EC        | 2.26 mS/cm        | <u>0.57</u> mS/cm                             | <u>0.7</u> mS/cm                                               | <u>1.4</u> mS/cm                                               |
| BH9 227           | SAR       | 104               | <u>2.4</u>                                    | <u>5.0</u>                                                     | <u>12.0</u>                                                    |
|                   | EC        | 1.99 mS/cm        | <u>0.57</u> mS/cm                             | <u>0.7</u> mS/cm                                               | <u>1.4</u> mS/cm                                               |
| BH10 222          | SAR       | 3.66              | <u>2.4</u>                                    | 5.0                                                            | 12.0                                                           |

Based upon a comparison of the analytical results to the 2011 MOECC Standards, exceedance values detected in the soil samples are shown in the following table.

Note: R/P/I = Residential, Parkland and Institutional Property Use I/C/C = Industrial, Commercial and Community property Use 0.57 = standard value exceeded by the analytical result

## 6.2.2 TCLP Results

One composite sample was tested for TCLP analysis of metals, inorganic, VOCs and PAHs. The results were compared with the standards for respective parameters specified in Leachate Quality Criteria - Schedule 4 of O. Reg. 558/00.

The concentrations of analyzed parameters were non-detectable or below the detection limits, which are below the standards specified in O. Reg. 558/00. Therefore, the tested composite soil sample would be considered as non-hazardous wastes.

## 6.3 Discussion of Analytical Results

Based on the results, the shallow soils may have been impacted by EC and/or SAR. It should be noted that the samples selected for analysis were taken from the boreholes located on the roadways. The elevated EC and SAR values in the tested soil samples may likely be attributed to the application of de-icing salt on the road. Based on the results of soil sample analysis, GeoPro will recommend the following disposal options:

- 1) The soils generated at the Site can be re-used for the on-site road development, provided that the soils will not be in contact with groundwater.
- 2) The soils generated near boreholes BH1, BH4 and BH5 at the same tested sample depths, could be re-used at a site which is not considered as an environmentally sensitive site and is developed for Industrial, Commercial and Community property use, would accept the soils based on the analytical results.
- 3) The soil generated near boreholes BH8 and BH10 could be disposed of as non-hazardous wastes at a licensed landfill site.

It should be noted that the results of the chemical analysis refer only to the soil sample analyzed which was obtained from specific sampling location and sampling depth, and the soil chemistry may vary between and beyond the location and depth of the sample taken. Therefore, soil materials to be used on site or transported to other sites must be inspected during excavation for indication of variance in composition or any chemical/environmental constraints. If conditions indicate, further chemical analyses should be carried out if deemed necessary.

Please note that the level of testing outlined herein is meant to provide a broad indication of soil quality based on the limited soil samples tested. The analytical results contained in this report should not be considered a warranty with respect to the soil quality or the use of the soil for any specific purpose. Further, it must be noted that our scope of work was only limited to the review of the analytical results of the limited number of samples. The scope of work did not include any environmental evaluation or assessment of the subject site (such as a Phase I or Phase II Environmental Site Assessment).

Sites accepting fill may have requirements relating to its aesthetic, or engineering properties, in addition to its chemical quality. Some receiving sites may have specific chemical testing protocol, which may require additional tests to meet the requirements. The requirements for accepting the fill at an off-site location must be confirmed in advance. GeoPro would be pleased to assist once the receiving sites are determined and the requirements of the receiving site are available.

#### 7 MONITORING AND TESTING

The geotechnical aspects of the final design drawings and specifications should be reviewed by this office prior to tendering and construction, to confirm that the intent of this report has been met. During construction, full-time engineered fill monitoring and sufficient foundation inspections, subgrade inspections, in-situ density tests and materials testing should be carried out to confirm that the conditions exposed are consistent with those encountered in the boreholes, and to monitor conformance to the pertinent project specification.

#### 8 CLOSURE

We appreciate the opportunity to be of service to you and trust that this report provides sufficient geotechnical engineering information to facilitate the detailed design of this project. We look forward to providing you with continuing service during the construction stage. Please do not hesitate to contact our office should you wish to discuss, in further detail, any aspects of this project.

Yours very truly,

**GEOPRO CONSULTING LIMITED** 

#### DRAFT

Jessica Yao, P.Eng. Senior Geotechnical Engineer

#### DRAFT

David B. Liu, P.Eng., Principal



GeoPro Consulting Limited

Geotechnical-Hydrogeology-Environmental-Materials-Inspection

## DRAWINGS





GeoPro Consulting Limited

Geotechnical-Hydrogeology-Environmental-Materials-Inspection

## **ENCLOSURES**



#### **Enclosure 1A: Notes on Sample Descriptions**

- 1. Each soil stratum is described according to the *Modified Unified Soil Classification System*. The compactness condition of cohesionless soils (SPT) and the consistency of cohesive soils (undrained shear strength) are defined according to Canadian Foundation Engineering Manual, 4<sup>th</sup> Edition. Different soil classification systems may be used by others. Please note that a description of the soil stratums is based on visual and tactile examination of the samples augmented with field and laboratory test results, such as a grain size analysis and/or Atterberg Limits testing. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.
- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional preliminary geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.



#### Enclosure 1C: Explanation of Terms Used in the Rock Core Logs

| Strength                 | (ISRM)       |                                                                                |                             |                          | Weather                              | ing (ISRN                             | 1)                                                                                                                                                                             |
|--------------------------|--------------|--------------------------------------------------------------------------------|-----------------------------|--------------------------|--------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Term                     | Grade        | Description                                                                    | Uniaxial Compre<br>(MPa)    | essive Strength<br>(psi) | <b>Term</b><br>Fresh                 | Grade<br>W1                           | <b>Description</b><br>No visible sign of rock material weathering                                                                                                              |
| Extremely<br>weak rock   | RO           | Indented by thumbnail                                                          | 0.25-1.0                    | 36-145                   | Slightly<br>weathered                | W2                                    | Discolouration indicates weathering of rock material and discontinuity surface. All the rock material                                                                          |
| Very weak                | R1           | Crumbles under firm<br>blows with point of                                     | 1.0-5.0                     | 145-725                  |                                      |                                       | may be discoloured by weathering and may be somewhat weaker than in its fresh condition                                                                                        |
|                          |              | be peeled by a pocket kni                                                      | fe                          |                          | Moderate<br>weathered                | ly W3<br>d                            | Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or                                                                                     |
| Weak rock                | R2           | Can be peeled by a pocke<br>knife with difficulty,<br>shallow indentations mad | t 5.0-25<br>le              | 725-3625                 |                                      |                                       | discoloured rock is present either as a either as a continuous framework or as corestones                                                                                      |
|                          |              | by firm blow with point or geological hammer                                   | f                           |                          | Highly<br>weathered                  | W4<br>d                               | More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discoloured rock is present either as a continuous                                  |
| Medium<br>Strong         | R3           | Cannot be scraped or pee                                                       | led 25-50                   | 3625-7250                |                                      |                                       | framework or as corestones                                                                                                                                                     |
| Strong                   |              | specimen can be fracture<br>with single firm blow of<br>geological hammer      | d                           |                          | Completel<br>weathered               | y W5<br>d                             | All rock material is decomposed and/or<br>disintegrated to a soil. The original mass structure is still<br>largely intact                                                      |
| Strong rock              | < R4         | Specimen require more th<br>one blow of geological<br>hammer to fracture it    | an 50-100                   | 7250-14500               | Residual s                           | oil W6                                | All rock material is converted to soil. The mass structure<br>and material fabric are destroyed. There is a large<br>change in volume, but the soil has not been significantly |
| Very strong              | g R5         | Specimen requires many                                                         | 100-250                     | 14500-36250              |                                      |                                       | transported                                                                                                                                                                    |
| rock                     |              | blows of geological hamm<br>to fracture it                                     | ier                         |                          | (FI) Fract                           | ure Inde                              | x                                                                                                                                                                              |
| Extremely<br>strong rock | R6           | Specimen can only be<br>chipped with geological<br>hammer                      | >250                        | >36250                   | Expressed<br>induced fr<br>exceeds 2 | as the nu<br>actures ar<br>5 fracture | mber of discontinuities per 300mm (1 ft). Excludes drill-<br>nd fragmented zones. Reported as ">25" if frequency<br>s/0.3m.                                                    |
| Bedding                  |              |                                                                                |                             |                          | Broken Z                             | one                                   |                                                                                                                                                                                |
| -                        |              |                                                                                |                             |                          | Zone of fu                           | ll diamete                            | r core of very low ROD which may include some drill-                                                                                                                           |
| Term<br>Very thickly     | y bedded     | >2 m                                                                           | >6.5 ft                     |                          | induced fr                           | actures.                              |                                                                                                                                                                                |
| Thickly bed              | lded         | 600 mm-2 m                                                                     | 2.00-6.5                    | 0 ft                     | Freesewa                             | tod Zona                              |                                                                                                                                                                                |
| Medium be<br>Thinly beda | edded<br>ded | 200 mm-600 n<br>60 mm-200 n                                                    | nm 0.65-2.00<br>nm 0.20-0.6 | 0 ft<br>5 ft             | Fragmen                              | leu zone                              |                                                                                                                                                                                |
| Very thinly              | bedded       | 20 mm-60 mm                                                                    | 0.06-0.2                    | 0 ft                     | Zone whe                             | re core is                            | ess than full diameter and RQD = 0.                                                                                                                                            |
| Laminated<br>Thinly lami | nated        | 6 mm-20 mm<br><6 mm                                                            | 0.02-0.0<br><0.02 ft        | 6 ft                     | Discontir                            | nuity Spa                             | cing (ISRM)                                                                                                                                                                    |
| TCR (Tota                | l Core Re    | covery)                                                                        |                             |                          | Term                                 |                                       | Average Spacing                                                                                                                                                                |
|                          |              |                                                                                |                             |                          | Extremely                            | widely sp                             | aced >6 m >20.00 ft                                                                                                                                                            |

Very widely spaced

Moderately spaced

Extremely closely spaced

Widely spaced

Closely spaced Very closely spaced

Sum of lengths of rock core recovered from a core run, divided by the length of the core run and expressed as a percentage.

#### SCR (Solid Core Rocovery)

Sum length of solid, full diameter drill core recovered expressed as a percentage of the total length of the core run.

#### RQD (Rock Quality Designation, after Deere, 1968)

Sum of lengths of pieces of rock core measured along centreline of core equal to or greater than 100 mm from a core run, divided by the length of the core run and expressed as a percentage. Core fractured by drilling is considered intact. RQD normally quoted for N-size or H-size core.

| RQD(%) | Rock Quality |
|--------|--------------|
| 90-100 | Excellent    |
| 75-90  | Good         |
| 50-75  | Fair         |
| 25-50  | Poor         |
| 0-25   | Very poor    |

**Discontinuity Orientation** Discontinuity, fracture and bedding plane orientations are cited as the acute angle measured with respect to the core axis. Fractures perpendicular to the core axis are at 90° and those parallel to the core axis are at 0°.

2 m-6 m

<20 mm

Note: Excludes drill-induced fractures and fragmented rock.

600 mm-2 m

20 mm-60 mm

200 mm-600 mm 0.65-2.00 ft

60 mm-200 mm 0.20-0.65 ft

6.50-20.00 ft

2.00-6.50 ft

0.06-0.20 ft

>0.06 ft



PROJECT: Geotechnical Investigation for Proposed Road Extension

CLIENT: Morrison Hershfield

PROJECT LOCATION: Between Rean Drive and Kenaston Gardens, Toronto, Ontario Diameter: 155mm/205mm DATUM: N/A

BH LOCATION: See Borehole Location Plan

#### DRILLING DATA

Date: Sep/28/2016

Method: Continuous Flight Auger

REF. NO.: 16-1359 ENCL NO.: 2

|       | SOIL PROFILE                          |              | S    | AMPL | ES       |      |      | DYNA<br>RESIS | MIC CO<br>TANCE | NE PEN<br>PLOT |            | TION                |     |                | - NATI | JRAL         |        |            | F          | REM            | ARKS             |
|-------|---------------------------------------|--------------|------|------|----------|------|------|---------------|-----------------|----------------|------------|---------------------|-----|----------------|--------|--------------|--------|------------|------------|----------------|------------------|
| (m)   |                                       | F            |      |      |          | TER  |      | 2             | 20 4            | 0 6            | i0 8       | 30 1                | oo  | LIMIT          | C MOIS | TURE<br>TENT | LIQUID | EN.        | NIT W      | A              | ND               |
| ELEV  | DECODIDION                            | PLO          | ~    |      | SMS<br>B | 4W C | No   | SHEA          | AR ST           | RENG           | TH (kl     | Pa)                 |     | W <sub>P</sub> |        | v<br>        | WL     | E E        | SAL U      | GRAI<br>DISTRI | N SIZE<br>BUTION |
| DEPTH | DESCRIPTION                           | ATA          | 1BEF | ш    | BLO      |      | VATI |               |                 |                | +          | FIELD V<br>& Sensit | ANE | WAT            | FER CC |              | T (%)  | 8 <u>0</u> | ATUR<br>1) | ("             | %)               |
|       |                                       | STR          | NUN  | TΥΡ  | ż        | GRC  | Ē    |               | 20 4            |                | . x<br>0 8 | 130 1               | 00  | 1              | 0 2    | 0            | 30     |            | 2          | GR SA          | SI CL            |
| 0.0   | ASPHALT CONCRETE: (280 mm)            |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
| -     |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
| -     |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
| - 0.3 | GRANULAR BASE/SUBBASE:                | XX           | 1    |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
| -     | (390 mm)                              | $\otimes$    |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       | $\otimes$    | 1    | AS   |          |      |      |               |                 |                |            |                     |     | 0              |        |              |        |            |            |                |                  |
|       |                                       | $\bigotimes$ |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
| -     |                                       | $\otimes$    |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
| - 0.7 | FILL: fine sand, trace gravel, trace  | $\boxtimes$  |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
| -     |                                       | $\mathbb{X}$ |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
| -     |                                       | $\otimes$    |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
| 1     |                                       | $\mathbb{X}$ | 2    | SS   | 6        |      |      |               |                 |                |            |                     |     | 0              |        |              |        |            |            |                |                  |
| 1.0   | gravel, brown, moist, firm            | $\otimes$    |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       | $\mathbb{X}$ |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
| -     |                                       | $\otimes$    |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
| -     |                                       | $\otimes$    |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
| - 1.4 | FILL: sand, trace silt, trace to some | Ŵ            |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
| -     | gravel, brown, moist, compact         | $\otimes$    |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
| -     |                                       | $\mathbb{X}$ |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
| -     |                                       | $\otimes$    |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
| 1.8   | FILL: sandy silt, some clay, trace    | $\bigotimes$ | 3    | SS   | 21       |      |      |               |                 |                |            |                     |     | 0              |        |              |        |            |            |                |                  |
|       | gravel, brown, moist, compact         |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
| -     |                                       | $\otimes$    |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
| 2.0   | END OF THE BOREHOLE                   |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       | upon completion of drilling.          |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            | L          |                |                  |
|       |                                       |              |      |      |          |      |      |               |                 |                |            |                     |     |                |        |              |        |            |            |                |                  |



PROJECT: Geotechnical Investigation for Proposed Road Extension

CLIENT: Morrison Hershfield

PROJECT LOCATION: Between Rean Drive and Kenaston Gardens, Toronto, Ontario Diameter: 155mm/205mm DATUM: N/A

SAMPLES

BH LOCATION: See Borehole Location Plan SOIL PROFILE

#### DRILLING DATA

Date: Sep/28/2016

DYNAMIC CONE PENETRATION RESISTANCE PLOT

Method: Continuous Flight Auger

REF. NO.: 16-1359 ENCL NO.: 3

PLASTIC NATURAL LIMIT NOISTURE CONTENT

|                      | SOIL PROFILE                                                                                             |            | 3     | AIVIPL | .E3                      | ~                        |          | RESIS                     | TANCE                             | PLOT                           | >                   |                                     |                           | DIACTI | NATU | JRAL |                           | E                                      | REMARKS                                  |
|----------------------|----------------------------------------------------------------------------------------------------------|------------|-------|--------|--------------------------|--------------------------|----------|---------------------------|-----------------------------------|--------------------------------|---------------------|-------------------------------------|---------------------------|--------|------|------|---------------------------|----------------------------------------|------------------------------------------|
| (m)<br>ELEV<br>DEPTH | DESCRIPTION                                                                                              | TRATA PLOT | UMBER | YРЕ    | v" <u>BLOWS</u><br>0.3 m | ROUND WATER<br>ONDITIONS | LEVATION | 2<br>SHEA<br>0 UM<br>• QI | 0 4<br>AR STI<br>NCONF<br>JICK TF | 0 6<br>RENG<br>INED<br>RIAXIAL | 50 8<br>TH (ki<br>+ | Pa)<br>FIELD V<br>& Sensit<br>LAB V | 00<br>ANE<br>ivity<br>ANE |        |      |      | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT W<br>(kN/m <sup>3</sup> ) | AND<br>GRAIN SIZE<br>DISTRIBUTION<br>(%) |
| 0.0                  | ASPHALT CONCRETE: (220 mm)                                                                               | S          | z     | ±      | F                        | 9                        | Ш        |                           | 0 4                               |                                |                     |                                     |                           |        | 0 2  | 0 3  |                           |                                        | GR SA SI CL                              |
| 0.2                  | GRANULAR BASE/SUBBASE:<br>(390 mm)                                                                       |            | 1     | AS     |                          |                          |          |                           |                                   |                                |                     |                                     |                           | 0      |      |      |                           |                                        |                                          |
| 0.6                  | FILL: sand and silt to sandy silt,<br>trace clay, trace gravel, layers of silt,<br>brown, moist, compact | X          |       |        |                          |                          |          |                           |                                   |                                |                     |                                     |                           |        |      |      |                           |                                        |                                          |
| <u>1</u>             |                                                                                                          |            | 2     | SS     | 27                       |                          |          |                           |                                   |                                |                     |                                     |                           | d      | )    |      |                           |                                        |                                          |
| -<br>- 1.4<br>-      | SILTY FINE SAND: trace gravel, brown, moist, very dense                                                  |            |       |        |                          |                          |          |                           |                                   |                                |                     |                                     |                           |        |      |      |                           |                                        |                                          |
| -                    |                                                                                                          |            | 3     | SS     | 65                       |                          |          |                           |                                   |                                |                     |                                     |                           | o      |      |      |                           |                                        |                                          |
| 2.0                  | END OF THE BOREHOLE<br>Note: Borehole was open and dry<br>upon completion of drilling.                   |            |       |        |                          |                          |          |                           |                                   |                                |                     |                                     |                           |        |      |      |                           |                                        |                                          |

REMARKS



PROJECT: Geotechnical Investigation for Proposed Road Extension

CLIENT: Morrison Hershfield

PROJECT LOCATION: Between Rean Drive and Kenaston Gardens, Toronto, Ontario DATUM: N/A

BH LOCATION: See Borehole Location Plan

#### DRILLING DATA

Date: Sep/28/2016

Method: Continuous Flight Auger

Diameter: 155mm/205mm

REF. NO.: 16-1359 ENCL NO.: 4

|               | SOIL PROFILE                                                        |              | S   | ampl | .ES           |             |       | DYNAI<br>RESIS                    | MIC CO<br>TANCE | NE PEN<br>PLOT |             | TION                         |             | DI LOT   | - NATI      | JRAL              |             |                  | μ               | REMA         | RKS        |
|---------------|---------------------------------------------------------------------|--------------|-----|------|---------------|-------------|-------|-----------------------------------|-----------------|----------------|-------------|------------------------------|-------------|----------|-------------|-------------------|-------------|------------------|-----------------|--------------|------------|
| (m)           |                                                                     | OT           |     |      | S             | VATER<br>4S | 7     | 2                                 | 04              | 06             | 0 8         | 30 1                         | 00          | LIMIT    | MOIS<br>CON | TURE<br>TENT<br>V | LIQUID      | T PEN.<br>(Pa)   | UNIT W          | ANI<br>GRAIN | D<br>SIZE  |
| ELEV<br>DEPTH | DESCRIPTION                                                         | ATA PL       | BER |      | BLOW<br>0.3 m |             | ATION | SHEA<br>O UN                      | AR STE          | RENG<br>INED   | TH (kl<br>+ | Pa)<br>FIELD V.<br>& Sensiti | ANE<br>vity |          |             |                   |             | POCKE<br>(Cu) (F | ATURAL<br>(kN/r | DISTRIB      | UTION<br>) |
|               |                                                                     | STR/         | MUN | ТҮРЕ | "Z            | GRO         | ELEV  | <ul> <li>QI</li> <li>2</li> </ul> | JICK TF<br>0 4  | RIAXIAL<br>0 6 | . ×<br>ο ε  | LAB VA<br>80 10              | ANE<br>00   | VVA<br>1 | 0 2         | 0 3               | 1 (%)<br>30 |                  | Ž               | GR SA        | SI CL      |
| 0.0           | ASPHALT CONCRETE: (210 mm)                                          |              |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
|               |                                                                     |              |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
| - 0.2         | (390 mm)                                                            | $\bigotimes$ |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
| -             |                                                                     | $\boxtimes$  | 1   | AS   |               |             |       |                                   |                 |                |             |                              |             | 0        |             |                   |             |                  |                 |              |            |
| -             |                                                                     | $\bigotimes$ |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
| 0.6           | FILL: sand and silt, some clay, trace gravel, brown, moist, compact | $\bigotimes$ |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
| -             | to dense                                                            | $\bigotimes$ |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
| -             |                                                                     | $\bigotimes$ |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
| _1            |                                                                     | $\bigotimes$ | 2   | SS   | 10            |             |       |                                   |                 |                |             |                              |             |          | Þ           |                   |             |                  |                 |              |            |
| Ē             |                                                                     | $\bigotimes$ |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
| -             |                                                                     | $\bigotimes$ |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
| -             |                                                                     | $\bigotimes$ |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
| -             |                                                                     | $\boxtimes$  |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
| -             |                                                                     |              |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
| -             |                                                                     | $\bigotimes$ | 3   | SS   | 35            |             |       |                                   |                 |                |             |                              |             | ο        |             |                   |             |                  |                 |              |            |
| -             |                                                                     | $\bigotimes$ |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
| 2.0           | END OF THE BOREHOLE                                                 | $\square$    |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
|               | upon completion of drilling.                                        |              |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
|               |                                                                     |              |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
|               |                                                                     |              |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
|               |                                                                     |              |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
|               |                                                                     |              |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
|               |                                                                     |              |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
|               |                                                                     |              |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
|               |                                                                     |              |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
|               |                                                                     |              |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
|               |                                                                     |              |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
|               |                                                                     |              |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
|               |                                                                     |              |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
|               |                                                                     |              |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
|               |                                                                     |              |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
|               |                                                                     |              |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |
|               |                                                                     |              |     |      |               |             |       |                                   |                 |                |             |                              |             |          |             |                   |             |                  |                 |              |            |



PROJECT: Geotechnical Investigation for Proposed Road Extension

CLIENT: Morrison Hershfield

PROJECT LOCATION: Between Rean Drive and Kenaston Gardens, Toronto, Ontario Diameter: 155mm/205mm DATUM: N/A

BH LOCATION: See Borehole Location Plan

#### DRILLING DATA

Date: Sep/28/2016

Method: Continuous Flight Auger

REF. NO.: 16-1359 ENCL NO.: 5

|       | SOIL PROFILE                                                 |              | s    | ampl | ES            |              |      | DYNAI<br>RESIS | MIC CO<br>TANCE | NE PEI<br>PLOT |        | TION           |     | DIACTI           | _ NATI | URAL         |        |         | F      | REM   | ARKS         |
|-------|--------------------------------------------------------------|--------------|------|------|---------------|--------------|------|----------------|-----------------|----------------|--------|----------------|-----|------------------|--------|--------------|--------|---------|--------|-------|--------------|
| (m)   |                                                              | 1            |      |      | (0)           | ATEF         |      | 2              | 04              | 06             | 50 E   | 80 1           | 00  | LIMIT            | C MOIS | TURE<br>TENT | LIQUID | PEN.    | NIT NC | GRAI  | ND<br>N SIZE |
|       | DESCRIPTION                                                  | APL          | Ĥ    |      | 0000<br>0.3 m | ND W<br>TION | TION | SHEA           |                 |                | TH (kl | Pa)<br>FIELD V | ANE | ••• <sub>P</sub> |        | »<br>>       |        | Cu) (KI | (kN/m  | DISTR | BUTION       |
| DEPTH |                                                              | TRAT         | UMBE | ŕΡΕ  |               | ROUI         | -EVA | • QI           | JICK TF         |                | . ×    | & Sensit       | ANE | WA               | TER CO | ONTEN        | T (%)  | e o     | NAT    | (     | %)           |
| 0.0   | ASPHALT CONCRETE: (180 mm)                                   | ى:<br>N      | z    | Ĥ    | £             | 00           |      |                | 4               | 0 6            | 50 E   |                |     | 1                | 0 2    |              | 50     |         |        | GR SA | SI CL        |
| -     |                                                              |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
| 0.2   | GRANULAR BASE/SUBBASE:                                       | $\bigotimes$ |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
| -     | (576 mm)                                                     |              | 1    | ۵S   |               |              |      |                |                 |                |        |                |     | 0                |        |              |        |         |        |       |              |
| -     |                                                              | $\bigotimes$ |      | 7.0  |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
| - 0.6 | FILL: clavey silt, some sand, trace                          | $\bigotimes$ |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
|       | gravel, brown, moist, very stiff                             | $\otimes$    |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
| -     |                                                              | $\bigotimes$ |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
| -     |                                                              |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
| 1     |                                                              | $\otimes$    | 2    | SS   | 29            |              |      |                |                 |                |        |                |     |                  | 0      |              |        |         |        |       |              |
| - 1.1 | SANDY SILT TILL: trace clay, trace                           | <u>FX</u>    |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
| -     | dense                                                        |              | -    |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
| -     |                                                              | 0            |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
| -     |                                                              | •            |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
| -     |                                                              |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
|       |                                                              | •            |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
| -     |                                                              |              | 3    | SS   | 49            |              |      |                |                 |                |        |                |     | 0                |        |              |        |         |        |       |              |
| -     |                                                              |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
| 2.0   | END OF THE BOREHOLE                                          |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
|       | Note: Borehole was open and dry upon completion of drilling. |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
|       |                                                              |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
|       |                                                              |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
|       |                                                              |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
|       |                                                              |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
|       |                                                              |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
|       |                                                              |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
|       |                                                              |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
|       |                                                              |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
|       |                                                              |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
|       |                                                              |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
|       |                                                              |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
|       |                                                              |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
|       |                                                              |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
|       |                                                              |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
|       |                                                              |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
|       |                                                              |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |
|       |                                                              |              |      |      |               |              |      |                |                 |                |        |                |     |                  |        |              |        |         |        |       |              |



PROJECT: Geotechnical Investigation for Proposed Road Extension

CLIENT: Morrison Hershfield

PROJECT LOCATION: Between Rean Drive and Kenaston Gardens, Toronto, Ontario DATUM: N/A

SAMPLES

BH LOCATION: See Borehole Location Plan SOIL PROFILE

#### DRILLING DATA

Date: Sep/28/2016

DYNAMIC CONE PENETRATION RESISTANCE PLOT

Method: Continuous Flight Auger

Diameter: 155mm/205mm

REF. NO.: 16-1359 ENCL NO.: 6

PLASTIC NATURAL MOISTURE CONTENT

|   |       | JOIL FROI ILL                       |              |          |    | L0       |          |      | RESIS | TANCE             | PLOT            | >           |                     |     |                | NATI   | JRAL         |       |             | F     | REMAR    | RKS       |
|---|-------|-------------------------------------|--------------|----------|----|----------|----------|------|-------|-------------------|-----------------|-------------|---------------------|-----|----------------|--------|--------------|-------|-------------|-------|----------|-----------|
|   | (m)   |                                     | 5            |          |    |          | ATEF     |      | 2     | 0 4               | 06              | 0 80        | 0 10                | 00  | LIMIT          | O MOIS | TURE<br>TENT | LIMIT | PEN.        | ° (   |          | )<br>2175 |
|   | ELEV  | DESCRIPTION                         | A PLO        | щ        |    | 3 m      | NOI      | NOL  | SHEA  | AR STR            | RENG            | TH (kP      | a)                  | ANE | W <sub>P</sub> | (      | v<br>>       |       | З<br>К<br>Ц | (kN/m | DISTRIBL | JTION     |
|   | DEPTH | DESCRIPTION                         | RAT/         | MBE      | щ  | <u>ы</u> | NUO      | EVAT | 0 U   | NCONFI<br>JICK TF | INED<br>RIAXIAL | +;<br>. × I | & Sensiti<br>LAB VA |     | WAT            | ER CC  | NTEN         | Г (%) | 9 Q Q       | NATU  | (%)      |           |
|   |       |                                     | STF          | N        | Ł  | "Z       | GR<br>CC | ELE  | 2     | 4                 | 0 6             | 0 80        | 0 10                | 00  | 1              | 0 2    | 0 3          | 30    |             |       | GR SA S  | SI CL     |
| ſ | 0.0   | ASPHALT CONCRETE: (90 mm)           |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
| Ī | 0.1   | GRANULAR BASE/SUBBASE:              | $\mathbb{X}$ |          |    |          | 1        |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
| ł | -     | (410 1111)                          | $\otimes$    |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
| ŀ |       |                                     | $\mathbb{X}$ | 1        | AS |          |          |      |       |                   |                 |             |                     |     | 0              |        |              |       |             |       |          |           |
| ł |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   | 0.5   |                                     | $\mathbb{X}$ |          |    |          | -        |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   | 0.5   | gravel, trace organics, dark brown, | $\otimes$    |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       | moist, firm                         | $\mathbb{X}$ |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   | -     |                                     | $\otimes$    | <b> </b> |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
| ľ | -     |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
| ł | -     |                                     | $\otimes$    |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
| ł | 1     |                                     | $\mathbb{X}$ | 2        | SS | 7        |          |      |       |                   |                 |             |                     |     |                | 0      |              |       |             |       |          |           |
| ŀ | -     |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     | $\otimes$    |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   | - 1.4 | SAND AND SILT TILL: trace clay,     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   | _     | trace gravel, brown, moist, dense   |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   | _     |                                     |              |          |    |          | 1        |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   | -     |                                     |              | 3        | SS | 36       |          |      |       |                   |                 |             |                     |     | 0              |        |              |       |             |       |          |           |
| ľ | -     |                                     |              | 1        |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
| ł |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
| Ī | 2.0   | END OF THE BOREHOLE                 |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       | upon completion of drilling.        |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |
|   |       |                                     |              |          |    |          |          |      |       |                   |                 |             |                     |     |                |        |              |       |             |       |          |           |

REMARKS



PROJECT: Geotechnical Investigation for Proposed Road Extension

CLIENT: Morrison Hershfield

PROJECT LOCATION: Between Rean Drive and Kenaston Gardens, Toronto, Ontario Diameter: 155mm/205mm DATUM: N/A

SAMPLES

BH LOCATION: See Borehole Location Plan SOIL PROFILE

#### DRILLING DATA

Date: Sep/28/2016

DYNAMIC CONE PENETRATION RESISTANCE PLOT

Method: Continuous Flight Auger

REF. NO.: 16-1359 ENCL NO.: 7

|                             | SOIL PROFILE                                                                                          |            | 5     | SAMPL | .ES                      | ~           |          | RESIS                    | TANCE          | PLOT | $\geq$                      | -                                            |                           |   |     | JRAL |                      |                           | ₽                                      | REMARKS                                  |
|-----------------------------|-------------------------------------------------------------------------------------------------------|------------|-------|-------|--------------------------|-------------|----------|--------------------------|----------------|------|-----------------------------|----------------------------------------------|---------------------------|---|-----|------|----------------------|---------------------------|----------------------------------------|------------------------------------------|
| (m)<br><u>ELEV</u><br>DEPTH |                                                                                                       | TRATA PLOT | UMBER | YPE   | v" <u>BLOWS</u><br>0.3 m | ROUND WATEF | LEVATION | 2<br>SHE/<br>0 UI<br>• Q | AR ST<br>NCONF | RENG | 50 8<br>5TH (ki<br>+<br>- × | B0 1<br>Pa)<br>FIELD V<br>& Sensit<br>LAB V/ | 00<br>ANE<br>ivity<br>ANE |   |     |      | LIMIT<br>WL<br>T (%) | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT V<br>(kN/m <sup>3</sup> ) | AND<br>GRAIN SIZE<br>DISTRIBUTION<br>(%) |
| 0.0                         | ASPHALT CONCRETE: (120 mm)                                                                            | S          | z     | -     | f                        | 00          | ш        |                          |                | +0 ( |                             | 50 1                                         |                           |   | 0 2 |      | 50                   |                           |                                        | GR SA SI CI                              |
| <br>-<br>-                  | GRANULAR BASE/SUBBASE:                                                                                |            | 1     | AS    |                          |             |          |                          |                |      |                             |                                              |                           | o |     |      |                      |                           |                                        |                                          |
| - 0.8<br>-<br>-             | FILL: sand and silt, some clay,<br>trace gravel, trace cobbles and<br>boulders, brown, moist, compact |            |       |       |                          |             |          |                          |                |      |                             |                                              |                           |   |     |      |                      |                           |                                        |                                          |
| -<br>-<br>-                 |                                                                                                       |            | 2     | SS    | 23                       |             |          |                          |                |      |                             |                                              |                           | ο |     |      |                      |                           |                                        |                                          |
| - 1.4                       | 4 SAND AND SILT TILL: some clay,<br>trace gravel, brown, moist, dense                                 |            |       |       |                          | -           |          |                          |                |      |                             |                                              |                           |   |     |      |                      |                           |                                        |                                          |
| -                           |                                                                                                       | 0          | 3     | SS    | 35                       |             |          |                          |                |      |                             |                                              |                           | 0 |     |      |                      |                           |                                        |                                          |
| 2.0                         | D END OF THE BOREHOLE<br>Note: Borehole was open and dry<br>upon completion of drilling.              |            |       |       |                          |             |          |                          |                |      |                             |                                              |                           |   |     |      |                      |                           |                                        |                                          |



PROJECT: Geotechnical Investigation for Proposed Road Extension

CLIENT: Morrison Hershfield

PROJECT LOCATION: Between Rean Drive and Kenaston Gardens, Toronto, Ontario Diameter: 155mm/205mm DATUM: N/A

BH LOCATION: See Borehole Location Plan

#### DRILLING DATA

Date: Sep/28/2016

Method: Continuous Flight Auger

REF. NO.: 16-1359 ENCL NO.: 8

|       | SOIL PROFILE                                                            |              | S    | ampl | ES   | ~          |                  | DYNA<br>RESIS | MIC CO  | NE PEN<br>PLOT |        | TION           |              |                |       | URAL               |        |                 | μ     | REMA    | ARKS         |
|-------|-------------------------------------------------------------------------|--------------|------|------|------|------------|------------------|---------------|---------|----------------|--------|----------------|--------------|----------------|-------|--------------------|--------|-----------------|-------|---------|--------------|
| (m)   |                                                                         | эт           |      |      |      | ATER<br>S  |                  | 2             | 20 4    | 06             | i0 8   | 30 1           | 00           | LIMIT          | MOIS  | TURE               | LIQUID | bEN.            | °°    |         | ID<br>I SIZE |
| ELEV  | DESCRIPTION                                                             | A PLO        | к    |      | .3 m | ID W       | NOIT             | SHEA          |         | RENG           | TH (kl | Pa)<br>FIELD V | ANE          | W <sub>P</sub> | (     | א<br>ככ            | WL     | CKET<br>Cu) (KF | (kN/m | DISTRIE | BUTION       |
| DEPTH |                                                                         | RAT,         | JMBE | ЪЕ   |      |            | EVA <sup>-</sup> | • QI          | UICK TF | RIAXIAL        | . ×    | & Sensit       | ivity<br>ANE | WAT            | ER CC | ONTEN <sup>®</sup> | T (%)  | e e             | NATL  | (%      | <b>b</b> )   |
| 0.0   |                                                                         | ST           | ٦    | ≽    | Ž    | <u>я</u> 2 | Ц                | 2             | 20 4    | 0 6            | 3 0i   | 30 1           | 00           | 10             | ) 2   | 20 3               | 30     |                 |       | GR SA   | SI CL        |
| - 0.0 | ASPRALI CONCRETE. (140 mm)                                              |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
| 0.1   | GRANULAR BASE/SUBBASE:                                                  | $\bigotimes$ |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
| -     |                                                                         | $\bigotimes$ |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
| -     |                                                                         | $\bigotimes$ | 1    | AS   |      |            |                  |               |         |                |        |                |              | 0              |       |                    |        |                 |       |         |              |
| _     |                                                                         | $\otimes$    |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
| -     |                                                                         | $\bigotimes$ |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
| 0.6   | FILL: sand and silt, some clay,<br>trace gravel, layers of clayey silt. | $\boxtimes$  |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
| -     | brown, moist, compact                                                   |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
| -     |                                                                         | $\bigotimes$ |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
| 1     |                                                                         | $\boxtimes$  | 2    | SS   | 14   |            |                  |               |         |                |        |                |              | 0              |       |                    |        |                 |       |         |              |
| - 1.1 | SAND AND SILT TILL: some clay,                                          | X            |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
| -     | trace gravel, brown, moist, compact to dense                            |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
| -     |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
| -     |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
| L     |                                                                         | <b> </b>     |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
| -     |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
| -     |                                                                         | •            |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
| -     |                                                                         |              | 3    | SS   | 34   |            |                  |               |         |                |        |                |              | 0              |       |                    |        |                 |       |         |              |
| -     |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
| 2.0   | END OF THE BOREHOLE                                                     |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
|       | Note: Borehole was open and dry<br>upon completion of drilling.         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
|       |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
|       |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
|       |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
|       |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
|       |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
|       |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
|       |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
|       |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
|       |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
|       |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
|       |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
|       |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
|       |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
|       |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
|       |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
|       |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
|       |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
|       |                                                                         |              |      |      |      |            |                  |               |         |                |        |                |              |                |       |                    |        |                 |       |         |              |
|       |                                                                         |              |      |      |      |            |                  |               |         |                |        | 1              | I            |                |       |                    |        | I               | I     |         |              |





PROJECT: Geotechnical Investigation for Proposed Road Extension

CLIENT: Morrison Hershfield

PROJECT LOCATION: Between Rean Drive and Kenaston Gardens, Toronto, Ontario DATUM: N/A

BH LOCATION: See Borehole Location Plan

#### DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE LIMIT CONTENT REMARKS GROUND WATER CONDITIONS LIQUID POCKET PEN. (Cu) (kPa) AND LIMIT 20 40 60 80 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE w WL BLOWS 0.3 m WP SHEAR STRENGTH (kPa) O UNCONFINED + FIELD VANE QUICK TRIAXIAL × LAB VANE ELEVATION ELEV DEPTH -0 -1 DISTRIBUTION н DESCRIPTION NUMBER (%) WATER CONTENT (%) TYPE ż 20 40 60 80 100 10 20 30 GR SA SI CL 0.0 ASPHALT CONCRETE: (80 mm) GRANULAR BASE/SUBBASE: 0.1 (460 mm) AS 0 1 0.5 FILL: sandy silt, trace clay, trace gravel, pockets of silty sand, layers of clayey silt, brown, moist, compact 2 SS 11 0 1.4 SANDY SILT TILL: trace clay, trace gravel, brown, moist, dense 3 SS 31 0 2.0 END OF THE BOREHOLE Note: Borehole was open and dry upon completion of drilling.



REF. NO.: 16-1359 ENCL NO.: 9

Date: Sep/28/2016

Method: Continuous Flight Auger

Diameter: 155mm/205mm

DRILLING DATA



DRILLING DATA

Date: Sep/28/2016

Method: Continuous Flight Auger

Diameter: 155mm/205mm

PROJECT: Geotechnical Investigation for Proposed Road Extension

CLIENT: Morrison Hershfield

PROJECT LOCATION: Between Rean Drive and Kenaston Gardens, Toronto, Ontario DATUM: N/A

BH LOCATION: See Borehole Location Plan

#### DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE LIMIT CONTENT REMARKS GROUND WATER CONDITIONS LIQUID POCKET PEN. (Cu) (kPa) AND LIMIT 20 40 60 80 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE w WL BLOWS 0.3 m WP SHEAR STRENGTH (kPa) O UNCONFINED + FIELD VANE QUICK TRIAXIAL × LAB VANE ELEVATION ELEV DEPTH -0 -1 DISTRIBUTION н DESCRIPTION NUMBER (%) WATER CONTENT (%) TYPE ż 20 40 60 80 100 10 20 30 GR SA SI CL 0.0 ASPHALT CONCRETE: (90 mm) GRANULAR BASE/SUBBASE: 0.1 (610 mm) 1 AS 0 FILL: sand and silt, some clay, trace gravel, layers of clayey silt, 0.7 Ŕ brown, moist, compact 2 SS 11 0 1.4 SANDY SILT TILL: trace clay, trace gravel, brown, moist, dense 3 SS 36 2.0 END OF THE BOREHOLE Note: Borehole was open and dry upon completion of drilling.



REF. NO.: 16-1359 ENCL NO.: 10



PROJECT: Geotechnical Investigation for Proposed Road Extension

CLIENT: Morrison Hershfield

PROJECT LOCATION: Between Rean Drive and Kenaston Gardens, Toronto, Ontario Diameter: 155mm/205mm DATUM: N/A

BH LOCATION: See Borehole Location Plan

#### DRILLING DATA

Date: Sep/28/2016

Method: Continuous Flight Auger

REF. NO.: 16-1359 ENCL NO.: 11

|                             | SOIL PROFILE                                                                           |              | s      | SAMPL | ES                |              |           | DYNA<br>RESIS            | MIC CO<br>TANCE                   | NE PEN<br>E PLOT                |                         | TION                                        |                                      |   | _ NAT  | URAL                            |                     |                           | ⊢                                      | REMARKS                                  |
|-----------------------------|----------------------------------------------------------------------------------------|--------------|--------|-------|-------------------|--------------|-----------|--------------------------|-----------------------------------|---------------------------------|-------------------------|---------------------------------------------|--------------------------------------|---|--------|---------------------------------|---------------------|---------------------------|----------------------------------------|------------------------------------------|
| (m)<br><u>ELEV</u><br>DEPTH | DESCRIPTION                                                                            | STRATA PLOT  | NUMBER | ГҮРЕ  | N" BLOWS<br>0.3 m | GROUND WATER | ELEVATION | 2<br>SHE/<br>0 UI<br>• Q | AR ST<br>NCONF<br>UICK TH<br>20 4 | RENG<br>RENG<br>INED<br>RIAXIAL | 0 8<br>TH (kl<br>+<br>× | Pa)<br>FIELD V<br>& Sensit<br>LAB V<br>30 1 | 00<br>I<br>ANE<br>ivity<br>ANE<br>00 |   | TER CC | TURE<br>TENT<br>N<br>D<br>DNTEN | LIQUID<br>LIMIT<br> | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT W<br>(kN/m <sup>3</sup> ) | AND<br>GRAIN SIZE<br>DISTRIBUTION<br>(%) |
| 0.0                         | ASPHALT CONCRETE: (200 mm)                                                             |              |        |       |                   |              | _         |                          |                                   |                                 |                         |                                             |                                      |   |        |                                 |                     |                           |                                        |                                          |
| 0.2                         | GRANULAR BASE/SUBBASE:<br>(420 mm)                                                     |              | 1      | AS    |                   | -            |           |                          |                                   |                                 |                         |                                             |                                      | 0 |        |                                 |                     |                           |                                        |                                          |
| 0.6                         | FILL: sand and gravel, trace to<br>some silt, brown, moist, very dense<br>to compact   |              |        |       |                   | -            |           |                          |                                   |                                 |                         |                                             |                                      |   |        |                                 |                     |                           |                                        |                                          |
| -<br>-<br>-                 |                                                                                        |              | 2      | SS    | 53                |              |           |                          |                                   |                                 |                         |                                             |                                      | 0 |        |                                 |                     |                           |                                        |                                          |
| -                           |                                                                                        |              |        |       |                   | -            |           |                          |                                   |                                 |                         |                                             |                                      |   |        |                                 |                     |                           |                                        |                                          |
| -<br><br>1.8                | FILL: sand and silt, some gravel, brown, moist, compact                                | $\bigotimes$ | 3      | SS    | 17                |              |           |                          |                                   |                                 |                         |                                             |                                      |   | o      |                                 |                     |                           |                                        |                                          |
| 2.0                         | END OF THE BOREHOLE<br>Note: Borehole was open and dry<br>upon completion of drilling. |              |        |       |                   |              |           |                          |                                   |                                 |                         |                                             |                                      |   |        |                                 |                     |                           |                                        |                                          |




Geotechnical-Hydrogeology-Environmental-Materials-Inspection

# **FIGURES**









Figure 2





| Project No.  | 16-1359                                                   |
|--------------|-----------------------------------------------------------|
| Project Name | Road Extension from Rean Dr. to Kenaston Gardens, Toronto |

## Figure 3





| Project No.  | 16-1359                                                   |
|--------------|-----------------------------------------------------------|
| Project Name | Road Extension from Rean Dr. to Kenaston Gardens, Toronto |

Figure 4



GeoPro Consulting Limited

Geotechnical-Hydrogeology-Environmental-Materials-Inspection

# **APPENDIX A**



15 - 6800 Kitimat Rd Mississauga, ON, L5N 5M1 1-800-749-1947 www.paracellabs.com

## Certificate of Analysis

#### **GeoPro Consulting Limited**

40 Vogell Road, Unit 57 Richmond Hill, ON L4B 3N6 Attn: Bujing Guan

| Project: 10-1359 O | Order Date: 19-Oct-2016 |
|--------------------|-------------------------|
| Client PO: Re      | eport Date: 25-Oct-2016 |

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

| Paracel ID | Client ID   |
|------------|-------------|
| 1643268-01 | BH1 Asphalt |
| 1643268-02 | BH2 Asphalt |
| 1643268-03 | BH3 Asphalt |
| 1643268-05 | BH6 Asphalt |
| 1643268-06 | BH7 Asphalt |
| 1643268-07 | BH9 Asphalt |

Approved By:

Heather S.H. McGregor, BSc

Laboratory Director - Microbiology

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



#### Certificate of Analysis Client: GeoPro Consulting Limited

Client PO:

Project Description: 16-1359

#### Asbestos, PLM Visual Estimation \*\*MDL - 0.5%\*\*

| Paracel I.D. | Sample Date | Layers Analyzed    | Colour | Description | Asbestos Detected: | Material Identification | % Content |
|--------------|-------------|--------------------|--------|-------------|--------------------|-------------------------|-----------|
| 1643268-01   | 28-Sep-16   | sample homogenized | Grey   | Asphalt     | No                 | Client ID: BH1 Asphalt  | [AS-PRE]  |
|              |             |                    |        |             |                    | Non-Fibers              | 100       |
| 1643268-02   | 28-Sep-16   | sample homogenized | Grey   | Asphalt     | No                 | Client ID: BH2 Asphalt  | [AS-PRE]  |
|              |             |                    |        |             |                    | Non-Fibers              | 100       |
| 1643268-03   | 28-Sep-16   | sample homogenized | Grey   | Asphalt     | No                 | Client ID: BH3 Asphalt  | [AS-PRE]  |
|              |             |                    |        |             |                    | Non-Fibers              | 100       |
| 1643268-05   | 28-Sep-16   | sample homogenized | Grey   | Asphalt     | No                 | Client ID: BH6 Asphalt  | [AS-PRE]  |
|              |             |                    |        |             |                    | Non-Fibers              | 100       |
| 1643268-06   | 28-Sep-16   | sample homogenized | Grey   | Asphalt     | No                 | Client ID: BH7 Asphalt  | [AS-PRE]  |
|              |             |                    |        |             |                    | Non-Fibers              | 100       |
| 1643268-07   | 28-Sep-16   | sample homogenized | Grey   | Asphalt     | No                 | Client ID: BH9 Asphalt  | [AS-PRE]  |
|              |             |                    |        |             |                    | Non-Fibers              | 100       |

#### **Analysis Summary Table**

| Analysis                        | Method Reference/Description | Lab Location    | NVLAP Lab Code * | Analysis Date |
|---------------------------------|------------------------------|-----------------|------------------|---------------|
| Asbestos, PLM Visual Estimation | by EPA 600/R-93/116          | 1 - Mississauga | 200863-0         | 25-0ct-16     |

\* Reference to the NVLAP term does not permit the user of this report to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

#### Qualifier Notes

Sample Qualifiers :

AS-PRE: Due to the difficult nature of the bulk sample (interfering fibers/binders), additional NOB preparation was required prior to analysis

#### Work Order Revisions / Comments

None

|       | PARACEL                                                         | - T<br>R<br>. R | RUSTE         | ED.<br>ISIVE.<br>BLE. | Head Office<br>300-2319 St. L<br>Ottawa, Ontar<br>p: 1-800-749-1<br>e paracelepar | aurent Blvd.<br>o K1G 4J8<br>947<br>acellabs.com |               | Chain of Custody<br>(Lab Use Only) |
|-------|-----------------------------------------------------------------|-----------------|---------------|-----------------------|-----------------------------------------------------------------------------------|--------------------------------------------------|---------------|------------------------------------|
|       |                                                                 |                 |               |                       |                                                                                   |                                                  |               | Page <u>1</u> of <u>1</u>          |
| Clier | nt Name: GeoPro Consulting Limited                              |                 |               | Project Refere        | nce: 16-1359                                                                      |                                                  |               | Turnaround Time:                   |
| Cont  | tact Name: Bujing Guan                                          |                 |               | Quote #:              |                                                                                   |                                                  |               | ediate [] Day                      |
| Add   | ress: Unit 57, 40 Vogell Road, Richmond Hi                      | ill, Ontario    |               | PO #:                 |                                                                                   |                                                  | E H           | ur 🖂 Day                           |
|       |                                                                 |                 |               | Email Address         | bguan@geoproconsulting.ca                                                         |                                                  | <b>-</b> L° " | Regular                            |
| Tele  | mhone: 005 227 8226                                             |                 |               |                       | dulany@gannroconsulting.ca                                                        |                                                  | Det           | a Daguirad:                        |
|       | 905-251-6550                                                    |                 | CDEC          | TOO                   |                                                                                   |                                                  | Dat           | e Kequiteu                         |
| -     |                                                                 |                 | ASRES         | 105 &                 | MOLD ANALYSIS                                                                     |                                                  |               |                                    |
| Ma    | atrix: Air Bulk Tape L                                          | ift 🗌           | Swab          | Other                 | Regulatory Guideline:                                                             |                                                  |               |                                    |
| Re    | quired Analyses: Microscopic Mold                               | Cultu           | rable Mo      | ld 🗌 Ba               | cteria GRAM PCM PLM                                                               | 1 Chat                                           | field         | TEM                                |
| Par   | racel Order Number:                                             |                 |               |                       |                                                                                   | Asbestos -                                       | Bulk          |                                    |
|       | 11043268                                                        |                 | Air           |                       |                                                                                   | Positive                                         | L de Comela   | If layered, Describe Layer(s) i    |
| -     | 101000                                                          | Sampling        | Volume        | Analysis              |                                                                                   | Stop?                                            | Layered?      | Analyzed Separately* or            |
|       | Sample ID                                                       | Date            | (L)           | Required              | Matrix Description                                                                | (Y/N)                                            | (Y/N)         | Homogenize all **                  |
| 1     | BH1 Asphalt                                                     | 2016/09/28      |               | Asbestos              | Asphalt                                                                           | N                                                | N             |                                    |
| 2     | BH2 Asphalt                                                     | 2016/09/28      |               | Asbestos              | Asphalt                                                                           | N                                                | N             |                                    |
| 3     | BH3 Asphalt                                                     | 2016/09/28      |               | Asbestos              | Asphalt                                                                           | N                                                | N             |                                    |
| 4     | BH5 Asphalt                                                     | 2016/09/28      |               | Asbestos              | Asphalt                                                                           | N                                                | N             |                                    |
| 5     | BH6 Asphall                                                     | 2016/09/28      |               | Asbestos              | Asphalt                                                                           | N                                                | N             |                                    |
| 6     | BH7 Asphall                                                     | 2016/09/28      |               | Asbestos              | Asphalt                                                                           | N                                                | N             |                                    |
| 7     | рна узрови                                                      | 2016/09/28      |               | Aspesios              | , advinant.                                                                       |                                                  |               |                                    |
| 8     |                                                                 |                 |               |                       |                                                                                   |                                                  |               |                                    |
| 10    |                                                                 |                 |               |                       |                                                                                   |                                                  |               |                                    |
| 11    |                                                                 |                 |               |                       |                                                                                   |                                                  |               |                                    |
| 12    |                                                                 |                 |               |                       |                                                                                   |                                                  |               |                                    |
| 13    |                                                                 |                 |               |                       |                                                                                   |                                                  |               |                                    |
| 14    |                                                                 |                 |               |                       |                                                                                   |                                                  |               |                                    |
| 15    |                                                                 |                 |               |                       |                                                                                   |                                                  |               |                                    |
| *Ea   | ach layer will be analyzed and charged separately **Hon         | nogenize = All  | layers are bl | ended into a si       | ngle uniform sample.                                                              | 1.1.1.1                                          |               | Mathad - Challenne                 |
| Co    | mments:                                                         |                 |               |                       |                                                                                   |                                                  |               | RABBEX                             |
| Rel   | Receive                                                         | ed at Depot:    |               |                       | Received at Lab:                                                                  | We Ve                                            | rified By:    | fn                                 |
| Rel   | inquished By (Print): Dylan Xlao<br>te/Time: 2016/10/19 Date/Ti | ime:            |               |                       | Date/Time: 19-0CT-16                                                              | 12:04 Da                                         | te/Time: 2    | 2+19/16 1512                       |

Phase of Ocustodie (Antonian) David C las 2010



5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### CLIENT NAME: GEOPRO CONSULTING LTD 40 VOGELL ROAD UNIT 25-27 RICHMOND HILL, ON L4B3N6 (905) 237-8336

ATTENTION TO: Bujing Guan

PROJECT: 16-1359

AGAT WORK ORDER: 16T151605

ASBESTOS REVIEWED BY: Whenhong Zou, Lab Analyst

DATE REPORTED: Oct 31, 2016

PAGES (INCLUDING COVER): 4

VERSION\*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

| *NOTES |  |
|--------|--|
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 4

Results relate only to the items tested and to all the items tested

All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request



## Certificate of Analysis

AGAT WORK ORDER: 16T151605 PROJECT: 16-1359 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### CLIENT NAME: GEOPRO CONSULTING LTD

SAMPLING SITE:

ATTENTION TO: Bujing Guan

SAMPLED BY:

| Bulk Asbestos             |      |            |           |              |                           |  |  |  |  |  |  |
|---------------------------|------|------------|-----------|--------------|---------------------------|--|--|--|--|--|--|
| DATE RECEIVED: 2016-10-21 |      |            |           |              | DATE REPORTED: 2016-10-31 |  |  |  |  |  |  |
|                           | :    | SAMPLE DES | CRIPTION: | BH10 Asphalt |                           |  |  |  |  |  |  |
|                           |      | SAM        | PLE TYPE: | Asphalt      |                           |  |  |  |  |  |  |
|                           |      | DATE       | SAMPLED:  | 2016-09-28   |                           |  |  |  |  |  |  |
| Parameter                 | Unit | G/S        | RDL       | 7953408      |                           |  |  |  |  |  |  |
| Asbestos (Bulk)           | %    |            | 0.5       | ND           |                           |  |  |  |  |  |  |
|                           |      |            |           |              |                           |  |  |  |  |  |  |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7953408 Condition of sample was satisfactory at time of arrival in laboratory. Analysis done at AGAT 5623 McAdam Road Mississauga location.

"ND" - Not Detected

Certified By:

Wenhong 2m



5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

## Method Summary

| Asbestos (Bulk)                  | INORG 93-6010     | EPA 600/R-93/116 & NIOSH 9002 | PLM                  |  |  |  |  |  |
|----------------------------------|-------------------|-------------------------------|----------------------|--|--|--|--|--|
| PARAMETER                        | AGAT S.O.P        | LITERATURE REFERENCE          | ANALYTICAL TECHNIQUE |  |  |  |  |  |
| SAMPLING SITE:                   |                   | SAMPLED BY:                   |                      |  |  |  |  |  |
| PROJECT: 16-1359                 | N TO: Bujing Guan |                               |                      |  |  |  |  |  |
| CLIENT NAME: GEOPRO CONSULTING L | AGAT WORK ORI     | DER: 16T151605                |                      |  |  |  |  |  |

| Laborate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BAS Res                                                                                                                                                               | D-                     | R        | r N<br>Ph: 90    | 583<br>Mississauga<br>5.712.5100 F<br>webea          | 5 Coop<br>, Ontari<br>ix: 905<br>arth.aga | ers Av<br>o L42<br>.712.9<br>atlabs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | enue<br>2 1Y2<br>5122<br>com |        | Lat<br>Work<br>Cool | orda<br>orda<br>er Qu | er #:<br>uantit   | y U:<br>(<br>             | se Oi<br>oT                   | ily<br>ISI                           | 605                      | -                            |                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|------------------|------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------|---------------------|-----------------------|-------------------|---------------------------|-------------------------------|--------------------------------------|--------------------------|------------------------------|-------------------------------------|
| Chain of Custody Record If this is a Drinking Water sample, please u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | se Drinking Water Chain of Cu                                                                                                                                         | istody Fo              | rm (p    | stable v         | vater intended for                                   | human d                                   | onsun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | option)                      | _      | Arrix               | al Te                 | mper              | ature                     | :5:                           |                                      | I                        |                              |                                     |
| Report Information: (1007ro Consulting Limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Regulatory Require<br>(Please check all applicable boxes)                                                                                                             | ement                  | is:      |                  | lo Regulato                                          | ry Red                                    | quire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | men                          |        | Cust<br>Note        | ody S<br>es:          | Seal I            | ntact                     | :                             | Yes                                  |                          | )                            | □N/A                                |
| Contact:<br>Address:<br>Unit 53, 40 Vogell Road, Prichmonol<br>Hill, Ontaxio<br>Phone:<br>905-237-8356 Fax: $905-248-3699Reports to be sent to:000000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Regulation 153/04 Sewer Use Regulation 558   Table Indicate One Sanitary   Ind/Com Sanitary CCME   Res/Park Storm Prov. Water Quality   Agriculture Objectives (DWOO) |                        |          |                  |                                                      |                                           | Turnaround Time (TAT) Required:     Regular TAT     Image: Constraint of the surple of the su |                              |        |                     |                       |                   |                           |                               |                                      |                          |                              |                                     |
| 1. Email: $9900009000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Soil Texture (Check One) Re                                                                                                                                           | egion                  | Indicate | ? One            | Oth                                                  | er<br>Indicate                            | One                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |        | Ľ                   | 3<br>Da               | Busir<br>ays      | ness                      |                               | 2 Busir<br>Days                      | less [                   | □ <sup>1 B</sup><br>Day      | usiness<br>′                        |
| Project Information:<br>Project: 16-135 1<br>Site Location: To You to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Is this submission f<br>Record of Site Cond                                                                                                                           | for a<br>lition?<br>NO |          |                  | Report Gu<br>Certificate                             | idelin<br>of An                           | <b>alys</b><br>No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | is<br>D                      |        |                     | 0<br>*T/              | R Dat<br>Plea     | te Re<br>ase pr<br>exclus | quired<br>rovide (<br>sive of | (Rush Sur<br>orior notif<br>weekends | charges M<br>Ication for | ay App<br>rush Tr<br>tory ho | ly):<br>AT<br>blidays               |
| Sampled By: Clement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                       | 1                      |          | _                |                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |        | _                   |                       |                   |                           |                               |                                      |                          |                              |                                     |
| AGAT Quote #: PO: PO: PO: PO: PO: PO: PO: PO: PO: PO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample Matrix<br>Legend                                                                                                                                               |                        |          |                  | (Check App                                           | licable)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |        |                     |                       |                   |                           | Sates                         |                                      |                          | 1                            |                                     |
| Invoice Information: Bill To Same: Yes No Company:<br>Contact:<br>Address:<br>Email:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B Biota   GW Ground Water   O Oil   P Paint   S Soil   SD Sediment   SW Surface Water                                                                                 | and Inorganics         | Scan     | e Forming Metals | Dustom Metals                                        | CINO2 CINO3/NO2<br>es: CIVOC CIBTEX CITHN | Fractions 1 to 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | hanols |                     | ochlorine Pesticides  | Aetals/Inorganics | Use                       | nexit for Asbi                |                                      |                          |                              | rente<br>Partos<br>Partos<br>Contes |
| Sample Identification     Date<br>Sampled     Time<br>Sampled     # of<br>Sampled     Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Comments/<br>Special Instructions                                                                                                                                     | Metals                 | Metal 9  | Hydride          | Officent O<br>ORPs:<br>OCr <sup>5</sup> *<br>D Total | Volatile                                  | CCME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ABNs                         | PAHs   | PCBs                | Organo                | TCLP N            | Sewer                     | Aspl                          | •                                    |                          |                              |                                     |
| BHIO Asphalt 28/07/16 AM I Bary Asphalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                       |                        |          |                  |                                                      |                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |        |                     | 1                     |                   |                           | X                             |                                      |                          |                              |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |                        |          | -                |                                                      |                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |        | -                   | -                     | -                 |                           |                               | _                                    | _                        | -                            |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |                        |          |                  | and as a                                             | _                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              | _      | -                   |                       | -                 | -                         | -                             | -                                    |                          | -                            |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | 121                    |          | LIM              | 1 LO IT                                              | -01                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |        | -                   | -                     |                   |                           | -                             |                                      |                          | -                            |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |                        |          |                  | HO LU                                                |                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |        | -                   |                       |                   |                           |                               |                                      |                          | -                            |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | 1                      |          | -                |                                                      | -                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              | -      |                     |                       | -                 | -                         |                               |                                      |                          |                              |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                |                        |          |                  | -7.46                                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |        | -                   |                       |                   | 1                         |                               |                                      |                          |                              |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |                        |          | -                |                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |        |                     |                       |                   |                           |                               | 3                                    |                          |                              |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | 100                    |          |                  |                                                      |                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              | 1      |                     | T                     |                   |                           |                               |                                      |                          |                              | 40                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\cap$                                                                                                                                                                |                        |          |                  | ad ist.                                              | 100                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |        |                     |                       |                   | 1                         |                               |                                      |                          |                              |                                     |
| Samples Refine and By Print Rame and Samp<br>Ry (or n X1'00)<br>Samples Refine and Ry (Print Rame and Samp<br>Ry (or n X1'00)<br>Samples Refine and Ry (Print Rame and Samp<br>Ry (0) 10/2011<br>Ry (0) 21<br>Ry (0) 21<br>Ry (0) 2010<br>Ry (0) 201 | Samples Received By (Print N                                                                                                                                          | lame and Si            | gn):     | ~                | 1-70                                                 | 16/0<br>Pink (                            | CODY-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date<br>2(<br>Date<br>Client | 1 Yell | ow Co               | Time<br>/ Ime         | SI                | -                         | N <sup>o</sup>                | Page                                 | 02.C                     | #<br> 63                     | 31                                  |



GeoPro Consulting Limited

 $Geotechnical \hbox{-} Hydrogeology \hbox{-} Environmental \hbox{-} Materials \hbox{-} Inspection$ 

# **APPENDIX B**



Morrison Hershfield Limited (Toronto) ATTN: CINDY ZHAO 235 Yorkland Blvd Suite 600 Toronto ON M2J 1T1 Date Received: 05-OCT-16 Report Date: 14-OCT-16 14:34 (MT) Version: FINAL

Client Phone: 416-499-3110

# Certificate of Analysis

Lab Work Order #: L1839952 Project P.O. #: NOT SUBMITTED Job Reference: 16-1359 C of C Numbers: 15-573718 Legal Site Desc: N/A

Iman Tere 1 menion

Emerson Perez, B.S.E Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

**RIGHT SOLUTIONS** RIGHT PARTNER



L1839952 CONT'D.... Job Reference: 16-1359 PAGE 2 of 7 14-OCT-16 14:34 (MT)

#### SOIL - Ontario Regulation 153/04 - April 15, 2011 Standards

|                 |                           |          | ALS ID       |         | L1839952-1 | L1839952-2     | L1839952-3 | L1839952-4   | L1839952-5    |
|-----------------|---------------------------|----------|--------------|---------|------------|----------------|------------|--------------|---------------|
|                 |                           |          | Sampled Date |         | 28-SEP-16  | 28-SEP-16      | 28-SEP-16  | 28-SEP-16    | 28-SEP-16     |
|                 |                           |          | Sample       | ed Time | -          | -              | -          | -            | -             |
|                 |                           |          | Sample ID    |         | BH1 SS2    | BH4 SS2        | BH5 SS2    | BH8 SS2      | BH10 SS2      |
|                 |                           |          |              |         |            |                |            |              |               |
|                 |                           |          | Guide        | Limits  |            |                |            |              |               |
| Grouping        | Analyte                   | Unit     | #1           | #2      |            |                |            |              |               |
| Physical Tests  | Conductivity              | mS/cm    | 0.7          | 0.7     | 0.280      | 0.596          | 1.22       | 2.26         | 1.99          |
|                 | % Moisture                | %        | -            | -       | 6.03       | 12.4           | 9.39       | 9.82         | 7.72          |
|                 | pН                        | pH units | -            | -       | 7.92       | 7.88           | 7.54       | 8.09         | 11.57         |
| Cyanides        | Cyanide, Weak Acid Diss   | ug/g     | 0.051        | 0.051   | <0.050     | <0.050         | <0.050     | <0.050       | <0.050        |
| Saturated Paste | SAR                       | SAR      | 5            | 5       | 8 91       | SAR:IN<br>C    | 2.83       | SAR:Q<br>104 | SAR:Q<br>3.66 |
| Extractables    |                           |          |              |         | 0.01       | Incalculable - | 2.00       | 101          | 0.00          |
|                 |                           |          |              |         |            | Low Cations    |            |              |               |
|                 | Calcium (Ca)              | mg/L     | -            | -       | 1.6        | <1.0           | 117        | 1.8          | 191           |
|                 | Magnesium (Mg)            | mg/L     | -            | -       | 1.3        | <1.0           | 8.7        | <1.0         | <1.0          |
|                 | Sodium (Na)               | mg/L     | -            | -       | 62.3       | 140            | 118        | 512          | 184           |
| Metals          | Antimony (Sb)             | ug/g     | 7.5          | 7.5     | <1.0       | <1.0           | <1.0       | <1.0         | <1.0          |
|                 | Arsenic (As)              | ug/g     | 18           | 18      | 1.5        | 2.2            | 4.5        | 2.1          | 1.4           |
|                 | Barium (Ba)               | ug/g     | 390          | 390     | 26.2       | 62.9           | 100        | 67.6         | 25.4          |
|                 | Beryllium (Be)            | ug/g     | 4            | 5       | <0.50      | <0.50          | 0.61       | <0.50        | <0.50         |
|                 | Boron (B)                 | ug/g     | 120          | 120     | <5.0       | 6.9            | 8.4        | 6.1          | 6.2           |
|                 | Boron (B), Hot Water Ext. | ug/g     | 1.5          | 1.5     | <0.10      | <0.10          | 0.34       | 0.26         | 0.24          |
|                 | Cadmium (Cd)              | ug/g     | 1.2          | 1.2     | <0.50      | <0.50          | <0.50      | <0.50        | <0.50         |
|                 | Chromium (Cr)             | ug/g     | 160          | 160     | 7.9        | 16.3           | 23.9       | 14.6         | 9.4           |
|                 | Cobalt (Co)               | ug/g     | 22           | 22      | 3.5        | 5.8            | 7.8        | 5.4          | 1.9           |
|                 | Copper (Cu)               | ug/g     | 140          | 180     | 5.8        | 10.8           | 17.0       | 13.0         | 4.0           |
|                 | Lead (Pb)                 | ug/g     | 120          | 120     | 33.8       | 32.5           | 22.6       | 51.4         | 3.7           |
|                 | Mercury (Hg)              | ug/g     | 0.27         | 1.8     | <0.0050    | 0.0072         | 0.0333     | 0.0105       | <0.0050       |
|                 | Molybdenum (Mo)           | ug/g     | 6.9          | 6.9     | <1.0       | <1.0           | <1.0       | <1.0         | <1.0          |
|                 | Nickel (Ni)               | ug/g     | 100          | 130     | 6.0        | 12.2           | 17.7       | 11.0         | 4.9           |

#### Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse)

Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

\* Please refer to the Reference Information section for an explanation of any qualifiers noted.



L1839952 CONT'D .... Job Reference: 16-1359 PAGE 3 of 7 14-OCT-16 14:34 (MT)

#### SOIL - Ontario Regulation 153/04 - April 15, 2011 Standards

|                                     |                        |      | Sample<br>Sample<br>Sa | ALS ID<br>ed Date<br>ed Time<br>mple ID | L1839952-1<br>28-SEP-16<br>-<br>BH1 SS2 | L1839952-2<br>28-SEP-16<br>-<br>BH4 SS2 | L1839952-3<br>28-SEP-16<br>-<br>BH5 SS2 | L1839952-4<br>28-SEP-16<br>-<br>BH8 SS2 | L1839952-5<br>28-SEP-16<br>-<br>BH10 SS2 |
|-------------------------------------|------------------------|------|------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|
| Grouping                            | Analyte                | Unit | Guide I<br>#1          | Limits<br>#2                            |                                         |                                         |                                         |                                         |                                          |
| Metals                              | Selenium (Se)          | ug/g | 2.4                    | 2.4                                     | <1.0                                    | <1.0                                    | <1.0                                    | <1.0                                    | <1.0                                     |
|                                     | Silver (Ag)            | ug/g | 20                     | 25                                      | <0.20                                   | <0.20                                   | <0.20                                   | <0.20                                   | <0.20                                    |
|                                     | Thallium (TI)          | ug/g | 1                      | 1                                       | <0.50                                   | <0.50                                   | <0.50                                   | <0.50                                   | <0.50                                    |
|                                     | Uranium (U)            | ug/g | 23                     | 23                                      | <1.0                                    | <1.0                                    | <1.0                                    | <1.0                                    | <1.0                                     |
|                                     | Vanadium (V)           | ug/g | 86                     | 86                                      | 17.3                                    | 25.7                                    | 34.4                                    | 26.8                                    | 18.8                                     |
|                                     | Zinc (Zn)              | ug/g | 340                    | 340                                     | 17.2                                    | 29.5                                    | 51.7                                    | 28.8                                    | 26.8                                     |
| Speciated Metals                    | Chromium, Hexavalent   | ug/g | 8                      | 10                                      | <0.20                                   | 0.22                                    | <0.20                                   | 0.25                                    | 0.66                                     |
| Polycyclic Aromatic<br>Hydrocarbons | Acenaphthene           | ug/g | 7.9                    | 58                                      | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                   |
|                                     | Acenaphthylene         | ug/g | 0.15                   | 0.17                                    | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                   |
|                                     | Anthracene             | ug/g | 0.67                   | 0.74                                    | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                   |
|                                     | Benzo(a)anthracene     | ug/g | 0.5                    | 0.63                                    | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                   |
|                                     | Benzo(a)pyrene         | ug/g | 0.3                    | 0.3                                     | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                   |
|                                     | Benzo(b)fluoranthene   | ug/g | 0.78                   | 0.78                                    | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                   |
|                                     | Benzo(g,h,i)perylene   | ug/g | 6.6                    | 7.8                                     | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                   |
|                                     | Benzo(k)fluoranthene   | ug/g | 0.78                   | 0.78                                    | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                   |
|                                     | Chrysene               | ug/g | 7                      | 7.8                                     | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                   |
|                                     | Dibenzo(ah)anthracene  | ug/g | 0.1                    | 0.1                                     | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                   |
|                                     | Fluoranthene           | ug/g | 0.69                   | 0.69                                    | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                   |
|                                     | Fluorene               | ug/g | 62                     | 69                                      | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                   |
|                                     | Indeno(1,2,3-cd)pyrene | ug/g | 0.38                   | 0.48                                    | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                  | <0.050                                   |
|                                     | 1+2-Methylnaphthalenes | ug/g | 0.99                   | 3.4                                     | <0.042                                  | <0.042                                  | <0.042                                  | <0.042                                  | <0.042                                   |
|                                     | 1-Methylnaphthalene    | ug/g | 0.99                   | 3.4                                     | < 0.030                                 | < 0.030                                 | < 0.030                                 | < 0.030                                 | < 0.030                                  |

#### Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse)

#### Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)



Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

\* Please refer to the Reference Information section for an explanation of any qualifiers noted.



L1839952 CONT'D .... Job Reference: 16-1359 PAGE 4 of 7 14-OCT-16 14:34 (MT)

#### SOIL - Ontario Regulation 153/04 - April 15, 2011 Standards

|                    |                                       |       |         | ALS ID  | L1839952-1 | L1839952-2 | L1839952-3 | L1839952-4 | L1839952-5 |
|--------------------|---------------------------------------|-------|---------|---------|------------|------------|------------|------------|------------|
|                    |                                       |       | Sample  | ed Date | 28-SEP-16  | 28-SEP-16  | 28-SEP-16  | 28-SEP-16  | 28-SEP-16  |
|                    |                                       |       | Sample  | ed Time | -          | -          | -          | -          | -          |
|                    |                                       |       | Sa      | mple ID | BH1 SS2    | BH4 SS2    | BH5 SS2    | BH8 SS2    | BH10 SS2   |
|                    |                                       |       |         |         |            |            |            |            |            |
|                    |                                       |       | Guide I | Limits  |            |            |            |            |            |
| Grouping           | Analyte                               | Unit  | #1      | #2      |            |            |            |            |            |
|                    |                                       |       |         |         |            |            |            |            |            |
| Polycyclic Aromati | c<br>2-Methylnaphthalene              | ua/a  | 0.99    | 3.4     | ~0.030     | ~0.030     | ~0.030     | ~0.030     | ~0.030     |
| Hydrocarbons       |                                       | - 5-5 |         |         | <0.000     | <0.000     | <0.000     | <0.000     | <0.000     |
|                    | Naphthalene                           | ug/g  | 0.6     | 0.75    | <0.050     | <0.050     | <0.050     | <0.050     | <0.050     |
|                    | Phenanthrene                          | ua/a  | 62      | 78      | -0.050     | -0.050     | -0.050     | -0.050     | -0.050     |
|                    | · · · · · · · · · · · · · · · · · · · | ×9,9  | 0.2     |         | <0.050     | <0.050     | <0.050     | <0.050     | <0.050     |
|                    | Pyrene                                | ug/g  | 78      | 78      | <0.050     | <0.050     | <0.050     | <0.050     | <0.050     |
|                    | Surrogate: 2-Fluorobiphenvl           | %     | -       | -       | 01.1       | 07.9       | 100.3      | 07.2       | 07.4       |
|                    |                                       |       |         |         | 31.1       | 51.0       | 100.5      | J1.Z       | 51.4       |
|                    | Surrogate: p-Terphenyl d14            | %     | -       | -       | 87.7       | 95.1       | 98.6       | 94.9       | 93.8       |

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse)

Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.



L1839952 CONT'D.... Job Reference: 16-1359 PAGE 5 of 7 14-OCT-16 14:34 (MT)

#### Summary of Guideline Exceedances

| Guideline   |                                      |                              |                            |        |                 |       |
|-------------|--------------------------------------|------------------------------|----------------------------|--------|-----------------|-------|
| ALS ID      | Client ID                            | Grouping                     | Analyte                    | Result | Guideline Limit | Unit  |
| Ontario Reg | julation 153/04 - April 15, 2011 Sta | ndards - T3-Soil-Res/Park/Ir | nst. Property Use (Coarse) |        |                 |       |
| L1839952-1  | BH1 SS2                              | Saturated Paste Extractables | SAR                        | 8.91   | 5               | SAR   |
| L1839952-3  | BH5 SS2                              | Physical Tests               | Conductivity               | 1.22   | 0.7             | mS/cm |
| L1839952-4  | BH8 SS2                              | Physical Tests               | Conductivity               | 2.26   | 0.7             | mS/cm |
|             |                                      | Saturated Paste Extractables | SAR                        | 104    | 5               | SAR   |
| L1839952-5  | BH10 SS2                             | Physical Tests               | Conductivity               | 1.99   | 0.7             | mS/cm |
| Ontario Reg | julation 153/04 - April 15, 2011 Sta | ndards - T3-Soil-Res/Park/Ir | nst. Property Use (Fine)   |        |                 |       |
| L1839952-1  | BH1 SS2                              | Saturated Paste Extractables | SAR                        | 8.91   | 5               | SAR   |
| L1839952-3  | BH5 SS2                              | Physical Tests               | Conductivity               | 1.22   | 0.7             | mS/cm |
| L1839952-4  | BH8 SS2                              | Physical Tests               | Conductivity               | 2.26   | 0.7             | mS/cm |
|             |                                      | Saturated Paste Extractables | SAR                        | 104    | 5               | SAR   |
| L1839952-5  | BH10 SS2                             | Physical Tests               | Conductivity               | 1.99   | 0.7             | mS/cm |

### **Reference Information**

#### Qualifiers for Individual Parameters Listed:

| Qualifier                        | Description                    |                                       |                                                                                           |                                                                                                                                                                                                                              |
|----------------------------------|--------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SAR:Q                            | Qualified SA                   | R value: actual                       | SAR is lower but is incalculable due to l                                                 | Na. Ca or Mo below detection limit                                                                                                                                                                                           |
| SARINC                           | SAR is incal                   | culable due to (                      | Ca and Mg below detection limit                                                           |                                                                                                                                                                                                                              |
| Methods Listed                   | (if applicab                   | ام).                                  |                                                                                           |                                                                                                                                                                                                                              |
| ALS Test Code                    |                                | Matrix                                | Test Description                                                                          | Method Reference**                                                                                                                                                                                                           |
| B-HWS-R511-                      | WT                             | Soil                                  | Boron-HWE-O.Reg 153/04 (July 2011)                                                        | ) HW EXTR, EPA 6010B                                                                                                                                                                                                         |
| A dried solid s                  | ample is ex                    | tracted with cald                     | cium chloride, the sample undergoes a h                                                   | neating process. After cooling the sample is filtered and analyzed by ICP/OES.                                                                                                                                               |
| Analysis cond                    | ucted in acc                   | ordance with th                       | e Protocol for Analytical Methods Used i                                                  | in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).                                                                                                                          |
| CN-WAD-R511                      | 1-WT                           | Soil                                  | Cyanide (WAD)-O.Reg 153/04 (July 2011)                                                    | MOE 3015/APHA 4500CN I-WAD                                                                                                                                                                                                   |
| The sample is chloride then r    | extracted w<br>reacts with a   | vith a strong bas<br>a combination of | e for 16 hours, and then filtered. The filt<br>barbituric acid and isonicotinic acid to f | rate is then distilled where the cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen orm a highly colored complex.                                                                         |
| Analysis cond                    | ucted in acc                   | ordance with th                       | e Protocol for Analytical Methods Used i                                                  | in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).                                                                                                                          |
| CR-CR6-IC-W                      | т                              | Soil                                  | Hexavalent Chromium in Soil                                                               | SW846 3060A/7199                                                                                                                                                                                                             |
| This analysis i<br>The procedure | is carried ou<br>e involves ar | t using procedu<br>nalysis for chror  | res adapted from "Test Methods for Eva<br>nium (VI) by ion chromatography using c         | aluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA).<br>diphenylcarbazide in a sulphuric acid solution.                                                          |
| Analysis cond                    | ucted in acc                   | ordance with th                       | e Protocol for Analytical Methods Used i                                                  | in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).                                                                                                                          |
| EC-WT                            |                                | Soil                                  | Conductivity (EC)                                                                         | MOEE E3138                                                                                                                                                                                                                   |
| A representati                   | ve subsamp                     | ole is tumbled w                      | ith de-ionized (DI) water. The ratio of wa                                                | ter to soil is 2:1 v/w. After tumbling the sample is then analyzed by a conductivity meter.                                                                                                                                  |
| Analysis cond                    | ucted in acc                   | ordance with th                       | e Protocol for Analytical Methods Used i                                                  | in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).                                                                                                                          |
| HG-200.2-CVA                     | A-WT                           | Soil                                  | Mercury in Soil by CVAAS                                                                  | EPA 200.2/1631E (mod)                                                                                                                                                                                                        |
| Soil samples a                   | are digested                   | with nitric and                       | hydrochloric acids, followed by analysis                                                  | by CVAAS.                                                                                                                                                                                                                    |
| Analysis cond                    | ucted in acc                   | ordance with th                       | e Protocol for Analytical Methods Used i                                                  | in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).                                                                                                                          |
| MET-200.2-CC                     | MS-WT                          | Soil                                  | Metals in Soil by CRC ICPMS                                                               | EPA 200.2/6020A (mod)                                                                                                                                                                                                        |
| Soil samples a                   | are digested                   | with nitric and                       | hydrochloric acids, followed by analysis                                                  | by CRC ICPMS.                                                                                                                                                                                                                |
| Method Limita<br>not dissolve a  | tion: This n                   | nethod is not a t<br>aterials and may | otal digestion technique. It is a very stropy result in a partial extraction. depending   | ong acid digestion that is intended to dissolve those metals that may be environmentally available. This method does on the sample matrix, for some metals, including, but not limited to AI, Ba, Be, Cr, Sr, Ti, Tl, and V. |

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

**Reference Information** 

L1839952 CONT'D.... Job Reference: 16-1359 PAGE 7 of 7 14-OCT-16 14:34 (MT)

| Mothode Listod (if ann                                                 | licable):                               |                                                                              | 14-001-10 14.34 (MT)                                                                                                                                                                                                                 |
|------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALS Test Code                                                          | Matrix                                  | Test Description                                                             | Method Reference**                                                                                                                                                                                                                   |
| MOISTURE-WT                                                            | Soil                                    | % Moisture                                                                   | Gravimetric: Oven Dried                                                                                                                                                                                                              |
| PAH-511-WT                                                             | Soil                                    | PAH-O.Reg 153/04 (July 201                                                   | I) SW846 3510/8270                                                                                                                                                                                                                   |
| A representative sub-<br>extracts are concentr<br>benzo(k)fluoranthene | -sample of soil is<br>rated and analyze | fortified with deuterium-labelled su<br>ed by GC/MS. Depending on the ar     | rogates and a mechanical shaking techniqueis used to extract the sample with a mixture of methanol and toluene. The<br>alytical GC/MS column used benzo(j)fluoranthene may chromatographically co-elute with benzo(b)fluoranthene or |
| Analysis conducted in<br>of the Analytical Test                        | n accordance wit<br>t Group (ATG) ha    | h the Protocol for Analytical Method<br>is been requested (the Protocol stat | is Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset<br>tes that all analytes in an ATG must be reported).                                                    |
| PH-WT                                                                  | Soil                                    | рН                                                                           | MOEE E3137A                                                                                                                                                                                                                          |
| A minimum 10g portion using a pH meter and                             | on of the sample<br>d electrode.        | is extracted with 20mL of 0.01M ca                                           | lcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil and then analyzed                                                                                                           |
| Analysis conducted in                                                  | n accordance wit                        | h the Protocol for Analytical Method                                         | Is Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).                                                                                                                          |
| SAR-R511-WT                                                            | Soil                                    | SAR-O.Reg 153/04 (July 201                                                   | I) SW846 6010C                                                                                                                                                                                                                       |
| A dried, disaggregate<br>and Mg are reported                           | ed solid sample is<br>as per CALA rec   | s extracted with deionized water, the<br>uirements for calculated parameter  | e aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES. The concentrations of Na, Ca s. These individual parameters are not for comparison to any guideline.                                     |
| Analysis conducted in                                                  | n accordance wit                        | h the Protocol for Analytical Method                                         | Is Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).                                                                                                                          |
| *ALS test methods may                                                  | incorporate mod                         | ifications from specified reference n                                        | nethods to improve performance.                                                                                                                                                                                                      |
| Chain of Custody Numb                                                  | pers:                                   |                                                                              |                                                                                                                                                                                                                                      |
| 15-573718                                                              |                                         |                                                                              |                                                                                                                                                                                                                                      |
| The last two letters of th                                             | ne above test coo                       | de(s) indicate the laboratory that per                                       | formed analytical analysis for that test. Refer to the list below:                                                                                                                                                                   |
| Laboratory Definition (                                                | Code Labora                             | tory Location                                                                |                                                                                                                                                                                                                                      |
| WT                                                                     | ALS EN                                  | IVIRONMENTAL - WATERLOO, OI                                                  | -<br>NTARIO, CANADA                                                                                                                                                                                                                  |
|                                                                        |                                         |                                                                              |                                                                                                                                                                                                                                      |

#### **GLOSSARY OF REPORT TERMS**

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.



## **Quality Control Report**

|                                    |                                                                                         | Workorder:                  | L183995             | 2 I       | Report Date: 1 | 4-OCT-16 |        | Page 1 of 11 |
|------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------|---------------------|-----------|----------------|----------|--------|--------------|
| Client:<br>Contact:                | Morrison Hershfield Limi<br>235 Yorkland Blvd Suite<br>Toronto ON M2J 1T1<br>CINDY ZHAO | ited (Toronto)<br>600       |                     |           |                |          |        |              |
| Test                               | Matrix                                                                                  | Reference                   | Result              | Qualifier | Units          | RPD      | Limit  | Analyzed     |
| B-HWS-R511-W                       | /T Soil                                                                                 |                             |                     |           |                |          |        |              |
| Batch<br>WG2407473<br>Boron (B), H | <b>R3568371</b><br>-4 DUP<br>lot Water Ext.                                             | <b>L1839952-2</b><br><0.10  | <0.10               | RPD-NA    | ug/g           | N/A      | 30     | 11-OCT-16    |
| <b>WG2407473</b><br>Boron (B), H   | <b>-2 IRM</b><br>lot Water Ext.                                                         | HOTB-SAL_S                  | <b>DIL5</b><br>88.4 |           | %              |          | 70-130 | 11-OCT-16    |
| <b>WG2407473</b><br>Boron (B), H   | -3 LCS<br>lot Water Ext.                                                                |                             | 108.1               |           | %              |          | 70-130 | 11-OCT-16    |
| <b>WG2407473</b><br>Boron (B), H   | <b>-1 MB</b><br>lot Water Ext.                                                          |                             | <0.10               |           | ug/g           |          | 0.1    | 11-OCT-16    |
| CN-WAD-R511-                       | WT Soil                                                                                 |                             |                     |           |                |          |        |              |
| Batch                              | R3568929                                                                                |                             |                     |           |                |          |        |              |
| <b>WG2406078</b><br>Cyanide, W     | -3 DUP<br>eak Acid Diss                                                                 | <b>L1840284-4</b><br><0.050 | <0.050              | RPD-NA    | ug/g           | N/A      | 35     | 11-OCT-16    |
| WG2406078<br>Cyanide, W            | -2 LCS<br>eak Acid Diss                                                                 |                             | 102.1               |           | %              |          | 80-120 | 11-OCT-16    |
| WG2406078<br>Cyanide, W            | -1 MB<br>eak Acid Diss                                                                  |                             | <0.050              |           | ug/g           |          | 0.05   | 11-OCT-16    |
| WG2406078<br>Cyanide, W            | <b>-4 MS</b><br>eak Acid Diss                                                           | L1840284-4                  | 113.1               |           | %              |          | 70-130 | 11-OCT-16    |
| CR-CR6-IC-WT                       | Soil                                                                                    |                             |                     |           |                |          |        |              |
| Batch<br>WG2405936<br>Chromium     | R3569013<br>-3 CRM<br>Hexavalent                                                        | WT-SQC012                   | 87 9                |           | %              |          | 70 120 | 12 OCT 16    |
| WG2405936<br>Chromium,             | -4 DUP<br>Hexavalent                                                                    | <b>L1840284-4</b><br><0.20  | <0.20               | RPD-NA    | uq/q           | N/A      | 35     | 12-0CT-16    |
| WG2405936<br>Chromium,             | -2 LCS<br>Hexavalent                                                                    |                             | 99.4                |           | %              |          | 80-120 | 12-OCT-16    |
| WG2405936<br>Chromium,             | <b>-1 MB</b><br>Hexavalent                                                              |                             | <0.20               |           | ug/g           |          | 0.2    | 12-OCT-16    |
| EC-WT                              | Soil                                                                                    |                             |                     |           |                |          |        |              |
| Batch                              | R3569904                                                                                |                             |                     |           |                |          |        |              |
| WG2408316<br>Conductivity          | -4 DUP                                                                                  | <b>WG2408316-3</b><br>1.47  | 1.51                |           | mS/cm          | 2.8      | 20     | 13-OCT-16    |
| WG2408948<br>Conductivity          | -2 LCS                                                                                  |                             | 97.4                |           | %              |          | 90-110 | 13-OCT-16    |
| WG2408316<br>Conductivity          | -1 MB                                                                                   |                             | <0.0040             |           | mS/cm          |          | 0.044  | 13-OCT-16    |
| HG-200.2-CVA                       | A-WT Soil                                                                               |                             |                     |           |                |          |        |              |



## **Quality Control Report**

|                           |                                  |                                                        | Workorder:                   | L183995              | 2         | Report Date: | 14-OCT-16 |        | Page 2 of 11 |
|---------------------------|----------------------------------|--------------------------------------------------------|------------------------------|----------------------|-----------|--------------|-----------|--------|--------------|
| Client:                   | Morrison<br>235 Yorkl<br>Toronto | Hershfield Limited<br>and Blvd Suite 600<br>ON M2J 1T1 | (Toronto)<br>D               |                      |           |              |           |        |              |
| Contact:                  | CINDY Z                          | HAO                                                    |                              |                      |           |              |           |        |              |
| Test                      |                                  | Matrix                                                 | Reference                    | Result               | Qualifier | Units        | RPD       | Limit  | Analyzed     |
| HG-200.2-CVAA             | -wt                              | Soil                                                   |                              |                      |           |              |           |        |              |
| Batch                     | R3569141                         |                                                        |                              |                      |           |              |           |        |              |
| WG2408321-<br>Mercury (Hg | <b>2 CRM</b>                     |                                                        | WT-CANMET-                   | <b>FILL1</b><br>96.9 |           | %            |           | 70-130 | 12-OCT-16    |
| WG2408321-<br>Mercury (Hg | <b>6 DUP</b>                     |                                                        | <b>WG2408321-5</b><br>0.0094 | 0.0092               |           | ug/g         | 2.2       | 40     | 12-OCT-16    |
| WG2408321-<br>Mercury (Hg | <b>3 LCS</b>                     |                                                        |                              | 105.5                |           | %            |           | 80-120 | 12-OCT-16    |
| WG2408321-<br>Mercury (Hg | <b>1 MB</b>                      |                                                        |                              | <0.0050              |           | mg/kg        |           | 0.005  | 12-OCT-16    |
| Batch                     | D2560142                         |                                                        |                              |                      |           | 0.0          |           |        |              |
| WG2408322-                | 2 CRM                            |                                                        | WT-CANMET-                   | FILL1                |           |              |           |        |              |
| Mercury (Hg               | )                                |                                                        |                              | 94.9                 |           | %            |           | 70-130 | 12-OCT-16    |
| WG2408322-<br>Mercury (Hg | <b>6 DUP</b><br>)                |                                                        | <b>WG2408322-5</b><br>0.0200 | 0.0182               |           | ug/g         | 9.3       | 40     | 12-OCT-16    |
| WG2408322-<br>Mercury (Hg | <b>3 LCS</b><br>)                |                                                        |                              | 103.0                |           | %            |           | 80-120 | 12-OCT-16    |
| WG2408322-<br>Mercury (Hg | <b>1 MB</b><br>)                 |                                                        |                              | <0.0050              |           | mg/kg        |           | 0.005  | 12-OCT-16    |
| MET-200.2-CCN             | IS-WT                            | Soil                                                   |                              |                      |           |              |           |        |              |
| Batch                     | R3569847                         |                                                        |                              |                      |           |              |           |        |              |
| WG2408321-                | 2 CRM                            |                                                        | WT-CANMET-                   | FILL1                |           |              |           |        |              |
| Antimony (Sl              | b)                               |                                                        |                              | 111.8                |           | %            |           | 70-130 | 12-OCT-16    |
| Arsenic (As)              |                                  |                                                        |                              | 119.2                |           | %            |           | 70-130 | 12-OCT-16    |
| Barium (Ba)               |                                  |                                                        |                              | 129.4                |           | %            |           | 70-130 | 12-OCT-16    |
| Beryllium (Be             | e)                               |                                                        |                              | 104.4                |           | %            |           | 70-130 | 12-OCT-16    |
| Cadmium (C                | ;d)                              |                                                        |                              | 116.5                |           | %            |           | 70-130 | 12-OCT-16    |
| Chromium (C               | Cr)                              |                                                        |                              | 120.3                |           | %            |           | 70-130 | 12-OCT-16    |
| Cobalt (Co)               |                                  |                                                        |                              | 113.6                |           | %            |           | 70-130 | 12-OCT-16    |
| Copper (Cu)               |                                  |                                                        |                              | 110.1                |           | %            |           | 70-130 | 12-OCT-16    |
| Lead (Pb)                 |                                  |                                                        |                              | 93.2                 |           | %            |           | 70-130 | 12-OCT-16    |
| Molybdenum                | i (Mo)                           |                                                        |                              | 105.6                |           | %            |           | 70-130 | 12-OCT-16    |
| Nickel (Ni)               |                                  |                                                        |                              | 115.1                |           | %            |           | 70-130 | 12-OCT-16    |
| Selenium (Se              | e)                               |                                                        |                              | 103.1                |           | %            |           | 70-130 | 12-OCT-16    |
| Silver (Ag)               |                                  |                                                        |                              | 108.6                |           | %            |           | 70-130 | 12-OCT-16    |
| Thallium (TI)             |                                  |                                                        |                              | 101.2                |           | %            |           | 70-130 | 12-OCT-16    |
| Uranium (U)               |                                  |                                                        |                              | 112.1                |           | %            |           | 70-130 | 12-OCT-16    |
| Vanadium (V               | /)                               |                                                        |                              | 119.9                |           | %            |           | 70-130 | 12-OCT-16    |



Nickel (Ni)

### **Quality Control Report**

|                                |                                            |                                                                 | Workorder:          | L183995               | 2         | Report Date: | 14-OCT-16 |        | Page 3 of 11 |  |
|--------------------------------|--------------------------------------------|-----------------------------------------------------------------|---------------------|-----------------------|-----------|--------------|-----------|--------|--------------|--|
| Client:<br>Contact:            | Morrison<br>235 York<br>Toronto<br>CINDY Z | Hershfield Limited<br>Iand Blvd Suite 600<br>ON M2J 1T1<br>ZHAO | l (Toronto)<br>0    |                       |           |              |           |        |              |  |
| Test                           |                                            | Matrix                                                          | Reference           | Result                | Qualifier | Units        | RPD       | Limit  | Analyzed     |  |
| MET-200.2-CCN                  | IS-WT                                      | Soil                                                            |                     |                       |           |              |           |        |              |  |
| Batch                          | R3569847                                   | ,                                                               |                     |                       |           |              |           |        |              |  |
| <b>WG2408321-</b><br>Zinc (Zn) | -2 CRM                                     |                                                                 | WT-CANMET-1         | <b>FILL1</b><br>110.3 |           | %            |           | 70-130 | 12-OCT-16    |  |
| WG2408321-<br>Antimony (S      | -6 DUP                                     |                                                                 | WG2408321-5<br>0.29 | 0.29                  |           | uq/q         | 0.0       | 30     | 12-0CT-16    |  |
| Arsenic (As)                   | ,                                          |                                                                 | 8.85                | 9.14                  |           | ua/a         | 32        | 30     | 12-0CT-16    |  |
| Barium (Ba)                    |                                            |                                                                 | 108                 | 114                   |           | ua/a         | 4.9       | 40     | 12-0CT-16    |  |
| Bervllium (B                   | e)                                         |                                                                 | 0.81                | 0.82                  |           | ua/a         | 0.8       | 30     | 12-0CT-16    |  |
| Boron (B)                      | ,                                          |                                                                 | 13.6                | 14.6                  |           | ug/g         | 7.1       | 30     | 12-OCT-16    |  |
| Cadmium (C                     | Cd)                                        |                                                                 | 0.033               | 0.036                 |           | ug/g         | 6.8       | 30     | 12-OCT-16    |  |
| Chromium (                     | Cr)                                        |                                                                 | 23.7                | 24.4                  |           | ug/g         | 2.8       | 30     | 12-OCT-16    |  |
| Cobalt (Co)                    |                                            |                                                                 | 15.4                | 15.3                  |           | ug/g         | 1.1       | 30     | 12-OCT-16    |  |
| Copper (Cu)                    | )                                          |                                                                 | 44.4                | 43.8                  |           | ug/g         | 1.4       | 30     | 12-OCT-16    |  |
| Lead (Pb)                      |                                            |                                                                 | 10.3                | 26.7                  | DUP-H     | ug/g         | 88        | 40     | 12-OCT-16    |  |
| Molybdenum                     | n (Mo)                                     |                                                                 | 0.51                | 0.53                  |           | ug/g         | 2.3       | 40     | 12-OCT-16    |  |
| Nickel (Ni)                    |                                            |                                                                 | 30.2                | 30.4                  |           | ug/g         | 0.7       | 30     | 12-OCT-16    |  |
| Selenium (S                    | ie)                                        |                                                                 | <0.20               | <0.20                 | RPD-NA    | ug/g         | N/A       | 30     | 12-OCT-16    |  |
| Silver (Ag)                    |                                            |                                                                 | <0.10               | <0.10                 | RPD-NA    | ug/g         | N/A       | 40     | 12-OCT-16    |  |
| Thallium (Tl)                  | )                                          |                                                                 | 0.109               | 0.112                 |           | ug/g         | 2.2       | 30     | 12-OCT-16    |  |
| Uranium (U)                    | )                                          |                                                                 | 0.487               | 0.495                 |           | ug/g         | 1.6       | 30     | 12-OCT-16    |  |
| Vanadium (\                    | √)                                         |                                                                 | 33.5                | 34.8                  |           | ug/g         | 3.7       | 30     | 12-OCT-16    |  |
| Zinc (Zn)                      |                                            |                                                                 | 65.2                | 64.3                  |           | ug/g         | 1.4       | 30     | 12-OCT-16    |  |
| WG2408321-<br>Antimony (S      | -4 LCS                                     |                                                                 |                     | 104.3                 |           | %            |           | 80-120 | 12-0CT-16    |  |
| Arsenic (As)                   |                                            |                                                                 |                     | 93.8                  |           | %            |           | 80-120 | 12-00T-16    |  |
| Barium (Ba)                    |                                            |                                                                 |                     | 95.0                  |           | %            |           | 80-120 | 12-OCT-16    |  |
| Beryllium (B                   | e)                                         |                                                                 |                     | 95.4                  |           | %            |           | 80-120 | 12-OCT-16    |  |
| Boron (B)                      | ,                                          |                                                                 |                     | 95.3                  |           | %            |           | 80-120 | 12-OCT-16    |  |
| Cadmium (C                     | Cd)                                        |                                                                 |                     | 96.6                  |           | %            |           | 80-120 | 12-OCT-16    |  |
| Chromium (                     | Cr)                                        |                                                                 |                     | 93.7                  |           | %            |           | 80-120 | 12-OCT-16    |  |
| Cobalt (Co)                    |                                            |                                                                 |                     | 94.2                  |           | %            |           | 80-120 | 12-OCT-16    |  |
| Copper (Cu)                    | )                                          |                                                                 |                     | 92.2                  |           | %            |           | 80-120 | 12-OCT-16    |  |
| Lead (Pb)                      |                                            |                                                                 |                     | 94.6                  |           | %            |           | 80-120 | 12-OCT-16    |  |
| Molybdenum                     | n (Mo)                                     |                                                                 |                     | 95.4                  |           | %            |           | 80-120 | 12-OCT-16    |  |

94.6

%

80-120

12-OCT-16



### **Quality Control Report**

Workorder: L1839952 Report Date: 14-OCT-16 Page 4 of 11 Morrison Hershfield Limited (Toronto) Client: 235 Yorkland Blvd Suite 600 Toronto ON M2J 1T1 Contact: CINDY ZHAO Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-200.2-CCMS-WT Soil R3569847 Batch WG2408321-4 LCS Selenium (Se) 93.1 % 80-120 12-OCT-16 Silver (Ag) 94.0 % 80-120 12-OCT-16 Thallium (TI) 94.9 % 80-120 12-OCT-16 Uranium (U) 92.5 % 12-OCT-16 80-120 Vanadium (V) 96.7 % 80-120 12-OCT-16 Zinc (Zn) 89.2 % 80-120 12-OCT-16 WG2408321-1 MB Antimony (Sb) 0.1 < 0.10 mg/kg 12-OCT-16 0.1 Arsenic (As) < 0.10 mg/kg 12-OCT-16 Barium (Ba) <0.50 mg/kg 0.5 12-OCT-16 Beryllium (Be) <0.10 mg/kg 0.1 12-OCT-16 Boron (B) <5.0 mg/kg 5 12-OCT-16 Cadmium (Cd) < 0.020 mg/kg 0.02 12-OCT-16 Chromium (Cr) < 0.50 mg/kg 0.5 12-OCT-16 Cobalt (Co) 0.1 <0.10 mg/kg 12-OCT-16 Copper (Cu) <0.50 mg/kg 0.5 12-OCT-16 Lead (Pb) < 0.50 mg/kg 0.5 12-OCT-16 Molybdenum (Mo) < 0.10 mg/kg 0.1 12-OCT-16 Nickel (Ni) 0.5 < 0.50 mg/kg 12-OCT-16 Selenium (Se) <0.20 mg/kg 0.2 12-OCT-16 Silver (Ag) mg/kg 0.1 < 0.10 12-OCT-16 Thallium (TI) < 0.050 0.05 mg/kg 12-OCT-16 Uranium (U) < 0.050 mg/kg 0.05 12-OCT-16 Vanadium (V) < 0.20 mg/kg 0.2 12-OCT-16 Zinc (Zn) <2.0 mg/kg 2 12-OCT-16 Batch R3569848 WG2408322-2 CRM WT-CANMET-TILL1 Antimony (Sb) 103.9 % 70-130 12-OCT-16 Arsenic (As) 106.0 % 70-130 12-OCT-16 Barium (Ba) 115.1 % 70-130 12-OCT-16 Beryllium (Be) 92.9 % 70-130 12-OCT-16 Cadmium (Cd) 99.6 % 70-130 12-OCT-16 Chromium (Cr) 103.3 % 70-130 12-OCT-16 Cobalt (Co)

103.5

%

70-130

12-OCT-16



Test

### **Quality Control Report**

Workorder: L1839952 Report Date: 14-OCT-16 Page 5 of 11 Morrison Hershfield Limited (Toronto) Client: 235 Yorkland Blvd Suite 600 Toronto ON M2J 1T1 Contact: CINDY ZHAO Matrix Reference Result Qualifier Units RPD Limit Analyzed Soil MET-200.2-CCMS-WT R3569848 Batch WG2408322-2 CRM WT-CANMET-TILL1 Copper (Cu) 98.3 % 70-130 12-OCT-16

| Lead (Pb)       |           | 87.5  |        | %    |      | 70-130 | 12-OCT-16 |  |
|-----------------|-----------|-------|--------|------|------|--------|-----------|--|
| Molybdenum (Mo) |           | 114.3 |        | %    |      | 70-130 | 12-OCT-16 |  |
| Nickel (Ni)     |           | 121.4 |        | %    |      | 70-130 | 12-OCT-16 |  |
| Selenium (Se)   |           | 90.0  |        | %    |      | 70-130 | 12-OCT-16 |  |
| Silver (Ag)     |           | 105.1 |        | %    |      | 70-130 | 12-OCT-16 |  |
| Thallium (TI)   |           | 96.4  |        | %    |      | 70-130 | 12-OCT-16 |  |
| Uranium (U)     |           | 106.0 |        | %    |      | 70-130 | 12-OCT-16 |  |
| Vanadium (V)    |           | 111.1 |        | %    |      | 70-130 | 12-OCT-16 |  |
| Zinc (Zn)       |           | 98.5  |        | %    |      | 70-130 | 12-OCT-16 |  |
| WG2408322-6 DUP | WG2408322 | 2-5   |        |      |      |        |           |  |
| Antimony (Sb)   | 0.20      | 0.27  | J      | ug/g | 0.08 | 0.2    | 12-OCT-16 |  |
| Arsenic (As)    | 1.97      | 2.01  |        | ug/g | 1.9  | 30     | 12-OCT-16 |  |
| Barium (Ba)     | 104       | 99.5  |        | ug/g | 4.5  | 40     | 12-OCT-16 |  |
| Beryllium (Be)  | 0.45      | 0.42  |        | ug/g | 5.1  | 30     | 12-OCT-16 |  |
| Boron (B)       | 9.0       | 8.8   |        | ug/g | 2.5  | 30     | 12-OCT-16 |  |
| Cadmium (Cd)    | 0.395     | 0.380 |        | ug/g | 4.1  | 30     | 12-OCT-16 |  |
| Chromium (Cr)   | 38.2      | 39.6  |        | ug/g | 3.8  | 30     | 12-OCT-16 |  |
| Cobalt (Co)     | 5.38      | 5.19  |        | ug/g | 3.6  | 30     | 12-OCT-16 |  |
| Copper (Cu)     | 15.4      | 19.8  |        | ug/g | 25   | 30     | 12-OCT-16 |  |
| Lead (Pb)       | 28.1      | 27.9  |        | ug/g | 1.0  | 40     | 12-OCT-16 |  |
| Molybdenum (Mo) | 0.60      | 0.62  |        | ug/g | 3.6  | 40     | 12-OCT-16 |  |
| Nickel (Ni)     | 11.8      | 11.6  |        | ug/g | 1.8  | 30     | 12-OCT-16 |  |
| Selenium (Se)   | <0.20     | <0.20 | RPD-NA | ug/g | N/A  | 30     | 12-OCT-16 |  |
| Silver (Ag)     | <0.10     | <0.10 | RPD-NA | ug/g | N/A  | 40     | 12-OCT-16 |  |
| Thallium (TI)   | 0.110     | 0.106 |        | ug/g | 4.4  | 30     | 12-OCT-16 |  |
| Uranium (U)     | 0.591     | 0.606 |        | ug/g | 2.6  | 30     | 12-OCT-16 |  |
| Vanadium (V)    | 32.3      | 31.7  |        | ug/g | 1.9  | 30     | 12-OCT-16 |  |
| Zinc (Zn)       | 118       | 115   |        | ug/g | 2.8  | 30     | 12-OCT-16 |  |
| WG2408322-4 LCS |           |       |        |      |      |        |           |  |
| Antimony (Sb)   |           | 112.8 |        | %    |      | 80-120 | 12-OCT-16 |  |
| Arsenic (As)    |           | 98.6  |        | %    |      | 80-120 | 12-OCT-16 |  |
| Barium (Ba)     |           | 100.0 |        | %    |      | 80-120 | 12-OCT-16 |  |
|                 |           |       |        |      |      |        |           |  |



Molybdenum (Mo)

Nickel (Ni)

Silver (Ag)

Thallium (TI)

Uranium (U)

Vanadium (V)

Zinc (Zn)

Selenium (Se)

### **Quality Control Report**

Workorder: L1839952 Report Date: 14-OCT-16 Page 6 of 11 Morrison Hershfield Limited (Toronto) Client: 235 Yorkland Blvd Suite 600 Toronto ON M2J 1T1 Contact: CINDY ZHAO Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-200.2-CCMS-WT Soil R3569848 Batch WG2408322-4 LCS Beryllium (Be) 96.2 % 80-120 12-OCT-16 Boron (B) 94.5 % 80-120 12-OCT-16 Cadmium (Cd) 97.2 % 80-120 12-OCT-16 Chromium (Cr) 98.3 % 80-120 12-OCT-16 Cobalt (Co) 98.3 % 80-120 12-OCT-16 Copper (Cu) 95.3 % 80-120 12-OCT-16 Lead (Pb) % 102.1 80-120 12-OCT-16 Molybdenum (Mo) 96.8 % 80-120 12-OCT-16 Nickel (Ni) 96.7 % 80-120 12-OCT-16 Selenium (Se) 96.2 % 80-120 12-OCT-16 Silver (Ag) 97.8 % 80-120 12-OCT-16 Thallium (TI) 97.4 % 80-120 12-OCT-16 Uranium (U) 95.8 % 80-120 12-OCT-16 Vanadium (V) 100.8 % 80-120 12-OCT-16 Zinc (Zn) 90.6 % 80-120 12-OCT-16 WG2408322-1 MB Antimony (Sb) < 0.10 mg/kg 0.1 12-OCT-16 Arsenic (As) < 0.10 mg/kg 0.1 12-OCT-16 Barium (Ba) mg/kg 0.5 <0.50 12-OCT-16 Beryllium (Be) <0.10 mg/kg 0.1 12-OCT-16 Boron (B) 5 <5.0 mg/kg 12-OCT-16 Cadmium (Cd) < 0.020 0.02 mg/kg 12-OCT-16 Chromium (Cr) < 0.50 mg/kg 0.5 12-OCT-16 Cobalt (Co) <0.10 mg/kg 0.1 12-OCT-16 Copper (Cu) <0.50 mg/kg 0.5 12-OCT-16 Lead (Pb) < 0.50 mg/kg 0.5 12-OCT-16

<0.10

< 0.50

<0.20

<0.10

< 0.050

< 0.050

<0.20

<2.0

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0.1

0.5

0.2

0.1

0.05

0.05

0.2

2

12-OCT-16

12-OCT-16

12-OCT-16

12-OCT-16

12-OCT-16

12-OCT-16

12-OCT-16

12-OCT-16



## **Quality Control Report**

|                               |                                                                                       | Workorder:                | L183995 | 2 R       | eport Date: 7 | 14-OCT-16    |        | Page 7 of 11 |
|-------------------------------|---------------------------------------------------------------------------------------|---------------------------|---------|-----------|---------------|--------------|--------|--------------|
| Client:                       | Morrison Hershfield Lin<br>235 Yorkland Blvd Suit<br>Foronto ON M2J 1T1<br>CINDY ZHAO | nited (Toronto)<br>e 600  |         |           |               |              |        |              |
| Test                          | Matrix                                                                                | Reference                 | Result  | Qualifier | Units         | RPD          | Limit  | Analyzed     |
| MOISTURE-WT                   | Soil                                                                                  |                           |         |           |               |              |        |              |
| Batch R3                      | 3566916                                                                               |                           |         |           |               |              |        |              |
| WG2406238-3<br>% Moisture     | DUP                                                                                   | <b>L1840366-2</b><br>5.50 | 5.94    |           | %             | 7.8          | 20     | 08-OCT-16    |
| WG2406238-2<br>% Moisture     | LCS                                                                                   |                           | 101.9   |           | %             |              | 90-110 | 08-OCT-16    |
| WG2406238-1<br>% Moisture     | MB                                                                                    |                           | <0.10   |           | %             |              | 0.1    | 08-OCT-16    |
| PAH-511-WT                    | Soil                                                                                  |                           |         |           |               |              |        |              |
| Batch R3                      | 3570715                                                                               |                           |         |           |               |              |        |              |
| WG2406304-4                   | DUP                                                                                   | WG2406304                 | 3       |           |               | <b>N</b> 1/A | 40     |              |
|                               | nalene                                                                                | <0.030                    | <0.030  | RPD-NA    | ug/g          | N/A          | 40     | 14-OCT-16    |
|                               | laiene                                                                                | <0.030                    | <0.030  | RPD-NA    | ug/g          | N/A          | 40     | 14-OCT-16    |
| Acenaphthene                  | •                                                                                     | <0.050                    | <0.050  | RPD-NA    | ug/g          | N/A          | 40     | 14-001-16    |
| Acenaphinyien                 | e                                                                                     | <0.050                    | <0.050  | RPD-NA    | ug/g          | N/A          | 40     | 14-OCT-16    |
| Antinacene<br>Bonzo(o)opthro  | 20000                                                                                 | <0.050                    | <0.050  | RPD-NA    | ug/g          | N/A          | 40     | 14-001-16    |
| Benzo(a)antina                | acene                                                                                 | <0.050                    | <0.050  | RPD-NA    | ug/g          | N/A          | 40     | 14-OCT-16    |
| Benzo(a)pyrene                | ethono                                                                                | <0.050                    | <0.050  | RPD-NA    | ug/g          | N/A          | 40     | 14-OCT-16    |
| Benzo(b)fiuorai               | ntnene                                                                                | <0.050                    | <0.050  | RPD-NA    | ug/g          | N/A          | 40     | 14-OCT-16    |
| Benzo(g,n,i)per               | rylene                                                                                | <0.050                    | <0.050  | RPD-NA    | ug/g          | N/A          | 40     | 14-OCT-16    |
| Benzo(k)fluorar               | nthene                                                                                | <0.050                    | <0.050  | RPD-NA    | ug/g          | N/A          | 40     | 14-OCT-16    |
| Chrysene                      |                                                                                       | <0.050                    | <0.050  | RPD-NA    | ug/g          | N/A          | 40     | 14-OCT-16    |
| Dibenzo(ah)ani                | Inracene                                                                              | <0.050                    | <0.050  | RPD-NA    | ug/g          | N/A          | 40     | 14-OCT-16    |
| Fluoranthene                  |                                                                                       | <0.050                    | <0.050  | RPD-NA    | ug/g          | N/A          | 40     | 14-OCT-16    |
| Fluorene                      | D.                                                                                    | <0.050                    | <0.050  | RPD-NA    | ug/g          | N/A          | 40     | 14-OCT-16    |
| Indeno(1,2,3-co               | d)pyrene                                                                              | <0.050                    | <0.050  | RPD-NA    | ug/g          | N/A          | 40     | 14-OCT-16    |
| Naphthalene                   |                                                                                       | <0.050                    | <0.050  | RPD-NA    | ug/g          | N/A          | 40     | 14-OCT-16    |
| Phenanthrene                  |                                                                                       | <0.050                    | <0.050  | RPD-NA    | ug/g          | N/A          | 40     | 14-OCT-16    |
| Pyrene                        |                                                                                       | <0.050                    | <0.050  | RPD-NA    | ug/g          | N/A          | 40     | 14-OCT-16    |
| WG2406304-2<br>1-Methylnaphth | LCS<br>nalene                                                                         |                           | 96.2    |           | %             |              | 50-140 | 14-OCT-16    |
| 2-Methylnaphth                | alene                                                                                 |                           | 97.5    |           | %             |              | 50-140 | 14-OCT-16    |
| Acenaphthene                  |                                                                                       |                           | 95.2    |           | %             |              | 50-140 | 14-OCT-16    |
| Acenaphthylen                 | e                                                                                     |                           | 93.9    |           | %             |              | 50-140 | 14-OCT-16    |
| Anthracene                    |                                                                                       |                           | 99.3    |           | %             |              | 50-140 | 14-OCT-16    |
| Benzo(a)anthra                | acene                                                                                 |                           | 96.2    |           | %             |              | 50-140 | 14-OCT-16    |
| Benzo(a)pyrene                | e                                                                                     |                           | 99.7    |           | %             |              | 50-140 | 14-OCT-16    |



Test

### **Quality Control Report**

Workorder: L1839952 Report Date: 14-OCT-16 Page 8 of 11 Morrison Hershfield Limited (Toronto) Client: 235 Yorkland Blvd Suite 600 Toronto ON M2J 1T1 Contact: CINDY ZHAO Matrix Reference Result Qualifier Units RPD Limit Analyzed Soil **PAH-511-WT** Batch R3570715 WG2406304-2 LCS Benzo(b)fluoranthene 92.7 % 50-140 14-OCT-16

| Benzo(g,h,i)perylene        | 98.2   | %    | 50-140 | 14-OCT-16 |
|-----------------------------|--------|------|--------|-----------|
| Benzo(k)fluoranthene        | 89.1   | %    | 50-140 | 14-OCT-16 |
| Chrysene                    | 106.6  | %    | 50-140 | 14-OCT-16 |
| Dibenzo(ah)anthracene       | 93.5   | %    | 50-140 | 14-OCT-16 |
| Fluoranthene                | 91.9   | %    | 50-140 | 14-OCT-16 |
| Fluorene                    | 95.0   | %    | 50-140 | 14-OCT-16 |
| Indeno(1,2,3-cd)pyrene      | 80.3   | %    | 50-140 | 14-OCT-16 |
| Naphthalene                 | 101.9  | %    | 50-140 | 14-OCT-16 |
| Phenanthrene                | 102.0  | %    | 50-140 | 14-OCT-16 |
| Pyrene                      | 97.8   | %    | 50-140 | 14-OCT-16 |
| WG2406304-1 MB              |        |      |        |           |
| 1-Methylnaphthalene         | <0.030 | ug/g | 0.03   | 14-OCT-16 |
| 2-Methylnaphthalene         | <0.030 | ug/g | 0.03   | 14-OCT-16 |
| Acenaphthene                | <0.050 | ug/g | 0.05   | 14-OCT-16 |
| Acenaphthylene              | <0.050 | ug/g | 0.05   | 14-OCT-16 |
| Anthracene                  | <0.050 | ug/g | 0.05   | 14-OCT-16 |
| Benzo(a)anthracene          | <0.050 | ug/g | 0.05   | 14-OCT-16 |
| Benzo(a)pyrene              | <0.050 | ug/g | 0.05   | 14-OCT-16 |
| Benzo(b)fluoranthene        | <0.050 | ug/g | 0.05   | 14-OCT-16 |
| Benzo(g,h,i)perylene        | <0.050 | ug/g | 0.05   | 14-OCT-16 |
| Benzo(k)fluoranthene        | <0.050 | ug/g | 0.05   | 14-OCT-16 |
| Chrysene                    | <0.050 | ug/g | 0.05   | 14-OCT-16 |
| Dibenzo(ah)anthracene       | <0.050 | ug/g | 0.05   | 14-OCT-16 |
| Fluoranthene                | <0.050 | ug/g | 0.05   | 14-OCT-16 |
| Fluorene                    | <0.050 | ug/g | 0.05   | 14-OCT-16 |
| Indeno(1,2,3-cd)pyrene      | <0.050 | ug/g | 0.05   | 14-OCT-16 |
| Naphthalene                 | <0.050 | ug/g | 0.05   | 14-OCT-16 |
| Phenanthrene                | <0.050 | ug/g | 0.05   | 14-OCT-16 |
| Pyrene                      | <0.050 | ug/g | 0.05   | 14-OCT-16 |
| Surrogate: 2-Fluorobiphenyl | 99.4   | %    | 50-140 | 14-OCT-16 |
| Surrogate: p-Terphenyl d14  | 96.0   | %    | 50-140 | 14-OCT-16 |
| WG2406304-5 MS WG2406304-3  | i i    |      |        |           |
| 1-Methylnaphthalene         | 98.5   | %    | 50-140 | 14-OCT-16 |



## Quality Control Report

|                                    |                                                  | Workorder:                                            | L183995           | 52 I      | -<br>Report Date: 1₄ | 1-OCT-16 |         | Page 9 of 11 |
|------------------------------------|--------------------------------------------------|-------------------------------------------------------|-------------------|-----------|----------------------|----------|---------|--------------|
| Client:                            | Morrison Hersh<br>235 Yorkland E<br>Toronto ON M | nfield Limited (Toronto)<br>Blvd Suite 600<br>12J 1T1 |                   | -         |                      |          |         |              |
| Contact:                           | CINDY ZHAO                                       |                                                       |                   |           |                      |          |         |              |
| Test                               | Mat                                              | rix Reference                                         | Result            | Qualifier | Units                | RPD      | Limit   | Analyzed     |
| PAH-511-WT                         | Soi                                              | il                                                    |                   |           |                      |          |         |              |
| Batch R                            | 3570715                                          |                                                       |                   |           |                      |          |         |              |
| WG2406304-5<br>2-Methylnaphth      | <b>MS</b><br>nalene                              | WG2406304-                                            | <b>3</b><br>100.4 |           | %                    |          | 50-140  | 14-OCT-16    |
| Acenaphthene                       |                                                  |                                                       | 98.2              |           | %                    |          | 50-140  | 14-OCT-16    |
| Acenaphthylen                      | е                                                |                                                       | 98.8              |           | %                    |          | 50-140  | 14-OCT-16    |
| Anthracene                         |                                                  |                                                       | 104.0             |           | %                    |          | 50-140  | 14-OCT-16    |
| Benzo(a)anthra                     | acene                                            |                                                       | 103.3             |           | %                    |          | 50-140  | 14-OCT-16    |
| Benzo(a)pyren                      | e                                                |                                                       | 101.9             |           | %                    |          | 50-140  | 14-OCT-16    |
| Benzo(b)fluora                     | nthene                                           |                                                       | 95.0              |           | %                    |          | 50-140  | 14-OCT-16    |
| Benzo(g,h,i)pe                     | rylene                                           |                                                       | 101.0             |           | %                    |          | 50-140  | 14-OCT-16    |
| Benzo(k)fluora                     | nthene                                           |                                                       | 92.0              |           | %                    |          | 50-140  | 14-OCT-16    |
| Chrysene                           |                                                  |                                                       | 107.8             |           | %                    |          | 50-140  | 14-OCT-16    |
| Dibenzo(ah)an                      | thracene                                         |                                                       | 98.0              |           | %                    |          | 50-140  | 14-OCT-16    |
| Fluoranthene                       |                                                  |                                                       | 96.9              |           | %                    |          | 50-140  | 14-OCT-16    |
| Fluorene                           |                                                  |                                                       | 100.4             |           | %                    |          | 50-140  | 14-OCT-16    |
| Indeno(1,2,3-co                    | d)pyrene                                         |                                                       | 87.7              |           | %                    |          | 50-140  | 14-OCT-16    |
| Naphthalene                        |                                                  |                                                       | 103.5             |           | %                    |          | 50-140  | 14-OCT-16    |
| Phenanthrene                       |                                                  |                                                       | 102.7             |           | %                    |          | 50-140  | 14-OCT-16    |
| Pyrene                             |                                                  |                                                       | 102.9             |           | %                    |          | 50-140  | 14-OCT-16    |
| PH-WT                              | Soi                                              | il                                                    |                   |           |                      |          |         |              |
| Batch R                            | 3567123                                          |                                                       |                   |           |                      |          |         |              |
| WG2406081-1                        | DUP                                              | L1840284-4                                            | 7.00              |           |                      | 0.00     | 0.0     |              |
|                                    | 1.00                                             | 1.92                                                  | 7.90              | J         | pri units            | 0.02     | 0.3     | 08-001-16    |
| <b>wG2406771-1</b><br>рН           | LCS                                              |                                                       | 7.04              |           | pH units             |          | 6.7-7.3 | 08-OCT-16    |
| SAR-R511-WT                        | Soi                                              | il                                                    |                   |           |                      |          |         |              |
| Batch R                            | 3569757                                          |                                                       |                   |           |                      |          |         |              |
| WG2408316-4<br>Calcium (Ca)        | DUP                                              | <b>WG2408316-</b><br>28.8                             | <b>3</b><br>32.5  |           | mg/L                 | 12       | 30      | 13-OCT-16    |
| Sodium (Na)                        |                                                  | 365                                                   | 361               |           | mg/L                 | 1.1      | 30      | 13-OCT-16    |
| Magnesium (M                       | lg)                                              | 101                                                   | 115               |           | mg/L                 | 13       | 30      | 13-OCT-16    |
| <b>WG2408316-2</b><br>Calcium (Ca) | IRM                                              | WT SAR1                                               | 81.0              |           | %                    |          | 70-130  | 12-0CT-16    |
| Sodjum (Na)                        |                                                  |                                                       | 91.1              |           | %                    |          | 70-130  | 12-0CT-16    |
| Magnesium (M                       | la)                                              |                                                       | 83.7              |           | %                    |          | 70-130  | 12-0CT-16    |
| WG2408316-1                        | MB                                               |                                                       |                   |           |                      |          | 10 100  | 12 001 10    |
|                                    | -                                                |                                                       |                   |           |                      |          |         |              |



## **Quality Control Report**

|                            |                       |                                 | Workorder:               | L183995 | 52        | Report Date: | 14-OCT-16 |       | Page 10 of 11 |
|----------------------------|-----------------------|---------------------------------|--------------------------|---------|-----------|--------------|-----------|-------|---------------|
| Client:                    | Morrison<br>235 Yorkl | Hershfield Lin<br>and Blvd Suit | nited (Toronto)<br>e 600 |         |           |              |           |       |               |
| Contact:                   | Toronto (<br>CINDY Zł | on M2J 1T1<br>Hao               |                          |         |           |              |           |       |               |
| Test                       |                       | Matrix                          | Reference                | Result  | Qualifier | Units        | RPD       | Limit | Analyzed      |
| SAR-R511-WT                |                       | Soil                            |                          |         |           |              |           |       |               |
| Batch                      | R3569757              |                                 |                          |         |           |              |           |       |               |
| WG2408316-<br>Calcium (Ca) | 1 MB                  |                                 |                          | <1.0    |           | mg/L         |           | 1     | 12-OCT-16     |
| Sodium (Na)                |                       |                                 |                          | <1.0    |           | mg/L         |           | 1     | 12-OCT-16     |
| Magnesium                  | (Mg)                  |                                 |                          | <1.0    |           | mg/L         |           | 1     | 12-OCT-16     |

Workorder: L1839952

Report Date: 14-OCT-16

| Client: | Morrison Hershfield Limited (Toronto) |
|---------|---------------------------------------|
|         | 235 Yorkland Blvd Suite 600           |
|         | Toronto ON M2J 1T1                    |
| ontact: | CINDY ZHAO                            |

Contact:

#### Legend:

| Limit | ALS Control Limit (Data Quality Objectives) |
|-------|---------------------------------------------|
| DUP   | Duplicate                                   |
| RPD   | Relative Percent Difference                 |
| N/A   | Not Available                               |
| LCS   | Laboratory Control Sample                   |
| SRM   | Standard Reference Material                 |
| MS    | Matrix Spike                                |
| MSD   | Matrix Spike Duplicate                      |
| ADE   | Average Desorption Efficiency               |
| MB    | Method Blank                                |
| IRM   | Internal Reference Material                 |
| CRM   | Certified Reference Material                |
| CCV   | Continuing Calibration Verification         |
| CVS   | Calibration Verification Standard           |
| LCSD  | Laboratory Control Sample Duplicate         |

#### Sample Parameter Qualifier Definitions:

| Qualifier | Description                                                                                 |
|-----------|---------------------------------------------------------------------------------------------|
| DUP-H     | Duplicate results outside ALS DQO, due to sample heterogeneity.                             |
| J         | Duplicate results and limits are expressed in terms of absolute difference.                 |
| RPD-NA    | Relative Percent Difference Not Available due to result(s) being less than detection limit. |

#### Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | e white - report copy            | c page of th       | as specified on the bac | Terms and Conditions    | edges and agrees with the    | s form the user acknowle thorized DW COC form | m, please submit using an Au               | ay delay analysia. Please fill in this fo<br>ulated Drinking Water (DW) Syste | Il portions of this form ma | Failure to complete a<br>1. If any water sample |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------|--------------------|-------------------------|-------------------------|------------------------------|-----------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------|
| DOCTOBER 2015 VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    | 25 Housed by.                    | 16                 | - 16.                   | OS OCT                  | WHI WHI                      | North C                                       | DRMATION 16                                | Noul- 1                                                                       | S WM                        | WILL BACK                                       |
| ECEPTION (lab use only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FINAL SHIPMENT RE                  | D                                | Time               | lab use only)           | In RECEPTION (          | INITIAL SHIPMEN              | Designed bur                                  | Time                                       | ENT RELEASE (client use)                                                      | SHIPME                      | Doloneod hu                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | 3.0                              | 6                  |                         | 1 11/04)                | RPI                          |                                               |                                            | Carle of House                                                                | S NO                        | BA 🗌                                            |
| FINAL COOLER TEMPERATURES °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ERATURES °C                        | INIITIAL COOLER TEMP             |                    |                         | inclusi-                | IEDIE S                      | NULCU                                         |                                            | er use?                                                                       | uman drinking wate          | Are samples for                                 |
| lintact Yes 🔟 No 🔟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | es Custody seal                    | ks I Ice Cube                    | Ice Pac<br>Cooling | 11                      | to to                   | 112 2                        |                                               |                                            | uw system r                                                                   | s NO                        | Are samples take                                |
| tions Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SIF Observat                       |                                  | Frozen             | ONLI HOL DOLON          | and on the proper       | ctronic COC only)            | (electry criteria to                          |                                            | nples <sup>1</sup> (client use)                                               | ng Water (DW) Sam           | Drinki                                          |
| EIVED (lab use only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E CONDITION AS REC                 | SAMPL                            |                    | nwn list halow          | king on the dron-d      | and on report by clic        | I Spanity Criteria to                         | Special Instructions                       |                                                                               |                             |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                  |                    | and farmer              |                         |                              | 11 11 11 11 11 11 11 11 11 11 11 11 11        |                                            |                                                                               | 100                         |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                  |                    |                         |                         |                              |                                               |                                            |                                                                               |                             |                                                 |
| The second secon |                                    |                                  |                    |                         |                         |                              |                                               | Constraint and                             |                                                                               |                             |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                  |                    |                         |                         |                              |                                               |                                            |                                                                               | ALC: NO.                    |                                                 |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | 4                                | 4                  | Sa                      | AM                      | 28-07-16                     |                                               |                                            | CLP                                                                           | -                           |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | -                                | <                  | Sel                     | AM                      | 28-09-16                     |                                               |                                            | 110 552                                                                       | Bt                          | 10                                              |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | ~                                | 4                  | 1:05.                   | AN                      | 28-09-16                     |                                               |                                            | 255 21                                                                        | 181                         | -4                                              |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in the second                      | <                                | <                  | Soil                    | AW                      | 28-09-16                     | 0011                                          | Sources of the second                      | 15 557                                                                        | Br                          | 1                                               |
| ¢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                                  | 5                  | 50:1                    | AM                      | 28-09-16                     |                                               |                                            | 14 552                                                                        | 13                          | 12                                              |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | /                                | ~                  | Soil                    | AM                      | 28-09-16                     |                                               |                                            | 11 852                                                                        | Br                          | 1                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | P                                | Me                 | Sample Type             | Time<br>(hh:mm)         | Date<br>(dd-mmm-yy)          |                                               | and/or Coordinates<br>ppear on the report) | (This description will a                                                      |                             | ALS Sample #<br>(lab use only)                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | AF                               | tal                |                         | sampier:                |                              | ALS Contact:                                  | 1120                                       | se only LIDD                                                                  | ork Order # (lab us         | ALS LAD W                                       |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | 1                                | s/1                |                         |                         |                              |                                               | 9050                                       | 1 10 00                                                                       |                             |                                                 |
| umt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                                  | Ino                |                         |                         |                              | Location:                                     |                                            |                                                                               |                             | LSD:                                            |
| oer o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                  | rga                | -                       |                         | A STATE OF STATE             | Requisitioner:                                | N. N. S. S. M.                             | - Link construction of                                                        |                             | PO / AFE:                                       |
| of Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74                                 |                                  | iniC               |                         | Routing Code:           |                              | Major/Minor Code:                             |                                            | 0 - 1 Y X X                                                                   | 16-1359                     | Job #:                                          |
| ontai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                  | s                  | -                       | PO#                     | -                            | AFE/Cost Center;                              | A CONTRACTOR                               | 14800                                                                         | / Quote #:                  | ALS Account #                                   |
| ner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                                  |                    | se)                     | d Fields (client u      | il and Gas Require           | 0                                             |                                            | roject Information                                                            | P                           |                                                 |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                                  |                    | 10.00                   | 1 Spankersmere          | CONDUC INDE                  | Email 2                                       | AND    | 1 200 DELSATICIA                                                              | ( ind                       | Contact:                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                  |                    | FAX                     | EMAIL MAIL              | stribution:                  | Email 1 or Fax                                | NO                                         | Ith Report YES                                                                | Copy of Invoice w           | Company                                         |
| reserved (F/P) below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | reserved (P) or Filtered and Pr    | Indicate Filtered (F), Pr        |                    | ]                       | stribution              | Invoice Dis                  |                                               | NO                                         | IO VES                                                                        | Same as Report 1            | Invoice Io                                      |
| quest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Analysis Req                       |                                  |                    | in the second second    |                         | -                            | Email 3 "                                     |                                            | JW4                                                                           | L3T                         | Postal Code:                                    |
| ed, you will be contacted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rding to the service level selecte | hat can not be performed acco    | For tests ti       | 8                       | insulting.c             | and geoproco                 | Email 2 logu                                  |                                            | cham, Ontario                                                                 | Mark                        | City/Province:                                  |
| dd-mann yy hhitin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or all E&P TATs:                   | <b>Date and Time Required fc</b> |                    | eld.com                 | isonhershfi             | czhao@ morr                  | Email 1 or Fax                                | ive West                                   | mmerce Valley Dr                                                              | 125 6                       | Street:                                         |
| holiday [E0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EME                                | 2 day [P2]                       | Pf<br>(Busi        | FAX                     | MAIL                    | n: 📝 EMAIL                   | Select Distributio                            | ort                                        | ess below will appear on the final rep                                        | Company addre               |                                                 |
| Day, Weekend or Statutory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ERGEN Same                         | 3 day [P3]                       | ness D             | if box checked          | provide details below i | ults to Criteria on Report - | Compare Resu                                  | 4                                          | 13110 est 101112                                                              | 416 490                     | Phone:                                          |
| usiness day [E1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 1 B                              | 4 day [P4]                       | Y<br>ays)          |                         |                         | C) Report with Repo          | Quality Control (0                            |                                            | in Zhao                                                                       | Cind                        | Contact:                                        |
| - 3 mm - hurinons data - no suischannos annite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Constant TAT is special to         |                                  | anima ani          |                         |                         | mot Diricition               | Calact Deport En                              | a on and music response                    | 11 - 1 - 1 - 1                                                                |                             | Company:                                        |
| surcharges will apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | irm all E&P TATs with your AM -    | rice Level Below - Please confi  | Select Sen         |                         | / Distribution          | Report Format                |                                               | r on the final report                      | ind company name below will appea                                             | Contact a                   | Report To                                       |
| Page of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                  | use only           | (lab                    |                         | 8 9878                       | oll Free: 1 800 66                            | Canada T                                   | onmental<br>bal.com                                                           | www.alsglo                  | ALS                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | Ishel here                       | nnde               | Hy Al Shar              | At                      |                              | equest Form                                   | R                                          |                                                                               |                             |                                                 |
| er 15 - 573718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | COC Numbe                          |                                  |                    |                         |                         | Analytical                   | tody (COC) /                                  | Chain of Cus                               |                                                                               |                             |                                                 |



Morrison Hershfield Limited (Toronto) ATTN: CINDY ZHAO 235 Yorkland Blvd Suite 600 Toronto ON M2J 1T1 Date Received: 05-OCT-16 Report Date: 13-OCT-16 15:47 (MT) Version: FINAL

Client Phone: 416-499-3110

# Certificate of Analysis

Lab Work Order #: L1839995 Project P.O. #: NOT SUBMITTED Job Reference: 16-1359 C of C Numbers: 15-573718 Legal Site Desc:

Iman Tere 1 menion

Emerson Perez, B.S.E Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

**RIGHT SOLUTIONS** RIGHT PARTNER



L1839995 CONT'D .... Job Reference: 16-1359 PAGE 2 of 5 13-OCT-16 15:47 (MT)

#### WASTE - Federal & Provincial Waste Regulations (MAR, 2008)

|                    |                          |          | Sample<br>Sample<br>Sa | ALS ID<br>ed Date<br>ed Time<br>mple ID | L1839995-1<br>28-SEP-16<br>-<br>TCLP |
|--------------------|--------------------------|----------|------------------------|-----------------------------------------|--------------------------------------|
| Grouping           | Analyte                  | Unit     | Guide L<br>#1          | ₋imits<br>#2                            |                                      |
| Sample Preparation | Initial pH               | pH units | -                      | -                                       | 9.88                                 |
|                    | Final pH                 | pH units | -                      | -                                       | 5.90                                 |
| TCLP Extractables  | Acenaphthene             | mg/L     | -                      | -                                       | <0.0050                              |
|                    | Acenaphthylene           | mg/L     | -                      | -                                       | <0.0050                              |
|                    | Anthracene               | mg/L     | -                      | -                                       | <0.0050                              |
|                    | Benzo(a)anthracene       | mg/L     | -                      | -                                       | <0.0050                              |
|                    | Benzo(a)pyrene           | mg/L     | 0.001                  | -                                       | <0.0010                              |
|                    | Benzo(b)fluoranthene     | mg/L     | -                      | -                                       | <0.0050                              |
|                    | Benzo(g,h,i)perylene     | mg/L     | -                      | -                                       | <0.0050                              |
|                    | Cyanide, Weak Acid Diss  | mg/L     | 20                     | -                                       | <0.10                                |
|                    | Fluoride (F)             | mg/L     | 150.0                  | -                                       | <10                                  |
|                    | Nitrate and Nitrite as N | mg/L     | 1000                   | -                                       | <4.0                                 |
|                    | Nitrate-N                | mg/L     | -                      | -                                       | <2.0                                 |
|                    | Nitrite-N                | mg/L     | -                      | -                                       | <2.0                                 |
| TCLP Metals        | Arsenic (As)             | mg/L     | 2.5                    | -                                       | <0.050                               |
|                    | Barium (Ba)              | mg/L     | 100                    | -                                       | <0.50                                |
|                    | Boron (B)                | mg/L     | 500                    | -                                       | <2.5                                 |
|                    | Cadmium (Cd)             | mg/L     | 0.5                    | -                                       | <0.0050                              |
|                    | Chromium (Cr)            | mg/L     | 5.0                    | -                                       | <0.050                               |
|                    | Lead (Pb)                | mg/L     | 5.0                    | -                                       | <0.050                               |
|                    | Mercury (Hg)             | mg/L     | 0.1                    | -                                       | <0.00010                             |
|                    | Selenium (Se)            | mg/L     | 1.0                    | -                                       | <0.025                               |

#### Guide Limit #1: Ontario Ministry of the Environment, General Waste Control Regulation No. 347/90 Guide Limit #2: Polychlorinated Biphenyls (PCBs) - Ontario Regulation 347/90

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.



L1839995 CONT'D.... Job Reference: 16-1359 PAGE 3 of 5 13-OCT-16 15:47 (MT)

#### WASTE - Federal & Provincial Waste Regulations (MAR, 2008)

|                                     |                             | _    | ALS ID<br>Sampled Date<br>Sampled Time<br>Sample ID |              | L1839995-1<br>28-SEP-16<br>-<br>TCLP |
|-------------------------------------|-----------------------------|------|-----------------------------------------------------|--------------|--------------------------------------|
| Grouping                            | Analyte                     | Unit | Guide I<br>#1                                       | ∟imits<br>#2 |                                      |
| TCLP Metals                         | Silver (Ag)                 | mg/L | 5.0                                                 | -            | <0.0050                              |
|                                     | Uranium (U)                 | mg/L | 10                                                  | -            | <0.25                                |
| Polycyclic Aromatic<br>Hydrocarbons | Benzo(k)fluoranthene        | mg/L | -                                                   | -            | <0.0050                              |
|                                     | Chrysene                    | mg/L | -                                                   | -            | <0.0050                              |
|                                     | Dibenzo(ah)anthracene       | mg/L | -                                                   | -            | <0.0050                              |
|                                     | Fluoranthene                | mg/L | -                                                   | -            | <0.0050                              |
|                                     | Fluorene                    | mg/L | -                                                   | -            | <0.0050                              |
|                                     | Indeno(1,2,3-cd)pyrene      | mg/L | -                                                   | -            | <0.0050                              |
|                                     | Naphthalene                 | mg/L | -                                                   | -            | <0.0050                              |
|                                     | Phenanthrene                | mg/L | -                                                   | -            | <0.0050                              |
|                                     | Pyrene                      | mg/L | -                                                   | -            | <0.0050                              |
|                                     | Quinoline                   | mg/L | -                                                   | -            | <0.0050                              |
|                                     | Surrogate: d10-Acenaphthene | %    | -                                                   | -            | 91.8                                 |
|                                     | Surrogate: d12-Chrysene     | %    | -                                                   | -            | 93.3                                 |
|                                     | Surrogate: d8-Naphthalene   | %    | -                                                   | -            | 87.3                                 |
|                                     | Surrogate: d10-Phenanthrene | %    | -                                                   | -            | 95.8                                 |

Guide Limit #1: Ontario Ministry of the Environment, General Waste Control Regulation No. 347/90 Guide Limit #2: Polychlorinated Biphenyls (PCBs) - Ontario Regulation 347/90



Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.


#### Summary of Guideline Exceedances

| Guideline    |                                                                                                                                      |          |         |        |                 |      |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------|----------|---------|--------|-----------------|------|--|--|--|--|
| ALS ID       | Client ID                                                                                                                            | Grouping | Analyte | Result | Guideline Limit | Unit |  |  |  |  |
| Federal & Pr | ederal & Provincial Waste Regulations (MAR, 2008) - Ontario Ministry of the Environment, General Waste Control Regulation No. 347/90 |          |         |        |                 |      |  |  |  |  |

(No parameter exceedances)

Federal & Provincial Waste Regulations (MAR, 2008) - Polychlorinated Biphenyls (PCBs) - Ontario Regulation 347/90

(No parameter exceedances)

### **Reference Information**

#### Methods Listed (if applicable):

| ALS Test Code | Matrix | Test Description               | Method Reference**             |
|---------------|--------|--------------------------------|--------------------------------|
| CN-TCLP-WT    | Waste  | Cyanide for O. Reg 347         | APHA 4500CN C E                |
| F-TCLP-WT     | Waste  | Fluoride (F) for O. Reg 347    | APHA 4110 B-Ion Chromatography |
| HG-TCLP-WT    | Waste  | Mercury (CVAA) for O.Reg 347   | SW846 7470A                    |
| LEACH-TCLP-WT | Waste  | Leachate Procedure for Reg 347 | EPA 1311                       |

Inorganic and Semi-Volatile Organic contaminants are leached from waste samples in strict accordance with US EPA Method 1311, "Toxicity Characteristic Leaching Procedure" (TCLP). Test results are reported in leachate concentration units (normally mg/L).

| MET-TCLP-WT  | Waste | O.Reg 347 TCLP Leachable Metals  | EPA 200.8                      |
|--------------|-------|----------------------------------|--------------------------------|
| N2N3-TCLP-WT | Waste | Nitrate/Nitrite-N for O. Reg 347 | APHA 4110 B-Ion Chromatography |
| PAH-TCLP-WT  | Waste | PAH for O. Reg 347               | SW846 8270 (PAH)               |

Samples are leached according to TCLP protocol and then the aqueous leachate is extracted and the resulting extracts are analyzed on GC/MSD. Depending on the analytical GC/MS column used benzo(j)fluoranthene may chromatographically co-elute with benzo(b)fluoranthene or benzo(k)fluoranthene.

\*\*ALS test methods may incorporate modifications from specified reference methods to improve performance.

#### Chain of Custody Numbers:

#### 15-573718

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

| Laboratory Definition Code | Laboratory Location                           |
|----------------------------|-----------------------------------------------|
| WT                         | ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA |

#### **GLOSSARY OF REPORT TERMS**

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.



|                                    |                                                                                         | Workorder:                    | L1839995            | 5 F       | Report Date: 1 | 3-OCT-16 |        | Page 1 of 6 |
|------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|---------------------|-----------|----------------|----------|--------|-------------|
| Client:<br>Contact:                | Morrison Hershfield Limi<br>235 Yorkland Blvd Suite<br>Toronto ON M2J 1T1<br>CINDY ZHAO | ted (Toronto)<br>600          |                     |           |                |          |        |             |
| Test                               | Matrix                                                                                  | Reference                     | Result              | Qualifier | Units          | RPD      | Limit  | Analyzed    |
| CN-TCLP-WT                         | Waste                                                                                   |                               |                     |           |                |          |        |             |
| Batch<br>WG2407756-<br>Cyanide, We | <b>R3568388</b><br><b>3 DUP</b><br>bak Acid Diss                                        | <b>L1840345-1</b><br><0.10    | <0.10               | RPD-NA    | mg/L           | N/A      | 20     | 11-OCT-16   |
| WG2407756-<br>Cyanide, We          | 2 LCS<br>eak Acid Diss                                                                  |                               | 111.3               |           | %              |          | 70-130 | 11-OCT-16   |
| WG2407756-<br>Cyanide, We          | <b>1 MB</b><br>eak Acid Diss                                                            |                               | <0.10               |           | mg/L           |          | 0.1    | 11-OCT-16   |
| <b>WG2407756-</b><br>Cyanide, We   | <b>4 MS</b><br>eak Acid Diss                                                            | L1840345-1                    | 110.9               |           | %              |          | 50-150 | 11-OCT-16   |
| F-TCLP-WT                          | Waste                                                                                   |                               |                     |           |                |          |        |             |
| Batch<br>WG2408042-                | R3569057<br>3 DUP                                                                       | L1839356-1                    | 10                  |           |                |          |        |             |
| Fluoride (F)<br>WG2408042-         | 2 LCS                                                                                   | <10                           | <10                 | RPD-NA    | mg/∟<br>∞∠     | N/A      | 30     | 11-OCT-16   |
| WG2408042-<br>Fluoride (F)         | 1 MB                                                                                    |                               | <10                 |           | ∕₀<br>ma/l     |          | 10     | 11-OCT-16   |
| WG2408042-<br>Fluoride (F)         | 4 MS                                                                                    | L1839356-1                    | 95.8                |           | %              |          | 50-150 | 11-OCT-16   |
| HG-TCLP-WT                         | Waste                                                                                   |                               |                     |           |                |          |        |             |
| Batch                              | R3569145                                                                                |                               |                     |           |                |          |        |             |
| WG2408550-<br>Mercury (Hg          | <b>3 DUP</b><br>)                                                                       | <b>L1840472-1</b><br><0.00010 | <0.00010            | RPD-NA    | mg/L           | N/A      | 50     | 12-OCT-16   |
| WG2408550-<br>Mercury (Hg          | <b>2 LCS</b><br>)                                                                       |                               | 98.4                |           | %              |          | 70-130 | 12-OCT-16   |
| WG2408550-<br>Mercury (Hg          | <b>1 MB</b><br>)                                                                        |                               | <0.00010            |           | mg/L           |          | 0.0001 | 12-OCT-16   |
| WG2408550-<br>Mercury (Hg          | <b>4 MS</b><br>)                                                                        | L1840472-1                    | 96.0                |           | %              |          | 50-140 | 12-OCT-16   |
| MET-TCLP-WT                        | Waste                                                                                   |                               |                     |           |                |          |        |             |
| Batch                              | R3568941                                                                                |                               |                     |           |                |          |        |             |
| WG2408050-<br>Silver (Ag)          | 4 DUP                                                                                   | <b>WG2408050-3</b><br><0.0050 | <b>3</b><br><0.0050 | RPD-NA    | mg/L           | N/A      | 40     | 11-OCT-16   |
| Arsenic (As)                       |                                                                                         | <0.050                        | <0.050              | RPD-NA    | mg/L           | N/A      | 40     | 11-OCT-16   |
| Boron (B)                          |                                                                                         | <2.5                          | <2.5                | RPD-NA    | mg/L           | N/A      | 40     | 11-OCT-16   |
| Barium (Ba)                        |                                                                                         | <0.50                         | 0.52                | RPD-NA    | mg/L           | N/A      | 40     | 11-OCT-16   |
| Cadmium (C                         | cd)                                                                                     | <0.0050                       | <0.0050             | RPD-NA    | mg/L           | N/A      | 40     | 11-OCT-16   |
| Chromium (0                        | Cr)                                                                                     | <0.050                        | <0.050              | RPD-NA    | mg/L           | N/A      | 40     | 11-OCT-16   |



|                            |                                            |                                                                | Workorder:     | L183999 | 5         | Report Date: | 13-OCT-16 |        | Page 2 of 6 |
|----------------------------|--------------------------------------------|----------------------------------------------------------------|----------------|---------|-----------|--------------|-----------|--------|-------------|
| Client:                    | Morrison<br>235 York<br>Toronto<br>CINDY Z | Hershfield Limited<br>land Blvd Suite 600<br>ON M2J 1T1<br>HAO | (Toronto)<br>) |         |           |              |           |        |             |
| Test                       |                                            | Matrix                                                         | Reference      | Result  | Qualifier | Units        | RPD       | Limit  | Analyzed    |
| MET-TCLP-WT                |                                            | Waste                                                          |                |         |           |              |           |        |             |
| Batch                      | R3568941                                   |                                                                |                |         |           |              |           |        |             |
| WG2408050-4                | 1 DUP                                      |                                                                | WG2408050-3    |         |           |              |           |        |             |
| Lead (Pb)                  |                                            |                                                                | <0.050         | <0.050  | RPD-NA    | mg/L         | N/A       | 40     | 11-OCT-16   |
| Selenium (Se               | e)                                         |                                                                | <0.025         | <0.025  | RPD-NA    | mg/L         | N/A       | 40     | 11-OCT-16   |
| Uranium (U)                |                                            |                                                                | <0.25          | <0.25   | RPD-NA    | mg/L         | N/A       | 40     | 11-OCT-16   |
| WG2408050-2<br>Silver (Aq) | 2 LCS                                      |                                                                |                | 97.8    |           | %            |           | 70-130 | 11-OCT-16   |
| Arsenic (As)               |                                            |                                                                |                | 98.8    |           | %            |           | 70-130 | 11-OCT-16   |
| Boron (B)                  |                                            |                                                                |                | 98.7    |           | %            |           | 70-130 | 11-OCT-16   |
| Barium (Ba)                |                                            |                                                                |                | 104.5   |           | %            |           | 70-130 | 11-OCT-16   |
| Cadmium (Co                | d)                                         |                                                                |                | 99.5    |           | %            |           | 70-130 | 11-OCT-16   |
| Chromium (C                | r)                                         |                                                                |                | 96.9    |           | %            |           | 70-130 | 11-OCT-16   |
| Lead (Pb)                  |                                            |                                                                |                | 99.9    |           | %            |           | 70-130 | 11-OCT-16   |
| Selenium (Se               | e)                                         |                                                                |                | 102.1   |           | %            |           | 70-130 | 11-OCT-16   |
| Uranium (U)                |                                            |                                                                |                | 98.4    |           | %            |           | 70-130 | 11-OCT-16   |
| WG2408050-1<br>Silver (Ag) | I MB                                       |                                                                |                | <0.0050 |           | ma/l         |           | 0.005  | 11-OCT-16   |
| Arsenic (As)               |                                            |                                                                |                | < 0.050 |           | ma/L         |           | 0.05   | 11-OCT-16   |
| Boron (B)                  |                                            |                                                                |                | <2.5    |           | ma/L         |           | 2.5    | 11-OCT-16   |
| Barium (Ba)                |                                            |                                                                |                | < 0.50  |           | ma/L         |           | 0.5    | 11-OCT-16   |
| Cadmium (Co                | d)                                         |                                                                |                | <0.0050 |           | mg/L         |           | 0.005  | 11-OCT-16   |
| Chromium (C                | ;r)                                        |                                                                |                | <0.050  |           | mg/L         |           | 0.05   | 11-OCT-16   |
| Lead (Pb)                  | ,                                          |                                                                |                | <0.050  |           | mg/L         |           | 0.05   | 11-OCT-16   |
| Selenium (Se               | e)                                         |                                                                |                | <0.025  |           | mg/L         |           | 0.025  | 11-OCT-16   |
| Uranium (U)                |                                            |                                                                |                | <0.25   |           | mg/L         |           | 0.25   | 11-OCT-16   |
| WG2408050-5<br>Silver (Ag) | 5 MS                                       |                                                                | WG2408050-3    | 116 1   |           | 0/_          |           | E0 1E0 | 44.007.40   |
| Arsenic (As)               |                                            |                                                                |                | 101.5   |           | %            |           | 50-150 | 11-OCT-16   |
| Boron (B)                  |                                            |                                                                |                | 101.5   |           | %            |           | 50-150 | 11-OCT-16   |
| Barium (Ba)                |                                            |                                                                |                | 115.0   |           | %            |           | 50-150 | 11-OCT-16   |
| Cadmium (Co                | d)                                         |                                                                |                | 101.0   |           | %            |           | 50-150 | 11-OCT-16   |
| Chromium (C                |                                            |                                                                |                | 98.9    |           | %            |           | 50-150 | 11-OCT-16   |
| Lead (Pb)                  | ,                                          |                                                                |                | 96.0    |           | %            |           | 50-150 | 11-OCT-16   |
| Selenium (Se               | e)                                         |                                                                |                | 99.5    |           | %            |           | 50-150 | 11-OCT-16   |
| Uranium (U)                | ,                                          |                                                                |                | 98.4    |           | %            |           | 50-150 | 11-OCT-16   |
| N2N3-TCLP-WT               |                                            | Waste                                                          |                |         |           |              |           |        |             |



|                                  |                                  |                                                        | Workorder:                 | L1839995 | 5         | Report Date: | 13-OCT-16 |        | Page 3 of 6 |
|----------------------------------|----------------------------------|--------------------------------------------------------|----------------------------|----------|-----------|--------------|-----------|--------|-------------|
| Client:                          | Morrison<br>235 Yorki<br>Toronto | Hershfield Limited<br>and Blvd Suite 600<br>ON M2J 1T1 | (Toronto)<br>)             |          |           |              |           |        |             |
| Contact:                         |                                  | HAU                                                    |                            |          |           |              |           |        |             |
| Test                             |                                  | Matrix                                                 | Reference                  | Result   | Qualifier | Units        | RPD       | Limit  | Analyzed    |
| N2N3-TCLP-WT                     | -                                | Waste                                                  |                            |          |           |              |           |        |             |
| Batch<br>WG2408042-<br>Nitrate-N | R3569057<br>-3 DUP               |                                                        | <b>L1839356-1</b><br><2.0  | <2.0     | RPD-NA    | mg/L         | N/A       | 30     | 11-OCT-16   |
| Nitrite-N                        |                                  |                                                        | <2.0                       | <2.0     | RPD-NA    | mg/L         | N/A       | 30     | 11-OCT-16   |
| WG2408042-<br>Nitrate-N          | 2 LCS                            |                                                        |                            | 102.1    |           | %            |           | 70-130 | 11-OCT-16   |
| Nitrite-N                        |                                  |                                                        |                            | 101.0    |           | %            |           | 70-130 | 11-OCT-16   |
| WG2408042-<br>Nitrate-N          | -1 MB                            |                                                        |                            | <2.0     |           | ma/L         |           | 2      | 11-OCT-16   |
| Nitrite-N                        |                                  |                                                        |                            | <2.0     |           | ma/L         |           | 2      | 11-OCT-16   |
| WG2408042-                       | -4 MS                            |                                                        | L1839356-1                 |          |           |              |           |        |             |
| Nitrate-N                        |                                  |                                                        |                            | 98.3     |           | %            |           | 50-150 | 11-OCT-16   |
| Nitrite-N                        |                                  |                                                        |                            | 98.4     |           | %            |           | 50-150 | 11-OCT-16   |
| PAH-TCLP-WT                      |                                  | Waste                                                  |                            |          |           |              |           |        |             |
| Batch                            | R3570158                         |                                                        |                            |          |           |              |           |        |             |
| WG2408514-<br>Acenaphthe         | -5 DUP<br>ne                     |                                                        | <b>WG2408514-3</b> <0.0050 | <0.0050  | RPD-NA    | mg/L         | N/A       | 50     | 13-OCT-16   |
| Acenaphthyl                      | ene                              |                                                        | <0.0050                    | <0.0050  | RPD-NA    | mg/L         | N/A       | 50     | 13-OCT-16   |
| Anthracene                       |                                  |                                                        | <0.0050                    | <0.0050  | RPD-NA    | mg/L         | N/A       | 50     | 13-OCT-16   |
| Benzo(a)ant                      | hracene                          |                                                        | <0.0050                    | <0.0050  | RPD-NA    | mg/L         | N/A       | 50     | 13-OCT-16   |
| Benzo(a)pyr                      | ene                              |                                                        | <0.0010                    | <0.0010  | RPD-NA    | mg/L         | N/A       | 50     | 13-OCT-16   |
| Benzo(b)fluc                     | oranthene                        |                                                        | <0.0050                    | <0.0050  | RPD-NA    | mg/L         | N/A       | 50     | 13-OCT-16   |
| Benzo(g,h,i)                     | perylene                         |                                                        | <0.0050                    | <0.0050  | RPD-NA    | mg/L         | N/A       | 50     | 13-OCT-16   |
| Benzo(k)fluc                     | oranthene                        |                                                        | <0.0050                    | <0.0050  | RPD-NA    | mg/L         | N/A       | 50     | 13-OCT-16   |
| Chrysene                         |                                  |                                                        | <0.0050                    | <0.0050  | RPD-NA    | mg/L         | N/A       | 50     | 13-OCT-16   |
| Dibenzo(ah)                      | anthracene                       |                                                        | <0.0050                    | <0.0050  | RPD-NA    | mg/L         | N/A       | 50     | 13-OCT-16   |
| Fluoranthene                     | e                                |                                                        | <0.0050                    | <0.0050  | RPD-NA    | mg/L         | N/A       | 50     | 13-OCT-16   |
| Fluorene                         |                                  |                                                        | <0.0050                    | <0.0050  | RPD-NA    | mg/L         | N/A       | 50     | 13-OCT-16   |
| Indeno(1,2,3                     | 3-cd)pyrene                      |                                                        | <0.0050                    | <0.0050  | RPD-NA    | mg/L         | N/A       | 50     | 13-OCT-16   |
| Naphthalene                      | 9                                |                                                        | <0.0050                    | <0.0050  | RPD-NA    | mg/L         | N/A       | 50     | 13-OCT-16   |
| Phenanthrer                      | ne                               |                                                        | <0.0050                    | <0.0050  | RPD-NA    | mg/L         | N/A       | 50     | 13-OCT-16   |
| Pyrene                           |                                  |                                                        | <0.0050                    | <0.0050  | RPD-NA    | mg/L         | N/A       | 50     | 13-OCT-16   |
| Quinoline                        |                                  |                                                        | <0.0050                    | <0.0050  | RPD-NA    | mg/L         | N/A       | 50     | 13-OCT-16   |
| WG2408514-<br>Acenaphthe         | -2 LCS<br>ne                     |                                                        |                            | 94.9     |           | %            |           | 50-130 | 13-OCT-16   |
| Acenaphthyl                      | ene                              |                                                        |                            | 97.1     |           | %            |           | 50-130 | 13-OCT-16   |



Test

### **Quality Control Report**

Workorder: L1839995 Report Date: 13-OCT-16 Page 4 of 6 Morrison Hershfield Limited (Toronto) Client: 235 Yorkland Blvd Suite 600 Toronto ON M2J 1T1 Contact: CINDY ZHAO Matrix Reference Result Qualifier Units RPD Limit Analyzed PAH-TCLP-WT Waste Batch R3570158 WG2408514-2 LCS Anthracene % 98.3 50-130 13-OCT-16 Benzo(a)anthracene % 99.9 13-OCT-16 50-140 Benzo(a)pyrene 101.8 % 60-140 13-OCT-16 Benzo(b)fluoranthene 96.1 % 50-140 13-OCT-16 Benzo(g,h,i)perylene % 99.2 50-140 13-OCT-16 Benzo(k)fluoranthene 97.0 % 50-150 13-OCT-16

| Chrysene                  | 99.7    | %    | 50-140 | 13-OCT-16 |
|---------------------------|---------|------|--------|-----------|
| Dibenzo(ah)anthracene     | 100.7   | %    | 50-140 | 13-OCT-16 |
| Fluoranthene              | 97.0    | %    | 50-150 | 13-OCT-16 |
| Fluorene                  | 96.0    | %    | 50-150 | 13-OCT-16 |
| Indeno(1,2,3-cd)pyrene    | 96.6    | %    | 50-140 | 13-OCT-16 |
| Naphthalene               | 96.8    | %    | 50-130 | 13-OCT-16 |
| Phenanthrene              | 100.1   | %    | 50-130 | 13-OCT-16 |
| Pyrene                    | 103.9   | %    | 50-140 | 13-OCT-16 |
| Quinoline                 | 106.1   | %    | 50-150 | 13-OCT-16 |
| WG2408514-1 MB            |         |      |        |           |
| Acenaphthene              | <0.0050 | mg/L | 0.005  | 13-OCT-16 |
| Acenaphthylene            | <0.0050 | mg/L | 0.005  | 13-OCT-16 |
| Anthracene                | <0.0050 | mg/L | 0.005  | 13-OCT-16 |
| Benzo(a)anthracene        | <0.0050 | mg/L | 0.005  | 13-OCT-16 |
| Benzo(a)pyrene            | <0.0010 | mg/L | 0.001  | 13-OCT-16 |
| Benzo(b)fluoranthene      | <0.0050 | mg/L | 0.005  | 13-OCT-16 |
| Benzo(g,h,i)perylene      | <0.0050 | mg/L | 0.005  | 13-OCT-16 |
| Benzo(k)fluoranthene      | <0.0050 | mg/L | 0.005  | 13-OCT-16 |
| Chrysene                  | <0.0050 | mg/L | 0.005  | 13-OCT-16 |
| Dibenzo(ah)anthracene     | <0.0050 | mg/L | 0.005  | 13-OCT-16 |
| Fluoranthene              | <0.0050 | mg/L | 0.005  | 13-OCT-16 |
| Fluorene                  | <0.0050 | mg/L | 0.005  | 13-OCT-16 |
| Indeno(1,2,3-cd)pyrene    | <0.0050 | mg/L | 0.005  | 13-OCT-16 |
| Naphthalene               | <0.0050 | mg/L | 0.005  | 13-OCT-16 |
| Phenanthrene              | <0.0050 | mg/L | 0.005  | 13-OCT-16 |
| Pyrene                    | <0.0050 | mg/L | 0.005  | 13-OCT-16 |
| Quinoline                 | <0.0050 | mg/L | 0.005  | 13-OCT-16 |
| Surrogate: d8-Naphthalene | 91.1    | %    | 50-150 | 13-OCT-16 |
|                           |         |      |        |           |



Phenanthrene

Pyrene

Quinoline

### **Quality Control Report**

|                         |                                                                          |                          | Quanty   | , 00110   |              |           |        |             |   |
|-------------------------|--------------------------------------------------------------------------|--------------------------|----------|-----------|--------------|-----------|--------|-------------|---|
|                         |                                                                          | Workorder:               | L1839995 | ;         | Report Date: | 13-OCT-16 |        | Page 5 of 6 | 3 |
| Client:                 | Morrison Hershfield Lin<br>235 Yorkland Blvd Suite<br>Toronto ON M2J 1T1 | nited (Toronto)<br>e 600 |          |           |              |           |        |             |   |
| Contact:                | CINDY ZHAO                                                               |                          |          |           |              |           |        |             |   |
| Test                    | Matrix                                                                   | Reference                | Result   | Qualifier | Units        | RPD       | Limit  | Analyzed    | _ |
| PAH-TCLP-WT             | Waste                                                                    |                          |          |           |              |           |        |             |   |
| Batch                   | R3570158                                                                 |                          |          |           |              |           |        |             |   |
| WG2408514<br>Surrogate: | <b>4-1 MB</b><br>d10-Phenanthrene                                        |                          | 99.9     |           | %            |           | 50-150 | 13-0CT-16   |   |
| Surrogate:              | d12-Chrysene                                                             |                          | 99.7     |           | %            |           | 50-150 | 13-OCT-16   |   |
| Surrogate:              | d10-Acenaphthene                                                         |                          | 95.2     |           | %            |           | 50-150 | 13-OCT-16   |   |
| WG2408514               | 4-4 MS                                                                   | WG2408514-3              | 5        |           |              |           |        |             |   |
| Acenaphthe              | ene                                                                      |                          | 91.8     |           | %            |           | 50-150 | 13-OCT-16   |   |
| Acenaphthy              | ylene                                                                    |                          | 93.5     |           | %            |           | 50-150 | 13-OCT-16   |   |
| Anthracene              | )                                                                        |                          | 95.4     |           | %            |           | 50-150 | 13-OCT-16   |   |
| Benzo(a)an              | nthracene                                                                |                          | 98.2     |           | %            |           | 50-150 | 13-OCT-16   |   |
| Benzo(a)py              | vrene                                                                    |                          | 97.9     |           | %            |           | 50-150 | 13-OCT-16   |   |
| Benzo(b)flu             | ioranthene                                                               |                          | 91.2     |           | %            |           | 50-150 | 13-OCT-16   |   |
| Benzo(g,h,i             | i)perylene                                                               |                          | 94.8     |           | %            |           | 50-150 | 13-OCT-16   |   |
| Benzo(k)flu             | oranthene                                                                |                          | 92.2     |           | %            |           | 50-150 | 13-OCT-16   |   |
| Chrysene                |                                                                          |                          | 98.2     |           | %            |           | 50-150 | 13-OCT-16   |   |
| Dibenzo(ah              | n)anthracene                                                             |                          | 95.2     |           | %            |           | 50-150 | 13-OCT-16   |   |
| Fluoranther             | ne                                                                       |                          | 93.5     |           | %            |           | 50-150 | 13-OCT-16   |   |
| Fluorene                |                                                                          |                          | 94.0     |           | %            |           | 50-150 | 13-OCT-16   |   |
| Indeno(1,2,             | ,3-cd)pyrene                                                             |                          | 92.6     |           | %            |           | 50-150 | 13-OCT-16   |   |
| Naphthalen              | ne                                                                       |                          | 92.5     |           | %            |           | 50-150 | 13-OCT-16   |   |

%

%

%

50-150

50-150

50-150

13-OCT-16

13-OCT-16

13-OCT-16

96.1

101.0

102.9

Workorder: L1839995

Report Date: 13-OCT-16

| Client: | Morrison Hershfield Limited (Toronto) |
|---------|---------------------------------------|
|         | 235 Yorkland Blvd Suite 600           |
|         | Toronto ON M2J 1T1                    |
| ontact: | CINDY ZHAO                            |

Contact:

#### Legend:

| Limit | ALS Control Limit (Data Quality Objectives) |
|-------|---------------------------------------------|
| DUP   | Duplicate                                   |
| RPD   | Relative Percent Difference                 |
| N/A   | Not Available                               |
| LCS   | Laboratory Control Sample                   |
| SRM   | Standard Reference Material                 |
| MS    | Matrix Spike                                |
| MSD   | Matrix Spike Duplicate                      |
| ADE   | Average Desorption Efficiency               |
| MB    | Method Blank                                |
| IRM   | Internal Reference Material                 |
| CRM   | Certified Reference Material                |
| CCV   | Continuing Calibration Verification         |
| CVS   | Calibration Verification Standard           |
| LCSD  | Laboratory Control Sample Duplicate         |

#### Sample Parameter Qualifier Definitions:

| Qualifier | Description                                                                                 |
|-----------|---------------------------------------------------------------------------------------------|
| RPD-NA    | Relative Percent Difference Not Available due to result(s) being less than detection limit. |

#### Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.



YES NO

Released by

SHIPMENT RELEASE (client use)

Date:

Chain of Custody (COC) / Analytical Request Form

Affix ALS barcode label here

COC Number: 15 - 573718

of

Number of Containers

DICTOBER 2015 FIREM

Time:

FINAL COOLER TEMPERATURES C

Received by:

Time:

16 25

FINAL SHIPMENT RECEPTION (lab use only)

Date:

Page

|               | www.aisglobal.com                                                                                                                            |                                 | Depart Format                              | / Distribution      |                 | Select Service Level Below - Please confirm all E&P TATs with your AM - surcharges will apply       |                  |          |           |            |                               |            |           |            |            |              |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------|---------------------|-----------------|-----------------------------------------------------------------------------------------------------|------------------|----------|-----------|------------|-------------------------------|------------|-----------|------------|------------|--------------|
| port To       | Contact and company name below will appear on the final report                                                                               | Colort Depert F                 | Report Pormat                              |                     | EDD (DIGITAL)   |                                                                                                     | Regu             | lar [R]  | V         | Standard T | TAT if reco                   | eived by 3 | pm - bus  | iness days | - no surch | harges apply |
| ompany:       | Morrison Hershfield                                                                                                                          | Select Report Fo                | Por Por                                    |                     | □ NO            | F                                                                                                   | 4 da             | y [P4]   |           |            | C                             | 1 Bus      | iness     | day [E1]   |            |              |
| ontact:       | Cindy Zhao                                                                                                                                   | Quality Control (               | Quality Control (QC) Report with Report    |                     |                 |                                                                                                     | Sam 3 day [P3]   |          |           | ame Da     | ame Day, Weckend or Statutory |            |           |            |            |              |
| none:         | 416 499 3110 ext 1011124                                                                                                                     | Compare Res                     | EMAIL                                      | MAIL [              | FAX             | Busio                                                                                               | 2 da             | y [P2]   |           |            | EWE                           |            | holid     | ay [E0]    |            |              |
|               | Company address below will appear on the final report                                                                                        | Select Distribution             |                                            |                     | - ld como       | 101103                                                                                              | Date and         | Time Re  | uired for | IL E&P TA  | Ts:                           | 8.5        |           |            |            |              |
| treet:        | 125 Commerce Valley Drive West                                                                                                               | Email 1 or Fax                  | czhaole morr                               | isonnershi          | e la com        | For tests that can not be performed according to the service level selected, you will be contacted. |                  |          |           |            |                               |            |           |            |            |              |
| ity/Province: | Markham, Ontario                                                                                                                             | Email 2 big                     | nail 2 bawante grapio consulting.com       |                     |                 |                                                                                                     | Analysis Request |          |           |            |                               |            |           |            |            |              |
| ostal Code:   | L3T 7W4'                                                                                                                                     | Email 3                         | Invision Di                                | stribution          |                 | Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below                          |                  |          |           |            |                               |            |           |            |            |              |
| voice To      | Same as Report To                                                                                                                            |                                 |                                            |                     |                 |                                                                                                     |                  |          |           |            |                               |            | T         |            |            |              |
|               | Copy of Invoice with Report YES NO                                                                                                           | Select Invoice D                | Distribution:                              |                     | L RAX           |                                                                                                     |                  | -        |           |            |                               |            | 1         |            |            |              |
| ompany:       | Merrison Hershfield                                                                                                                          | Email 1 or Fax                  | nail for Fax czhoo @ morrispoherskield.com |                     |                 |                                                                                                     |                  |          |           |            |                               |            |           |            |            |              |
| ontact:       | Lindu Zhao                                                                                                                                   | Email 2                         |                                            | and the following   |                 |                                                                                                     |                  |          |           |            |                               |            |           |            |            |              |
| Under         | Project Information                                                                                                                          | Car Charles                     | Oil and Gas Require                        | d Fields (client u  | sej             |                                                                                                     |                  |          |           |            |                               |            |           |            |            |              |
| LS Account    | #/Quote #: (2 24800                                                                                                                          | AFE/Cost Center:                |                                            | PO#                 |                 | 1.4                                                                                                 |                  |          |           |            |                               |            |           |            |            |              |
| ob #:         | 16-1359                                                                                                                                      | Major/Minor Code: Routing Code: |                                            |                     |                 |                                                                                                     |                  |          |           |            |                               |            |           |            |            |              |
| O/AFE:        |                                                                                                                                              | Requisitioner:                  |                                            |                     |                 |                                                                                                     |                  |          |           |            |                               |            |           |            |            |              |
| SD:           |                                                                                                                                              | Location:                       |                                            |                     |                 | 1.                                                                                                  |                  |          |           |            |                               |            |           |            |            |              |
| ALS Lab V     | Vork Order # (lab use only) L1839995                                                                                                         | ALS Contact: Sampler:           |                                            |                     |                 | tals                                                                                                | AH               |          |           |            |                               |            |           |            |            |              |
| ALS Sample    | Sample Identification and/or Coordinates                                                                                                     |                                 | Date                                       | Time<br>(bb:mm)     | Sample Type     | Me                                                                                                  | 9                |          |           |            |                               |            |           |            |            |              |
| (lab use only | (This description will appear on the report)                                                                                                 |                                 | (dd-manin-yy)                              | (And                | 2 11            | 1                                                                                                   | 1                |          |           |            |                               |            |           |            |            |              |
|               | BH1 852                                                                                                                                      |                                 | -8-09-16                                   | AM                  | 2011            | -                                                                                                   |                  | -        |           | -          |                               |            |           |            |            |              |
| <del></del>   | RH4 352                                                                                                                                      |                                 | 28-09-16                                   | AM                  | 50.1            | 5                                                                                                   | ./               |          |           | -          |                               | -          |           |            |            |              |
|               | BHS SS7                                                                                                                                      |                                 | 28-09-16                                   | AWA                 | Seil            | ~                                                                                                   | ~                |          |           |            |                               |            |           | +          |            |              |
|               | 0110 002                                                                                                                                     |                                 | 28-09-16                                   | AN                  | ·Sell           | 4                                                                                                   | 1                |          | -         | -          |                               |            |           |            |            | _            |
|               | <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> |                                 | 28-09-16                                   | AM                  | Sal             | 1                                                                                                   | 1                |          | _         |            |                               | _          | -         |            |            |              |
|               | ISHIU SSC                                                                                                                                    |                                 | 28-09-16                                   | AM                  | Sex 1           |                                                                                                     | J                | _        |           |            |                               |            | _         |            |            | -            |
| -11           | TCLP                                                                                                                                         |                                 | 10 0 010                                   |                     |                 |                                                                                                     |                  |          |           |            |                               |            |           |            |            |              |
| $\cup$        |                                                                                                                                              |                                 |                                            |                     |                 |                                                                                                     |                  |          |           |            |                               |            |           |            |            |              |
|               |                                                                                                                                              |                                 |                                            |                     |                 |                                                                                                     |                  | -        |           |            |                               |            |           |            |            |              |
|               |                                                                                                                                              |                                 |                                            |                     |                 |                                                                                                     |                  |          |           |            | -                             |            | -         |            |            |              |
|               |                                                                                                                                              |                                 |                                            |                     |                 |                                                                                                     | -                |          | _         | _          | -                             |            | -         |            |            |              |
|               |                                                                                                                                              |                                 |                                            |                     |                 |                                                                                                     |                  |          |           |            |                               |            | _         | _          |            |              |
|               |                                                                                                                                              |                                 |                                            |                     |                 |                                                                                                     |                  |          |           |            |                               |            |           |            |            |              |
|               |                                                                                                                                              |                                 | in add on separt by g                      | licking on the drop | down list below | 12 742                                                                                              | alife an         | 2 200 1  | SAMPL     | ECOND      | DITION                        | AS REC     | EIVED     | (lab us    | e only)    | 114-1-12     |
| Deie          | king Water (DW) Samples <sup>1</sup> (client use) Special Instruction                                                                        | is / Specify Criteria           | electronic COC only)                       | icking on the drop  |                 | Froz                                                                                                | en               |          |           | 2.85.8     | SIF                           | bserval    | ions      | Yes        | H          | NO           |
| Unit          | the former Deputated DW System?                                                                                                              |                                 |                                            | 21 m                |                 | Ice F                                                                                               | acks             |          | Ice Cube  | s          | Cust                          | ody seal   | intact    | Yes        |            | NO           |
| Are samples t | aken trom a Regulated Div System                                                                                                             |                                 | T11. 7                                     | RP                  | F               | Cool                                                                                                | ing Initia       | ted      |           |            |                               |            |           |            | OI CD 75   | ADCOATIO     |
|               | TES I no                                                                                                                                     | MOFCC                           | lable                                      | > /                 |                 | 100                                                                                                 | IN IN            | TIAL COO | LER TEMP  | ERATURE    | S°C                           | STAR D     | . 25 . 12 | HINAL CO   | T          | MP ERVICION  |
| Are samples f | or human drinking water user                                                                                                                 |                                 |                                            |                     |                 | (                                                                                                   | 0.3              | °C.      |           |            |                               |            |           |            |            |              |

Doll-1-05-WHITE - LABORATORY COPY YELLOW - CLIENT COPY un REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION Tailure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form

Received by:

ŝ

.....

Time:

16:11-

INITIAL SHIPMENT RECEPTION (lab use only)

05 OCT-16

Date



GeoPro Consulting Limited (Richmond Hill) ATTN: BuJing Guan 40 Vogell Road Unit 22 Richmond Hill ON L4B 3N6 Date Received:05-OCT-16Report Date:13-OCT-16 15:46 (MT)Version:FINAL

Client Phone: 905-237-8336

# Certificate of Analysis

Lab Work Order #: L1839783 Project P.O. #: NOT SUBMITTED Job Reference: 16-1359 C of C Numbers: 15-573719 Legal Site Desc:

Iman lene f menion

Emerson Perez, B.S.E Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

**RIGHT SOLUTIONS RIGHT PARTNER** 



L1839783 CONT'D.... Job Reference: 16-1359 PAGE 2 of 7 13-OCT-16 15:46 (MT)

#### SOIL - Ontario Regulation 153/04 - April 15, 2011 Standards

|                               |                            | ALS ID<br>Sampled Date<br>Sampled Time<br>Sample ID |               | L1839783-1<br>28-SEP-16<br>-<br>BH2 SS3 | L1839783-2<br>28-SEP-16<br>-<br>BH6 SS3 |         |  |
|-------------------------------|----------------------------|-----------------------------------------------------|---------------|-----------------------------------------|-----------------------------------------|---------|--|
| Grouping                      | Analyte                    | Unit                                                | Guide I<br>#1 | ₋imits<br>#2                            |                                         |         |  |
| Physical Tests                | % Moisture                 | %                                                   | -             | -                                       | 7.21                                    | 7.32    |  |
| Volatile Organic<br>Compounds | Acetone                    | ug/g                                                | 0.5           | -                                       | <0.50                                   | <0.50   |  |
|                               | Benzene                    | ug/g                                                | 0.02          | -                                       | <0.0068                                 | <0.0068 |  |
|                               | Bromodichloromethane       | ug/g                                                | 0.05          | -                                       | <0.050                                  | <0.050  |  |
|                               | Bromoform                  | ug/g                                                | 0.05          | -                                       | <0.050                                  | <0.050  |  |
|                               | Bromomethane               | ug/g                                                | 0.05          | -                                       | <0.050                                  | <0.050  |  |
|                               | Carbon tetrachloride       | ug/g                                                | 0.05          | -                                       | <0.050                                  | <0.050  |  |
|                               | Chlorobenzene              | ug/g                                                | 0.05          | -                                       | <0.050                                  | <0.050  |  |
|                               | Dibromochloromethane       | ug/g                                                | 0.05          | -                                       | <0.050                                  | <0.050  |  |
|                               | Chloroform                 | ug/g                                                | 0.05          | -                                       | <0.050                                  | <0.050  |  |
|                               | 1,2-Dibromoethane          | ug/g                                                | 0.05          | -                                       | <0.050                                  | <0.050  |  |
|                               | 1,2-Dichlorobenzene        | ug/g                                                | 0.05          | -                                       | <0.050                                  | <0.050  |  |
|                               | 1,3-Dichlorobenzene        | ug/g                                                | 0.05          | -                                       | <0.050                                  | <0.050  |  |
|                               | 1,4-Dichlorobenzene        | ug/g                                                | 0.05          | -                                       | <0.050                                  | <0.050  |  |
|                               | Dichlorodifluoromethane    | ug/g                                                | 0.05          | -                                       | <0.050                                  | <0.050  |  |
|                               | 1,1-Dichloroethane         | ug/g                                                | 0.05          | -                                       | <0.050                                  | <0.050  |  |
|                               | 1,2-Dichloroethane         | ug/g                                                | 0.05          | -                                       | <0.050                                  | <0.050  |  |
|                               | 1,1-Dichloroethylene       | ug/g                                                | 0.05          | -                                       | <0.050                                  | <0.050  |  |
|                               | cis-1,2-Dichloroethylene   | ug/g                                                | 0.05          | -                                       | <0.050                                  | <0.050  |  |
|                               | trans-1,2-Dichloroethylene | ug/g                                                | 0.05          | -                                       | <0.050                                  | <0.050  |  |
|                               | Methylene Chloride         | ug/g                                                | 0.05          | -                                       | <0.050                                  | <0.050  |  |
|                               | 1,2-Dichloropropane        | ug/g                                                | 0.05          | -                                       | <0.050                                  | <0.050  |  |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use



Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.



L1839783 CONT'D .... Job Reference: 16-1359 PAGE 3 of 7 13-OCT-16 15:46 (MT)

#### SOIL - Ontario Regulation 153/04 - April 15, 2011 Standards

|                               |                                     |      | ALS ID<br>Sampled Date<br>Sampled Time<br>Sample ID |              | L1839783-1<br>28-SEP-16<br>-<br>BH2 SS3 | L1839783-2<br>28-SEP-16<br>-<br>BH6 SS3 |  |
|-------------------------------|-------------------------------------|------|-----------------------------------------------------|--------------|-----------------------------------------|-----------------------------------------|--|
| Grouping                      | Analyte                             | Unit | Guide I<br>#1                                       | ⊥imits<br>#2 |                                         |                                         |  |
| Volatile Organic<br>Compounds | cis-1,3-Dichloropropene             | ug/g | -                                                   | -            | <0.030                                  | <0.030                                  |  |
|                               | trans-1,3-Dichloropropene           | ug/g | -                                                   | -            | <0.030                                  | <0.030                                  |  |
|                               | 1,3-Dichloropropene (cis & trans)   | ug/g | 0.05                                                | -            | <0.042                                  | <0.042                                  |  |
|                               | Ethylbenzene                        | ug/g | 0.05                                                | -            | <0.018                                  | <0.018                                  |  |
|                               | n-Hexane                            | ug/g | 0.05                                                | -            | <0.050                                  | <0.050                                  |  |
|                               | Methyl Ethyl Ketone                 | ug/g | 0.5                                                 | -            | <0.50                                   | <0.50                                   |  |
|                               | Methyl Isobutyl Ketone              | ug/g | 0.5                                                 | -            | <0.50                                   | <0.50                                   |  |
|                               | MTBE                                | ug/g | 0.05                                                | -            | <0.050                                  | <0.050                                  |  |
|                               | Styrene                             | ug/g | 0.05                                                | -            | <0.050                                  | <0.050                                  |  |
|                               | 1,1,1,2-Tetrachloroethane           | ug/g | 0.05                                                | -            | <0.050                                  | <0.050                                  |  |
|                               | 1,1,2,2-Tetrachloroethane           | ug/g | 0.05                                                | -            | <0.050                                  | <0.050                                  |  |
|                               | Tetrachloroethylene                 | ug/g | 0.05                                                | -            | <0.050                                  | <0.050                                  |  |
|                               | Toluene                             | ug/g | 0.2                                                 | -            | <0.080                                  | <0.080                                  |  |
|                               | 1,1,1-Trichloroethane               | ug/g | 0.05                                                | -            | <0.050                                  | <0.050                                  |  |
|                               | 1,1,2-Trichloroethane               | ug/g | 0.05                                                | -            | <0.050                                  | <0.050                                  |  |
|                               | Trichloroethylene                   | ug/g | 0.05                                                | -            | <0.010                                  | <0.010                                  |  |
|                               | Trichlorofluoromethane              | ug/g | 0.25                                                | -            | <0.050                                  | <0.050                                  |  |
|                               | Vinyl chloride                      | ug/g | 0.02                                                | -            | <0.020                                  | <0.020                                  |  |
|                               | o-Xylene                            | ug/g | -                                                   | -            | <0.020                                  | <0.020                                  |  |
|                               | m+p-Xylenes                         | ug/g | -                                                   | -            | <0.030                                  | <0.030                                  |  |
|                               | Xylenes (Total)                     | ug/g | 0.05                                                | -            | <0.050                                  | <0.050                                  |  |
|                               | Surrogate: 4-<br>Bromofluorobenzene | %    | -                                                   | -            | 101.0                                   | 101.1                                   |  |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use



Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.



L1839783 CONT'D.... Job Reference: 16-1359 PAGE 4 of 7 13-OCT-16 15:46 (MT)

#### SOIL - Ontario Regulation 153/04 - April 15, 2011 Standards

|                               | ALS ID<br>Sampled Date<br>Sampled Time<br>Sample ID |      |               |              | L1839783-1<br>28-SEP-16<br>-<br>BH2 SS3 | L1839783-2<br>28-SEP-16<br>-<br>BH6 SS3 |
|-------------------------------|-----------------------------------------------------|------|---------------|--------------|-----------------------------------------|-----------------------------------------|
| Grouping                      | Analyte                                             | Unit | Guide I<br>#1 | Limits<br>#2 |                                         |                                         |
| Volatile Organic<br>Compounds | Surrogate: 1,4-Difluorobenzene                      | %    | -             | -            | 111.1                                   | 110.7                                   |
| Hydrocarbons                  | F1 (C6-C10)                                         | ug/g | 25            | -            | <5.0                                    | <5.0                                    |
|                               | F1-BTEX                                             | ug/g | 25            | -            | <5.0                                    | <5.0                                    |
|                               | F2 (C10-C16)                                        | ug/g | 10            | -            | <10                                     | <10                                     |
|                               | F3 (C16-C34)                                        | ug/g | 240           | -            | <50                                     | <50                                     |
|                               | F4 (C34-C50)                                        | ug/g | 120           | -            | <50                                     | <50                                     |
|                               | Total Hydrocarbons (C6-C50)                         | ug/g | -             | -            | <72                                     | <72                                     |
|                               | Chrom. to baseline at nC50                          |      | -             | -            | YES                                     | YES                                     |
|                               | Surrogate: 2-<br>Bromobenzotrifluoride              | %    | -             | -            | 88.9                                    | 85.5                                    |
|                               | Surrogate: 3,4-Dichlorotoluene                      | %    | -             | -            | 96.6                                    | 95.2                                    |

#### Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use





L1839783 CONT'D.... Job Reference: 16-1359 PAGE 5 of 7 13-OCT-16 15:46 (MT)

#### Summary of Guideline Exceedances

| Guideline |           |          |         |        |                 |      |
|-----------|-----------|----------|---------|--------|-----------------|------|
| ALS ID    | Client ID | Grouping | Analyte | Result | Guideline Limit | Unit |
|           |           |          |         |        |                 |      |

Ontario Regulation 153/04 - April 15, 2011 Standards - T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

(No parameter exceedances)

### **Reference Information**

| Methods Listed (if applical                                                                                                                                                                                                                                                                                                                                                                                      | hle).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                       | 13-OCT-16 15:46 (MT)                                                                                                                                          |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| ALS Test Code                                                                                                                                                                                                                                                                                                                                                                                                    | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Test Description                                                                      | Method Reference**                                                                                                                                            |  |  |  |  |  |  |
| F1-F4-511-CALC-WT                                                                                                                                                                                                                                                                                                                                                                                                | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F1-F4 Hydrocarbon Calculated<br>Parameters                                            | CCME CWS-PHC, Pub #1310, Dec 2001-S                                                                                                                           |  |  |  |  |  |  |
| Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                                                                                                                                                               |  |  |  |  |  |  |
| Hydrocarbon results are expressed on a dry weight basis.                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                                                                                                                                                               |  |  |  |  |  |  |
| In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.<br>In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                                                                                                                                                               |  |  |  |  |  |  |
| In samples where PAHs,<br>Benzo(a)anthracene, Ber<br>from F3.                                                                                                                                                                                                                                                                                                                                                    | In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.                                                                                                                                 |                                                                                       |                                                                                                                                                               |  |  |  |  |  |  |
| Unless otherwise qualifie<br>1. All extraction and anal<br>2. Instrument performanc<br>3. Linearity of gasoline re                                                                                                                                                                                                                                                                                               | Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:<br>1. All extraction and analysis holding times were met.<br>2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.<br>3. Linearity of gasoline response within 15% throughout the calibration range.                                                                                                                                 |                                                                                       |                                                                                                                                                               |  |  |  |  |  |  |
| Unless otherwise qualifie<br>1. All extraction and anal<br>2. Instrument performanc<br>3. Instrument performanc<br>4. Linearity of diesel or m                                                                                                                                                                                                                                                                   | Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:<br>1. All extraction and analysis holding times were met.<br>2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.<br>3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.<br>4. Linearity of diesel or motor oil response within 15% throughout the calibration range. |                                                                                       |                                                                                                                                                               |  |  |  |  |  |  |
| F1-HS-511-WT                                                                                                                                                                                                                                                                                                                                                                                                     | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F1-O.Reg 153/04 (July 2011)                                                           | E3398/CCME TIER 1-HS                                                                                                                                          |  |  |  |  |  |  |
| Fraction F1 is determined                                                                                                                                                                                                                                                                                                                                                                                        | d by extracting a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a soil or sediment sample as received wit                                             | th methanol, then analyzing by headspace-GC/FID.                                                                                                              |  |  |  |  |  |  |
| Analysis conducted in ac<br>of the Analytical Test Gro                                                                                                                                                                                                                                                                                                                                                           | cordance with th<br>oup (ATG) has b                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ne Protocol for Analytical Methods Used<br>been requested (the Protocol states that a | in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset all analytes in an ATG must be reported). |  |  |  |  |  |  |
| F2-F4-511-WT                                                                                                                                                                                                                                                                                                                                                                                                     | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F2-F4-O.Reg 153/04 (July 2011)                                                        | MOE DECPH-E3398/CCME TIER 1                                                                                                                                   |  |  |  |  |  |  |
| Fractions F2, F3 and F4 and F4 is analyzed by GC/FID.                                                                                                                                                                                                                                                                                                                                                            | Fractions F2, F3 and F4 are determined by extracting a soil sample with a solvent mix. The solvent recovered from the extracted soil sample is dried and treated to remove polar material. The extract is analyzed by GC/FID.                                                                                                                                                                                                                                                                                  |                                                                                       |                                                                                                                                                               |  |  |  |  |  |  |
| Analysis conducted in ac<br>of the Analytical Test Gro                                                                                                                                                                                                                                                                                                                                                           | cordance with th<br>oup (ATG) has b                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ne Protocol for Analytical Methods Used been requested (the Protocol states that a    | in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset all analytes in an ATG must be reported). |  |  |  |  |  |  |
| MOISTURE-WT                                                                                                                                                                                                                                                                                                                                                                                                      | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | % Moisture                                                                            | Gravimetric: Oven Dried                                                                                                                                       |  |  |  |  |  |  |
| VOC-1,3-DCP-CALC-WT                                                                                                                                                                                                                                                                                                                                                                                              | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Regulation 153 VOCs                                                                   | SW8260B/SW8270C                                                                                                                                               |  |  |  |  |  |  |
| VOC-511-HS-WT                                                                                                                                                                                                                                                                                                                                                                                                    | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VOC-O.Reg 153/04 (July 2011)                                                          | SW846 8260 (511)                                                                                                                                              |  |  |  |  |  |  |

Soil and sediment samples are extracted in methanol and analyzed by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-WT Soil Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

### **Reference Information**

#### Methods Listed (if applicable):

ALS Test Code Matrix Method Reference\*\*

**Test Description** \*\*ALS test methods may incorporate modifications from specified reference methods to improve performance.

| Chain of Custody Numbers:         |                                                                                                                                                   |  |  |  |  |  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 15-573719                         |                                                                                                                                                   |  |  |  |  |  |
| The last two letters of the about | The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: |  |  |  |  |  |
| Laboratory Definition Code        | Laboratory Location                                                                                                                               |  |  |  |  |  |
| WT                                | ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA                                                                                                     |  |  |  |  |  |

#### **GLOSSARY OF REPORT TERMS**

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to gualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.



|                                    |                                   |                                                 | Workorder                         | : L183978         | 33 R      | eport Date: | 13-OCT-16 |        | Page 1 of 7 |
|------------------------------------|-----------------------------------|-------------------------------------------------|-----------------------------------|-------------------|-----------|-------------|-----------|--------|-------------|
| Client:                            | GeoPro (<br>40 Vogell<br>Richmono | Consulting Lim<br>Road Unit 22<br>d Hill ON L4E | iited (Richmond Hil<br>3<br>3 3N6 | I)                |           |             |           |        |             |
|                                    | Bujing G                          | uan                                             |                                   |                   |           |             |           |        |             |
| Test                               |                                   | Matrix                                          | Reference                         | Result            | Qualifier | Units       | RPD       | Limit  | Analyzed    |
| F1-HS-511-WT                       |                                   | Soil                                            |                                   |                   |           |             |           |        |             |
| Batch R                            | 3568210                           |                                                 |                                   |                   |           |             |           |        |             |
| WG2405867-4<br>F1 (C6-C10)         | DUP                               |                                                 | <b>WG2405867</b><br><5.0          | <b>-3</b><br><5.0 | RPD-NA    | ug/g        | N/A       | 50     | 11-OCT-16   |
| <b>WG2405867-2</b><br>F1 (C6-C10)  | LCS                               |                                                 |                                   | 93.4              |           | %           |           | 80-120 | 11-OCT-16   |
| WG2405867-1                        | МВ                                |                                                 |                                   |                   |           |             |           |        |             |
| F1 (C6-C10)                        |                                   |                                                 |                                   | <5.0              |           | ug/g        |           | 5      | 11-OCT-16   |
| Surrogate: 3,4-                    | Dichlorot                         | oluene                                          |                                   | 109.9             |           | %           |           | 60-140 | 11-OCT-16   |
| <b>WG2405867-7</b><br>F1 (C6-C10)  | MS                                |                                                 | WG2405867                         | <b>-6</b><br>80.8 |           | %           |           | 60-140 | 11-OCT-16   |
| F2-F4-511-WT                       |                                   | Soil                                            |                                   |                   |           |             |           |        |             |
| Batch R                            | 3569839                           |                                                 |                                   |                   |           |             |           |        |             |
| WG2408136-3                        | CRM                               |                                                 | ALS PHC2 IF                       | RM                |           |             |           |        |             |
| F2 (C10-C16)                       |                                   |                                                 |                                   | 86.1              |           | %           |           | 70-130 | 12-OCT-16   |
| F3 (C16-C34)                       |                                   |                                                 |                                   | 93.4              |           | %           |           | 70-130 | 12-OCT-16   |
| F4 (C34-C50)                       |                                   |                                                 |                                   | 92.8              |           | %           |           | 70-130 | 12-OCT-16   |
| WG2408136-5<br>F2 (C10-C16)        | DUP                               |                                                 | <b>WG2408136</b><br><10           | - <b>4</b><br><10 | RPD-NA    | ug/g        | N/A       | 30     | 12-OCT-16   |
| F3 (C16-C34)                       |                                   |                                                 | <50                               | <50               | RPD-NA    | ug/g        | N/A       | 30     | 12-OCT-16   |
| F4 (C34-C50)                       |                                   |                                                 | <50                               | <50               | RPD-NA    | ug/g        | N/A       | 30     | 12-OCT-16   |
| <b>WG2408136-2</b><br>F2 (C10-C16) | LCS                               |                                                 |                                   | 81.5              |           | %           |           | 80-120 | 12-0CT-16   |
| F3 (C16-C34)                       |                                   |                                                 |                                   | 93.9              |           | %           |           | 80-120 | 12-OCT-16   |
| F4 (C34-C50)                       |                                   |                                                 |                                   | 91.6              |           | %           |           | 80-120 | 12-00T-16   |
| WG2408136-1                        | МВ                                |                                                 |                                   | <10               |           | ug/g        |           | 10     | 12 001 10   |
| F3 (C16-C34)                       |                                   |                                                 |                                   | <50               |           | ug/g        |           | 50     | 12-0CT-16   |
| F4 (C34-C50)                       |                                   |                                                 |                                   | <50               |           | ug/g        |           | 50     | 12-0CT-16   |
| Surrogate: 2-B                     | romoben                           | zotrifluoride                                   |                                   | 88.8              |           | ~9,9<br>%   |           | 60-140 | 12-0CT-16   |
| MOISTURE-WT                        |                                   | Soil                                            |                                   |                   |           |             |           |        | 12 001 10   |
| Batch R                            | 3566916                           |                                                 |                                   |                   |           |             |           |        |             |
| WG2406238-3<br>% Moisture          | DUP                               |                                                 | <b>L1840366-2</b><br>5.50         | 5.94              |           | %           | 7.8       | 20     | 08-OCT-16   |
| WG2406238-2<br>% Moisture          | LCS                               |                                                 |                                   | 101.9             |           | %           |           | 90-110 | 08-OCT-16   |
| WG2406238-1<br>% Moisture          | MB                                |                                                 |                                   | <0.10             |           | %           |           | 0.1    | 08-OCT-16   |



### **Quality Control Report**

Workorder: L1839783

Report Date: 13-OCT-16

Page 2 of 7

Client: GeoPro Consulting Limited (Richmond Hill) 40 Vogell Road Unit 22 Richmond Hill ON L4B 3N6

Contact: BuJing Guan

| Test                      | Matrix | Reference | Result  | Qualifier | Units | RPD | Limit | Analyzed  |
|---------------------------|--------|-----------|---------|-----------|-------|-----|-------|-----------|
| VOC-511-HS-WT             | Soil   |           |         |           |       |     |       |           |
| Batch R3568210            |        |           |         |           |       |     |       |           |
| WG2405867-4 DUP           |        | WG2405867 | -3      |           | ,     |     |       |           |
| 1,1,1,2-Tetrachioroetha   | ne     | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| 1,1,2,2- i etrachioroetha | ne     | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| 1,1,1-I richloroethane    |        | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| 1,1,2- I richloroethane   |        | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| 1,1-Dichloroethane        |        | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| 1,1-Dichloroethylene      |        | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| 1,2-Dibromoethane         |        | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| 1,2-Dichlorobenzene       |        | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| 1,2-Dichloroethane        |        | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| 1,2-Dichloropropane       |        | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| 1,3-Dichlorobenzene       |        | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| 1,4-Dichlorobenzene       |        | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| Acetone                   |        | <0.50     | <0.50   | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| Benzene                   |        | <0.0068   | <0.0068 | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| Bromodichloromethane      |        | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| Bromoform                 |        | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| Bromomethane              |        | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| Carbon tetrachloride      |        | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| Chlorobenzene             |        | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| Chloroform                |        | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| cis-1,2-Dichloroethylene  | 9      | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| cis-1,3-Dichloropropene   | 9      | <0.030    | <0.030  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| Dibromochloromethane      |        | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| Dichlorodifluoromethan    | е      | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| Ethylbenzene              |        | <0.018    | <0.018  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| n-Hexane                  |        | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| Methylene Chloride        |        | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| MTBE                      |        | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| m+p-Xylenes               |        | <0.030    | <0.030  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| Methyl Ethyl Ketone       |        | <0.50     | <0.50   | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| Methyl Isobutyl Ketone    |        | <0.50     | <0.50   | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| o-Xylene                  |        | <0.020    | <0.020  | RPD-NA    | ug/g  | N/A | 40    | 11-OCT-16 |
| Styrene                   |        | <0.050    | <0.050  |           | ug/g  |     |       | 11-OCT-16 |



Client:

Contact:

Batch

Bromomethane

Chlorobenzene

Chloroform

Carbon tetrachloride

cis-1,2-Dichloroethylene

cis-1,3-Dichloropropene

Dibromochloromethane

Dichlorodifluoromethane

Test

### **Quality Control Report**

Workorder: L1839783 Report Date: 13-OCT-16 Page 3 of 7 GeoPro Consulting Limited (Richmond Hill) 40 Vogell Road Unit 22 Richmond Hill ON L4B 3N6 **BuJing Guan** Matrix Reference Result Qualifier Units RPD Limit Analyzed VOC-511-HS-WT Soil R3568210 WG2405867-4 DUP WG2405867-3 < 0.050 < 0.050 Styrene **RPD-NA** ug/g N/A 40 11-OCT-16 Tetrachloroethylene <0.050 <0.050 **RPD-NA** ug/g N/A 40 11-OCT-16 <0.080 Toluene < 0.080 RPD-NA ug/g N/A 40 11-OCT-16 < 0.050 < 0.050 trans-1,2-Dichloroethylene **RPD-NA** ug/g N/A 40 11-OCT-16 trans-1,3-Dichloropropene < 0.030 < 0.030 **RPD-NA** ug/g N/A 40 11-OCT-16 Trichloroethylene <0.010 < 0.010 **RPD-NA** ug/g N/A 40 11-OCT-16 Trichlorofluoromethane < 0.050 < 0.050 **RPD-NA** ug/g N/A 40 11-OCT-16 Vinyl chloride < 0.020 < 0.020 **RPD-NA** ug/g N/A 40 11-OCT-16 WG2405867-2 LCS 1,1,1,2-Tetrachloroethane 102.0 % 60-130 11-OCT-16 1,1,2,2-Tetrachloroethane 116.9 % 11-OCT-16 60-130 1,1,1-Trichloroethane 111.0 % 60-130 11-OCT-16 1,1,2-Trichloroethane 111.2 % 60-130 11-OCT-16 1,1-Dichloroethane % 113.0 60-130 11-OCT-16 1,1-Dichloroethylene 104.6 % 60-130 11-OCT-16 1,2-Dibromoethane 112.7 % 11-OCT-16 70-130 1.2-Dichlorobenzene 105.8 % 11-OCT-16 70-130 1,2-Dichloroethane 120.8 % 60-130 11-OCT-16 1,2-Dichloropropane % 116.5 70-130 11-OCT-16 1,3-Dichlorobenzene 102.5 % 70-130 11-OCT-16 107.4 1,4-Dichlorobenzene % 70-130 11-OCT-16 Acetone 139.3 % 60-140 11-OCT-16 Benzene 114.2 % 70-130 11-OCT-16 Bromodichloromethane % 115.3 50-140 11-OCT-16 Bromoform 107.9 % 70-130 11-OCT-16

%

%

%

%

%

%

%

%

50-140

70-130

70-130

70-130

70-130

70-130

60-130

50-140

11-OCT-16

11-OCT-16

11-OCT-16

11-OCT-16

11-OCT-16

11-OCT-16

11-OCT-16

11-OCT-16

108.3

111.2

106.2

115.5

112.8

124.6

114.9

75.2



Test

Bromomethane

### **Quality Control Report**

Workorder: L1839783 Report Date: 13-OCT-16 Page 4 of 7 GeoPro Consulting Limited (Richmond Hill) Client: 40 Vogell Road Unit 22 Richmond Hill ON L4B 3N6 Contact: **BuJing Guan** Matrix Reference Result Qualifier Units RPD Limit Analyzed VOC-511-HS-WT Soil Batch R3568210 WG2405867-2 LCS Ethylbenzene 95.4 % 70-130 11-OCT-16 n-Hexane 113.4 % 11-OCT-16 70-130 Methylene Chloride 119.9 % 70-130 11-OCT-16 MTBE 108.8 % 70-130 11-OCT-16 m+p-Xylenes % 98.8 70-130 11-OCT-16 Methyl Ethyl Ketone 137.9 % 60-140 11-OCT-16 Methyl Isobutyl Ketone 133.4 % 60-140 11-OCT-16 o-Xylene 98.3 % 70-130 11-OCT-16 Styrene 98.3 % 70-130 11-OCT-16 Tetrachloroethylene 96.3 % 60-130 11-OCT-16

| Toluene                    | 100.4   | %    | 70-130 | 11-OCT-16 |
|----------------------------|---------|------|--------|-----------|
| trans-1,2-Dichloroethylene | 113.9   | %    | 60-130 | 11-OCT-16 |
| trans-1,3-Dichloropropene  | 118.8   | %    | 70-130 | 11-OCT-16 |
| Trichloroethylene          | 105.5   | %    | 60-130 | 11-OCT-16 |
| Trichlorofluoromethane     | 106.2   | %    | 50-140 | 11-OCT-16 |
| Vinyl chloride             | 93.3    | %    | 60-140 | 11-OCT-16 |
| WG2405867-1 MB             |         |      |        |           |
| 1,1,1,2-Tetrachloroethane  | <0.050  | ug/g | 0.05   | 11-OCT-16 |
| 1,1,2,2-Tetrachloroethane  | <0.050  | ug/g | 0.05   | 11-OCT-16 |
| 1,1,1-Trichloroethane      | <0.050  | ug/g | 0.05   | 11-OCT-16 |
| 1,1,2-Trichloroethane      | <0.050  | ug/g | 0.05   | 11-OCT-16 |
| 1,1-Dichloroethane         | <0.050  | ug/g | 0.05   | 11-OCT-16 |
| 1,1-Dichloroethylene       | <0.050  | ug/g | 0.05   | 11-OCT-16 |
| 1,2-Dibromoethane          | <0.050  | ug/g | 0.05   | 11-OCT-16 |
| 1,2-Dichlorobenzene        | <0.050  | ug/g | 0.05   | 11-OCT-16 |
| 1,2-Dichloroethane         | <0.050  | ug/g | 0.05   | 11-OCT-16 |
| 1,2-Dichloropropane        | <0.050  | ug/g | 0.05   | 11-OCT-16 |
| 1,3-Dichlorobenzene        | <0.050  | ug/g | 0.05   | 11-OCT-16 |
| 1,4-Dichlorobenzene        | <0.050  | ug/g | 0.05   | 11-OCT-16 |
| Acetone                    | <0.50   | ug/g | 0.5    | 11-OCT-16 |
| Benzene                    | <0.0068 | ug/g | 0.0068 | 11-OCT-16 |
| Bromodichloromethane       | <0.050  | ug/g | 0.05   | 11-OCT-16 |
| Bromoform                  | <0.050  | ug/g | 0.05   | 11-OCT-16 |

ug/g

0.05

11-OCT-16

< 0.050



### **Quality Control Report**

Workorder: L1839783 Report Date: 13-OCT-16 Page 5 of 7 GeoPro Consulting Limited (Richmond Hill) Client: 40 Vogell Road Unit 22 Richmond Hill ON L4B 3N6 Contact: **BuJing Guan** Test Matrix Reference Result Qualifier Units RPD Limit Analyzed VOC-511-HS-WT Soil R3568210 Batch WG2405867-1 MB Carbon tetrachloride < 0.050 0.05 ug/g 11-OCT-16 Chlorobenzene < 0.050 ug/g 0.05 11-OCT-16 Chloroform < 0.050 0.05 ug/g 11-OCT-16 cis-1,2-Dichloroethylene < 0.050 0.05 ug/g 11-OCT-16 0.03 cis-1,3-Dichloropropene < 0.030 ug/g 11-OCT-16 Dibromochloromethane < 0.050 0.05 ug/g 11-OCT-16 Dichlorodifluoromethane 0.05 < 0.050 ug/g 11-OCT-16 Ethylbenzene < 0.018 0.018 ug/g 11-OCT-16 n-Hexane < 0.050 0.05 ug/g 11-OCT-16 Methylene Chloride < 0.050 0.05 ug/g 11-OCT-16 MTBE <0.050 ug/g 0.05 11-OCT-16 m+p-Xylenes < 0.030 ug/g 0.03 11-OCT-16 Methyl Ethyl Ketone 0.5 < 0.50 ug/g 11-OCT-16 Methyl Isobutyl Ketone <0.50 ug/g 0.5 11-OCT-16 o-Xylene < 0.020 0.02 ug/g 11-OCT-16 Styrene < 0.050 0.05 ug/g 11-OCT-16 Tetrachloroethylene 0.05 < 0.050 ug/g 11-OCT-16 Toluene <0.080 0.08 ug/g 11-OCT-16 trans-1,2-Dichloroethylene < 0.050 0.05 ug/g 11-OCT-16 trans-1,3-Dichloropropene < 0.030 0.03 ug/g 11-OCT-16 Trichloroethylene 0.01 <0.010 ug/g 11-OCT-16 Trichlorofluoromethane < 0.050 0.05 ug/g 11-OCT-16 Vinyl chloride < 0.020 ug/g 0.02 11-OCT-16 116.5 50-140 Surrogate: 1,4-Difluorobenzene % 11-OCT-16 Surrogate: 4-Bromofluorobenzene 106.6 % 50-140 11-OCT-16 WG2405867-5 MS WG2405867-3 1,1,1,2-Tetrachloroethane 103.9 % 50-140 11-OCT-16 1,1,2,2-Tetrachloroethane 116.7 % 50-140 11-OCT-16 1,1,1-Trichloroethane 114.9 % 50-140 11-OCT-16 1,1,2-Trichloroethane 113.3 % 50-140 11-OCT-16 1,1-Dichloroethane % 117.2 50-140 11-OCT-16 1,1-Dichloroethylene 109.1 % 50-140 11-OCT-16 1,2-Dibromoethane 114.1 % 50-140 11-OCT-16 1,2-Dichlorobenzene 106.4 % 50-140 11-OCT-16



Test

Batch

### **Quality Control Report**

Workorder: L1839783 Report Date: 13-OCT-16 Page 6 of 7 GeoPro Consulting Limited (Richmond Hill) Client: 40 Vogell Road Unit 22 Richmond Hill ON L4B 3N6 Contact: **BuJing Guan** Matrix Reference Result Qualifier Units RPD Limit Analyzed Soil VOC-511-HS-WT R3568210 WG2405867-5 MS WG2405867-3 1,2-Dichloroethane 124.1 % 50-140 11-OCT-16

| 1 | ,2-Dichloropropane        | 118.8 |   | % | 50-140 | 11-OCT-16 |
|---|---------------------------|-------|---|---|--------|-----------|
| 1 | ,3-Dichlorobenzene        | 102.7 |   | % | 50-140 | 11-OCT-16 |
| 1 | ,4-Dichlorobenzene        | 107.4 |   | % | 50-140 | 11-OCT-16 |
| A | Acetone                   | 152.2 | К | % | 50-140 | 11-OCT-16 |
| E | Benzene                   | 116.7 |   | % | 50-140 | 11-OCT-16 |
| E | Bromodichloromethane      | 117.6 |   | % | 50-140 | 11-OCT-16 |
| E | Bromoform                 | 109.3 |   | % | 50-140 | 11-OCT-16 |
| E | Bromomethane              | 108.5 |   | % | 50-140 | 11-OCT-16 |
| C | Carbon tetrachloride      | 115.1 |   | % | 50-140 | 11-OCT-16 |
| C | Chlorobenzene             | 107.1 |   | % | 50-140 | 11-OCT-16 |
| C | Chloroform                | 119.2 |   | % | 50-140 | 11-OCT-16 |
| c | is-1,2-Dichloroethylene   | 114.8 |   | % | 50-140 | 11-OCT-16 |
| С | is-1,3-Dichloropropene    | 115.9 |   | % | 50-140 | 11-OCT-16 |
| 0 | Dibromochloromethane      | 117.4 |   | % | 50-140 | 11-OCT-16 |
| 0 | Dichlorodifluoromethane   | 86.0  |   | % | 50-140 | 11-OCT-16 |
| E | Ethylbenzene              | 95.5  |   | % | 50-140 | 11-OCT-16 |
| r | n-Hexane                  | 121.2 |   | % | 50-140 | 11-OCT-16 |
| Ν | Nethylene Chloride        | 123.9 |   | % | 50-140 | 11-OCT-16 |
| Ν | ЛТВЕ                      | 111.2 |   | % | 50-140 | 11-OCT-16 |
| n | n+p-Xylenes               | 98.6  |   | % | 50-140 | 11-OCT-16 |
| Ν | lethyl Ethyl Ketone       | 139.5 |   | % | 50-140 | 11-OCT-16 |
| Ν | Nethyl Isobutyl Ketone    | 133.2 |   | % | 50-140 | 11-OCT-16 |
| c | o-Xylene                  | 98.5  |   | % | 50-140 | 11-OCT-16 |
| S | Styrene                   | 97.5  |   | % | 50-140 | 11-OCT-16 |
| Т | etrachloroethylene        | 95.8  |   | % | 50-140 | 11-OCT-16 |
| Т | oluene                    | 103.8 |   | % | 50-140 | 11-OCT-16 |
| t | rans-1,2-Dichloroethylene | 114.7 |   | % | 50-140 | 11-OCT-16 |
| t | rans-1,3-Dichloropropene  | 108.8 |   | % | 50-140 | 11-OCT-16 |
| ٦ | richloroethylene          | 106.5 |   | % | 50-140 | 11-OCT-16 |
| ٦ | richlorofluoromethane     | 112.9 |   | % | 50-140 | 11-OCT-16 |
| ١ | /inyl chloride            | 97.5  |   | % | 50-140 | 11-OCT-16 |
|   |                           |       |   |   |        |           |

Workorder: L1839783

Report Date: 13-OCT-16

| Client: | GeoPro Consulting Limited (Richmond Hill) |
|---------|-------------------------------------------|
|         | 40 Vogell Road Unit 22                    |
|         | Richmond Hill ON L4B 3N6                  |
| ontact: | BuJing Guan                               |

### Contact:

#### Legend:

| Limit | ALS Control Limit (Data Quality Objectives |
|-------|--------------------------------------------|
| DUP   | Duplicate                                  |
| RPD   | Relative Percent Difference                |
| N/A   | Not Available                              |
| LCS   | Laboratory Control Sample                  |
| SRM   | Standard Reference Material                |
| MS    | Matrix Spike                               |
| MSD   | Matrix Spike Duplicate                     |
| ADE   | Average Desorption Efficiency              |
| MB    | Method Blank                               |
| IRM   | Internal Reference Material                |
| CRM   | Certified Reference Material               |
| CCV   | Continuing Calibration Verification        |
| CVS   | Calibration Verification Standard          |
| LCSD  | Laboratory Control Sample Duplicate        |

#### Sample Parameter Qualifier Definitions:

| Qualifier | Description                                                                                 |
|-----------|---------------------------------------------------------------------------------------------|
| К         | Matrix Spike recovery outside ALS DQO due to sample matrix effects.                         |
| RPD-NA    | Relative Percent Difference Not Available due to result(s) being less than detection limit. |

#### Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.



| <f2-< th=""><th>→</th><th>—F3<b>→→</b>—F4—</th><th>→</th><th></th></f2-<> | →           | —F3 <b>→→</b> —F4— | →                          |  |
|---------------------------------------------------------------------------|-------------|--------------------|----------------------------|--|
| nC10                                                                      | nC16        | nC34               | nC50                       |  |
| 174°C                                                                     | 287°C       | 481°C              | 575°C                      |  |
| 346°F                                                                     | 549°F       | 898°F              | 1067°F                     |  |
| Gasolin                                                                   | ie 🔶        | ← Mo               | tor Oils/Lube Oils/Grease- |  |
|                                                                           | – Diesel/Je | et Fuels →         |                            |  |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <u>www.alsglobal.com</u>.



| <f2-< th=""><th>→</th><th>—F3<b>→</b>→—F4—</th><th><b>→</b></th><th></th></f2-<> | →           | —F3 <b>→</b> →—F4— | <b>→</b>                    |  |
|----------------------------------------------------------------------------------|-------------|--------------------|-----------------------------|--|
| nC10                                                                             | nC16        | nC34               | nC50                        |  |
| 174°C                                                                            | 287°C       | 481°C              | 575⁰C                       |  |
| 346°F                                                                            | 549°F       | 898°F              | 1067ºF                      |  |
| Gasolin                                                                          | ie →        | < Mo               | otor Oils/Lube Oils/Grease— |  |
|                                                                                  | – Diesel/Je | t Fuels →          |                             |  |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <u>www.alsglobal.com</u>.

| -            |  |
|--------------|--|
| 0            |  |
| 6            |  |
| 0            |  |
| 0            |  |
|              |  |
| ~            |  |
| ÷-           |  |
| C            |  |
|              |  |
| 3            |  |
| CT I         |  |
| CD .         |  |
|              |  |
|              |  |
|              |  |
| 2020         |  |
| _            |  |
|              |  |
| 100          |  |
| CT           |  |
| S            |  |
| 5            |  |
| 5            |  |
| 5            |  |
| 5            |  |
| 5.           |  |
| 5-           |  |
| л<br>,<br>СД |  |
| 5<br>'<br>Л  |  |
| 5-5-         |  |
| 5-5-         |  |
| 5- 57        |  |
| 5- 57        |  |
| 15 - 573     |  |
| 15 - 573     |  |
| 5- 573       |  |
| 5- 573       |  |
| 5- 573       |  |
| 5- 5737      |  |
| 5- 5737      |  |
| 5- 5737      |  |
| 5- 57371     |  |
| 5- 57371     |  |
| 5- 57371     |  |
| 5- 573710    |  |
| 5- 573719    |  |

Page

9

Chain of Custody (COC) / Analytical **Request Form** 

Affix ALS barcode label here (lab use only)

| Time:        | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ived by:                               | CLIENT COPY                                                                                                                                                                                                                                                                                                                                                     | YELLOW    | ate:<br>OS - OCT - 1(        | EX WHITE                         | Received by:              | ORMATION                                | E FOR ALS LOCATIONS AND SAMPLING INF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Released by:                   |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------|----------------------------------|---------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|              | ENT RECEPTION (lab use only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FINAL SHIPM                            |                                                                                                                                                                                                                                                                                                                                                                 | e only)   | RECEPTION (lab use           | INITIAL SHIPMENT                 |                           |                                         | SHIPMENT RELEASE (client use)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 6.3 C                                                                                                                                                                                                                                                                                                                                                           |           |                              |                                  |                           |                                         | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | □ YES                          |
| URES °C      | FINAL COOLER TEMPERATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOLER TEMPERATURES °C                  | INITIAL CO                                                                                                                                                                                                                                                                                                                                                      |           |                              | Lawie                            | TWER                      |                                         | an drinking water use?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Are samples for hum            |
|              | dy seal intact Yes 🔲 No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Custor                                 | cooling Initiated                                                                                                                                                                                                                                                                                                                                               | 0.5       |                              | T. H.                            | MARICA                    |                                         | In NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Are samples taken fr           |
|              | bservations Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SIF O                                  | rozen                                                                                                                                                                                                                                                                                                                                                           |           |                              | ctronic COC only)                | (ele                      |                                         | rater (DW) Samples (client use)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Urinking v                     |
|              | AS RECEIVED (lab use only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE CONDITION A                     | ALL AND DATE OF                                                                                                                                                                                                                                                                                                                                                 | t below   | y on the drop-down lis       | add on report by clickin         | / Specify Criteria to     | Special Instructions                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                 |           |                              |                                  |                           |                                         | The second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                 | 1         |                              |                                  |                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                 |           |                              |                                  |                           |                                         | Apple of the provide the property of the provide the provide the property of the provide the property of the p |                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                 | 1         | The second second            | A TANK TANK                      | We participie             | Con advanced to be                      | Action and the second description of the second sec | 12.11                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                 |           | A loss and the               |                                  | Contraction of the London |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                 |           |                              | A PART AND A                     |                           | Contraction of the second               | A STATE STREET STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                 |           |                              |                                  |                           | poor da processione                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| 2            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | V V                                                                                                                                                                                                                                                                                                                                                             | 01.)      | AM S                         | 28-09-2016                       | Turning and and           | A CONTRACTOR STREET                     | BHG SS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                              |
| is           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | XX                                                                                                                                                                                                                                                                                                                                                              | Soil      | AW                           | 28-09-2016                       |                           |                                         | BH2 553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                 | mple Type | Time Sa<br>(hh:mm)           | Date<br>(dd-mmm-yy)              |                           | and/or Coordinates ppear on the report) | Sample Identification<br>(This description will a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ALS Sample #<br>(lab use only) |
| ,            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second second                  | HC                                                                                                                                                                                                                                                                                                                                                              | all.      | ampler:                      | S                                | ALS Contact:              | 59793                                   | order # (lab use only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ALS Lab Work                   |
| Numl         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                 |           |                              |                                  | Location:                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LSD:                           |
| ber          | The second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALL THE DESIGN OF                      |                                                                                                                                                                                                                                                                                                                                                                 | 41        | SWIT OF TANK                 | State of the state               | Requisitioner:            | A 40 YO MARK MARK MARK                  | A NAME OF TAXABLE AND POST OF TAXABLE PARTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PO/AFE:                        |
| of Co        | Service of the servic |                                        |                                                                                                                                                                                                                                                                                                                                                                 |           | outing Code:                 | 77                               | Major/Minor Code:         |                                         | -1359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) ( # dol                      |
| onta         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                 |           | 0#                           | q                                | AFE/Cost Center:          |                                         | ote #: 0 58286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ALS Account # / Qu             |
| iner         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                 |           | ields (client use)           | <b>Dil and Gas Required F</b>    | 0                         |                                         | Project Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
| s            | the second secon | NOR ON LONGING MALO                    |                                                                                                                                                                                                                                                                                                                                                                 |           | sultinging                   | ite a geopro ton                 | Email 2 off               |                                         | Build Guan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Contact:                       |
|              | AND INVESTIGATION OF AN AND AND AND AND AND AND AND AND AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                 | 2         | consulting .                 | bayran@ amore                    | Email 1 or Fax            |                                         | Gen Pro Consulting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Company:                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second second                  |                                                                                                                                                                                                                                                                                                                                                                 | ×         |                              | stribution: V EV                 | Select Invoice D          | ] NO                                    | py of Invoice with Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00                             |
| ALL FILL     | ed and Preserved (F/P) below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Filtered (F), Preserved (P) or Filtere | Indicate                                                                                                                                                                                                                                                                                                                                                        |           | bution                       | Invoice Distr                    | topic in the              | NO                                      | me as Report To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Invoice To Sa                  |
| 1000         | sis Request                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analys                                 | a state of                                                                                                                                                                                                                                                                                                                                                      |           | 0                            |                                  | Email 3                   | A CONTRACT OF A CONTRACT                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Postal Code:                   |
|              | vel selected, you will be contacted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | performed according to the service lev | or tests that can not be p                                                                                                                                                                                                                                                                                                                                      | -         | onsulting.ca                 | quan @ Gapro                     | Email 2 k                 |                                         | Richmond Hill, Ontario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | City/Province:                 |
| The state of | de-manya www.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | te Required for all E&P TATs:          | Date and Tim                                                                                                                                                                                                                                                                                                                                                    |           | 699                          | 905 248 3                        | Email 1 or Fax            |                                         | 40 Vonell Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Street:                        |
|              | holiday [E0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2]                                     | Bush 2 day [P                                                                                                                                                                                                                                                                                                                                                   |           | MAIL FAX                     | IN: IN EMAIL                     | Select Distributio        | ort                                     | Company address below will appear on the final rep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |
| ] [          | Same Day, Weekend or Statutory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | 3 day [P                                                                                                                                                                                                                                                                                                                                                        | ecked     | vide details below if box ch | ults to Criteria on Report - pro | Compare Res               |                                         | 905 J37 8336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Phone:                         |
|              | 1 Business day [E1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94] b                                  | ר א לא א לא א גער אין אין א גער אין א גער אין |           | U YES U NO                   | DC) Report with Report           | Quality Control (         |                                         | Ruiso (Fundo J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Contact:                       |
| s apply      | ceived by 3 pm - business days - no surcharges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [R] V Standard TAT If re               | Regular                                                                                                                                                                                                                                                                                                                                                         | IGITAL)   | EXCEL EDD (D                 | rmat: V PDF                      | Select Report Fo          |                                         | Gen Pro Consultina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Company:                       |
|              | rour AM - surcharges will apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | w - Please confirm all E&P TATs with y | elect Service Level Below                                                                                                                                                                                                                                                                                                                                       | s         | istribution                  | Report Format / [                |                           | r on the final report                   | Contact and company name below will appea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Report To                      |
|              | fitted such graduate 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                 |           |                              | 8 9878                           | oll Free: 1 800 66        | Canada To                               | www.alsglobal.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
|              | Page [ of ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        | ie only)                                                                                                                                                                                                                                                                                                                                                        | (lab ui   |                              |                                  |                           |                                         | Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (ALS)                          |

 Image: Construction of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

 1. If any water samples are taken from a Regulated Drinking Water (DW) System. please submit using an Authorized DW COC form.



### LIMITATIONS TO THE REPORT

This report is intended solely for the Client named. The report is prepared based on the work has been undertaken in accordance with normally accepted geotechnical engineering practices in Ontario.

The comments and recommendations given in this report are based on information determined at the limited number of the test hole and test pit locations. The boundaries between the various strata as shown on the borehole logs are based on non-continuous sampling and represent an inferred transition between the various strata and their lateral continuation rather than a precise plane of geological change. Subsurface and groundwater conditions between and beyond the test holes and test pits may differ significantly from those encountered at the test hole and test pit locations. The benchmark and elevations used in this report are primarily to establish relative elevation differences between the test hole and test pit locations and should not be used for other purposes, such as grading, excavating, planning, development, etc.

The report reflects our best judgment based on the information available to GeoPro Consulting Limited at the time of preparation. Unless otherwise agreed in writing by GeoPro Consulting Limited, it shall not be used to express or imply warranty as to any other purposes. No portion of this report shall be used as a separate entity, it is written to be read in its entirety. The information contained herein in no way reflects on the environment aspects of the project, unless otherwise stated.

The design recommendations given in this report are applicable only to the project designed and constructed completely in accordance with the details stated in this report.

Should any comments and recommendations provided in this report be made on any construction related issues, they are intended only for the guidance of the designers. The number of test holes and test pits may not be sufficient to determine all the factors that may affect construction activities, methods and costs. Such as, the thickness of surficial topsoil or fill layers may vary significantly and unpredictably; the amount of the cobbles and boulders may vary significantly than what described in the report; unexpected water bearing zones/layers with various thickness and extent may be encountered in the fill and native soils. The contractors bidding on this project or undertaking the construction should, therefore, make their own interpretation of the factual information presented and make their own conclusions as to how the subsurface conditions may affect their work and determine the proper construction methods.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. GeoPro Consulting Limited accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We accept no responsibility for any decisions made or actions taken as a result of this report unless we are specifically advised of and participate in such action, in which case our responsibility will be as agreed to at that time.