|                  | Electric Baseload Measures                                                      | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline  | Life Expectancy<br>(yrs) | Responsibility     |
|------------------|---------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|-----------|--------------------------|--------------------|
|                  | ELECTRIC BASELOAD - refers to year-round electricity use for lighting, fans, ec | Juipmen                   | t and othe                  | r syste     | ms that a | re not weather depen     | dent               |
|                  | Turn off/unplug machines, office and kitchen equipment, chargers                |                           |                             |             |           |                          |                    |
| B1               | when not needed                                                                 | 4                         | 3                           | 7           | Year 1    | Annual Review            | Building Occupants |
| B2               | Enable ENERGY STAR power settings, turn off computers when not in use           | 4                         | 3                           | 7           | Year 1    | Annual Review            | Building Occupants |
| 33               | Turn off lights when areas not in use                                           | 4                         | 3                           | 7           | Year 1    | Annual Review            | Building Occupants |
| 34               | Make use of natural light instead of turning on lights where possible           | 4                         | 3                           | 7           | Year 1    | Annual Review            | Building Occupants |
| °1               | Upgrade control of under-pad heating                                            | 4                         | 3                           | 7           | Year 2    | Seasonal Review          |                    |
| °2               | Lower water use for ice resurfacing                                             | 4                         | 3                           | 7           | Year 2    | Seasonal Review          |                    |
| °3               | Upgrade/adjust ice temperature control                                          | 4                         | 3                           | 7           | Year 2    | Seasonal Review          |                    |
| ۶4               | Implement ice temperature reset based on types of use                           | 4                         | 3                           | 7           | Year 2    | Seasonal Review          |                    |
| °5               | Reduce ice thickness                                                            | 4                         | 3                           | 7           | Year 2    | Seasonal Review          |                    |
| 7י               | Reduce brine pump operation                                                     | 4                         | 3                           | 7           | Year 2    | Seasonal Review          |                    |
| И1               | Optimize operating schedules for fans and pumps                                 | 3                         | 3                           | 6           | Year 2    | Seasonal Review          |                    |
| //2              | Test and adjust ventilation systems to reduce fan power                         | 3                         | 3                           | 6           | Year 2    | Seasonal Review          |                    |
| 8                | Reduce rink lighting operation                                                  | 4                         | 3                           | 7           | Year 2    | Seasonal Review          |                    |
| 6                | Repair low-emissivity ceiling                                                   | 4                         | 3                           | 7           | Year 1    | Seasonal Review          |                    |
| 10               | Install compressor head pressure control                                        | 4                         | 3                           | 7           | Year 1    | Seasonal Review          |                    |
| 11               | Insulate brine headers                                                          | 3                         | 3                           | 6           | Year 2    | 5 to 10                  |                    |
| 9                | Install/make better use of multi-level rink lighting control                    | 2                         | 3                           | 5           | Year 3    | Seasonal Review          |                    |
| L4               | Install power factor correction                                                 | 3                         | 3                           | 6           | Year 3    | 15+                      |                    |
|                  | Replace incandescent and halogen light bulbs with high efficiency               | _                         |                             | -           |           |                          |                    |
| 1                | lighting                                                                        | 1                         | 3                           | 4           | Year 4    | 10 to 15                 |                    |
| 2                | Install motion sensors in washrooms/occasional use spaces to shut               | 1                         | 3                           | 4           | Year 4    | 10 to 15                 |                    |
|                  | Install photo-sensors and/or a timer on outdoor and daylit interior             |                           |                             |             |           |                          |                    |
| 3                | area lighting                                                                   | 1                         | 3                           | 4           | Year 4    | 10 to 15                 |                    |
| 4                | Replace HID lighting with high efficiency fluorescent                           | 1                         | 3                           | 4           | Year 4    | 10 to 15                 |                    |
| 5                | Replace outdoor lights and signage with high efficiency fixtures                | 1                         | 3                           | 4           | Year 4    | 10 to 15                 |                    |
| .6               | Replace festive lighting with LED                                               | 1                         | 3                           | 4           | Year 4    | 10 to 15                 |                    |
|                  | Install sufficient manual switching to allow occupants to effectively           |                           |                             |             |           |                          |                    |
| 7                | control lighting operation                                                      | 1                         | 3                           | 4           | Year 4    | 15+                      |                    |
|                  | Replace refrigerators, dishwasher, microwaves with ENERGY STAR                  |                           |                             |             |           |                          |                    |
| L1               | rated appliances                                                                | 1                         | 3                           | 4           | Year 4    | 8 to 12                  |                    |
| L2               | Replace computers with ENERGY STAR rated units                                  | 1                         | 3                           | 4           | Year 4    | 4 to 6                   |                    |
| <br>L3           | Install controls on vending machines                                            | 1                         | 3                           | 4           | Year 4    | 10 to 15                 |                    |
|                  | Install low-emissivity ceiling                                                  | 1                         | 3                           | 4           | Year 4    | 10 to 12                 |                    |
| /13              | Replace/right-size pumps                                                        | 1                         | 3                           | 4           | Year 4    | 10 to 20                 |                    |
| Л4               | Install variable speed drive on brine pump                                      | 1                         | 3                           | 4           | Year 4    | 10 to 15                 |                    |
| л <u>я</u><br>Л5 | Install multi-pass refrigerant pipe configuration                               | 1                         | 3                           | 4           | Year 4    | 20 to 30                 |                    |
| л <u>о</u><br>Лб | Install de-ionized water system                                                 | 1                         | 3                           | 4           | Year 4    | 5 to 10                  |                    |
| ло<br>Л7         | Replace ice resurfacer with high efficiency unit                                | 1                         | 3                           | 4           | Year 4    | 10 to 15                 |                    |
| /18              | Replace ice plant with high efficiency unit                                     | 1                         | 3                           | 4           | Year 4    | 15 to 20                 |                    |
| /19              | Install variable frequency drives (VFDs) on suitable fans and pumps             | 1                         | 3                           | 4           | Year 4    | 10 to 20                 |                    |
|                  | Convert electric hot water heaters to natural gas                               | 1                         | 3                           | 4           | Year 4    | 10 to 15                 |                    |
|                  | Other:                                                                          | -                         | -                           | •           |           |                          | I                  |

**Behavioural Measures** 

Operational Measures Retrofit/Capital Measures

# hil Toronto

|     | Electric Heating Measures                                                                  | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility            |
|-----|--------------------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|----------|--------------------------|---------------------------|
|     | ELECTRIC HEATING (IF APPLICABLE) - refers to electricity use for heating purpo             | oses                      |                             |             |          |                          |                           |
| B5  | Adjust blinds (to retain heat in winter)                                                   | 4                         | 1                           | 5           | Year 1   | annual review            | <b>Building Occupants</b> |
| B6  | Avoid use of electric heaters                                                              | 4                         | 1                           | 5           | Year 1   | annual review            | <b>Building Occupants</b> |
| B7  | Use recommended thermostat set points (in winter set to 68 degrees or less during daytime) | 4                         | 1                           | 5           | Year 1   | annual review            | Building Occupants        |
| M11 | Control fan coil and entrance heaters to optimize run-times                                | 3                         | 1                           | 4           | Year 2   | seasonal review          |                           |
| P12 | Control car plug-in outlets                                                                | 3                         | 1                           | 4           | Year 2   | seasonal review          |                           |
| M12 | Evaluate conversion from electric heating to natural gas                                   | 2                         | 1                           | 3           | Year 2   | n/a                      |                           |
| M13 | Convert electric to gas dehumidifiers                                                      | 1                         | 1                           | 2           | Year 5   | 15 to 20                 |                           |
| M14 | Install snow sensors to control the snow-melting system                                    | 1                         | 1                           | 2           | Year 5   | seasonal review          |                           |
| M15 | Upgrade base building heating system to avoid use of electric heaters                      | 1                         | 1                           | 2           | Year 5   | seasonal review          |                           |
| M16 | Upgrade electric heating controls to optimize space temperatures and                       | 1                         | 1                           | 2           | Year 5   | seasonal review          |                           |
|     | Other:                                                                                     |                           |                             |             |          |                          |                           |
|     |                                                                                            |                           |                             |             |          |                          |                           |

#### Behavioural Measures

#### Operational Measures Retrofit/Capital Measures

|     | Electric Cooling Measures                                                                       | Ease of | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility     |
|-----|-------------------------------------------------------------------------------------------------|---------|-----------------------------|-------------|----------|--------------------------|--------------------|
|     | ELECTRIC COOLING (IF APPLICABLE) - refers to electricity use for cooling purpo                  | oses    |                             |             |          |                          |                    |
| B8  | Use recommended thermostat set points (during the summer, set to 78 degrees or more)            | 4       | 4                           | 8           | Year 1   | annual review            | Building Occupants |
| B9  | Only cool rooms that are being used                                                             | 4       | 4                           | 8           | Year 1   | annual review            | Building Occupants |
| B10 | Install and use energy efficient ceiling fans                                                   | 4       | 4                           | 8           | Year 1   | annual review            | Building Occupants |
| B11 | Close blinds (to shade space from direct sunlight)                                              | 4       | 4                           | 8           | Year 1   | annual review            | Building Occupants |
| B12 | Install window film, solar screens or awnings on south and west facing<br>windows               | 4       | 4                           | 8           | Year 1   | annual review            | Building Occupants |
| M18 | Upgrade control of air conditioning units to optimize space<br>temperatures & operating periods | 3       | 4                           | 7           | Year 2   | seasonal review          |                    |
| M19 | Test and tune the air conditioning units                                                        | 3       | 4                           | 7           | Year 2   | 3                        |                    |
| M17 | Optimize operating periods of ventilation systems supplying air<br>conditioned spaces           | 2       | 4                           | 6           | Year 2   | seasonal review          |                    |
| P13 | Upgrade/adjust dehumidifier controls                                                            | 3       | 4                           | 7           | Year 2   | seasonal review          |                    |
| M20 | Replace and right-size air conditioning units with ENERGY STAR rated units                      | 1       | 4                           | 5           | Year 3   | 10 to 15                 |                    |
|     | Other:                                                                                          |         | <br>                        |             |          |                          |                    |

#### Behavioural Measures

Operational Measures

Retrofit/Capital Measures

|     | Gas Baseload Measures                                                       | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline  | Life Expectancy<br>(yrs) | Responsibility     |
|-----|-----------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|-----------|--------------------------|--------------------|
|     | GAS BASELOAD - refers to the annual natural gas energy used for domestic he | ot wate                   | and other                   | equip       | nent that | runs year round          |                    |
| B13 | Optimize dishwasher operation (only run when full)                          | 4                         | 4                           | 8           | Year 1    | annual review            | Building Occupants |
| P16 | Identify and repair hot water leaks                                         | 4                         | 4                           | 8           | Year 2    | annual review            |                    |
| P15 | Test and tune DHW boiler efficiency                                         | 3                         | 4                           | 7           | Year 2    | annual review            |                    |
| M21 | Investigate and repair possible gas leaks                                   | 3                         | 4                           | 7           | Year 2    | annual review            |                    |
| P14 | Optimize DHW temperature control                                            | 2                         | 4                           | 6           | Year 2    | annual review            |                    |
| P17 | Implement DHW circulation pump control                                      | 1                         | 4                           | 5           | Year 2    | annual review            |                    |
| P18 | Install low flow showerheads and faucet aerators                            | 1                         | 4                           | 5           | Year 3    | 10 to 15                 |                    |
| M22 | Insulate DHW tanks and distribution piping                                  | 2                         | 4                           | 6           | Year 3    | 10 to 15                 |                    |
| M23 | Install ice plant heat recovery                                             | 1                         | 4                           | 5           | Year 3    | 10 to 15                 |                    |
| M24 | Install solar hot water heating                                             | 1                         | 4                           | 5           | Year 3    | 10 to 15                 |                    |
| M25 | Replace DHW boilers with more efficient models                              | 1                         | 4                           | 5           | Year 3    | 10 to 15                 |                    |
|     | Other:                                                                      |                           |                             |             |           |                          |                    |
|     |                                                                             |                           |                             |             |           |                          |                    |
|     |                                                                             |                           |                             |             |           |                          |                    |

**Behavioural Measures** 

Operational Measures Retrofit/Capital Measures

|     | Gas Heating Measures                                                                | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility            |
|-----|-------------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|----------|--------------------------|---------------------------|
|     | GAS HEATING - refers to the additional energy used in winter for heating and        | humidif                   | ication                     |             |          |                          |                           |
| B14 | Check and clear baseboard heaters of obstructions                                   | 4                         | 2                           | 6           | Year 1   | annual review            | Building Occupants        |
| B15 | Adjust blinds (to retain heat in winter)                                            | 4                         | 2                           | 6           | Year 1   | annual review            | <b>Building Occupants</b> |
|     | Use recommended thermostat set points (in winter set to 68 degrees                  |                           |                             |             |          |                          |                           |
| B16 | or less during daytime)                                                             | 4                         | 2                           | 6           | Year 1   | annual review            | Building Occupants        |
| M26 | Optimize operating periods of ventilation systems supplying heated                  |                           | -                           | _           |          |                          |                           |
|     | spaces                                                                              | 2                         | 2                           | 4           | Year 2   | seasonal review          |                           |
|     | Optimize fan-coil unit and entrance heater controls                                 | 3                         | 2                           | 5           | Year 2   | seasonal review          |                           |
|     | Control loading dock heating                                                        | 4                         | 2                           | 6           | Year 2   | annual review            |                           |
| P21 | Reduce circulating pump operation in mild weather                                   | 4                         | 2                           | 6           | Year 2   | seasonal review          |                           |
| M27 | Test and adjust ventilation systems to optimize outside air volumes                 | 3                         | 2                           | 5           | Year 2   | seasonal review          |                           |
|     | Test and tune boiler efficiency                                                     | 3                         | 2                           | 5           | Year 2   | seasonal review          |                           |
|     | Check heating system for flow balancing and air venting                             | 3                         | 2                           | 5           | Year 2   | seasonal review          |                           |
| EN2 | Check and seal exterior walls and openings                                          | 3                         | 2                           | 5           | Year 2   | 10 to 15                 |                           |
| EN3 | Seal window and door frames                                                         | 3                         | 2                           | 5           | Year 2   | 5                        |                           |
| EN4 | Insulate and seal dividing walls between arena and heated areas                     | 3                         | 2                           | 5           | Year 2   | 5                        |                           |
| P20 | Isolate idle boilers                                                                | 4                         | 2                           | 6           | Year 2   | seasonal review          |                           |
| M32 | Test, repair, replace and right-size heating control valves and outside air dampers | 2                         | 2                           | 4           | Year 4   | 10 to 15                 |                           |
| M31 | Replace spectator heating system with radiant heat                                  | 1                         | 2                           | 3           | Year 5   | 10 to 15                 |                           |
| M33 | Upgrade heating system control to optimize space temperatures and operating periods | 1                         | 2                           | 3           | Year 5   | 10 to 15                 |                           |
| EN5 | Replace single-pane windows with double-pane windows                                | 1                         | 2                           | 3           | Year 5   | 20 to 25                 |                           |
| EN6 | If replacing the roof, ensure R-value at least 22                                   | 1                         | 2                           | 3           | Year 5   | n/a                      |                           |
| M34 | Install high efficiency burners                                                     | 1                         | 2                           | 3           | Year 5   | 15 to 20                 |                           |
|     | Replace boilers with more efficient models                                          | 1                         | 2                           | 3           | Year 5   | 15 to 20                 |                           |
| M36 | Replace old rooftop units with energy efficient units                               | 1                         | 2                           | 3           | Year 5   | 15 to 20                 |                           |
| M37 | Install heat recovery or solar heating units                                        | 1                         | 2                           | 3           | Year 5   | 10 to 15                 |                           |
|     | Other:                                                                              |                           |                             |             |          |                          |                           |

Behavioural Measures Operational Measures Retrofit/Capital Measures

Table 132: Energy Saving Measures for Indoor Sports Arenas

The specific measures and implementation timeline for each individual indoor sports arena will be determined from the results of the Energy Assessments and Checklists (explained in the Implementation section of this plan).

### Proposed / Future Renewable Energy Installations

| Building Name                | Building Address   | Renewable<br>Installation | System<br>Size | Unit |
|------------------------------|--------------------|---------------------------|----------------|------|
| Albion Arena                 | 1501 Albion Rd     | Geothermal                | 280            | kW   |
| Albion Arena                 | 1501 Albion Rd     | Solar PV                  | 112            | kW   |
| Amesbury Sport Complex       | 155 Culford        | Solar PV                  | 130            | kW   |
| East York Memorial Arena     | 888 Cosburn Ave    | Solar PV                  | 138            | kW   |
| H. Carnegie Centennial Arena | 580 Finch Ave W    | Solar PV                  | 199            | kW   |
| Lambton Park Arena           | 4100 Dundas St W   | Solar PV                  | 140            | kW   |
| Long Branch Arena            | 75 Arcadian Circle | Solar PV                  | 200            | kW   |

Table 133: Proposed Renewable Energy Systems on Indoor Sports Arenas

# 3 Energy Management and Retrofit Plan

# 3.1 Implementation Costs and Modeled Savings

The average budgeted cost for implementing suggested measures, based on previous experience with similar facilities, is \$9.38/ft<sup>2</sup> (see Appendix A). The budget allows for lighting audits, lighting retrofits and controls, mechanical system efficiency improvements, appliance replacement and controls and localized efficiency measures for the building envelope. The budget does not allow for major plant or equipment replacement or substantial building upgrades such as roof or window replacement. These items may be included if appropriate in projects for individual buildings, but would not provide rational Return on Investments (ROIs) based on energy savings alone and would therefore be budgeted separately.

Similar measures for consideration apply to high and medium potential buildings. A 20 percent premium is included for high potential buildings to ensure that all improvements necessary to achieve the targets are covered. Still, the ROIs for high potential buildings will be better than the rest.

Low potential buildings do not merit the more in-depth investigations planned for the other two categories. Rather, a checklist approach, guided by the indicated component energy savings potential, would identify the particular measures for each building. The budget allowance for low potential buildings is set at \$0.75 to provide a rational ROI for this group.

The total implementation costs, payback and cash flows for the portfolios of high, medium, and low potential indoor sports arenas are summarized in Table 134 below.

| Annual Savings<br>Potential | Number of<br>facilities | Average Area<br>(ft <sup>2</sup> ) | Estimated<br>Implementation<br>Cost \$/ft <sup>2</sup> | Estimated<br>Implementation<br>Cost \$ |           |      | stimated<br>Savings<br>otential \$ | % of total<br>savings | Payback |
|-----------------------------|-------------------------|------------------------------------|--------------------------------------------------------|----------------------------------------|-----------|------|------------------------------------|-----------------------|---------|
| >\$100,000                  | 2                       | 49,907                             | 11.25                                                  | \$                                     | 1,122,904 | \$   | 326,348                            | 27.0%                 | 3.44    |
| \$5,000 - \$100,000         | 20                      | 30,302                             | 9.38                                                   | \$                                     | 5,681,624 | \$   | 877,330                            | 72.5%                 | 6.48    |
| < \$5,000                   | 5                       | 31,428                             | 0.75                                                   | \$                                     | 117,857   | \$   | 7,210                              | 0.6%                  | 16.35   |
|                             | 27                      |                                    |                                                        | \$                                     | 6,922,384 | \$ : | 1,210,887                          |                       | 5.72    |

#### Table 134: Estimated Implementation Costs and Modeled Savings

Paybacks are determined by actual current implementation costs divided by first year savings (so costs are not adjusted for inflation and utility prices are not adjusted for escalation).

# **3.2** Implementation Process and Tools – Determining the Specific Measures for Each Building

Three types of tools are recommended to enable identification of specific measures in individual buildings:

• High Potential Buildings will undergo a Building Performance Audit incorporating measurement and testing to define retrofits and operational improvements. This also includes interval meter analysis and water consumption.



- Mid Potential Buildings will undergo an Energy Assessment including more in-depth analysis of monthly utility billing data for a number of years and analysis of interval meter or data-logger recordings of daily electricity use.
- Low Potential Buildings will use a simple Checklist to identify priority measures based on the conservation potential profile in this Plan.

The three approaches, budgeted analysis cost and numbers of buildings to which they apply are summarized in Table 8 below.

|                |                                        | #  | Cost     | Savings Potential   | Resources                      |
|----------------|----------------------------------------|----|----------|---------------------|--------------------------------|
| High Potential | Building<br>Performance<br>Audit (BPA) | 2  | \$ 7,500 | > \$100,000         | engineer; energy<br>analyst    |
| Mid Potential  | Energy<br>Assessments                  | 20 | \$ 750   | \$5,000 - \$100,000 | energy analyst                 |
| Low Potential  | Checklists                             | 5  | \$ 150   | < \$5,000           | Division Champion<br>and staff |
| -              |                                        | 27 |          |                     |                                |

#### Table 135: Assessment Tools Used to Determine Specific Energy-saving Measures

#### 3.2.1 Building Performance Audit

There are 2 indoor sports arenas with over \$100,000 in annual energy saving potential. Over 27% of the total energy savings for all indoor sports arenas can be found at these 2 facilities.

These 2 indoor sports arenas can save an average of 56% of their total energy use. The total annual energy savings are estimated to be over \$326,300 and the annual GHG savings are estimated to be approximately 472,500 kg.

These 2 indoor sports arenas can save an average of 59% of their total electricity use (all in Electric Baseload). The total annual electricity savings are estimated to be approximately \$292,800.

These 2 indoor sports arenas can save an average of 53% of their total gas use (81% Gas Baseload and 32% Gas Heating). The total annual gas savings are estimated to be approximately \$33,500.

These 2 indoor sports arenas will undergo Building Performance Audits (see the Implementation Plan for further details). For a complete description of the Building Performance Audit, refer to Appendix A.

See Appendix B for the associated energy savings potential by energy use component.

The highest percentage reductions for these facilities can be found in Gas Baseload and Electric Baseload. After the implementation of the proposed measures, these facilities are eligible to receive over \$180,200 in incentives based on current incentives available from the Ontario Power Authority.



### 3.2.2 Energy Assessment

There are 20 indoor sports arenas with between \$5,000 and \$100,000 in annual energy saving potential. Approximately 73% of the total energy savings for all 27 indoor sports arenas can be found in these 20 facilities.

These 20 indoor sports arenas can save an average of 35% of their total energy use. The total annual energy savings are estimated to be over \$877,300 and individual building annual savings range from approximately \$8,150 to almost \$74,000. The annual GHG savings are approximately 1,188,000 kg.

These 20 indoor sports arenas can save an average of 41% of their total electricity use (31% Electric Baseload, 0% Electric Cooling and 25% Electric Heating). The total annual electricity savings are estimated to be almost \$800,000 and individual building annual savings range from approximately \$6,680 to over \$66,700.

These 20 indoor sports arenas can save an average of 27% of their total gas use (61% Gas Baseload and 20% Gas Heating). The total annual gas savings are estimated to be approximately \$77,400 and individual building annual savings range from \$0 to over \$23,000.

These 20 facilities will undergo an Energy Assessment with highest potential indoor sports arenas focused on first (see the Implementation Plan for further details).

See Appendix B for a list of these 20 indoor sports arenas and their associated energy savings potential by energy use component.

The highest percentage reductions for this group of 20 indoor sports arenas can be found in Electric Baseload and Gas Baseload. <u>For each individual building, the energy components with highest</u> <u>percentage savings potential will be the focus of the Energy Assessment in order to maximize energy</u> <u>savings</u>. For a complete description of the Energy Assessment, refer to Appendix A.

After the implementation of the proposed measures, these indoor sports arenas are eligible to receive almost \$487,000 in incentives based on current incentives available from the Ontario Power Authority.

#### 3.2.3 Energy Savings Checklist

There are 5 indoor sports arenas with less than \$5,000 in savings potential. Less than 1% of the total energy savings for all 27 indoor sports arenas can be found in these 5 facilities.

These 5 indoor sports arenas can save an average of 2% of their total energy use. The total annual energy savings are estimated to be approximately \$7,200 and individual building annual savings range from \$0 to over \$3,900. The annual GHG savings are approximately 11,800 kg.

These 5 indoor sports arenas can save an average of 2% of their total electricity use (all in Electric Baseload). The total annual electricity savings are estimated to be approximately \$6,260 and individual building annual savings range from \$0 to over \$3,900.



Only one of these 5 indoor sports arenas has potential gas savings, which can average of 2% of its total gas use (all in Gas Heating). The total annual gas savings are estimated to be approximately \$950.

These 5 facilities will undergo a checklist approach with highest potential indoor sports arenas focused on first (see the Implementation Plan for further details).

See Appendix B for a list of these 5 indoor sports arenas and their associated energy savings potential by energy use component.

The highest percentage reductions for this group of 5 indoor sports arenas can be found in Electric Baseload and Gas Heating.

The energy savings checklist will be used by the Division Champion for the indoor sports arenas in conjunction with the building operator and/or service contractor for each indoor sports arena. They will focus on measures related to energy components with high potential savings (colour-coded red) in order to maximize savings.

### 3.3 Implementation Budget

Table 9 below shows the total budget to implement the energy management and retrofit plan, including costs for identifying measures and the implementation costs for all 27 facilities. The total costs to implement the energy management and retrofit plan for indoor sports arenas are estimated to be \$6,953,134. Note the Implementation costs are not adjusted for inflation.

| BUDGET               |    |           |  |  |  |  |  |  |  |
|----------------------|----|-----------|--|--|--|--|--|--|--|
| Building Performance |    |           |  |  |  |  |  |  |  |
| Audit (BPA)          | \$ | 15,000    |  |  |  |  |  |  |  |
| Energy Assessment    | \$ | 15,000    |  |  |  |  |  |  |  |
| Checklist            | \$ | 750       |  |  |  |  |  |  |  |
| Implementation       | \$ | 6,922,384 |  |  |  |  |  |  |  |
| Total                | \$ | 6,953,134 |  |  |  |  |  |  |  |

#### Table 136: Total Budget - Energy Management and Retrofit Plan

#### 3.4 10-Year Implementation Plan

The 10-year implementation plan is summarized in Table 10 and Figure 5 below.

The plan will roll-out over 10 years, and the buildings with the highest savings potential will be focused on first.

Identification of measures from the Building Performance Audit will occur in Year 1, with both Building Performance Audits completed by the end of Year 2. The implementation of these measures will begin



in Year 2 and will be completed by the end of Year 3. Identification of measures from Energy Assessments will begin in Year 1, with all 20 Energy Assessments completed by the end of Year 5. The implementation of these measures will begin in Year 2, and will be completed by the end of Year 6. Identification of measures from the Checklists will begin in Year 2, with all 5 Checklists completed by the end of Year 6. The implementation of these measures will begin in Year 3.

Annual Costs refer to the assessment and implementation costs, training, measurement and verification (M&V), and maintenance costs.

Over a 10 year period, the cumulative net cash flow for this plan is estimated to be \$1,820,510. The cumulative net cash flow becomes positive in Year 9.

The implementation plan includes the following assumptions:

- Approximately 76% of the project budget will be spent in the first 5 years, and the other 24% in the following 5 years.
- The percentage of facilities to be retrofitted in each year is proportional to the percentage of the budget spent in that year. 76% of facilities will be retrofitted in the first 5 years and 24% in the following 5 years.
- 25% of energy savings potential of retrofitted facilities is achieved in the first year, 75% in the second year, and 100% in each of the following years.
- Project costs are adjusted for inflation (2% annually) and energy savings are adjusted for utility price escalation (5% annually).
- 100% of incentives are achieved in the year when facilities are retrofitted, and incentives are NOT adjusted for utility price escalation.

|                                    |     | Year 1 |     | Year 2    |     | Year 3    |     | Year 4    |     | Year 5    |     | Year 6    |     | Year 7    |     | Year 8    |     | Year 9    | Year 10          |      | Totals     |
|------------------------------------|-----|--------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|------------------|------|------------|
|                                    |     |        |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |           |                  |      |            |
| High Potential - Building          |     |        |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |           |                  |      |            |
| Performance Audit                  |     | 1      |     | 1         |     | 0         |     | 0         |     | 0         |     | 0         |     | 0         |     | 0         |     | 0         | 0                |      | 2          |
| Mid Potential - Energy Assessment  |     | 5      |     | 5         |     | 5         |     | 3         |     | 2         |     | 0         |     | 0         |     | 0         |     | 0         | 0                |      | 20         |
| Low Potential - Checklist          |     | 0      |     | 1         |     | 1         |     | 1         |     | 1         |     | 1         |     | 0         |     | 0         |     | 0         | 0                |      | 5          |
| Assessment Costs                   | \$  | 11,250 | \$  | 11,406    | \$  | 3,909     | \$  | 2,412     | \$  | 1,666     | \$  | 169       | \$  | -         | \$  | -         | \$  | -         | \$<br>-          | \$   | 30,812     |
| Implementation Costs               | \$  | -      | \$  | 2,061,925 | Ş   | 2,128,177 | \$  | 1,563,007 | \$  | 966,970   | \$  | 666,388   | \$  | 27,076    | \$  | -         | \$  | -         | \$<br>-          | \$   | 7,413,544  |
| Training and M&V costs (10.0% of   |     |        |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |           |                  |      |            |
| Assessment and Implementation      |     |        |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |           |                  |      |            |
| Costs)                             | \$  | 1,125  | \$  | 207,333   | \$  | 213,209   | \$  | 156,542   | \$  | 96,864    | \$  | 66,656    | \$  | 2,708     | \$  | -         | \$  | -         | \$<br>-          | \$   | 744,436    |
| Maintenance costs (5.0% of         |     |        |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |           |                  |      |            |
| Implementation Costs, cumulative)  | \$  | -      | \$  | 103,096   | \$  | 209,505   | Ş   | 287,655   | \$  | 336,004   | Ş   | 369,323   | \$  | 370,677   | \$  | 370,677   | Ş   | 370,677   | \$<br>370,677.21 |      |            |
| Annual Costs                       | Ş   | 12,375 | Ş   | 2,383,760 | Ş   | 2,554,800 | Ş   | 2,009,617 | Ş   | 1,401,504 | \$  | 1,102,536 | \$  | 400,461   | \$  | 370,677   | \$  | 370,677   | \$<br>370,677    | \$ : | 10,977,085 |
| Estimated Achieved Annual Savings  |     |        | \$  | 143,925   | \$  | 559,033   | \$  | 1,088,013 | \$  | 1,411,871 | \$  | 1,585,864 | \$  | 1,697,940 | \$  | 1,789,032 | \$  | 1,878,484 | \$<br>1,972,408  | \$ : | 12,126,568 |
| Estimated Incentives               | \$  | -      | \$  | 288,285   | \$  | 243,510   | \$  | 97,140    | \$  | 33,045    | \$  | 9,048     | \$  | -         | \$  | -         | \$  | -         | \$<br>-          | \$   | 671,027    |
| Annual Savings and Incentives      | \$  | -      | \$  | 432,209   | \$  | 802,542   | \$  | 1,185,153 | \$  | 1,444,915 | \$  | 1,594,912 | \$  | 1,697,940 | \$  | 1,789,032 | \$  | 1,878,484 | \$<br>1,972,408  | \$ : | 12,797,595 |
| Borrowing costs based on           |     |        |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |           |                  |      |            |
| cumulative cash flows (4.0% per    |     |        |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |           |                  |      |            |
| annum)                             |     |        | -\$ | 495       | -\$ | 78,557    | -\$ | 148,647   | -\$ | 181,626   | -\$ | 179,889   | -\$ | 160,194   | -\$ | 108,295   | -\$ | 51,561    | \$<br>-          | -\$  | 909,265    |
| Net Cash Flow incl borrowing costs | -\$ | 12,375 | -\$ | 1,952,046 | -\$ | 1,830,815 | -\$ | 973,111   | -\$ | 138,214   | \$  | 312,486   | \$  | 1,137,284 | \$  | 1,310,060 | \$  | 1,456,245 | \$<br>1,601,731  | \$   | 911,245    |
| Cumulative Net Cash Flow           | -\$ | 12,375 | -\$ | 1,963,926 | -\$ | 3,716,184 | -\$ | 4,540,648 | -\$ | 4,497,236 | -\$ | 4,004,860 | -\$ | 2,707,382 | -\$ | 1,289,027 | \$  | 218,780   | \$<br>1,820,510  |      |            |

| Table 137. ( | Cash Flow | for 10-Vear | Implementati | on Plan |
|--------------|-----------|-------------|--------------|---------|
| Table 137. ( | Cash Fiuw | 101 10-1eai | Implementati |         |



Figure 79: Cash Flow for 10-Year Implementation Plan



# 4 Appendix A

## 4.1 Selection of 2012 Utility Bills for Calculation of Actual Energy Use Intensities

Utility bills were used covering the period from January to December 2012.

If the total number of days in the combined bills was greater than 385 or less than 345 (because of adjustment bills spanning a few months), the facility was excluded from the dataset used to determine energy use components and targets.

To calculate 2012 actual energy use, the combined usage was normalized for the number of days in the calendar year 2012 (366).

### 4.2 Determining Energy Use Components

The energy use components and targets were calculated using data available for eligible facilities at the City of Toronto (see above). Energy use components were determined as follows:

**Electric Baseload**: Relates to systems which run year-round such as lighting, fans and equipment. Electric Baseload for indoor sports arenas is determined as the average kWh/day for March, April, October and November multiplied by 366 days.

**Electric Cooling**: Was determined as the additional electricity use above the year-round base from May to September, and relates to air conditioning.

**Electric Heating**: Was determined as the additional use in January, February and December, and relates to electric heat or electricity use for heating systems (pumps, blowers etc.).

**Gas Baseload**: Relates to systems which run year-round (domestic hot water) and is determined as the average  $m^3/day$  for June, July and August multiplied by 366 days.

**Gas Heating**: Was determined as the additional gas use to heat the building from January to May, and September to December.

### 4.3 Determining Targets

Component energy targets were set based on the top quartile intensity of the eligible data set. Thus achievement of the targets anticipates all buildings with component energy intensities greater than the top quartile will reach that level already attained by one quarter of the buildings.

All values less than 5% of the average of the top 3 facilities were removed for the calculation of the component energy targets.

Before the calculation of potential savings for each building, component targets were adjusted taking into account factors specific to the facility type. Individual targets are adjusted for energy types, non-standard space types or equipment, and high energy intensity spaces or equipment. The target adjustments are listed below.



### **Target Adjustments**

**Electric Heating:** Add Gas Heating multiplied by % of area served and 75% efficiency to Electric Heating AND Multiply Gas Heating by (100% - % of area served)

**GSHP:** Add Gas Heating \* 0.19 \* % of area served to Electric Heating AND Subtract Gas Heating \* 0.13 \* % of area served from Gas Heating

**WSHP:** Add Gas Heating \* 0.19 \* % of area served to Electric Heating Electricity AND Subtract Gas Heating \* 0.75 \* % of area served from Gas Heating

**Electric DHW:** Add Gas Baseload \* % of area served \* 75% efficiency to Electric Baseload AND Multiply Gas Baseload by (100% - % of area served)

**Air-Conditioning:** Divide Electric Cooling by Average % of building served by A/C for all facilities of the type and multiply by % of the facility area served by A/C

Data Centre: Add 50 kWh/ft<sup>2</sup> \* % of building occupied by Data Centre to Electric Baseload

**Food Services**: Add 30 kWh/ft<sup>2</sup> \* % of facility area occupied by Food Services (including seating area) to Electric Baseload

**Outdoor Rink:** If rink has associated ice plant, add (1.04 kWh/ft<sup>2</sup> of ice/week \* ft<sup>2</sup> of ice surface area \* 16 weeks/year) divided by  $ft^2$  of the total building area to Electric Baseload

**Solar Hot Water:** Subtract the product of System Power Rating (kW thermal) and (Average Actual) Annual Performance (kWh (t)/kW) divided by the facility area (ft<sup>2</sup>) from Gas Baseload (ekWh/ft<sup>2</sup>)

**Solar Photovoltaic**: Subtract the product of System Power Rating (kW thermal) and (Average Actual) Annual Performance (kWh (t)/kW) divided by the facility area (ft<sup>2</sup>) from Electric Baseload (kWh/ft<sup>2</sup>)

Garage: Add 20 ekWh/ft<sup>2</sup> to Gas Heating

High-intensity electric equipment: Add 30 kWh/ft<sup>2</sup> to Electric Baseload

Indoor Rink(s) and/or Indoor Pool(s) within Community Centres and Indoor Recreational Facilities:

<u>Adjustment for Electric Baseload</u> – Electric Baseload adjusted for Indoor Rink and/or Indoor Pool, kWh/ft<sup>2</sup> of total area = (Electric Baseload for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>))+ Assumed Electricity Requirement of Ice Plant (ekWh/ft<sup>2</sup> of ice/week) \* Months ice-in \* 52 weeks a year /12 months a year \* Rink area, ft<sup>2</sup> + Electric Baseload for Pool (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>) / Total Area, ft<sup>2</sup>

<u>Adjustment for Gas Baseload</u> – Gas Baseload adjusted for Indoor Rink and/or Indoor Pool, ekWh/ft<sup>2</sup> of total area = Gas Baseload for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>)) + Gas Baseload for Indoor sports arenas (ekWh/ft<sup>2</sup> of rink) \* Rink area, ft<sup>2</sup> + Gas Baseload for Indoor Swimming Pools (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>



<u>Adjustment for Gas Heating</u> – Gas Heating adjusted for Indoor Rink and/or Indoor Pool, ekWh/ft<sup>2</sup> of total area = Gas Heating for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>)) + Gas Heating for Indoor sports arenas (ekWh/ft<sup>2</sup> of rink) \* Rink area, ft<sup>2</sup> + Gas Heating for Indoor Swimming Pools (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>

# 4.4 Calculating Potential Savings

The difference between the actual energy use component intensity and adjusted target represents potential annual savings for the component after multiplication by the facility area (and conversion from ekWh to m<sup>3</sup> in the case of gas).

For the facilities that were previously excluded from the dataset for setting targets, potential savings were calculated based on total electricity and gas use (normalized to 366 days) compared with total adjusted electricity and natural gas targets.

# 4.5 Implementation Costs by Measure Type and Modeled Savings

The following table summarizes the implementation costs and savings estimates for measures under each type of operational system. Note that the costs are based on previous experience with similar projects.

These apply to the following building types:

- Indoor swimming pools
- Indoor sports arenas
- Community centres
- Recreational facilities

|            | Cost \$/ft <sup>2</sup> | % electric | Payback (yrs) | kWh/ft²/yr | m³/ft²/yr |
|------------|-------------------------|------------|---------------|------------|-----------|
|            |                         |            |               |            |           |
| Lighting   | 2.25                    | 100%       | 6.5           | 2.9        |           |
|            |                         |            |               |            |           |
| Mechanical | 1.88                    | 30%        | 6             | 0.8        | 0.9       |
|            |                         |            |               |            |           |
| Electrical | 0.25                    | 100%       | 8             | 0.3        |           |
|            |                         |            |               |            |           |
| Envelope   | 0.50                    | 100%       | 10            |            | 0.0       |
|            |                         |            |               |            |           |
| Process    | 4.5                     | 30%        | 5             |            | 2.5       |
| Total      | 9.38                    |            | 5.9           | 3.93       | 3.40      |

#### Table 138: Implementation Costs by Measure Type

Implementation costs for lighting include measures such as re-lamping and re-ballasting with about 40% fixture retrofits, replacement or relocation, along with selective, local occupancy and photo-controls.



Costs for mechanical system measures include mechanical system testing and minor retrofits such as VFDs, re-balancing, right-sizing, tuning and repairs, along with upgraded controls.

Costs for electrical measures include appliance and equipment replacements and upgraded controls.

Costs for envelope measures include draft-proofing, re-insulation and roof/wall air sealing.

Costs for process measures include cost effective retrofits to ice plant, related equipment and controls.

### 4.6 Assessment Tools

#### **Building Performance Audit**

The Building Performance Audit determines how well a building's existing systems and operational practices compare to other similar buildings, including top performers. The audit identifies problem areas in building systems, examines building operations, and determines improvements that will deliver the greatest energy savings and maximize return on investment. The outcome will be a clear, evidence-based picture of how much can be saved and what areas to focus on to optimize performance.

The Building Performance Audit includes:

- Benchmarking against comparable buildings including top-performers
- Performance based target setting customized for your building
- Interval meter analysis and examination of prior years' energy trends pinpointing specific system and operational inefficiencies
- Motor testing and equipment data-logging analysis
- Deeper understanding of operating practices through energy use profiles
- Power density and plant capacity analysis to identify retrofit opportunities
- Power factor analysis to uncover over-sized equipment
- Inventory and efficiency analysis of main energy-using equipment
- Verification and documentation of the proper operation of the building systems
- Payback and business case analysis

#### **Initial Energy Targets**

Initial energy targets are created by a mass screening tool which uses a standardized logic to produce a preliminary estimate of savings potential for every building, and thereby identify high-, medium- and low-potential buildings. This initial target-setting process creates the overall economic envelope for the program.

#### Energy Assessment

Medium-potential buildings are subjected to more in-depth analysis through an Energy Assessment which drills deeper into utility consumption data to refine the savings target and uncover more specific



conservation measures. Regression analysis of monthly billing data against heating and cooling degreedays highlights billing anomalies such as estimated bills, and provides a more accurate breakdown of energy components, and hence component energy savings. Where multiple years of billing data are available, the Energy Assessment produces weather-normalized performance trends which can uncover changes in energy use and seasonal anomalies which point to specific energy saving opportunities. The Energy Assessment also analyzes electrical interval meter (or data-logger test results) to help identify operational improvements such as equipment running when the building is unoccupied.

# **DI TORONTO**

# 5 Appendix B - Indoor Sports Arenas

# 5.1 Buildings and Building Characteristics

Below are the names, addresses and building areas for the 27 indoor sports arena buildings included in this report and Plan.

| Building                          | Address               | Building<br>Area (ft <sup>2</sup> ) |
|-----------------------------------|-----------------------|-------------------------------------|
| Albion Arena                      | 1501 Albion Rd        | 32,658                              |
| Amesbury Arena                    | 155 Culford Rd        | 26,942                              |
| Baycrest Arena                    | 160 Neptune Dr        | 27,060                              |
| Bayview Arena                     | 3230 Bayview Ave      | 28,417                              |
| Chris Tonks Arena                 | 2801 Eglinton Ave     | 23,638                              |
| Cummer Arena                      | 6000 Leslie St        | 34,348                              |
| Don Mills Arena                   | 1030 Don Mills Rd     | 27,857                              |
| Downsview Arena                   | 1633 Wilson Ave       | 34,218                              |
| East York Arena                   | 888 Cosburn Ave       | 30,257                              |
| Etobicoke Centennial Arena        | 56 Centennial Park Rd | 65,466                              |
| Fenside Arena                     | 30 Slidell Cres       | 26,307                              |
| Flemingdon Arena                  | 165 Grenoble Dr       | 25,640                              |
| Forest Hill Memorial Arena        | 340 Chaplin Cres      | 40,666                              |
| George Bell Arena                 | 215 Ryding Ave        | 41,785                              |
| Habitant Arena                    | 3383 Weston Rd        | 26,307                              |
| Herbert Carnegie Centennial Arena | 580 Finch Ave W       | 42,270                              |
| Lambton Park Arena                | 4100 Dundas St W      | 24,854                              |
| Long Branch Arena                 | 75 Arcadian Crcl      | 25,629                              |
| McCormick Arena                   | 66 Sheridan Ave       | 37,082                              |
| Mimico Arena                      | 31 Drummond St        | 35,607                              |
| Mitchell Field Arena              | 89 Church Ave         | 30,182                              |
| Moss Park Arena                   | 140 Sherbourne St     | 22,335                              |
| Phil White Arena                  | 443 Arlington Ave     | 25,941                              |
| Pine Point Arena                  | 15 Grierson Rd        | 32,001                              |
| Scarborough Arena Gardens         | 75 Birchmount Rd      | 38,319                              |
| Victoria Village Arena            | 190 Bermondsey Rd     | 33,637                              |
| York Mills Arena                  | 190 Bermondsey Rd     | 23,573                              |

Table 139: Indoor Sports Arena Building Information



## 5.2 Energy Use Intensities

Below are the energy use intensities (total electricity, total gas and total energy) for the 27 indoor sports arena buildings included in this report and Plan. They are sorted by total energy use intensity, from lowest to highest energy use intensity.

| Building                          | 2012 Total<br>Electricity<br>Intensity<br>(kWh/ft²) | 2012 Total<br>Gas<br>Intensity<br>(ekWh/ft <sup>2</sup> ) | 2012 Total<br>Energy<br>Intensity<br>(ekWh/ft <sup>2</sup> ) |
|-----------------------------------|-----------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|
| Albion Arena                      | 12.22                                               | 9.38                                                      | 21.60                                                        |
| George Bell Arena                 | 13.11                                               | 9.65                                                      | 22.76                                                        |
| Chris Tonks Arena                 | 14.38                                               | 9.37                                                      | 23.75                                                        |
| Mimico Arena                      | 16.65                                               | 10.05                                                     | 26.70                                                        |
| Pine Point Arena                  | 17.55                                               | 9.87                                                      | 27.42                                                        |
| Fenside Arena                     | 14.31                                               | 16.04                                                     | 30.35                                                        |
| Baycrest Arena                    | 15.25                                               | 15.78                                                     | 31.03                                                        |
| Phil White Arena                  | 23.69                                               | 7.52                                                      | 31.20                                                        |
| Bayview Arena                     | 14.71                                               | 17.11                                                     | 31.82                                                        |
| Scarborough Arena Gardens         | 18.78                                               | 14.05                                                     | 32.84                                                        |
| York Mills Arena                  | 20.94                                               | 11.91                                                     | 32.85                                                        |
| Long Branch Arena                 | 19.43                                               | 13.59                                                     | 33.02                                                        |
| Don Mills Arena                   | 16.55                                               | 17.26                                                     | 33.81                                                        |
| Flemingdon Arena                  | 19.78                                               | 15.21                                                     | 34.99                                                        |
| Lambton Park Arena                | 24.43                                               | 12.74                                                     | 37.17                                                        |
| Habitant Arena                    | 17.67                                               | 21.12                                                     | 38.80                                                        |
| Victoria Village Arena            | 25.42                                               | 15.87                                                     | 41.29                                                        |
| Downsview Arena                   | 20.75                                               | 21.40                                                     | 42.15                                                        |
| Etob Centennial Arena             | 32.73                                               | 11.23                                                     | 43.97                                                        |
| McCormick Arena                   | 27.23                                               | 17.47                                                     | 44.70                                                        |
| East York Arena                   | 27.83                                               | 19.81                                                     | 47.63                                                        |
| Forest Hill Memorial Arena        | 29.68                                               | 19.22                                                     | 48.90                                                        |
| Mitchell Field Arena              | 30.70                                               | 21.58                                                     | 52.28                                                        |
| Moss Park Arena                   | 38.85                                               | 18.27                                                     | 57.12                                                        |
| Herbert Carnegie Centennial Arena | 21.48                                               | 37.53                                                     | 59.01                                                        |
| Amesbury Arena                    | 24.89                                               | 34.46                                                     | 59.35                                                        |
| Cummer Arena                      | 41.14                                               | 51.92                                                     | 93.05                                                        |

Table 140: Indoor Sports Arena 2012 Energy Intensity



### 5.3 Target-setting Method and Metrics

2 indoor sports arenas were determined to be ineligible for determination of energy components or target-setting. See Appendix A. The excluded facilities are listed below.

| Facility                   | Days in 2012 | Energy type |
|----------------------------|--------------|-------------|
| Albion Arena               | 331          | Electricity |
| Forest Hill Memorial Arena | 34           | Electricity |

Table 141: Excluded Facilities

After excluding these 2 facilities, 25 City of Toronto facilities and 12 facilities from other municipalities were used to calculate the energy use components.

The following benchmark charts show the resulting electricity and gas use by component. Electricity use was broken down into baseload, cooling and heating electricity as described in Appendix A, and gas use was broken down into baseload and heating.

The red line on each chart indicates the top quartile for each component which is the target for that component.



Figure 80: 2012 Electric Baseload Intensity Benchmark

Electric Baseload refers to electricity use under normal facility operations for lighting, fans, equipment and other systems that are not weather dependent. Electric Baseload for indoor sports arenas is seen during the months when the ice is in, and ranges from 15.1 to 44.0 ekWh/ft<sup>2</sup> with the top-quartile at 20.38 ekWh/ft<sup>2</sup>.



Figure 81: 2012 Electric Cooling Intensity Benchmark

Electric Cooling refers to additional electricity use in summer for cooling purposes. Since many arena facilities take the ice out during the summer, electricity use is actually below the Electricity Baseload, and Electric Cooling is negative (see the Electric Cooling chart). For indoor sports arenas Electric Cooling ranges from minus 14.1 to plus 1.3 ekWh/ft<sup>2</sup> and the top-quartile is 0.76 ekWh/ft<sup>2</sup>.



Figure 82: 2012 Electric Heating Intensity Benchmark

Electric Heating refers to additional electricity use in winter months typically associated with heating. Electric Heating for indoor sports arenas ranges from 0.2 to 3.6 ekWh/ft<sup>2</sup> and the top-quartile is 0.39 ekWh/ft<sup>2</sup>.





Figure 83: 2012 Gas Baseload Intensity Benchmark

Gas Baseload refers to natural gas used for domestic hot water and other equipment that runs year round. Gas Baseload for indoor sports arenas ranges from 0.96 to 25.1 ekWh/ft<sup>2</sup> and the top-quartile is 1.97 ekWh/ft<sup>2</sup>.



Figure 84: 2012 Gas Heating Intensity Benchmark

Gas Heating refers to the additional energy used in winter for heating and humidification. Gas Heating for indoor sports arenas ranges from 5.4 to 32.1 ekWh/ft<sup>2</sup> and the top-quartile is 8.68 ekWh/ft<sup>2</sup>.

As explained in Appendix A, all values less than 5% of the average of the top 3 facilities were removed for the calculation of the energy use components.

The top quartile values for each energy use component were adopted as targets.

Before calculation of potential savings for each building, component targets were adjusted taking into account factors specific to the facility type (see Appendix A). In the case of indoor sports arenas, the factors are % of the facility area served by electric heat, % of DHW heated by electricity, use of ground-



source or water-source heat pumps, % of the area served by electric air conditioning, % of area served by food services, area of the ice surface and months of ice-in.

For the facilities that were previously excluded from the dataset for setting targets, potential savings were calculated by subtraction of the sum of individual energy use component targets adjusted to specific characteristics of the facility from Total Electricity use (or Total Gas use).

# 5.4 Savings Potential by Energy Use Component

#### Savings Potential by Energy Use Component for the 2 High Savings Potential Indoor Sports Arenas

Buildings are sorted by total annual savings potential, starting with the highest savings potential buildings.

There are 2 indoor sports arenas with over \$100,000 in annual savings potential.

#### High savings Moderate savings Low savings

| Operation name                        | E     | Electric | ity Sav | ings P | otenti | ial        | Gas Savings Potential |         |       |           |       | al Ener<br>gs Pote |       | Incen              | tives       | Indoor<br>Area | GHG<br>Emis-<br>sions |       |
|---------------------------------------|-------|----------|---------|--------|--------|------------|-----------------------|---------|-------|-----------|-------|--------------------|-------|--------------------|-------------|----------------|-----------------------|-------|
|                                       |       | Avera    | age %   |        |        | <b>A</b> / |                       | verage  | %     | <b>•</b>  | Avg   | <b>A</b> /         |       | <b>E</b> 1 (1) (1) |             | 42             |                       |       |
|                                       | Base- |          |         |        | 3      | \$/yr      | ⊅/уі                  | Base-   |       |           | \$/yr | %                  | \$/   | yr                 | Electricity | Gas            | ft²                   | kg/yr |
|                                       | load  | Cooling  | Heating | Total  |        |            | load                  | Heating | Total |           | /0    |                    |       |                    |             |                |                       |       |
| High potential savings facilities (2) | 50%   | 00%      | 00%     | 59%    | \$ 2   | 292,800    | 81%                   | 32%     | 53%   | \$ 33,547 | 56%   | \$ 32              | 6,348 | \$167,315          | \$12,903    | 99,814         | 472,502               |       |
| Etob Centennial Arena                 | 49%   |          |         | 60%    | \$ 1   | 79,484     | 35%                   |         | 10%   | \$ 1,873  | 47%   | \$ 18              | 1,357 | \$102,563          | \$ 720      | 65,466         | 154,559               |       |
| Cummer Arena                          | 54%   |          |         | 57%    | \$ 1   | 13,316     | 92%                   | 51%     | 71%   | \$ 31,675 | 65%   | \$ 14              | 4,990 | \$ 64,752          | \$12,183    | 34,348         | 317,943               |       |

#### Table 142: Savings Potential for 2 High Savings Potential Indoor Sports Arenas

#### Savings Potential by Energy Use Component for the 20 Mid Savings Potential Indoor Sports Arenas

Buildings are sorted by total annual savings potential, starting with the highest savings potential buildings.

There are 20 indoor sports arenas with between \$5,000 and \$100,000 in annual savings potential. The highest potential buildings will be focused on first.



| Operation name                        | E           | Electric       | ity Sav | ings P | ote | ntial   | Ga          | ngs Po   | otential | Total Energy<br>Savings Potential |     |    | Incen   | tives       | Indoor<br>Area | GHG<br>Emis-<br>sions |           |
|---------------------------------------|-------------|----------------|---------|--------|-----|---------|-------------|----------|----------|-----------------------------------|-----|----|---------|-------------|----------------|-----------------------|-----------|
|                                       |             | Avera          | age %   |        |     |         | Av          | verage ' | %        |                                   | Avg |    |         |             |                |                       |           |
|                                       | Base-       | Casling        | Heating | Total  |     | \$/yr   | Base-       | Heating  | Total    | \$/yr                             | %   |    | \$/yr   | Electricity | Gas            | ft²                   | kg/yr     |
| Mid-potential savings facilities (20) | load<br>31% | Cooling<br>00% | 25%     | 41%    | \$  | 799.904 | load<br>61% | 20%      | 27%      | \$ 77.426                         | 35% | \$ | 877.330 | \$457.088   | \$29.779       | 606.040               | 1.188.046 |
| Downsview Arena                       | 43%         | 00 /8          | 2J /0   | 67%    | \$  | 66.792  | 78%         | 19%      | 38%      | \$ 6,974                          | 52% | Ŧ  | 73,766  | \$ 38,167   | \$ 2.682       | 34.218                | 102.880   |
| Herbert Carnegie Centennial Arena     |             |                |         | 38%    | \$  | 48.649  | 68%         | 56%      | 58%      | \$ 23.084                         | 51% |    | 71,733  | \$ 27,800   | \$ 8.878       | 42.270                | 205.050   |
| East York Arena                       | 42%         |                |         | 54%    | \$  | 63.547  | 21%         | 25%      | 24%      | \$ 3.681                          | 42% |    | 67.228  | \$ 36.313   | \$ 1,416       | 30.257                | 76.535    |
| Amesbury Arena                        | 41%         |                |         | 55%    | \$  | 51.907  | 82%         | 52%      | 60%      | \$ 14.010                         | 58% |    | 65.917  | \$ 29.661   | \$ 5.388       | 26.942                | 142.032   |
| Mitchell Field Arena                  | 39%         |                |         | 45%    | \$  | 57,723  | 72%         | 52 /0    | 27%      | \$ 4.450                          | 37% |    | 62.173  | \$ 32.985   | \$ 1.712       | 30,182                | 77,516    |
| Lambton Park Arena                    | 45%         |                |         | 71%    | \$  | 60.457  | 1270        |          | 0%       | \$ -                              | 47% |    | 60.457  | \$ 34.547   | \$ -           | 24.854                | 47.502    |
| Forest Hill Memorial Arena            | .070        |                |         | 34%    | \$  | 56.843  |             |          | 15%      | \$ 2,978                          | 26% |    | 59.821  | \$ 32,482   | \$ 1.145       | 40.666                | 66,182    |
| Habitant Arena                        | 43%         |                |         | 86%    | \$  | 55,721  | 43%         | 16%      | 20%      | \$ 2,809                          | 50% |    | 58,531  | \$ 31,841   | \$ 1,081       | 26,307                | 64,084    |
| Victoria Village Arena                | 37%         |                |         | 47%    | \$  | 55.972  |             | 7%       | 7%       | \$ 882                            | 31% |    | 56.854  | \$ 31,984   | \$ 339         | 33.637                | 50,350    |
| Moss Park Arena                       | 42%         |                |         | 43%    | \$  | 51,935  | 66%         |          | 31%      | \$ 3.203                          | 39% |    | 55,138  | \$ 29.677   | \$ 1.232       | 22,335                | 63,951    |
| McCormick Arena                       | 27%         | 100%           |         | 28%    | \$  | 39,491  | 81%         |          | 43%      | \$ 7,050                          | 34% |    | 46,540  | \$ 22,566   | \$ 2,711       | 37,082                | 81,976    |
| Flemingdon Arena                      | 32%         |                |         | 50%    | \$  | 35,709  |             | 9%       | 8%       | \$ 823                            | 32% | \$ | 36,532  | \$ 20,405   | \$ 317         | 25,640                | 34,007    |
| Phil White Arena                      | 24%         |                | 54%     | 36%    | \$  | 31,113  |             |          | 0%       | \$-                               | 27% | \$ | 31,113  | \$ 17,779   | \$-            | 25,941                | 24,446    |
| Mimico Arena                          | 23%         |                |         | 35%    | \$  | 29,059  |             |          | 0%       | \$-                               | 22% | \$ | 29,059  | \$ 16,605   | \$-            | 35,607                | 22,832    |
| Long Branch Arena                     | 27%         |                |         | 39%    | \$  | 26,997  |             |          | 0%       | \$-                               | 23% | \$ | 26,997  | \$ 15,427   | \$-            | 25,629                | 21,212    |
| Scarborough Arena Gardens             | 19%         |                |         | 23%    | \$  | 23,243  |             |          | 0%       | \$-                               | 13% | \$ | 23,243  | \$ 13,282   | \$-            | 38,319                | 18,262    |
| York Mills Arena                      | 18%         |                | 40%     | 28%    | \$  | 19,074  | 65%         |          | 35%      | \$ 2,486                          | 30% | \$ | 21,560  | \$ 10,900   | \$ 956         | 23,573                | 32,955    |
| Bayview Arena                         | 12%         |                |         | 20%    | \$  | 11,770  |             | 18%      | 17%      | \$ 2,123                          | 19% | \$ | 13,893  | \$ 6,726    | \$ 816         | 28,417                | 24,588    |
| Don Mills Arena                       | 8%          |                |         | 11%    | \$  | 7,218   |             | 13%      | 12%      | \$ 1,399                          | 11% | \$ | 8,617   | \$ 4,125    | \$ 538         | 27,857                | 15,784    |
| Fenside Arena                         | 8%          |                |         | 13%    | \$  | 6,682   |             | 14%      | 14%      | \$ 1,474                          | 13% | \$ | 8,156   | \$ 3,818    | \$ 567         | 26,307                | 15,903    |

#### High savings Moderate savings Low savings

#### Table 143: Savings Potential for 20 Medium Savings Potential Indoor Sports Arenas

Savings potential is considered high if 30% or more, moderate if between 11 and 29%, and low if 10% or less.

#### Savings Potential by Energy Use Component for the 5 Low-Savings Potential Indoor Sports Arenas

Buildings are sorted by total savings potential, starting with the highest saving potential buildings.

There are 5 indoor sports arenas with less than \$5,000 in savings potential. The highest potential buildings will be focused on first.

| Operation name                       | E             | Electric | ity Sav | vings P | otei | ntial | G             | Gas Savings Potential |       |    |       |     | Total Energy<br>Savings Potential |       |     | Incentives |    |     | Indoor<br>Area | GHG<br>Emis-<br>sions |
|--------------------------------------|---------------|----------|---------|---------|------|-------|---------------|-----------------------|-------|----|-------|-----|-----------------------------------|-------|-----|------------|----|-----|----------------|-----------------------|
|                                      |               | Avera    | ige %   |         |      |       | A             | verage                | %     |    |       | Avg |                                   |       |     |            |    |     |                |                       |
|                                      | Base-<br>load | Cooling  | Heating | Total   |      | \$/yr | Base-<br>load | Heating               | Total |    | \$/yr | %   |                                   | \$/yr | Ele | ectricity  | Ċ  | Gas | ft²            | kg/yr                 |
| Low potential savings facilities (5) | 02%           | 0        |         |         | \$   | 6,261 | 00%           |                       |       | \$ | 949   | 02% | \$                                | 7,210 | \$  | 3,578      | \$ | 365 | 157,142        | 11,777                |
| Chris Tonks Arena                    | 5%            |          |         | 8%      | \$   | 3,934 |               |                       | 0%    | \$ | -     | 5%  | \$                                | 3,934 | \$  | 2,248      | \$ | -   | 23,638         | 3,091                 |
| Pine Point Arena                     | 3%            |          |         | 3%      | \$   | 2,327 |               |                       | 0%    | \$ | -     | 2%  | \$                                | 2,327 | \$  | 1,330      | \$ | -   | 32,001         | 1,828                 |
| Baycrest Arena                       |               |          |         | 0%      | \$   | -     |               | 9%                    | 9%    | \$ | 949   | 4%  | \$                                | 949   | \$  | -          | \$ | 365 | 27,060         | 6,858                 |
| George Bell Arena                    |               |          |         | 0%      | \$   | -     |               |                       | 0%    | \$ | -     | 0%  | \$                                | -     | \$  | -          | \$ | -   | 41,785         | 0                     |
| Albion Arena                         |               |          |         | 0%      | \$   | -     |               |                       | 0%    | \$ | -     | 0%  | \$                                | -     | \$  | -          | \$ | -   | 32,658         | 0                     |

#### High savings Moderate savings Low savings

#### Table 144: Savings Potential for 5 Low-Savings Potential Indoor Sports Arenas

Savings potential is considered high if 30% or more, moderate if between 11 and 29%, and low if 10% or less.

Average % savings for each energy component are calculated as (Actual Energy Use – Target Energy Use)/Actual Energy Use and \$/year savings for each component are calculated as (Actual Energy Use - Target Energy Use) \* utility company rates \$0.14 per kWh of electricity and \$0.26 per m<sup>3</sup> of gas.



GHG emissions reduction is based on 110g GHG/kWh of electricity and 1879g GHG/m<sup>3</sup> of natural gas. Utility company CDM Incentives are calculated based on \$0.08/kWh of electricity and \$0.10/m<sup>3</sup> of natural gas saved.

# Indoor Swimming Pools

#### **Table of Contents**

| 1 | Ben  | chmarking and Conservation Potential                                             |             |
|---|------|----------------------------------------------------------------------------------|-------------|
|   | 1.1  | Energy Use and Building Characteristics                                          |             |
|   | 1.1. | 1 Building Characteristics                                                       | 290         |
|   | 1.1. | 2 Summary of Energy Use and Costs                                                | 290         |
|   | 1.2  | Energy Targets                                                                   | 293         |
|   | 1.3  | Savings Potential                                                                | 293         |
| 2 | Con  | servation Measures and Budget                                                    | 295         |
|   | 2.1  | Proposed Energy Efficiency Measures                                              | 295         |
| 3 | Ene  | rgy Management and Retrofit Plan                                                 |             |
|   | 3.1  | Implementation Costs and Modeled Savings                                         |             |
|   | 3.2  | Implementation Process and Tools – Determining the Specific Measures for Each B  | uilding 301 |
|   | 3.2. | 1 Energy Assessment                                                              |             |
|   | 3.2. | 2 Energy Savings Checklist                                                       | 303         |
|   | 3.3  | Implementation Budget                                                            |             |
|   | 3.4  | 10-Year Implementation Plan                                                      |             |
| 4 | Арр  | endix A                                                                          | 306         |
|   | 4.1  | Selection of 2012 Utility Bills for Calculation of Actual Energy Use Intensities |             |
|   | 4.2  | Determining Energy Use Components                                                |             |
|   | 4.3  | Determining Targets                                                              |             |
|   | 4.4  | Calculating Potential Savings                                                    | 308         |
|   | 4.5  | Implementation Costs by Measure Type and Modeled Savings                         |             |
|   | 4.6  | Assessment Tools                                                                 | 309         |
| 5 | Арр  | endix B - Indoor Swimming Pools                                                  |             |
|   | 5.1  | Buildings and Building Characteristics                                           |             |
|   | 5.2  | Energy Use Intensities                                                           |             |
|   | 5.3  | Target-setting Method and Metrics                                                |             |
|   | 5.4  | Savings Potential by Energy Use Component                                        |             |

#### List of Tables

| Table 135: 2012 Energy Use and Costs for 7 City of Toronto Indoor Swimming Pools       |     |
|----------------------------------------------------------------------------------------|-----|
| Table 136: Top Quartile Targets                                                        | 293 |
| Table 137: Savings Potential Summary                                                   | 294 |
| Table 138: Savings Potential Based on Energy Use Component for 7 Indoor Swimming Pools | 294 |
| Table 124: Proposed Renewable Energy Systems on Indoor Swimming Pools                  | 300 |
| Table 139: Energy Saving Measures for Indoor swimming pools                            | 300 |
| Table 140: Estimated Implementation Costs and Modeled Savings                          |     |
| Table 141: Assessment Tools used to determine specific energy-saving measures          |     |
| Table 142: Total Budget - Energy Management and Retrofit Plan                          |     |
| Table 143: Cash Flow for 10-Year Implementation Plan                                   | 305 |
| Table 144: Implementation Costs by Measure Type                                        | 309 |
| Table 145: Indoor Swimming Pool Building Information                                   |     |
| Table 146: Indoor Swimming Pool 2012 Energy Intensity                                  |     |
| Table 147: Savings Potential for 6 Medium Savings Potential Indoor Swimming Pools      |     |
| Table 148: Savings Potential for 1 Low-Savings Potential Indoor Swimming Pool          |     |

### **List of Figures**

| Figure 87: 2012 Energy Use and Cost Breakdown for 7 City of Toronto Indoor Swimming Pools | 291 |
|-------------------------------------------------------------------------------------------|-----|
| Figure 88: 2012 Total Energy Intensity Benchmark                                          | 291 |
| Figure 89: 2012 Total Electricity Intensity Benchmark                                     | 292 |
| Figure 90: 2012 Total Gas Intensity Benchmark                                             | 292 |
| Figure 91: Cash Flow for 10-Year Implementation Plan                                      | 305 |
| Figure 92: 2012 Electric Baseload Intensity Benchmark                                     | 312 |
| Figure 93: 2012 Electric Cooling Intensity Benchmark                                      | 312 |
| Figure 94: 2012 Electric Heating Intensity Benchmark                                      | 313 |

# **1** Benchmarking and Conservation Potential

### **1.1 Energy Use and Building Characteristics**

### **1.1.1 Building Characteristics**

The City of Toronto is reporting on 7 indoor swimming pool buildings in the Energy Conservation Demand Management (ECDM) Plan. The names, addresses and building areas are provided in Appendix B.

The total area for all of the buildings is 214,077 ft<sup>2</sup>. The indoor swimming pools range in size from less than 14,000 ft<sup>2</sup> to over 52,000 ft<sup>2</sup>.

None of the indoor swimming pools are equipped with renewable energy systems.

The indoor swimming pools have air conditioning serving between 0 and 80% of the building. There are a number of other facilities using between 5 and 20% electric heat. None of the indoor swimming pools are served by ground or water source heat pumps.

### 1.1.2 Summary of Energy Use and Costs

This Energy Conservation Demand Management (ECDM) Plan is based on energy use taken from monthly bills for the 2012 calendar year. Energy costs are presented throughout using \$0.14 per kWh of electricity and \$0.26 per m<sup>3</sup> of gas. Refer to Appendix A (section 'Selection of 2012 utility bills for calculation of actual energy use intensities') for the methodology used to calculate the energy use intensities from the utility bills. Total energy use and costs for the 7 buildings are summarized below.

|                               | 2012 Ener | gy Use             |
|-------------------------------|-----------|--------------------|
|                               | Unit      | \$                 |
| Electricity (kWh)             | 4,212,737 | \$589 <i>,</i> 783 |
| Natural Gas (m <sup>3</sup> ) | 995,591   | \$258,854          |
| Total                         |           | \$848,637          |

Table 145: 2012 Energy Use and Costs for 7 City of Toronto Indoor Swimming Pools





Figure 85: 2012 Energy Use and Cost Breakdown for 7 City of Toronto Indoor Swimming Pools

There is a wide range of energy use intensities as presented below, due primarily to differences in efficiency between the 7 buildings. Total energy use ranges from 26.1 to 130.3 ekWh/ft<sup>2</sup>. There are also wide ranges for electricity and gas use per ft<sup>2</sup>. The red line represents the top quartile. The corresponding data for total energy, total electricity and total gas for each building is located in Appendix B.



Figure 86: 2012 Total Energy Intensity Benchmark



Figure 87: 2012 Total Electricity Intensity Benchmark



Figure 88: 2012 Total Gas Intensity Benchmark



# **1.2 Energy Targets**

The energy targets for indoor swimming pools are presented in the table below. The target-setting methodology is based upon all buildings improving to the top quartile intensity for each component of energy use, and is described in Appendix B. The goal is for each indoor swimming pool to achieve its target over the duration of the ECDM Plan.

| Energy type  | Component | Value | Unit          |
|--------------|-----------|-------|---------------|
| Electricity  | Base      | 15.9  | kWh/ft²/year  |
|              | Cooling   | 0.6   | kWh/ft²/year  |
|              | Heating   | 0.7   | kWh/ft²/year  |
|              | Total     | 17.2  | kWh/ft²/year  |
| Gas          | Base      | 21.5  | ekWh/ft²/year |
|              | Heating   | 22.9  | ekWh/ft²/year |
|              | Total     | 44.3  | ekWh/ft²/year |
| Total energy | Total     | 61.5  | ekWh/ft²/year |

 Table 146: Top Quartile Targets

11 indoor swimming pools made up the data set for target-setting, 7 of which are City of Toronto buildings with complete and reliable data, with 4 additional buildings from other municipalities. Before calculation of potential savings for each building, the energy use component targets were adjusted for site specific factors including electric heat (% building served and % for Domestic Hot Water (DHW)), and % of the area which is air conditioned. The specific target adjustments are found in Appendix A.

### **1.3** Savings Potential

The difference between the actual 2012 energy use and the adjusted target represents the potential annual savings for each energy component in each indoor swimming pool. The total savings potential for each indoor swimming pool is then determined as the sum of the components. Some buildings have very high percentage and dollar potential while other more efficient buildings have little or no potential. The 7 indoor swimming pools are categorized as high potential (annual savings of over \$100,000), medium (mid) potential (annual savings between \$5,000 and \$100,000) and low potential (annual savings of less than \$5,000). The savings potential for each individual building is summarized in Appendix B.

There are no indoor swimming pools with annual savings potential greater than \$100,000. 6 indoor swimming pools have annual savings potential between \$5,000 and \$100,000 and 1 indoor swimming pool has annual savings potential less than \$5,000 (see Table 3).

The total annual savings potential for the 7 buildings is \$264,892 (\$167,343 for electricity and \$97,549 for gas) with an average total energy savings of 35%.



For the 6 mid-potential savings facilities, the total annual savings potential is \$261,857 (\$164,307 for electricity and \$97,549 for gas) with an average total energy savings of 38%.

For the 1 low-potential savings facility, the total annual savings potential is \$3,036 (\$3,036 for electricity and \$0 for gas) with an average total energy savings of 2%.

| Operation name                       | E     | lectrici | ty Savii | ngs Po | tential   | Ga    | s Savii | ngs Po | tential  | S   | al Energy<br>avings<br>otential | Incer       | itives   | Indoor<br>Area | GHG<br>Emis-<br>sions |
|--------------------------------------|-------|----------|----------|--------|-----------|-------|---------|--------|----------|-----|---------------------------------|-------------|----------|----------------|-----------------------|
|                                      |       | Avera    | ige %    |        |           |       | verage  | %      |          | Avg | •                               |             |          |                |                       |
|                                      | Base- |          |          |        | \$/yr     | Base- |         |        | \$/yr    | %   | \$/yr                           | Electricity | Gas      | ft²            | kg/yr                 |
|                                      | load  | Cooling  | Heating  | Total  |           | load  | Heating | Total  |          | 70  |                                 |             |          |                |                       |
| TOTAL: 7 facilities                  | 25%   | 63%      | 52%      | 28%    | \$167,343 | 55%   | 17%     | 38%    | \$97,549 | 35% | \$264,892                       | \$95,625    | \$37,519 | 214,077        | 836,465               |
| Mid-potential savings facilities (6) | 29%   | 59%      | 55%      | 32%    | \$164,307 | 56%   | 20%     | 41%    | \$97,549 | 38% | \$261,857                       | \$93,890    | \$37,519 | 161,846        | 834,079               |
| Low potential savings facilities (1) | 00%   | 100%     | 00%      | 04%    | \$ 3,036  | 00%   | 00%     | 00%    | \$ -     | 02% | \$ 3,036                        | \$ 1,735    | \$ -     | 52,231         | 2,385                 |

#### Table 147: Savings Potential Summary

GHG emissions reduction is based on 110g GHG/kWh of electricity and 1879g GHG/m<sup>3</sup> of natural gas. Utility company incentives are calculated based on \$0.08/kWh of electricity (a composite of \$0.05/kWh for lighting retrofits and \$0.10 for non-lighting measures) and \$0.10/m<sup>3</sup> of natural gas saved.

The savings potential for each individual energy component points to where the biggest savings are to be found and guides the priorities for implementation. Table 4 below shows the total potential savings for all 7 buildings and highlights where the greatest percentage savings are.

| Energy and Water Components                                          | 2012 Use | Target | Savings<br>Potential % | avings<br>tential \$ |
|----------------------------------------------------------------------|----------|--------|------------------------|----------------------|
| Electric Baseload (kWh/ft²)                                          | 17.4     | 13.1   | 25%                    | \$<br>128,737        |
| Electric Cooling (kWh/ft²)                                           | 1.0      | 0.4    | 63%                    | \$<br>19,300         |
| Electric Heating (kWh/ft²)                                           | 1.4      | 0.7    | 52%                    | \$<br>19,306         |
| Total Electricity (kWh/ft²) for facilities w/o component intensities | 0.0      | 0.0    | 0%                     | \$<br>-              |
| Gas Baseload (ekWh/ft²)                                              | 28.3     | 12.8   | 55%                    | \$<br>77,120         |
| Gas Heating (ekWh/ft²)                                               | 21.9     | 18.1   | 17%                    | \$<br>20,430         |
| Total Gas (ekWh/ft²) for facilities w/o component intensities        | 0.0      | 0.0    | 0%                     | \$<br>-              |
| Total Energy (ekWh/ft²)                                              | 67.8     | 44.1   | 35%                    | \$<br>264,892        |

High savings Moderate

Low savings

#### Table 148: Savings Potential Based on Energy Use Component for 7 Indoor Swimming Pools

Savings potential is considered high if it is 30% and above, moderate if between 10 and 29% and low if less than 10%.

Components with the highest percentage savings potential (i.e. Electric Cooling, Electric Heating (i.e. higher electricity use in winter months) and Gas Baseload) will be given higher priority in terms of recommended measures for implementation. In many cases, Electric Baseload measures can provide a significant portion of dollar savings. However, they generally require significant capital investment and will therefore be implemented in later years.

# 2 Conservation Measures and Budget

### 2.1 Proposed Energy Efficiency Measures

Table 5 below shows the full range of possible energy efficiency measures for the entire portfolio of indoor swimming pools. The measures are grouped based on the component of energy use they relate to and have been sorted based on chronology of implementation.

The measures are categorized by system type - lighting (L), mechanical (M), electrical (EL), envelope (EN), process (P) (i.e. domestic hot water) and behavioural (B) measures. The profiles of energy use and conservation potential for the 7 facilities indicate that the largest percentage reductions will come from measures associated with electric cooling, electric heating and gas baseload, the majority of which are low/no cost measures.

The measures have been prioritized in order to help make an informed decision on which to implement first. Priorities are set using the criteria of 'Energy Savings Potential' and 'Ease of Implementation'. Each measure was assigned a score from 1 to 4 for both energy savings potential and ease of implementation.

For Energy Savings Potential, a score of 4 was assigned to measures with the greatest percentage energy savings potential and a score of 1 was assigned to measures with the smallest percentage energy savings potential. For Ease of Implementation, a score of 4 was assigned to measures that are the easiest to implement and a score of 1 to measures that are the most difficult to implement.

The Energy Savings Potential scoring was determined using the following criteria:

- 4 Savings potential is greater than 40%
- 3 Savings potential is 30-40%
- 2 Savings potential is 20-30%
- 1 Savings potential is less than 20%

The Ease of Implementation scoring was determined using the following criteria:

- 4 Measure can be done immediately by building occupants or service contractors (little/no cost)
- 3 Measure involves testing, tuning, measuring (low cost)
- 2 Measure involves significant investigation/optimization (more significant costs)
- 1 Measure involves replacement/installation involving capital costs

<u>The measures with the highest combined Energy Savings Potential and Ease of Implementation scores</u> (out of 8) are deemed the highest priority.



Accordingly the Overall score associated to the proposed measures can be summarized as follows:

1 - Least energy savings potential; Most difficult to implement

8 - Greatest energy savings potential; Easiest to implement

 $\parallel$ 

#### Timelines

Measures recommended to be implemented in Year 1 (the year of the initial assessment) are behavioural measures that can be done immediately without capital budgets. Measures recommended for Year 2 will generally result in high percentage savings, are mainly operational and do not require significant capital costs. Year 3 measures will provide high percentage savings (i.e. measures related to electric cooling and gas baseload) but have associated capital costs (i.e. installation and replacement measures). Measures to be implemented in Year 4 and Year 5 are those that have significant associated capital costs and may result in high dollar savings but less significant percentage energy savings (i.e. measures related to all other energy components).

|     | Electric Baseload Measures                                                                       | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline  | Life Expectancy<br>(yrs) | Responsibility     |
|-----|--------------------------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|-----------|--------------------------|--------------------|
|     | ELECTRIC BASELOAD - refers to year-round electricity use for lighting, fans, ec                  | quipmer                   | it and othe                 | r syste     | ms that a | re not weather depen     | dent               |
| B1  | Turn off/unplug machines, office and kitchen equipment, chargers when not needed                 | 4                         | 2                           | 6           | Year 1    | Annual Review            | Building Occupants |
| B2  | Enable ENERGY STAR power settings, turn off computers when not in use                            | 4                         | 2                           | 6           | Year 1    | Annual Review            | Building Occupants |
| B3  | Turn off lights when areas not in use                                                            | 4                         | 2                           | 6           | Year 1    | Annual Review            | Building Occupants |
| B4  | Make use of natural light instead of turning on lights where possible                            | 4                         | 2                           | 6           | Year 1    | Annual Review            | Building Occupants |
| M1  | Optimize operating schedules for fans and pumps                                                  | 3                         | 2                           | 5           | Year 2    | Seasonal Review          |                    |
| M2  | Test and adjust ventilation systems to reduce fan power                                          | 3                         | 2                           | 5           | Year 2    | Seasonal Review          |                    |
| L1  | Replace incandescent and halogen light bulbs with high efficiency lighting                       | 1                         | 2                           | 3           | Year 4    | 10 to 15                 |                    |
| L2  | Install motion sensors in washrooms/occasional use spaces to shut off lights when unoccupied     | 1                         | 2                           | 3           | Year 4    | 10 to 15                 |                    |
| L3  | Install photo-sensors and/or a timer on outdoor and daylit interior<br>area lighting             | 1                         | 2                           | 3           | Year 4    | 10 to 15                 |                    |
| L4  | Replace HID lighting with high efficiency fluorescent                                            | 1                         | 2                           | 3           | Year 4    | 10 to 15                 |                    |
| L5  | Replace outdoor lights and signage with high efficiency fixtures                                 | 1                         | 2                           | 3           | Year 4    | 10 to 15                 |                    |
| L6  | Replace festive lighting with LED                                                                | 1                         | 2                           | 3           | Year 4    | 10 to 15                 |                    |
| L7  | Install sufficient manual switching to allow occupants to effectively control lighting operation | 1                         | 2                           | 3           | Year 4    | 15+                      |                    |
| EL1 | Replace refrigerators, dishwasher, microwaves with ENERGY STAR rated appliances                  | 1                         | 2                           | 3           | Year 4    | 8 to 12                  |                    |
| EL2 | Replace computers with ENERGY STAR rated units                                                   | 1                         | 2                           | 3           | Year 4    | 4 to 6                   |                    |
| EL3 | Install controls on vending machines                                                             | 1                         | 2                           | 3           | Year 4    | 10 to 15                 |                    |
| EL4 | Install power factor correction                                                                  | 3                         | 2                           | 5           | Year 4    | 15+                      |                    |
| M3  | Test and replace/right-size circulating pumps                                                    | 1                         | 2                           | 3           | Year 4    | 10 to 20                 |                    |
| M4  | Install VFD on circulating pump                                                                  | 1                         | 2                           | 3           | Year 4    | 10 to 20                 |                    |
| M5  | Install variable frequency drives (VFDs) on HVAC fans and pumps                                  | 1                         | 2                           | 3           | Year 4    | 10 to 20                 |                    |
| M6  | Convert electric hot water heaters to natural gas                                                | 1                         | 2                           | 3           | Year 4    | 10 to 15                 |                    |
|     | Other:                                                                                           |                           |                             |             |           |                          |                    |
|     |                                                                                                  |                           |                             |             |           |                          |                    |

Behavioural Measures

Operational Measures Retrofit/Capital Measures

\_\_\_\_\_

# Inf TORONTO

|           | Electric Heating Measures                                                                     | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility     |  |  |
|-----------|-----------------------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|----------|--------------------------|--------------------|--|--|
|           | ELECTRIC HEATING (IF APPLICABLE) - refers to electricity use for heating purposes             |                           |                             |             |          |                          |                    |  |  |
| B5        | Adjust blinds (to retain heat in winter)                                                      | 4                         | 4                           | 8           | Year 1   | annual review            | Building Occupants |  |  |
| <b>B6</b> | Avoid use of electric heaters                                                                 | 4                         | 4                           | 8           | Year 1   | annual review            | Building Occupants |  |  |
| В7        | Use recommended thermostat set points (in winter set to 68 degrees or less during daytime)    | 4                         | 4                           | 8           | Year 1   | annual review            | Building Occupants |  |  |
| M7        | Control fan coil and entrance heaters to optimize run-times                                   | 3                         | 4                           | 7           | Year 2   | seasonal review          |                    |  |  |
| P1        | Control car plug-in outlets                                                                   | 3                         | 4                           | 7           | Year 2   | seasonal review          |                    |  |  |
| M8        | Evaluate conversion from electric heating to natural gas                                      | 2                         | 4                           | 6           | Year 2   | n/a                      |                    |  |  |
| M9        | Convert electric to gas dehumidifiers                                                         | 1                         | 4                           | 5           | Year 2   | 15 to 20                 |                    |  |  |
| M10       | Install snow sensors to control the snow-melting system                                       | 1                         | 4                           | 5           | Year 3   | seasonal review          |                    |  |  |
| M11       | Upgrade base building heating system to avoid use of electric heaters                         | 1                         | 4                           | 5           | Year 3   | seasonal review          |                    |  |  |
| M12       | Upgrade electric heating controls to optimize space temperatures and operating periods Other: | 1                         | 4                           | 5           | Year 3   | seasonal review          |                    |  |  |
|           |                                                                                               |                           |                             |             |          |                          |                    |  |  |

#### **Behavioural Measures**

\_\_\_\_\_

**Operational Measures** 

Retrofit/Capital Measures

|       | Electric Cooling Measures                                                      | Ease of<br>Implementatio | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility     |
|-------|--------------------------------------------------------------------------------|--------------------------|-----------------------------|-------------|----------|--------------------------|--------------------|
|       | ELECTRIC COOLING (IF APPLICABLE) - refers to electricity use for cooling purpo | ses                      |                             |             |          |                          |                    |
| B8    | Use recommended thermostat set points (during the summer, set to               |                          |                             |             |          |                          |                    |
| DO    | 78 degrees or more)                                                            | 4                        | 4                           | 8           | Year 1   | annual review            | Building Occupants |
| B9    | Only cool rooms that are being used                                            | 4                        | 4                           | 8           | Year 1   | annual review            | Building Occupants |
| B10   | Install and use energy efficient ceiling fans                                  | 4                        | 4                           | 8           | Year 1   | annual review            | Building Occupants |
| B11   | Close blinds (to shade space from direct sunlight)                             | 4                        | 4                           | 8           | Year 1   | annual review            | Building Occupants |
| B12   | Install window film, solar screens or awnings on south and west facing         |                          |                             |             |          |                          |                    |
| BIZ   | windows                                                                        | 4                        | 4                           | 8           | Year 1   | annual review            | Building Occupants |
| P2    | Upgrade/adjust dehumidifier controls                                           | 3                        | 4                           | 7           | Year 2   | seasonal review          |                    |
| M13   | Optimize operating periods of ventilation systems supplying air                |                          |                             |             |          |                          |                    |
| 11112 | conditioned spaces                                                             | 2                        | 4                           | 6           | Year 2   | seasonal review          |                    |
| M14   | Upgrade control of air conditioning units to optimize space                    |                          |                             |             |          |                          |                    |
| 11/14 | temperatures & operating periods                                               | 3                        | 4                           | 7           | Year 2   | seasonal review          |                    |
| M15   | Test and tune the air conditioning units                                       | 3                        | 4                           | 7           | Year 2   | 3                        |                    |
| MALC  | Replace and right-size air conditioning units with ENERGY STAR rated           |                          |                             |             |          |                          |                    |
| M16   | units                                                                          | 1                        | 4                           | 5           | Year 3   | 10 to 15                 |                    |
|       | Other:                                                                         |                          |                             |             |          |                          |                    |
|       |                                                                                |                          |                             |             |          |                          |                    |
|       |                                                                                |                          |                             |             |          |                          |                    |

#### **Behavioural Measures**

**Operational Measures** 

Retrofit/Capital Measures
|           | Gas Baseload Measures                                                       | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline  | Life Expectancy<br>(yrs) | Responsibility     |
|-----------|-----------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|-----------|--------------------------|--------------------|
|           | GAS BASELOAD - refers to the annual natural gas energy used for domestic ho | ot wateı                  | and other                   | equip       | nent that | runs year round          |                    |
| B13       | Optimize dishwasher operation (only run when full)                          | 4                         | 4                           | 8           | Year 1    | annual review            | Building Occupants |
| P6        | Identify and repair hot water leaks                                         | 4                         | 4                           | 8           | Year 1    | seasonal review          |                    |
| P3        | Optimize pool water temperature control, reset based on use                 | 4                         | 4                           | 8           | Year 2    | seasonal review          |                    |
| P4        | Optimize DHW temperature control                                            | 2                         | 4                           | 6           | Year 2    | annual review            |                    |
| P5        | Test and tune DHW boiler efficiency                                         | 3                         | 4                           | 7           | Year 2    | annual review            |                    |
| M18       | Investigate and repair possible gas leaks                                   | 3                         | 4                           | 7           | Year 2    | annual review            |                    |
| P7        | Implement DHW circulation pump control                                      | 1                         | 4                           | 5           | Year 2    | annual review            |                    |
| M17       | Install heat recovery dehumidification system                               | 1                         | 4                           | 5           | Year 3    | 10 to 15                 |                    |
| <b>P8</b> | Install low flow showerheads and faucet aerators                            | 1                         | 4                           | 5           | Year 3    | 10 to 15                 |                    |
| M19       | Insulate DHW tanks and distribution piping                                  | 2                         | 4                           | 6           | Year 3    | 10 to 15                 |                    |
| M20       | Recover heat from nearby ice plant                                          | 1                         | 4                           | 5           | Year 3    | 10 to 15                 |                    |
| M21       | Install solar hot water heating                                             | 1                         | 4                           | 5           | Year 3    | 10 to 15                 |                    |
| M22       | Replace DHW boilers with more efficient models                              | 1                         | 4                           | 5           | Year 3    | 10 to 15                 |                    |
|           | Other:                                                                      |                           |                             |             |           |                          |                    |
|           |                                                                             |                           |                             |             |           |                          |                    |
|           |                                                                             |                           |                             |             |           |                          |                    |

Behavioural Measures

Operational Measures Retrofit/Capital Measures

|     | Gas Heating Measures                                                                | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility     |
|-----|-------------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|----------|--------------------------|--------------------|
|     | GAS HEATING - refers to the additional energy used in winter for heating and        | humidif                   | ication                     |             |          |                          |                    |
| B14 | Check and clear baseboard heaters of obstructions                                   | 4                         | 1                           | 5           | Year 1   | annual review            | Building Occupants |
| B15 | Adjust blinds (to retain heat in winter)                                            | 4                         | 1                           | 5           | Year 1   | annual review            | Building Occupants |
| B16 | Use recommended thermostat set points (in winter set to 68 degrees                  |                           |                             |             |          |                          |                    |
| DIO | or less during daytime)                                                             | 4                         | 1                           | 5           | Year 1   | annual review            | Building Occupants |
| M23 | Optimize operating periods of ventilation systems                                   | 2                         | 1                           | 3           | Year 2   | seasonal review          |                    |
| M24 | Test and adjust ventilation systems to optimize outside air volumes                 | 3                         | 1                           | 4           | Year 2   | seasonal review          |                    |
| M25 | Test and tune boiler efficiency                                                     | 3                         | 1                           | 4           | Year 2   | seasonal review          |                    |
| M26 | Check heating system for flow balancing and air venting                             | 3                         | 1                           | 4           | Year 2   | seasonal review          |                    |
| EN1 | Check and seal exterior walls and openings                                          | 3                         | 1                           | 4           | Year 2   | 10 to 15                 |                    |
| EN2 | Seal window and door frames                                                         | 3                         | 1                           | 4           | Year 2   | 5                        |                    |
| M27 | Optimize fan-coil unit and entrance heater controls                                 | 3                         | 1                           | 4           | Year 2   | seasonal review          |                    |
| P9  | Control loading dock heating                                                        | 4                         | 1                           | 5           | Year 2   | seasonal review          |                    |
| P10 | Isolate idle boilers                                                                | 4                         | 1                           | 5           | Year 2   | seasonal review          |                    |
| M28 | Test, repair, replace and right-size heating control valves and outside air dampers | 2                         | 1                           | 3           | Year 4   | 10 to 15                 |                    |
| M29 | Upgrade heating system control to optimize space temperatures and operating periods | 1                         | 1                           | 2           | Year 5   | 10 to 15                 |                    |
| EN3 | Replace single-pane windows with double-pane windows                                | 1                         | 1                           | 2           | Year 5   | 20 to 24                 |                    |
| EN4 | If replacing the roof, ensure R-value at least 22                                   | 1                         | 1                           | 2           | Year 5   | n/a                      |                    |
| M30 | Install high efficiency burners                                                     | 1                         | 1                           | 2           | Year 5   | 15 to 20                 |                    |
| M31 | Replace boilers with more efficient models                                          | 1                         | 1                           | 2           | Year 5   | 15 to 20                 |                    |
| M32 | Replace old rooftop units with energy efficient units                               | 1                         | 1                           | 2           | Year 5   | 15 to 20                 |                    |
|     | Other:                                                                              |                           |                             |             |          |                          |                    |
|     |                                                                                     |                           |                             |             |          |                          |                    |
|     |                                                                                     |                           |                             |             |          |                          |                    |

Behavioural Measures Operational Measures Retrofit/Capital Measures

#### Table 149: Energy Saving Measures for Indoor swimming pools

The specific measures and implementation timeline for each individual indoor swimming pool will be determined from the results of the Energy Assessments and Checklists (explained in the Implementation section of this plan).

#### **Proposed / Future Renewable Energy Installations**

| Building Name   | Building Address | Renewable<br>Installation | System<br>Size | Unit |
|-----------------|------------------|---------------------------|----------------|------|
| Wallace Emerson | 1260 Dufferin St | Solar PV                  | 10             | kW   |

Table 150: Proposed Renewable Energy Systems on Indoor Swimming Pools

## 3 Energy Management and Retrofit Plan

### 3.1 Implementation Costs and Modeled Savings

The average budgeted cost for implementing suggested measures, based on previous experience with similar facilities is \$9.38/ft<sup>2</sup> (see Appendix A). The budget allows for lighting retrofits and controls, mechanical system efficiency improvements, appliance replacement and controls and localized efficiency measures for the building envelope. The budget does not allow for major plant or equipment replacement or substantial building upgrades such as roof or window replacement. These items may be included if appropriate in projects for individual buildings, but would not provide rational Return on Investments (ROIs) based on energy savings alone and would therefore be budgeted separately.

Similar measures for consideration apply to high and medium potential buildings. A 20 percent premium is included for high potential buildings to ensure that all improvements necessary to achieve the targets are covered. Still, the ROIs for high-potential buildings will be better than the rest.

Low potential buildings do not merit the more in-depth investigations planned for the other two categories. Rather, a checklist approach, guided by the indicated component energy savings potential, would identify the particular measures for each building. The budget allowance for low-potential buildings is set at \$0.75 to provide a rational ROI for this group.

The total implementation costs, payback and cash flows for the portfolios of high medium and lowpotential indoor swimming pools are summarized in Table 140 below.

| Annual Savings<br>Potential | Number of<br>facilities | Average Area<br>(ft <sup>2</sup> ) | Estimated<br>Implementation<br>Cost \$/ft <sup>2</sup> | Estimated<br>Implementation<br>Cost \$ |           |    | stimated<br>Savings<br>otential \$ | % of total<br>savings | Payback     |
|-----------------------------|-------------------------|------------------------------------|--------------------------------------------------------|----------------------------------------|-----------|----|------------------------------------|-----------------------|-------------|
| >\$100,000                  | 0                       | -                                  | 11.25                                                  | \$                                     | -         | \$ | -                                  | 0.0%                  |             |
| \$5,000 - \$100,000         | 6                       | 26,974                             | 9.38                                                   | \$                                     | 1,517,311 | \$ | 261,857                            | 98.9%                 | 5.79        |
| < \$5,000                   | 1                       | 52,231                             | 0.75                                                   | \$                                     | 39,173    | \$ | 3,036                              | 1.1%                  | 12.90       |
|                             | 7                       |                                    |                                                        | \$                                     | 1,556,484 | \$ | 264,892                            |                       | <b>5.88</b> |

### Table 151: Estimated Implementation Costs and Modeled Savings

Paybacks are determined by actual current implementation costs divided by first year savings (so costs are not adjusted for inflation and utility prices are not adjusted for escalation).

# **3.2** Implementation Process and Tools – Determining the Specific Measures for Each Building

Three types of tools are recommended to enable identification of specific measures in individual buildings:

• High Potential Buildings will undergo a Building Performance Audit incorporating measurement and testing to define retrofits and operational improvements. This also includes interval meter analysis and water consumption.



- Mid Potential Buildings will undergo an Energy Assessment including more in-depth analysis of monthly utility billing data for a number of years and analysis of interval meter or data-logger recordings of daily electricity use.
- Low Potential Buildings will use a simple Checklist to identify priority measures based on the conservation potential profile in this Plan.

The three approaches, budgeted analysis cost and numbers of buildings to which they apply are summarized in Table 141 below.

|                |                                        | # | Cost     | Savings Potential   | Resources                      |
|----------------|----------------------------------------|---|----------|---------------------|--------------------------------|
| High Potential | Building<br>Performance<br>Audit (BPA) | 0 | \$ 7,500 | >\$100,000          | engineer; energy<br>analyst    |
| Mid Potential  | Energy<br>Assessments                  | 6 | \$ 750   | \$5,000 - \$100,000 | energy analyst                 |
| Low Potential  | Checklists                             | 1 | \$ 150   | < \$5,000           | Division Champion and<br>staff |
| -              |                                        | 7 |          |                     |                                |

### Table 152: Assessment Tools used to determine specific energy-saving measures

### 3.2.1 Energy Assessment

There are 6 indoor swimming pools with between \$5,000 and \$100,000 in annual energy saving potential. Approximately 99% of the total energy savings for all 7 indoor swimming pools can be found in these 6 facilities.

These 6 indoor swimming pools can save an average of 38% of their total energy use. The total annual energy savings are estimated to be over \$261,850 and individual building annual savings range from approximately \$7,100 to over \$93,000. The annual GHG savings are approximately 834,000 kg.

These 6 indoor swimming pools can save an average of 32% of their total electricity use (29% Electric Baseload, 59% Electric Cooling and 55% Electric Heating). The total annual electricity savings are estimated to be approximately \$164,300 and individual building annual savings range from just over \$7,800 to over \$69,300.

These 6 indoor swimming pools can save an average of 41% of their total gas use (56% Gas Baseload and 20% Gas Heating). The total annual gas savings are estimated to be approximately \$97,549 and individual building annual savings range from approximately \$0 to approximately \$40,500.

These 6 facilities will undergo an Energy Assessment with highest potential indoor swimming pools focused on first (see the Implementation Plan for further details).

See Appendix B for a list of these 6 Indoor swimming pools and their associated energy savings potential by energy use component.



The highest percentage reductions for this group of 6 indoor swimming pools can be found in Electric Heating, Electric Cooling and Gas Baseload. For each individual building, the energy components with highest percentage savings potential will be the focus of the Energy Assessment in order to maximize energy savings. For a complete description of the Energy Assessment, refer to Appendix A.

After the implementation of the proposed measures, these indoor swimming pools are eligible to receive over \$131,000 in incentives based on current incentives available from the Ontario Power Authority.

### 3.2.2 Energy Savings Checklist

There is 1 indoor swimming pool (John Innes Park) with less than \$5,000 in savings potential. Approximately 1% of the total energy savings for all 7indoor swimming pools can be found at this facility.

John Innes Park indoor swimming pool can save an average of 2% of its total energy use. The total annual energy savings are estimated to be approximately \$3,000 and the annual GHG savings are approximately 2,385 kg.

John Innes Park indoor swimming pool can save an average of 4% of its total electricity use (0% Electric Baseload, 100% Electric Cooling and 0% Electric Heating). The total annual electricity savings are estimated to be approximately \$3,000.

There is no gas savings potential at this facility.

John Innes Park indoor swimming pool will undergo a checklist approach (see the Implementation Plan for further details).

See Appendix B for the associated energy savings potential by energy use component for this building.

All of the savings for this building can be found in Electric Cooling.

The energy savings checklist will be used by the Division Champion for the Indoor swimming pools in conjunction with the building operator and/or service contractor for each Indoor swimming pool. They will focus on measures related to energy components with high potential savings (colour-coded red) in order to maximize savings.

### 3.3 Implementation Budget

Table 8 below shows the total budget to implement the energy management and retrofit plan, including costs for identifying measures and the implementation costs for all 7 facilities. The total cost to implement the energy management and retrofit plan for indoor swimming pools is estimated to be \$1,561,134. Note the Implementation costs are not adjusted for inflation.

| BUDGET               | Г  |           |
|----------------------|----|-----------|
| Building Performance |    |           |
| Audit (BPA)          | \$ | -         |
| Energy Assessment    | \$ | 4,500     |
| Checklist            | \$ | 150       |
| Implementation       | \$ | 1,556,484 |
| Total                | \$ | 1,561,134 |

### Table 153: Total Budget - Energy Management and Retrofit Plan

### 3.4 10-Year Implementation Plan

The 10-year implementation plan is summarized in Table 9 and Figure 51 below.

The plan will roll-out over 10 years, and the buildings with the highest savings potential will be focused on first.

Identification of measures from Energy Assessments will begin in Year 1, with all 6 Energy Assessments completed by the end of Year 5. The implementation of these measures will begin in Year 2, and be completed by the end of Year 6. Identification of measures from the Checklists will occur in Year 2 and the implementation of these measures will occur in Year 3.

Annual Costs refer to the assessment and implementation costs, training, measurement and verification (M&V), and maintenance costs.

Over a 10 year period, the cumulative net cash flow for this plan is estimated to be \$391,608. The cumulative net cash flow becomes positive in Year 9.

The implementation plan includes the following assumptions:

- Approximately 70% of the project budget will be spent in the first 5 years, and the other 30% in the following 5 years.
- The percentage of facilities to be retrofitted in each year is proportional to the percentage of the budget spent in that year. 70% of medium and low potential savings facilities will be retrofitted in the first 5 years and 30% in the following 5 years.
- 25% of energy savings potential of retrofitted facilities are achieved in the first year, 75% in the second year, and 100% in each of the following years.
- Project costs are adjusted for inflation (2% annually) and energy savings are adjusted for utility price escalation (5% annually).



 100% of incentives are achieved in the year when facilities are retrofitted, and incentives are NOT adjusted for utility price escalation.

|                                     |     | Year 1 |     | Year 2  |     | Year 3  |     | Year 4  |     | Year 5  |     | Year 6  |     | Year 7  |     | Year 8  |     | Year 9  |    | Year 10   |    | Totals    |
|-------------------------------------|-----|--------|-----|---------|-----|---------|-----|---------|-----|---------|-----|---------|-----|---------|-----|---------|-----|---------|----|-----------|----|-----------|
| Mid Potential - Energy Assessment   |     | 2      |     | 1       |     | 1       |     | 1       |     | 1       |     | 0       |     | 0       |     | 0       |     | 0       |    | 0         |    | 6         |
| Low Potential - Checklist           |     | 0      |     | 1       |     | 0       |     | 0       |     | 0       |     | 0       |     | 0       |     | 0       |     | 0       |    | 0         |    | 1         |
| Assessment Costs                    | \$  | 1,500  | Ş   | 906     | Ş   | 750     | \$  | 750     | Ş   | 750     | Ş   | -       | \$  | -       | Ş   | -       | \$  | -       | Ş  | -         | Ş  | 4,656     |
| Implementation Costs                | Ş   | -      | Ş   | 526,203 | Ş   | 309,934 | \$  | 273,731 | Ş   | 279,206 | Ş   | 284,790 | Ş   | -       | Ş   | -       | \$  | -       | Ş  | -         | Ş  | 1,673,864 |
| Training and M&V costs (10.0% of    |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |     |         |    |           |    |           |
| Assessment and Implementation       |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |     |         |    |           |    |           |
| Costs)                              | Ş   | 150    | Ş   | 52,711  | Ş   | 31,068  | \$  | 27,448  | \$  | 27,996  | Ş   | 28,479  | Ş   | -       | \$  | -       | \$  | -       | Ş  | -         | Ş  | 167,852   |
| Maintenance costs (5.0% of          |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |     |         |    |           |    |           |
| Implementation Costs, cumulative)   | Ş   | -      | Ş   | 26,310  | Ş   | 41,807  | Ş   | 55,493  | Ş   | 69,454  | Ş   | 83,693  | Ş   | 83,693  | ş   | 83,693  | Ş   | 83,693  | Ş  | 83,693.21 |    |           |
| Annual Costs                        | Ş   | 1,650  | Ş   | 606,131 | Ş   | 383,560 | Ş   | 357,423 | Ş   | 377,405 | Ş   | 396,962 | \$  | 83,693  | Ş   | 83,693  | \$  | 83,693  | Ş  | 83,693    | Ş  | 2,457,903 |
| Estimated Achieved Annual Savings   |     |        | Ş   | 50,652  | Ş   | 160,953 | \$  | 258,292 | Ş   | 301,733 | Ş   | 340,719 | Ş   | 370,236 | Ş   | 391,366 | \$  | 410,935 | Ş  | 431,481   | Ş  | 2,716,367 |
| Estimated Incentives                | Ş   | -      | Ş   | 93,024  | Ş   | 15,371  | \$  | 12,367  | Ş   | 9,655   | Ş   | 2,727   | \$  | -       | Ş   | -       | \$  | -       | Ş  | -         | Ş  | 133,143   |
| Annual Savings and Incentives       | Ş   | -      | Ş   | 143,676 | Ş   | 176,324 | \$  | 270,659 | Ş   | 311,388 | Ş   | 343,445 | \$  | 370,236 | Ş   | 391,366 | \$  | 410,935 | Ş  | 431,481   | Ş  | 2,849,511 |
| Borrowing costs based on cumulative |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |     |         |    |           |    |           |
| cash flows (4.0% per annum)         |     |        | -\$ | 66      | -\$ | 18,564  | -ş  | 26,854  | -\$ | 30,324  | -ş  | 32,965  | -\$ | 35,106  | -\$ | 23,644  | -\$ | 11,337  | Ş  | -         | -ş | 178,859   |
| Net Cash Flow incl borrowing costs  | -\$ | 1,650  | -\$ | 462,520 | -\$ | 225,800 | -\$ | 113,617 | -\$ | 96,341  | -\$ | 86,481  | Ş   | 251,437 | \$  | 284,029 | \$  | 315,905 | Ş  | 347,788   | Ş  | 212,749   |
| Cumulative Net Cash Flow            | -\$ | 1,650  | -\$ | 464,104 | -\$ | 671,340 | -\$ | 758,104 | -\$ | 824,121 | -\$ | 877,638 | -\$ | 591,095 | -s  | 283,422 | \$  | 43,820  | \$ | 391,608   |    |           |

Table 154: Cash Flow for 10-Year Implementation Plan



Figure 89: Cash Flow for 10-Year Implementation Plan



## 4 Appendix A

### 4.1 Selection of 2012 Utility Bills for Calculation of Actual Energy Use Intensities

Utility bills were used covering the period from January to December 2012.

If the total number of days in the combined bills was greater than 385 or less than 345 (because of adjustment bills spanning a few months), the facility was excluded from the dataset used to determine energy use components and targets.

To calculate 2012 actual energy use, the combined usage was normalized for the number of days in the calendar year 2012 (366).

### 4.2 Determining Energy Use Components

The energy use components and targets were calculated using data available for eligible facilities at the City of Toronto (see above) and facilities of the same type from other municipalities. Energy use components were determined as follows:

**Electric Baseload**: Relates to systems which run year-round such as lighting, fans and equipment. Electric Baseload for indoor swimming pools is determined as the average kWh/day for April, May, September and October multiplied by 366 days.

**Electric Cooling**: Was determined as the additional electricity use above the year-round base from June to August, and relates to air conditioning.

**Electric Heating**: Was determined as the additional use in January, February, March, November and December, and relates to electric heat or electricity use for heating systems (pumps, blowers etc.).

**Gas Baseload**: Relates to systems which run year-round (domestic hot water) and is determined as the average  $m^3/day$  for June, July and August multiplied by 366 days.

**Gas Heating**: Was determined as the additional gas use to heat the building from January to May, and September to December.

### 4.3 Determining Targets

Component energy targets were set based on the top quartile intensity of the eligible data set. Thus achievement of the targets anticipates all buildings with component energy intensities greater than the top quartile will reach that level already attained by one quarter of the buildings.

All values less than 5% of the average of the top 3 facilities were removed for the calculation of the component energy targets.

Before the calculation of potential savings for each building, component targets were adjusted taking into account factors specific to the facility type. Individual targets are adjusted for energy types, non-



standard space types or equipment, and high energy intensity spaces or equipment. The target adjustments are listed below.

### Target Adjustments

**Electric Heating:** Add Gas Heating multiplied by % of area served and 75% efficiency to Electric Heating AND Multiply Gas Heating by (100% - % of area served)

**GSHP:** Add Gas Heating \* 0.19 \* % of area served to Electric Heating AND Subtract Gas Heating \* 0.13 \* % of area served from Gas Heating

**WSHP:** Add Gas Heating \* 0.19 \* % of area served to Electric Heating Electricity AND Subtract Gas Heating \* 0.75 \* % of area served from Gas Heating

**Electric DHW:** Add Gas Baseload \* % of area served \* 75% efficiency to Electric Baseload AND Multiply Gas Baseload by (100% - % of area served)

**Air-Conditioning:** Divide Electric Cooling by Average % of building served by A/C for all facilities of the type and multiply by % of the facility area served by A/C

Data Centre: Add 50 kWh/ft<sup>2</sup> \* % of building occupied by Data Centre to Electric Baseload

**Food Services**: Add 30 kWh/ft<sup>2</sup> \* % of facility area occupied by Food Services (including seating area) to Electric Baseload

**Outdoor Rink:** If rink has associated ice plant, add (1.04 kWh/ft<sup>2</sup> of ice/week \* ft<sup>2</sup> of ice surface area \* 16 weeks/year) divided by  $ft^2$  of the total building area to Electric Baseload

**Solar Hot Water:** Subtract the product of System Power Rating (kW thermal) and (Average Actual) Annual Performance (kWh (t)/kW) divided by the facility area (ft<sup>2</sup>) from Gas Baseload (ekWh/ft<sup>2</sup>)

**Solar Photovoltaic**: Subtract the product of System Power Rating (kW thermal) and (Average Actual) Annual Performance (kWh(t)/kW) divided by the facility area (ft<sup>2</sup>) from Electric Baseload (kWh/ft<sup>2</sup>)

Garage: Add 20 ekWh/ft<sup>2</sup> to Gas Heating

High-intensity electric equipment: Add 30 kWh/ft<sup>2</sup> to Electric Baseload

### Indoor Rink(s) and/or Indoor Pool(s) within Community Centres and Indoor Recreational Facilities:

<u>Adjustment for Electric Baseload</u> – Electric Baseload adjusted for Indoor Rink and/or Indoor Pool, kWh/ft<sup>2</sup> of total area = (Electric Baseload for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>))+ Assumed Electricity Requirement of Ice Plant (ekWh/ft<sup>2</sup> of ice/week) \* Months ice-in \* 52 weeks a year /12 months a year \* Rink area, ft<sup>2</sup> + Electric Baseload for Pool (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>) / Total Area, ft<sup>2</sup>



<u>Adjustment for Gas Baseload</u> – Gas Baseload adjusted for Indoor Rink and/or Indoor Pool, ekWh/ft<sup>2</sup> of total area = Gas Baseload for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>)) + Gas Baseload for Indoor Sports Arenas (ekWh/ft<sup>2</sup> of rink) \* Rink area, ft<sup>2</sup> + Gas Baseload for Indoor Swimming Pools (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>

<u>Adjustment for Gas Heating</u> – Gas Heating adjusted for Indoor Rink and/or Indoor Pool, ekWh/ft<sup>2</sup> of total area = Gas Heating for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>)) + Gas Heating for Indoor Sports Arenas (ekWh/ft<sup>2</sup> of rink) \* Rink area, ft<sup>2</sup> + Gas Heating for Indoor Swimming Pools (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>

### 4.4 Calculating Potential Savings

The difference between the actual energy use component intensity and adjusted target represents potential annual savings for the component after multiplication by the facility area (and conversion from ekWh to m<sup>3</sup> in the case of gas).

For the facilities that were previously excluded from the dataset for setting targets, potential savings were calculated based on total electricity and gas use (normalized to 366 days) compared with total adjusted electricity and natural gas targets.

### 4.5 Implementation Costs by Measure Type and Modeled Savings

The following table summarizes the implementation costs and savings estimates for measures under each type of operational system. Note that the costs are based on previous experience with similar projects.

These apply to the following building types:

- Indoor swimming pools
- Indoor sports arenas
- Community centres
- Recreational facilities



|            | Cost \$/ft <sup>2</sup> | % electric | Payback (yrs) | kWh/ft²/yr | m <sup>3</sup> /ft <sup>2</sup> /yr |
|------------|-------------------------|------------|---------------|------------|-------------------------------------|
|            |                         |            |               |            |                                     |
| Lighting   | 2.25                    | 100%       | 6.5           | 2.9        |                                     |
|            |                         |            |               |            |                                     |
| Mechanical | 1.88                    | 30%        | 6             | 0.8        | 0.9                                 |
|            |                         |            |               |            |                                     |
| Electrical | 0.25                    | 100%       | 8             | 0.3        |                                     |
|            |                         |            |               |            |                                     |
| Envelope   | 0.50                    | 100%       | 10            |            | 0.0                                 |
|            |                         |            |               |            |                                     |
| Process    | 4.5                     | 30%        | 5             |            | 2.5                                 |
| Total      | 9.38                    |            | 5.9           | 3.93       | 3.40                                |

Table 155: Implementation Costs by Measure Type

Implementation costs for lighting include measures such as re-lamping and re-ballasting with about 20% fixture retrofits, replacement or relocation, along with selective, local occupancy and photo-controls.

Costs for mechanical system measures include mechanical system testing and minor retrofits such as VFDs, re-balancing, right-sizing, tuning and repairs, along with upgraded controls.

Costs for electrical measures include appliance and equipment replacements and upgraded controls.

Costs for envelope measures include thermographic testing along with draft-proofing, re-insulation and roof/wall air sealing.

Costs for process measures include cost effective retrofits to the pool circulation pump, dehumidification, heat recovery, related equipment and controls.

### 4.6 Assessment Tools

### **Building Performance Audit**

The Building Performance Audit determines how well a building's existing systems and operational practices compare to other similar buildings, including top performers. The audit identifies problem areas in building systems, examines building operations, and determines improvements that will deliver the greatest energy savings and maximize return on investment. The outcome will be a clear, evidence-based picture of how much can be saved, and what areas to focus on to optimize performance.

The Building Performance Audit includes:

- Benchmarking against comparable buildings including top-performers
- Performance based target setting customized for your building
- Interval meter analysis and examination of prior years' energy trends pinpointing specific system and operational inefficiencies
- Motor testing and equipment data-logging analysis



- Deeper understanding of operating practices through energy use profiles
- Power density and plant capacity analysis to identify retrofit opportunities
- Power factor analysis to uncover over-sized equipment
- Inventory and efficiency analysis of main energy-using equipment
- Verification and documentation of the proper operation of the building systems
- Payback and business case analysis

### **Initial Energy Targets**

Initial energy targets are created by a mass screening tool which uses a standardized logic to produce a preliminary estimate of savings potential for every building, and thereby identify high-, medium- and low-potential buildings. This initial target-setting process creates the overall economic envelope for the program.

### **Energy Assessment**

Medium-potential buildings are subjected to more in-depth analysis through an Energy Assessment which drills deeper into utility consumption data to refine the savings target and uncover more specific conservation measures. Regression analysis of monthly billing data against heating and cooling degreedays highlights billing anomalies such as estimated bills, and provides a more accurate breakdown of energy components, and hence component energy savings. Where multiple years of billing data are available the Energy Assessment produces weather-normalized performance trends which can uncover changes in energy use and seasonal anomalies which point to specific energy saving opportunities. The Energy Assessment also analyzes electrical interval meter (or data-logger test results) to help identify operational improvements such as equipment running when the building is unoccupied.

## 5 Appendix B - Indoor Swimming Pools

## 5.1 Buildings and Building Characteristics

Below are the names, addresses and building areas for the 7 indoor swimming pool buildings included in this report and Plan.

| Building                    | Address           | Building<br>Area (ft <sup>2</sup> ) |
|-----------------------------|-------------------|-------------------------------------|
| Douglas Snow Aquatic Center | 5100 Yonge Street | 40,666                              |
| Gus Ryder Pool (indoor)     | 302 Birmingham St | 21,097                              |
| Harrison Pool               | 15 Stephanie St   | 15,263                              |
| John Innes Park             | 150 Sherbourne St | 52,231                              |
| Norseman Pool (indoor)      | 105 Norseman St   | 19,052                              |
| The Elms Pool (indoor)      | 45 Golfdown Dr    | 13,885                              |
| Wallace-Emerson C.C         | 1260 Dufferin St  | 51,882                              |

Table 156: Indoor Swimming Pool Building Information

### 5.2 Energy Use Intensities

Below are the energy use intensities (total electricity, total gas and total energy) for the 7 indoor swimming pool buildings included in this report and Plan. They are sorted by total energy use intensity, from lowest to highest energy use intensity.

| Building                    | 2012 Total<br>Electricity<br>Intensity<br>(kWh/ft²) | 2012 Total<br>Gas<br>Intensity<br>(ekWh/ft²) | 2012 Total<br>Energy<br>Intensity<br>(ekWh/ft <sup>2</sup> ) |
|-----------------------------|-----------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|
| John Innes Park             | 10.67                                               | 15.40                                        | 26.07                                                        |
| Wallace-Emerson C.C         | 16.97                                               | 28.79                                        | 45.76                                                        |
| Harrison Pool               | 11.75                                               | 40.95                                        | 52.70                                                        |
| Norseman Pool (indoor)      | 20.81                                               | 66.97                                        | 87.79                                                        |
| Douglas Snow Aquatic Center | 23.30                                               | 67.83                                        | 91.14                                                        |
| The Elms Pool (indoor)      | 27.39                                               | 86.98                                        | 114.38                                                       |
| Gus Ryder Pool (indoor)     | 40.78                                               | 89.61                                        | 130.39                                                       |

Table 157: Indoor Swimming Pool 2012 Energy Intensity

### **5.3 Target-setting Method and Metrics**

No indoor swimming pools were determined to be ineligible for determination of energy components or target-setting. See Appendix A.

7 City of Toronto facilities and 4 from other municipalities were used to calculate the energy use components.



The following benchmark charts show the resulting electricity and gas use by component. Electricity use was broken down into baseload, cooling and heating electricity as described in Appendix A, and gas use was broken down into baseload and heating.

The red line on each chart indicates the top quartile for each component which is the target for that component.



Figure 90: 2012 Electric Baseload Intensity Benchmark

Electric Baseload refers to year-round electricity use for lighting, fans, equipment and other systems that are not weather dependent. Electric Baseload for indoor swimming pools ranges from 9.9 to 46.2 ekWh/ft<sup>2</sup> and the top-quartile is 15.87 ekWh/ft<sup>2</sup>.



Figure 91: 2012 Electric Cooling Intensity Benchmark

Electric Cooling refers to additional electricity use in summer for cooling purposes. Electric Cooling for indoor swimming pools ranges from 0.3 to 5.4  $ekWh/ft^2$  and the top-quartile is 0.61  $ekWh/ft^2$ .



Figure 92: 2012 Electric Heating Intensity Benchmark

Electric Heating refers to additional electricity use in winter months for heating purposes. Electric Heating for indoor swimming pools ranges from 0.3 to 2.9 ekWh/ft<sup>2</sup> and the top-quartile is 0.68 ekWh/ft<sup>2</sup>.



Figure 9: 2012 Gas Baseload Intensity Benchmark

Gas Baseload refers to natural gas used for domestic hot water and other equipment that runs year round. Gas Baseload for indoor swimming pools ranges from 9.6 to 59.7 ekWh/ft<sup>2</sup> and the top-quartile is 21.46 ekWh/ft<sup>2</sup>.



Figure 10: 2012 Gas Heating Intensity Benchmark

Gas Heating refers to the additional energy used in winter for heating and humidification. Gas Heating for indoor swimming pools ranges from 12.9 to  $60.5 \text{ ekWh/ft}^2$  and the top-quartile is 22.88 ekWh/ft<sup>2</sup>.

As explained in Appendix A, all values less than 5% of the average of the top 3 facilities were removed for the calculation of the energy use components.

The top quartile values for each energy use component were adopted as targets.

Before calculation of potential savings for each building, component targets were adjusted taking into account factors specific to the facility type (see Appendix A). In the case of indoor swimming pools, the factors are % of the facility area served by electric heat, %of DHW heated by electricity, use of ground-source or water-source heat pumps, and % of the area served by electric air conditioning.

For the facilities that were previously excluded from the dataset for setting targets, potential savings were calculated by subtraction of the sum of individual energy use component targets adjusted to specific characteristics of the facility from Total Electricity use (or Total Gas use).

## 5.4 Savings Potential by Energy Use Component

### Savings Potential by Energy Use Component for the 6 Mid Savings Potential Indoor Swimming Pools

Buildings are sorted by total annual savings potential, starting with the highest saving potential buildings.

There are 6indoor swimming pools with between \$5,000 and \$100,000 in annual savings potential. The highest potential buildings will be focused on first.



#### High savings Moderate savings Low savings

| Operation name                       | E     | lectrici | ty Savi | ngs Po | tential   | Gas Savings Potential |               |     |          |     | al Energy<br>avings<br>otential | Incer       | itives   | Indoor<br>Area  | GHG<br>Emis-<br>sions |
|--------------------------------------|-------|----------|---------|--------|-----------|-----------------------|---------------|-----|----------|-----|---------------------------------|-------------|----------|-----------------|-----------------------|
|                                      |       | Avera    | age %   |        |           | A                     | verage        | %   |          | Avg |                                 |             |          |                 |                       |
|                                      | Base- |          |         |        | \$/yr     | Base-                 |               |     | \$/yr    | %   | \$/yr                           | Electricity | Gas      | ft <sup>2</sup> | kg/yr                 |
|                                      | load  | Cooling  | Heating | Total  |           | load                  | Heating Total |     |          | 70  |                                 |             |          | <u> </u>        |                       |
| Mid-potential savings facilities (6) | 29%   | 59%      | 55%     | 32%    | \$164,307 | 56%                   | 20%           | 41% | \$97,549 | 38% | \$261,857                       | \$93,890    | \$37,519 | 161,846         | 834,079               |
| Gus Ryder Pool (indoor)              | 58%   | 40%      | 62%     | 58%    | \$ 69,363 | 64%                   | 23%           | 50% | \$23,683 | 52% | \$ 93,047                       | \$39,636    | \$ 9,109 | 21,097          | 225,658               |
| Douglas Snow Aquatic Center          | 37%   | 63%      |         | 38%    | \$ 50,234 | 70%                   |               | 58% | \$40,491 | 53% | \$ 90,725                       | \$28,705    | \$15,573 | 40,666          | 332,096               |
| Norseman Pool (indoor)               | 28%   |          |         | 27%    | \$ 15,241 | 43%                   | 37%           | 40% | \$12,809 | 37% | \$ 28,050                       | \$ 8,709    | \$ 4,927 | 19,052          | 104,545               |
| Wallace-Emerson C.C                  |       | 100%     | 80%     | 18%    | \$ 21,642 |                       |               | 0%  | \$-      | 7%  | \$ 21,642                       | \$12,367    | \$-      | 51,882          | 17,005                |
| The Elms Pool (indoor)               | 10%   | 53%      |         | 15%    | \$ 7,826  | 49%                   | 36%           | 44% | \$13,476 | 37% | \$ 21,302                       | \$ 4,472    | \$ 5,183 | 13,885          | 103,541               |
| Harrison Pool                        |       |          |         | 0%     | \$-       |                       | 45%           | 45% | \$ 7,090 | 35% | \$ 7,090                        | \$-         | \$ 2,727 | 15,263          | 51,235                |

#### Table 158: Savings Potential for 6 Medium Savings Potential Indoor Swimming Pools

Savings potential is considered high if 30% or more, moderate if between 11 and 29%, and low if 10% or less.

### Savings Potential by Energy Use Component for the 1 Low Savings Potential Indoor Swimming Pool

There is 1 indoor swimming pool with less than \$5,000 in savings potential.

#### High savings Moderate savings Low savings

| Operation name                       | E     | lectrici | ty Savi | ngs Po | otent | tial  | Ga    | tential             | Total Energy<br>Savings<br>Potential |       |     | Incen | itives | Indoor<br>Area | GHG<br>Emis-<br>sions |        |       |
|--------------------------------------|-------|----------|---------|--------|-------|-------|-------|---------------------|--------------------------------------|-------|-----|-------|--------|----------------|-----------------------|--------|-------|
|                                      |       | Avera    | age %   |        |       |       | A١    | /erage <sup>(</sup> | %                                    |       | Avg |       |        |                |                       |        |       |
|                                      | Base- |          |         |        |       | \$/yr | Base- |                     |                                      | \$/yr | %   |       | \$/yr  | Electricity    | Gas                   | ft²    | kg/yr |
|                                      | load  | Cooling  | Heating | Total  |       |       | load  | Heating             | Total                                |       | 70  |       |        |                |                       |        |       |
| Low potential savings facilities (1) | 00%   | 100%     | 00%     | 04%    | \$    | 3,036 | 00%   | 00%                 | 00%                                  | \$-   | 02% | \$    | 3,036  | \$ 1,735       | \$-                   | 52,231 | 2,385 |
| John Innes Park                      |       | 100%     |         | 4%     | \$    | 3,036 |       |                     | 0%                                   | \$    | 2%  | \$    | 3,036  | \$ 1,735       | \$ -                  | 52,231 | 2,385 |

#### Table 159: Savings Potential for 1 Low-Savings Potential Indoor Swimming Pool

Savings potential is considered high if 30% or more, moderate if between 11 and 29%, and low if 10% or less.

Average % savings for each energy component are calculated as (Actual Energy Use – Target Energy Use)/Actual Energy Use and \$/year savings for each component are calculated as (Actual Energy Use – Target Energy Use) \* utility company rates \$0.14 per kWh of electricity and \$0.26 per m<sup>3</sup> of gas.

GHG emissions reduction is based on 110g GHG/kWh of electricity and 1879g GHG/m<sup>3</sup> of natural gas. Utility company CDM Incentives are calculated based on \$0.08/kWh of electricity and \$0.10/m<sup>3</sup> of natural gas saved.

# Long-Term Care Homes and Services

# **DI TORONTO**

### **Table of Contents**

| 1 | Ben  | chmarking and Conservation Potential                                             |               |
|---|------|----------------------------------------------------------------------------------|---------------|
|   | 1.1  | Energy Use and Building Characteristics                                          |               |
|   | 1.1. | 1 Building Characteristics                                                       |               |
|   | 1.1. | 2 Summary of Energy Use and Costs                                                |               |
|   | 1.2  | Energy Targets                                                                   |               |
|   | 1.3  | Savings Potential                                                                |               |
| 2 | Con  | servation Measures and Budget                                                    |               |
|   | 2.1  | Proposed Energy Efficiency Measures                                              |               |
| 3 | Ene  | rgy Management and Retrofit Plan                                                 |               |
|   | 3.1  | Implementation Costs and Modeled Savings                                         |               |
|   | 3.2  | Implementation Process and Tools – Determining the Specific Measures for Each    | h Building332 |
|   | 3.2. | 1 Energy Assessment                                                              |               |
|   | 3.3  | Implementation Budget                                                            |               |
|   | 3.4  | 10-Year Implementation Plan                                                      |               |
| 4 | Арр  | endix A                                                                          |               |
|   | 4.1  | Selection of 2012 Utility Bills for Calculation of Actual Energy Use Intensities |               |
|   | 4.2  | Determining Energy Use Components                                                |               |
|   | 4.3  | Determining Targets                                                              |               |
|   | 4.4  | Calculating Potential Savings                                                    |               |
|   | 4.5  | Implementation Costs by Measure Type and Modeled Savings                         |               |
|   | 4.6  | Assessment Tools                                                                 |               |
| 5 | Арр  | endix B - Long-term Care Homes and Services                                      |               |
|   | 5.1  | Buildings and Building Characteristics                                           |               |
|   | 5.2  | Energy Use Intensities                                                           |               |
|   | 5.3  | Target-setting Method and Metrics                                                |               |

# **DÎ** Toronto

### List of Tables

| Table 160: 2012 Energy Use and Costs for 10 City of Toronto Long-term Care Homes and Services | 319 |
|-----------------------------------------------------------------------------------------------|-----|
| Table 161: Top Quartile Targets                                                               | 321 |
| Table 162: Savings Potential Summary                                                          | 322 |
| Table 163: Savings Potential based on Energy Use Component for 10 Long-term Care Homes and    |     |
| Services                                                                                      | 322 |
| Table 153: Energy Saving Measures for Long-term Care Homes and Services                       | 329 |
| Table 165: Proposed Renewable Energy Systems on Indoor Swimming Pools                         | 330 |
| Table 166: Estimated Implementation Costs and Modeled Savings                                 | 331 |
| Table 167: Assessment Tools Used to Determine Specific Energy-saving Measures                 | 332 |
| Table 168: Total Budget - Energy Management and Retrofit Plan                                 | 333 |
| Table 169: Cash Flow for 10-Year Implementation Plan                                          | 334 |
| Table 170: Implementation Costs by Measure Type                                               | 338 |
| Table 171: Long-term Care Home Building Information                                           | 341 |
| Table 172: Long-term Care Home 2012 Energy Intensity                                          | 341 |

### List of Figures

| Figure 93: 2012 Energy Use and Cost Breakdown for City of Toronto Long-Term Care Facilities | . 319 |
|---------------------------------------------------------------------------------------------|-------|
| Figure 94: 2012 Total Energy Intensity Benchmark                                            | . 320 |
| Figure 95: 2012 Total Electricity Intensity Benchmark                                       | . 320 |
| Figure 96: 2012 Total Gas Intensity Benchmark                                               | . 321 |
| Figure 97: Cash Flow for 10-Year Implementation Plan                                        | . 335 |
| Figure 98: 2012 Electric Baseload Intensity Benchmark                                       | . 342 |
| Figure 99: 2012 Electric Cooling Intensity Benchmark                                        | . 342 |
| Figure 100: 2012 Electric Heating Intensity Benchmark                                       | . 343 |
| Figure 101: 2012 Gas Baseload Intensity Benchmark                                           | . 343 |
| Figure 102: 2012 Gas Heating Intensity Benchmark                                            | . 344 |

## **1** Benchmarking and Conservation Potential

### **1.1 Energy Use and Building Characteristics**

### **1.1.1 Building Characteristics**

The City of Toronto is reporting on 10 long-term care homes and services in the Energy Conservation Demand Management (ECDM) Plan. The names, addresses and building areas are provided in Appendix B.

The total area for all of the buildings is 1,622,285 ft<sup>2</sup>. The long-term care homes and services range in size from approximately 67,000 ft<sup>2</sup> to over 294,000 ft<sup>2</sup>.

True Davidson Acres is the only Long Term Care facility equipped with a 100 kW solar hot water system.

All of the long-term care homes and services are 100% air-conditioned. One facility (Castleview Wychwood Towers) is partially served by electric heat. None of the facilities are served by ground or water source heat pumps. Approximately 20% of each of the facilities is related to food services.

### 1.1.2 Summary of Energy Use and Costs

This Energy Conservation Demand Management (ECDM) Plan is based on energy use taken from monthly bills for the 2012 calendar year. Energy costs are presented throughout using \$0.14 per kWh of electricity and \$0.26 per m<sup>3</sup> of gas. Refer to Appendix A (section 'Selection of 2012 utility bills for calculation of actual energy use intensities') for the methodology used to calculate the energy use intensities from the utility bills. Total energy use and costs for the 10 buildings are summarized below.

|                               | 2012 En    | ergy Use    |
|-------------------------------|------------|-------------|
|                               | Unit       | \$          |
| Electricity (kWh)             | 29,095,073 | \$4,073,310 |
| Natural Gas (m <sup>3</sup> ) | 3,452,073  | \$897,539   |
| Total                         |            | \$4,970,849 |

Table 160: 2012 Energy Use and Costs for 10 City of Toronto Long-term Care Homes and Services



Figure 93: 2012 Energy Use and Cost Breakdown for City of Toronto Long-Term Care Facilities



There is a wide range of energy use intensities as presented below, due primarily to differences in efficiency between the 10 buildings. Total energy use ranges from approximatley 27 to over 50 ekWh/ft<sup>2</sup>. There are also wide ranges for electricity and gas use per ft<sup>2</sup>. The red line represents the top quartile. The corresponding data for total energy, total electricity and total gas for each building is located in Appendix B.



Figure 94: 2012 Total Energy Intensity Benchmark



Figure 95: 2012 Total Electricity Intensity Benchmark



Figure 96: 2012 Total Gas Intensity Benchmark

## **1.2 Energy Targets**

The energy targets for long-term care homes and services are presented in the table below. The targetsetting methodology is based upon all buildings improving to the top quartile intensity for each component of energy use, and is described in Appendix B. The goal is for each long-term care home to achieve its target over the duration of the ECDM Plan.

| Energy type  | Component | Value | Unit          |
|--------------|-----------|-------|---------------|
| Electricity  | Base      | 14.7  | kWh/ft²/year  |
|              | Cooling   | 0.7   | kWh/ft²/year  |
|              | Heating   | 1.1   | kWh/ft²/year  |
|              | Total     | 16.5  | kWh/ft²/year  |
| Gas          | Base      | 4.3   | ekWh/ft²/year |
|              | Heating   | 13.7  | ekWh/ft²/year |
|              | Total     | 17.9  | ekWh/ft²/year |
| Total energy | Total     | 34.4  | ekWh/ft²/year |

### Table 161: Top Quartile Targets

The data set for target-setting is made up of the 10 long-term care homes and services with complete and reliable data, all of which are City of Toronto buildings. Before calculation of potential savings for each building, the energy use component targets were adjusted for site specific factors including electric heat (% building served and % for Domestic Hot Water (DHW)), % of the area which is air conditioned and % of the area which is food services. The specific target adjustments are found in Appendix A.



### **1.3** Savings Potential

The difference between the actual 2012 energy use and the adjusted target represents the potential annual savings for each energy component in each long-term care home. The total savings potential for each long-term care home is then determined as the sum of the components. Some buildings have very high percentage and dollar potential while other more efficient buildings have little or no potential. The 10 long-term care homes and services are categorized as high potential (annual savings of over \$100,000), medium (mid) potential (annual savings between \$5,000 and \$100,000) and low potential (annual savings of less than \$5,000). The savings potential for each individual building is summarized in Appendix B.

There are no long-term care homes and services with annual savings potential greater than \$100,000. 10 long-term care homes and services have annual savings potential between \$5,000 and \$100,000 and no long-term care homes and services have annual savings potential less than \$5,000 (see Table 3).

The total annual savings potential for the 10 buildings is \$335,242 (\$84,781 for electricity and \$250,460 for gas) with an average total energy savings of 16%.

| Electricity Savings Potential         |               |         | Gas Savings Potential |       |           |                 | Total Energy<br>Savings<br>Potential |       | Incentives |       | Indoor<br>Area | GHG<br>Emis-<br>sions |           |           |           |
|---------------------------------------|---------------|---------|-----------------------|-------|-----------|-----------------|--------------------------------------|-------|------------|-------|----------------|-----------------------|-----------|-----------|-----------|
|                                       |               | Avera   | ige %                 |       | \$/yr     | Average % \$/yr |                                      | \$/yr | Avg        | \$/yr | Electricity    | Gas                   | ft²       | kg/yr     |           |
|                                       | Base-<br>load | Cooling | Heating               | Total |           | Base-<br>load   | Heating                              | Total |            | %     |                |                       |           |           |           |
| TOTAL: 10 facilities                  | 00%           | 36%     | 11%                   | 02%   | \$ 84,781 | 36%             | 25%                                  | 28%   | \$250,460  | 16%   | \$335,242      | \$ 48,447             | \$ 96,331 | 1,622,285 | 1,876,671 |
| Mid-potential savings facilities (10) | 00%           | 36%     | 11%                   | 02%   | \$ 84,781 | 36%             | 25%                                  | 28%   | \$250,460  | 16%   | \$335,242      | \$ 48,447             | \$ 96,331 | 1,622,285 | 1,876,671 |

### Table 162: Savings Potential Summary

GHG emissions reduction is based on 110g GHG/kWh of electricity and 1879g GHG/m<sup>3</sup> of natural gas. Utility company incentives are calculated based on \$0.08/kWh of electricity (a composite of \$0.05/kWh for lighting retrofits and \$0.10 for non-lighting measures) and \$0.10/m<sup>3</sup> of natural gas saved.

The savings potential for each individual energy component points to where the biggest savings are to be found and guides the priorities for implementation. Table 4 below shows the total potential savings for all 10 buildings and highlights where the greatest percentage savings are.

| Energy and Water Components                                                       | 2012 Use | Target | Savings<br>Potential % | Savings<br>Potential \$ |
|-----------------------------------------------------------------------------------|----------|--------|------------------------|-------------------------|
| Electric Baseload (kWh/ft²)                                                       | 16.5     | 16.5   | 0%                     | \$-                     |
| Electric Cooling (kWh/ft²)                                                        | 0.9      | 0.6    | 36%                    | \$ 72,708               |
| Electric Heating (kWh/ft²)                                                        | 1.1      | 1.0    | 11%                    | \$ 12,073               |
| Total Electricity (kWh/ft <sup>2</sup> ) for facilities w/o component intensities | 0.0      | 0.0    | 0%                     | \$-                     |
| Gas Baseload (ekWh/ft²)                                                           | 6.4      | 4.1    | 36%                    | \$ 94,128               |
| Gas Heating (ekWh/ft²)                                                            | 15.6     | 11.8   | 25%                    | \$ 156,332              |
| Total Gas (ekWh/ft²) for facilities w/o component intensities                     | 0.0      | 0.0    | 0%                     | \$-                     |
| Total Energy (ekWh/ft²)                                                           | 40.0     | 33.4   | 16%                    | \$ 335,242              |
|                                                                                   |          |        |                        |                         |
| High savings Moderate                                                             | Low sa   | vings  |                        |                         |

Table 163: Savings Potential based on Energy Use Component for 10 Long-term Care Homes and Services



Savings potential is considered high if it is 30% and above, moderate if between 10 and 29% and low if less than 10%.

Components with the highest percentage savings potential (i.e. Electric Cooling and Gas Baseload) will be given higher priority in terms of recommended measures for implementation. In many cases, Electric Baseload measures can provide a significant portion of dollar savings. However, they generally require significant capital investment and will therefore be implemented in later years.

## 2 Conservation Measures and Budget

### 2.1 Proposed Energy Efficiency Measures

Table 5 below shows the full range of possible energy efficiency measures for the entire portfolio of long-term care homes and services. The measures are grouped based on the component of energy use they relate to and have been sorted based on chronology of implementation.

The measures are categorized by system type - lighting (L), mechanical (M), electrical (EL), envelope (EN), process (P) (i.e. domestic hot water) and behavioural (B) measures. The profiles of energy use and conservation potential for the 10 facilities indicate that the larger part of the savings will come from measures associated with electric cooling and gas baseload, the majority of which are low/no cost measures.

The measures have been prioritized in order to help make an informed decision on which to implement first. Priorities are set using the criteria of 'Energy Savings Potential' and 'Ease of Implementation'. Each measure was assigned a score from 1 to 4 for both energy savings potential and ease of implementation.

For Energy Savings Potential, a score of 4 was assigned to measures with the greatest percentage energy savings potential and a score of 1 was assigned to measures with the smallest percentage energy savings potential. For Ease of Implementation, a score of 4 was assigned to measures that are the easiest to implement and a score of 1 to measures that are the most difficult to implement.

The Energy Savings Potential scoring was determined using the following criteria:

- 4 Savings potential is greater than 40%
- 3 Savings potential is 30-40%
- 2 Savings potential is 20-30%
- 1 Savings potential is less than 20%

The Ease of Implementation scoring was determined using the following criteria:

- 4 Measure can be done immediately by building occupants or service contractors (little/no cost)
- 3 Measure involves testing, tuning, measuring (low cost)
- 2 Measure involves significant investigation/optimization (more significant costs)
- 1 Measure involves replacement/installation involving capital costs

<u>The measures with the highest combined Energy Savings Potential and Ease of Implementation scores</u> (out of 8) are deemed the highest priority.



Accordingly the Overall score associated to the proposed measures can be summarized as follows:

1 - Least energy savings potential; Most difficult to implement

8 - Greatest energy savings potential; Easiest to implement

 $\parallel$ 

### Timelines

Measures recommended to be implemented in Year 1 (the year of the initial assessment) are behavioural measures that can be done immediately without capital budgets. Measures recommended for Year 2 will generally result in high percentage savings, are mainly operational and do not require significant capital costs. Year 3 measures will provide high percentage savings (i.e. measures related to electric cooling and gas baseload) but have associated capital costs (i.e. installation and replacement measures). Measures to be implemented in Year 4 and Year 5 are those that have significant associated capital costs and may result in high dollar savings but less significant percentage energy savings (i.e. measures related to all other energy components).

|            | Electric Baseload Measures                                                                          | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline  | Life Expectancy<br>(yrs) | Responsibility            |
|------------|-----------------------------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|-----------|--------------------------|---------------------------|
|            | ELECTRIC BASELOAD - refers to year-round electricity use for lighting, fans, ea                     | quipmen                   | t and othe                  | r syste     | ms that a | re not weather depen     | ident                     |
| B1         | Turn off machines, office and kitchen equipment when not needed                                     | 4                         | 1                           | 5           | Year 1    | Annual Review            | Building Occupants        |
| B2         | Unplug machines, office and kitchen equipment if not actively used                                  | 4                         | 1                           | 5           | Year 1    | Annual Review            | Building Occupants        |
| <b>B</b> 3 | Turn off computer monitors when not in use                                                          | 4                         | 1                           | 5           | Year 1    | Annual Review            | <b>Building Occupants</b> |
| B4         | Enable ENERGY STAR power settings on your computer                                                  | 4                         | 1                           | 5           | Year 1    | Annual Review            | Building Occupants        |
| B5         | Unplug chargers when not in use                                                                     | 4                         | 1                           | 5           | Year 1    | Annual Review            | Building Occupants        |
| B6         | Turn off lights when areas not in use                                                               | 4                         | 1                           | 5           | Year 1    | Annual Review            | Building Occupants        |
| B7         | Make use of natural light instead of turning on lights where possible                               | 4                         | 1                           | 5           | Year 1    | Annual Review            | Building Occupants        |
| M1         | Optimize operating schedules for fans and pumps                                                     | 3                         | 1                           | 4           | Year 2    | Seasonal Review          |                           |
| M2         | Test and adjust ventilation systems to reduce fan power                                             | 3                         | 1                           | 4           | Year 2    | Seasonal Review          |                           |
| EL4        | Install power factor correction                                                                     | 3                         | 1                           | 4           | Year 4    | 15+                      |                           |
| L1         | Replace incandescent and halogen light bulbs with high efficiency lighting                          | 1                         | 1                           | 2           | Year 5    | 10 to 15                 |                           |
| L2         | Install motion sensors in washrooms/occasional use spaces to shut off lights when unoccupied        | 1                         | 1                           | 2           | Year 5    | 10 to 15                 |                           |
| L3         | Install photo-sensors and/or a timer on outdoor and daylit interior area lighting                   | 1                         | 1                           | 2           | Year 5    | 10 to 15                 |                           |
| L4         | Replace HID lighting with high efficiency fluorescent                                               | 1                         | 1                           | 2           | Year 5    | 10 to 15                 |                           |
| L5         | Replace outdoor lights and signage with high efficiency fixtures                                    | 1                         | 1                           | 2           | Year 5    | 10 to 15                 |                           |
| L6         | Replace festive lighting with LED                                                                   | 1                         | 1                           | 2           | Year 5    | 10 to 15                 |                           |
| L7         | Install sufficient manual switching to allow occupants to effectively<br>control lighting operation | 1                         | 1                           | 2           | Year 5    | 15+                      |                           |
| EL1        | Replace refrigerators, dishwasher, microwaves with ENERGY STAR rated appliances                     | 1                         | 1                           | 2           | Year 5    | 8 to 12                  |                           |
| EL2        | Replace computers with ENERGY STAR rated units                                                      | 1                         | 1                           | 2           | Year 5    | 4 to 6                   |                           |
| EL3        | Install controls on vending machines                                                                | 1                         | 1                           | 2           | Year 5    | 10 to 15                 |                           |
| M3         | Install variable frequency drives (VFDs) on suitable fans and pumps                                 | 1                         | 1                           | 2           | Year 5    | 10 to 20                 |                           |
| M4         | Convert electric hot water heaters to natural gas                                                   | 1                         | 1                           | 2           | Year 5    | 10 to 15                 |                           |
|            | Other:                                                                                              |                           |                             |             |           |                          |                           |

Behavioural Measures

Operational Measures

Retrofit/Capital Measures

# hí Toronto

|           | Electric Heating Measures                                                      | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility            |
|-----------|--------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|----------|--------------------------|---------------------------|
|           | ELECTRIC HEATING (IF APPLICABLE) - refers to electricity use for heating purpe | oses                      |                             |             |          |                          |                           |
| <b>B8</b> | Adjust blinds (to retain heat in winter)                                       | 4                         | 1                           | 5           | Year 1   | annual review            | Building Occupants        |
| B9        | Avoid use of electric heaters                                                  | 4                         | 1                           | 5           | Year 1   |                          | <b>Building Occupants</b> |
|           | Use recommended thermostat set points (in winter set to 68 degrees             |                           |                             |             |          |                          |                           |
| B10       | or less during daytime)                                                        | 4                         | 1                           | 5           | Year 1   |                          | Building Occupants        |
| M8        | Control fan coil and entrance heaters to optimize run-times                    | 3                         | 1                           | 4           | Year 2   | seasonal review          |                           |
| M9        | Evaluate conversion from electric heating to natural gas                       | 2                         | 1                           | 3           | Year 2   | n/a                      |                           |
| M5        | Install snow sensors to control the snow-melting system                        | 1                         | 1                           | 2           | Year 5   | seasonal review          |                           |
| M6        | Upgrade base building heating system to avoid use of electric heaters          | 1                         | 1                           | 2           | Year 5   | seasonal review          |                           |
|           | Upgrade electric heating controls to optimize space temperatures and           |                           |                             |             |          |                          |                           |
| M7        | operating periods                                                              | 1                         | 1                           | 2           | Year 5   | seasonal review          |                           |
|           | Other:                                                                         |                           |                             |             |          |                          |                           |
|           |                                                                                |                           |                             |             |          |                          |                           |

#### Behavioural Measures

#### Operational Measures Retrofit/Capital Measures

|     | Electric Cooling Measures                                                                       | Ease of<br>Implementatio | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility     |
|-----|-------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|-------------|----------|--------------------------|--------------------|
|     | ELECTRIC COOLING (IF APPLICABLE) - refers to electricity use for cooling purpo                  | oses                     |                             |             |          |                          |                    |
| B11 | Winterize room air-conditioners                                                                 | 4                        | 3                           | 7           | Year 1   |                          | Building Occupants |
| B12 | Use recommended thermostat set points (during the summer, set to 78 degrees or more)            | 4                        | 3                           | 7           | Year 1   |                          | Building Occupants |
| B13 | Only cool rooms that are being used                                                             | 4                        | 3                           | 7           | Year 1   |                          | Building Occupants |
| B14 | Install and use energy efficient ceiling fans                                                   | 4                        | 3                           | 7           | Year 1   |                          | Building Occupants |
| B15 | Close blinds (to shade space from direct sunlight)                                              | 4                        | 3                           | 7           | Year 1   |                          | Building Occupants |
| B16 | Install window film, solar screens or awnings on south and west facing<br>windows               | 4                        | 3                           | 7           | Year 1   |                          | Building Occupants |
|     | Optimize operating periods of ventilation systems supplying air<br>conditioned spaces           | 2                        | 3                           | 5           | Year 2   | seasonal review          |                    |
| M12 | Upgrade control of air conditioning units to optimize space<br>temperatures & operating periods | 3                        | 3                           | 6           | Year 2   | seasonal review          |                    |
| M13 | Test and tune the air conditioning units                                                        | 3                        | 3                           | 6           | Year 2   | 3                        |                    |
| M11 | Replace and right-size air conditioning units with ENERGY STAR rated units                      | 1                        | 3                           | 4           | Year 4   | 10 to 15                 |                    |
|     | Other:                                                                                          |                          |                             |             |          |                          |                    |

#### Behavioural Measures

**Operational Measures** 

Retrofit/Capital Measures



|     | Gas Baseload Measures                                                       | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline  | Life Expectancy<br>(yrs) | Responsibility     |
|-----|-----------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|-----------|--------------------------|--------------------|
|     | GAS BASELOAD - refers to the annual natural gas energy used for domestic he | ot water                  | and other                   | equip       | ment that | runs year round          |                    |
| B17 | Optimize dishwasher operation (only run when full)                          | 4                         | 3                           | 7           | Year 1    |                          | Building Occupants |
| P1  | Optimize DHW temperature control                                            | 2                         | 3                           | 5           | Year 2    | annual review            |                    |
| P3  | Test and tune DHW boiler efficiency                                         | З                         | 3                           | 6           | Year 2    | annual review            |                    |
| M16 | Investigate and repair possible gas leaks                                   | 3                         | 3                           | 6           | Year 2    | annual review            |                    |
| P2  | Implement DHW circulation pump control                                      | 1                         | 3                           | 4           | Year 2    | annual review            |                    |
| P4  | Install low flow showerheads and faucet aerators                            | 1                         | 3                           | 4           | Year 4    | 10 to 15                 |                    |
| M14 | Insulate DHW tanks and distribution piping                                  | 2                         | 3                           | 5           | Year 3    | 10 to 15                 |                    |
| M15 | Replace DHW boilers with more efficient models                              | 1                         | 3                           | 4           | Year 4    | 10 to 15                 |                    |
|     | Other:                                                                      |                           |                             |             |           |                          |                    |
|     |                                                                             |                           |                             |             |           |                          |                    |
|     |                                                                             |                           |                             |             |           |                          |                    |

Behavioural Measures

Operational Measures Retrofit/Capital Measures

|      | Gas Heating Measures                                                         | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility     |
|------|------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|----------|--------------------------|--------------------|
|      | GAS HEATING - refers to the additional energy used in winter for heating and | humidif                   | ication                     |             |          |                          |                    |
| B18  | Check and clear baseboard heaters of obstructions                            | 4                         | 2                           | 6           | Year 1   |                          | Building Occupants |
| B19  | Adjust blinds (to retain heat in winter)                                     | 4                         | 2                           | 6           | Year 1   |                          | Building Occupants |
|      | Use recommended thermostat set points (in winter set to 68 degrees           |                           |                             |             |          |                          |                    |
| B20  | or less during daytime)                                                      | 4                         | 2                           | 6           | Year 1   |                          | Building Occupants |
| N417 | Optimize operating periods of ventilation systems supplying heated           | 2                         | 2                           | 4           | Veera    | seasonal review          |                    |
|      | spaces                                                                       |                           | 2                           | -           | Year 2   |                          |                    |
|      | Test and adjust ventilation systems to optimize outside air volumes          | 3                         | 2                           | 5           | Year 2   | seasonal review          |                    |
|      | Test and tune boiler efficiency                                              | 3                         | 2                           | 5           | Year 2   | seasonal review          |                    |
| M22  | Check heating system for flow balancing and air venting                      | 3                         | 2                           | 5           | Year 2   | seasonal review          |                    |
| EN1  | Check and seal exterior walls and openings                                   | 3                         | 2                           | 5           | Year 2   | 10 to 15                 |                    |
| EN5  | Seal window and door frames                                                  | 3                         | 2                           | 5           | Year 2   | 5                        |                    |
| M23  | Optimize fan-coil unit and entrance heater controls                          | 3                         | 2                           | 5           | Year 2   | seasonal review          |                    |
| M24  | Consider heating system zoning                                               | 2                         | 2                           | 4           | Year 2   | n/a                      |                    |
|      | Test, repair, replace and right-size heating control valves and outside      |                           |                             |             |          |                          |                    |
| M19  | air dampers                                                                  | 2                         | 2                           | 4           | Year 4   | 10 to 15                 |                    |
|      | Upgrade heating system control to optimize space temperatures and            |                           | -                           | _           |          |                          |                    |
|      | operating periods                                                            | 1                         | 2                           | 3           | Year 5   | 10 to 15                 |                    |
| EN2  | Insulate the attic adequately                                                | 1                         | 2                           | 3           | Year 5   | 10 to 15                 |                    |
|      | Reclad the building's exterior                                               | 1                         | 2                           | 3           | Year 5   | 20 to 24                 |                    |
| EN4  | Replace single-pane windows with double-pane windows                         | 1                         | 2                           | 3           | Year 5   | 20 to 24                 |                    |
| EN6  | If replacing the roof, ensure R-value at least 22                            | 1                         | 2                           | 3           | Year 5   | n/a                      |                    |
| M25  | Install high efficiency burners                                              | 1                         | 2                           | 3           | Year 5   | 15 to 20                 |                    |
| M26  | Replace boilers with more efficient models                                   | 1                         | 2                           | 3           | Year 5   | 15 to 20                 |                    |
| M27  | Replace old rooftop units with energy efficient units                        | 1                         | 2                           | 3           | Year 5   | 15 to 20                 |                    |
| M28  | Install heat recovery or solar heating units                                 | 1                         | 2                           | 3           | Year 5   | 10 to 15                 |                    |
|      | Other:                                                                       |                           |                             |             |          |                          |                    |

Behavioural Measures Operational Measures Retrofit/Capital Measures

\_|

#### Table 164: Energy Saving Measures for Long-term Care Homes and Services

The specific measures and implementation timeline for each individual long-term care home will be determined from the results of the Energy Assessments (explained in the Implementation section of this plan).

Ŀ

### Proposed / Future Renewable Energy Installations

| Building Name    | Building Address | Renewable<br>Installation | System<br>Size | Unit |
|------------------|------------------|---------------------------|----------------|------|
| Kipling Acres I  | 2233 Kipling Ave | Solar PV                  | 150            | kW   |
| Kipling Acres II | 2233 Kipling Ave | Solar PV                  | 75             | kW   |

Table 165: Proposed Renewable Energy Systems on Indoor Swimming Pools

## 3 Energy Management and Retrofit Plan

### 3.1 Implementation Costs and Modeled Savings

The average budgeted cost for implementing suggested measures, based on previous experience with similar facilities, is \$4.20/ft<sup>2</sup> (see Appendix A). The budget allows for lighting retrofits and controls, mechanical system efficiency improvements, appliance replacement and controls and localized efficiency measures for the building envelope. The budget does not allow for major plant or equipment replacement or substantial building upgrades such as roof or window replacement. These items may be included if appropriate in projects for individual buildings, but would not provide rational Return on Investments (ROIs) based on energy savings alone and would therefore be budgeted separately.

Similar measures for consideration apply to high and medium potential buildings. A 20 percent premium is included for high potential buildings to ensure that all improvements necessary to achieve the targets are covered. Still, the ROIs for high-potential buildings will be better than the rest.

Low potential buildings do not merit the more in-depth investigations planned for the other two categories. Rather, a checklist approach, guided by the indicated component energy savings potential, would identify the particular measures for each building. The budget allowance for low-potential buildings is set at 40 percent of the basic amount to provide a rational ROI for this group.

In the case of long-term care facilities, the range of energy performance between high and low users is substantially less than for the other facility types, implying a fairly consistent level of energy efficiency. As a result, the targeted % savings are relatively low, so that the required level of investment in energy efficiency improvements is lower. In order to achieve a rational ROI, an implementation cost of \$1.00/ft<sup>2</sup> has been applied. See Table 6.

The total implementation costs, payback and cash flows for the portfolios of high medium and lowpotential long-term care homes and services are summarized in Table 166 below.

| Annual Savings<br>Potential | Number of<br>facilities | Average Area<br>(ft <sup>2</sup> ) | Estimated<br>Implementation<br>Cost \$/ft <sup>2</sup> | Estimated<br>Ilementation<br>Cost \$ | stimated<br>Savings<br>otential \$ | % of total<br>savings | Payback |
|-----------------------------|-------------------------|------------------------------------|--------------------------------------------------------|--------------------------------------|------------------------------------|-----------------------|---------|
| >\$100,000                  | 0                       | -                                  | 5.04                                                   | \$<br>-                              | \$<br>-                            | 0.0%                  |         |
| \$5,000 - \$100,000         | 10                      | 162,229                            | 1.00                                                   | \$<br>1,622,285                      | \$<br>335,242                      | 100.0%                | 4.84    |
| < \$5,000                   | 0                       | -                                  | 1.68                                                   | \$<br>-                              | \$<br>-                            | 0.0%                  |         |
|                             | 10                      |                                    |                                                        | \$<br>1,622,285                      | \$<br>335,242                      |                       | 4.84    |

#### Table 166: Estimated Implementation Costs and Modeled Savings

Paybacks are determined by actual current implementation costs divided by first year savings (so costs are not adjusted for inflation and utility prices are not adjusted for escalation).



# **3.2** Implementation Process and Tools – Determining the Specific Measures for Each Building

Three types of tools are recommended to enable identification of specific measures in individual buildings:

- High Potential Buildings will undergo a Building Performance Audit incorporating measurement and testing to define retrofits and operational improvements. This also includes interval meter analysis and water consumption.
- Mid Potential Buildings will undergo an Energy Assessment including more in-depth analysis of monthly utility billing data for a number of years and analysis of interval meter or data-logger recordings of daily electricity use.
- Low Potential Buildings will use a simple Checklist to identify priority measures based on the conservation potential profile in this Plan.

The three approaches, budgeted analysis cost and numbers of buildings to which they apply are summarized in Table 167 below.

|                |                                        | #  | Cost     | Savings Potential   | Resources                      |
|----------------|----------------------------------------|----|----------|---------------------|--------------------------------|
| High Potential | Building<br>Performance<br>Audit (BPA) | 0  | \$ 7,500 | > \$100,000         | engineer; energy<br>analyst    |
| Mid Potential  | Energy<br>Assessments                  | 10 | \$ 750   | \$5,000 - \$100,000 | energy analyst                 |
| Low Potential  | Checklists                             | 0  | \$ 150   | < \$5,000           | Division Champion and<br>staff |
|                |                                        | 10 |          |                     |                                |

#### Table 167: Assessment Tools Used to Determine Specific Energy-saving Measures

### 3.2.1 Energy Assessment

There are 10 long-term care homes and services with between \$5,000 and \$100,000 in annual energy saving potential. These 10 long-term care homes and services can save an average of 16% of their total energy use.

The total annual energy savings are estimated to be over \$335,000 and individual building annual savings range from approximately \$6,200 to over \$66,000. The annual GHG savings are approximately 1,876,000 kg.

These 10 long-term care homes and services can save an average of 2% of their total electricity use (0% Electric Baseload, 36% Electric Cooling and 11% Electric Heating). The total annual electricity savings are estimated to be approximately \$84,780 and individual building annual savings range from approximately \$300 to over \$28,000.



These 10 long-term care homes and services can save an average of 28% of their total gas use (36% Gas Baseload and 25% Gas Heating). The total annual gas savings are estimated to be approximately \$250,000 and individual building annual savings range from approximately \$4,000 to over \$53,000.

These 10 facilities will undergo an Energy Assessment with highest potential long-term care homes and services focused on first (see the Implementation Plan for further details).

See Appendix B for a list of these 10 long-term care homes and services and their associated energy savings potential by energy use component.

The highest percentage reductions for this group of 10 long-term care homes and services can be found in Electric Cooling and Gas Baseload. For each individual building, the energy components with highest percentage savings potential will be the focus of the Energy Assessment in order to maximize energy savings. For a complete description of the Energy Assessment, refer to Appendix A.

After the implementation of the proposed measures, these long-term care homes and services are eligible to receive over \$144,000 in incentives based on current incentives available from the Ontario Power Authority.

### 3.3 Implementation Budget

Table 168 below shows the total budget to implement the energy management and retrofit plan, including costs for identifying measures and the implementation costs for all 10 facilities. The total costs to implement the energy management and retrofit plan for long-term care homes is estimated to be \$1,629,785. Note the Implementation costs are not adjusted for inflation.

| BUDGET               |    |           |  |  |  |  |  |  |  |  |
|----------------------|----|-----------|--|--|--|--|--|--|--|--|
| Building Performance |    |           |  |  |  |  |  |  |  |  |
| Audit (BPA)          | \$ | -         |  |  |  |  |  |  |  |  |
| Energy Assessment    | \$ | 7,500     |  |  |  |  |  |  |  |  |
| Checklist            | \$ | -         |  |  |  |  |  |  |  |  |
| Implementation       | \$ | 1,622,285 |  |  |  |  |  |  |  |  |
| Total                | \$ | 1,629,785 |  |  |  |  |  |  |  |  |

Table 168: Total Budget - Energy Management and Retrofit Plan

### 3.4 10-Year Implementation Plan

The 10-year implementation plan is summarized in Table 169 and Figure 97 below.

The plan will roll-out over 10 years, and the buildings with the highest savings potential will be focused on first.



Identification of measures from Energy Assessments will begin in Year 1, with all 10 Energy Assessments completed by the end of Year 5. The implementation of these measures will begin in Year 2, and be completed by the end of Year 6.

Annual Costs refer to the assessment and implementation costs, training, measurement and verification (M&V), and maintenance costs.

Over a 10 year period, the cumulative net cash flow for this plan is estimated to be \$969,087. The cumulative net cash flow becomes positive in Year 10.

The implementation plan includes the following assumptions:

- Approximately 75% of the project budget will be spent in the first 5 years, and the other 25% in the following 5 years.
- The percentage of facilities to be retrofitted in each year is proportional to the percentage of the budget spent in that year. 75% of medium and low potential savings facilities will be retrofitted in the first 5 years and 25% in the following 5 years.
- 25% of energy savings potential of retrofitted facilities is achieved in the first year, 75% in the second year, and 100% in each of the following years.
- Project costs are adjusted for inflation (2% annually) and energy savings are adjusted for utility price escalation (5% annually).
- 100% of incentives are achieved in the year when facilities are retrofitted, and incentives are NOT adjusted for utility price escalation.

|                                     | ١   | fear 1 |     | Year 2  | Year 3 |         | Year 4 |         | Year 5 |         | Year 6 |         |     | Year 7  |     | Year 8  | Year 9        | Year 10 |         |     | Totals    |
|-------------------------------------|-----|--------|-----|---------|--------|---------|--------|---------|--------|---------|--------|---------|-----|---------|-----|---------|---------------|---------|---------|-----|-----------|
|                                     |     |        |     |         |        |         |        |         |        |         |        |         |     |         |     |         |               |         |         |     |           |
| High Potential - Building           |     |        |     |         |        |         |        |         |        |         |        |         |     |         |     |         |               |         |         |     |           |
| Performance Audit                   |     | 0      |     | 0       |        | 0       |        | 0       |        | 0       |        | 0       |     | 0       |     | 0       | 0             |         | 0       |     | 0         |
| Mid Potential - Energy Assessment   |     | 3      |     | 2       |        | 2       |        | 2       |        | 1       |        | 0       |     | 0       |     | 0       | 0             |         | 0       |     | 10        |
| Low Potential - Checklist           |     | 0      |     | 0       |        | 0       |        | 0       |        | 0       |        | 0       |     | 0       |     | 0       | 0             |         | 0       |     | 0         |
| Assessment Costs                    | \$  | 2,250  | \$  | 1,500   | \$     | 1,500   | \$     | 1,500   | \$     | 750     | \$     |         | \$  |         | \$  | -       | \$<br>        | \$      | -       | \$  | 7,500     |
| Implementation Costs                | \$  | -      | \$  | 506,348 | \$     | 344,316 | \$     | 351,203 | \$     | 358,227 | \$     | 182,696 | \$  | -       | \$  | -       | \$<br>-       | \$      | -       | \$  | 1,742,790 |
| Training and M&V costs (10.0% of    |     |        |     |         |        |         |        |         |        |         |        |         |     |         |     |         |               |         |         |     |           |
| Assessment and Implementation       |     |        |     |         |        |         |        |         |        |         |        |         |     |         |     |         |               |         |         |     |           |
| Costs)                              | \$  | 225    | \$  | 50,785  | \$     | 34,582  | \$     | 35,270  | \$     | 35,898  | \$     | 18,270  | \$  | -       | \$  | -       | \$<br>-       | \$      | -       | \$  | 175,029   |
| Maintenance costs (5.0% of          |     |        |     |         |        |         |        |         |        |         |        |         |     |         |     |         |               |         |         |     |           |
| Implementation Costs, cumulative)   | \$  | -      | \$  | 25,317  | \$     | 42,533  | \$     | 60,093  | \$     | 78,005  | \$     | 87,139  | \$  | 87,139  | \$  | 87,139  | \$<br>87,139  | \$      | 87,139  |     |           |
| Annual Costs                        | \$  | 2,475  | \$  | 583,950 | \$     | 422,931 | \$     | 448,066 | \$     | 472,879 | \$     | 288,105 | \$  | 87,139  | \$  | 87,139  | \$<br>87,139  | \$      | 87,139  | \$  | 2,566,965 |
| Estimated Achieved Annual Savings   |     |        | \$  | 50,848  | \$     | 175,240 | \$     | 310,230 | \$     | 387,095 | \$     | 436,866 | \$  | 469,546 | \$  | 495,305 | \$<br>520,070 | \$      | 546,073 | \$  | 3,391,274 |
| Estimated Incentives                | \$  | -      | \$  | 79,973  | \$     | 32,734  | \$     | 21,099  | \$     | 8,538   | \$     | 2,433   | \$  | -       | \$  | -       | \$<br>-       | \$      | -       | \$  | 144,777   |
| Annual Savings and Incentives       | \$  | -      | \$  | 130,821 | \$     | 207,974 | \$     | 331,330 | \$     | 395,634 | \$     | 439,299 | \$  | 469,546 | \$  | 495,305 | \$<br>520,070 | \$      | 546,073 | \$  | 3,536,051 |
| Borrowing costs based on cumulative |     |        |     |         |        |         |        |         |        |         |        |         |     |         |     |         |               |         |         |     |           |
| cash flows (4.0% per annum)         |     |        | -\$ | 99      | -\$    | 18,224  | -\$    | 26,822  | -\$    | 31,492  | -\$    | 34,582  | -\$ | 28,534  | -\$ | 13,238  | \$<br>-       | \$      | -       | -\$ | 152,991   |
| Net Cash Flow incl borrowing costs  | -\$ | 2,475  | -\$ | 453,228 | -\$    | 233,182 | -\$    | 143,559 | -\$    | 108,737 | \$     | 116,612 | \$  | 353,872 | \$  | 394,927 | \$<br>432,930 | \$      | 458,934 | \$  | 816,096   |
| Cumulative Net Cash Flow            | -\$ | 2,475  | -\$ | 455,604 | -\$    | 670,561 | -\$    | 787,298 | -\$    | 864,543 | -\$    | 713,349 | -\$ | 330,943 | \$  | 77,222  | \$<br>510,153 | \$      | 969,087 |     |           |

Table 169: Cash Flow for 10-Year Implementation Plan


Figure 97: Cash Flow for 10-Year Implementation Plan



# 4 Appendix A

### 4.1 Selection of 2012 Utility Bills for Calculation of Actual Energy Use Intensities

Utility bills were used covering the period from January to December 2012.

If the total number of days in the combined bills was greater than 385 or less than 345 (because of adjustment bills spanning a few months), the facility was excluded from the dataset used to determine energy use components and targets.

To calculate 2012 actual energy use, the combined usage was normalized for the number of days in the calendar year 2012 (366).

### 4.2 Determining Energy Use Components

The energy use components and targets were calculated using data available for eligible facilities at the City of Toronto (see above). Energy use components were determined as follows:

**Electric Baseload**: Relates to systems which run year-round such as lighting, fans and equipment. Electric Baseload for long-term care homes is determined as the average kWh/day for April, May, September and October multiplied by 366 days.

**Electric Cooling**: Was determined as the additional electricity use above the year-round base from June to August, and relates to air conditioning.

**Electric Heating**: Was determined as the additional use in January, February, March, November and December, and relates to electric heat or electricity use for heating systems (pumps, blowers etc.).

**Gas Baseload**: Relates to systems which run year-round (domestic hot water) and is determined as the average  $m^3$ /day for June, July and August multiplied by 366 days.

**Gas Heating**: Was determined as the additional gas use to heat the building from January to May, and September to December.

### 4.3 Determining Targets

Component energy targets were set based on the top quartile intensity of the eligible data set. Thus achievement of the targets anticipates all buildings with component energy intensities greater than the top quartile will reach that level already attained by one quarter of the buildings.

All values less than 5% of the average of the top 3 facilities were removed for the calculation of the component energy targets.

Before the calculation of potential savings for each building, component targets were adjusted taking into account factors specific to the facility type. Individual targets are adjusted for energy types, non-standard space types or equipment, and high energy intensity spaces or equipment. The target adjustments are listed below.



#### **Target Adjustments**

**Electric Heating:** Add Gas Heating multiplied by % of area served and 75% efficiency to Electric Heating AND Multiply Gas Heating by (100% - % of area served)

**GSHP:** Add Gas Heating \* 0.19 \* % of area served to Electric Heating AND Subtract Gas Heating \* 0.13 \* % of area served from Gas Heating

**WSHP:** Add Gas Heating \* 0.19 \* % of area served to Electric Heating Electricity AND Subtract Gas Heating \* 0.75 \* % of area served from Gas Heating

**Electric DHW:** Add Gas Baseload \* % of area served \* 75% efficiency to Electric Baseload AND Multiply Gas Baseload by (100% - % of area served)

**Air-Conditioning:** Divide Electric Cooling by Average % of building served by A/C for all facilities of the type and multiply by % of the facility area served by A/C

Data Centre: Add 50 kWh/ft<sup>2</sup> \* % of building occupied by Data Centre to Electric Baseload

**Food Services**: Add 30 kWh/ft<sup>2</sup> \* % of facility area occupied by Food Services (including seating area) to Electric Baseload

**Outdoor Rink:** If rink has associated ice plant, add (1.04 kWh/ft<sup>2</sup> of ice/week \* ft<sup>2</sup> of ice surface area \* 16 weeks/year) divided by  $ft^2$  of the total building area to Electric Baseload

**Solar Hot Water:** Subtract the product of System Power Rating (kW thermal) and (Average Actual) Annual Performance (kWh (t)/kW) divided by the facility area (ft<sup>2</sup>) from Gas Baseload (ekWh/ft<sup>2</sup>)

**Solar Photovoltaic**: Subtract the product of System Power Rating (kW thermal) and (Average Actual) Annual Performance (kWh(t)/kW) divided by the facility area (ft<sup>2</sup>) from Electric Baseload (kWh/ft<sup>2</sup>)

**Garage:** Add 20 ekWh/ft<sup>2</sup> to Gas Heating

High-intensity electric equipment: Add 30 kWh/ft<sup>2</sup> to Electric Baseload

Indoor Rink(s) and/or Indoor Pool(s) within Community Centres and Indoor Recreational Facilities:

<u>Adjustment for Electric Baseload</u> – Electric Baseload adjusted for Indoor Rink and/or Indoor Pool, kWh/ft<sup>2</sup> of total area = (Electric Baseload for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>))+ Assumed Electricity Requirement of Ice Plant (ekWh/ft<sup>2</sup> of ice/week) \* Months ice-in \* 52 weeks a year /12 months a year \* Rink area, ft<sup>2</sup> + Electric Baseload for Pool (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>) / Total Area, ft<sup>2</sup>

<u>Adjustment for Gas Baseload</u> – Gas Baseload adjusted for Indoor Rink and/or Indoor Pool, ekWh/ft<sup>2</sup> of total area = Gas Baseload for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>)) + Gas Baseload for Indoor Sports Arenas (ekWh/ft<sup>2</sup> of rink) \* Rink area, ft<sup>2</sup> + Gas Baseload for Indoor Swimming Pools (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>



<u>Adjustment for Gas Heating</u> – Gas Heating adjusted for Indoor Rink and/or Indoor Pool, ekWh/ft<sup>2</sup> of total area = Gas Heating for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>)) + Gas Heating for Indoor Sports Arenas (ekWh/ft<sup>2</sup> of rink) \* Rink area, ft<sup>2</sup> + Gas Heating for Indoor Swimming Pools (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>

# 4.4 Calculating Potential Savings

The difference between the actual energy use component intensity and adjusted target represents potential annual savings for the component after multiplication by the facility area (and conversion from ekWh to m<sup>3</sup> in the case of gas).

For the facilities that were previously excluded from the dataset for setting targets, potential savings were calculated based on total electricity and gas use (normalized to 366 days) compared with total adjusted electricity and natural gas targets.

# 4.5 Implementation Costs by Measure Type and Modeled Savings

The following table summarizes the implementation costs and savings estimates for measures under each type of operational system. Note that the costs are based on previous experience with similar projects.

These apply to the following building types:

- Fire stations and associated offices and facilities
- Shelter, Support and Housing Administration
- Ambulance stations and associated offices and facilities
- Storage facilities where equipment or vehicles are maintained, repaired or stored
- Public libraries
- Long-term care homes and services
- Police stations and associated offices and facilities
- Children's Services
- Administrative offices and related facilities, including municipal council chambers

|            | Cost \$/ft <sup>2</sup> | % electric | Payback (yrs) | kWh/ft²/yr | m³/ft²/yr |
|------------|-------------------------|------------|---------------|------------|-----------|
|            |                         |            |               |            |           |
| Lighting   | 1.80                    | 100%       | 6.5           | 2.3        |           |
|            |                         |            |               |            |           |
| Mechanical | 1.50                    | 30%        | 6             | 0.6        | 0.7       |
|            |                         |            |               |            |           |
| Electrical | 0.25                    | 100%       | 8             | 0.3        |           |
|            |                         |            |               |            |           |
| Envelope   | 0.50                    | 0%         | 10            |            | 0.2       |
|            |                         |            |               |            |           |
| Process    | 0.15                    | 0%         | 5             |            | 0.1       |
| Total      | 4.20                    |            | 6.8           | 3.19       | 1.02      |

 Table 170: Implementation Costs by Measure Type



Implementation costs for lighting include measures such as re-lamping and re-ballasting with about 20% fixture retrofits, replacement or relocation, along with selective, local occupancy and photo-controls.

Costs for mechanical system measures include mechanical system testing and minor retrofits such as VFDs, re-balancing, right-sizing, tuning and repairs, along with upgraded controls.

Costs for electrical measures include appliance and equipment replacements and upgraded controls.

Costs for envelope measures include thermographic testing along with draft-proofing, re-insulation and roof/wall air sealing.

Costs for process (domestic hot water) measures include low flow shower heads and aerators, controls on hot water use for vehicle washing and minor retrofits such as pipe insulation.

# 4.6 Assessment Tools

#### **Building Performance Audit**

The Building Performance Audit determines how well a building's existing systems and operational practices compare to other similar buildings, including top performers. The audit identifies problem areas in building systems, examines building operations, and determines improvements that will deliver the greatest energy savings and maximize return on investment. The outcome will be a clear, evidence-based picture of how much can be saved and what areas to focus on to optimize performance.

The Building Performance Audit includes:

- Benchmarking against comparable buildings including top-performers
- Performance based target setting customized for your building
- Interval meter analysis and examination of prior years' energy trends pinpointing specific system and operational inefficiencies
- Motor testing and equipment data-logging analysis
- Deeper understanding of operating practices through energy use profiles
- Power density and plant capacity analysis to identify retrofit opportunities
- Power factor analysis to uncover over-sized equipment
- Inventory and efficiency analysis of main energy-using equipment
- Verification and documentation of the proper operation of the building systems
- Payback and business case analysis

#### Initial Energy Targets

Initial energy targets are created by a mass screening tool which uses a standardized logic to produce a preliminary estimate of savings potential for every building, and thereby identify high-, medium- and



low-potential buildings. This initial target-setting process creates the overall economic envelope for the program.

#### **Energy Assessment**

Medium-potential buildings are subjected to more in-depth analysis through an Energy Assessment which drills deeper into utility consumption data to refine the savings target and uncover more specific conservation measures. Regression analysis of monthly billing data against heating and cooling degreedays highlights billing anomalies such as estimated bills, and provides a more accurate breakdown of energy components, and hence component energy savings. Where multiple years of billing data are available the Energy Assessment produces weather-normalized performance trends which can uncover changes in energy use and seasonal anomalies which point to specific energy saving opportunities. The Energy Assessment also analyzes electrical interval meter (or data-logger test results) to help identify operational improvements such as equipment running when the building is unoccupied.



# 5 Appendix B - Long-term Care Homes and Services

# 5.1 Buildings and Building Characteristics

Below are the names, addresses and building areas for the 10 long-term care home buildings included in this report and Plan.

| Building                   | Address               | Building<br>Area<br>(ft <sup>2</sup> ) |
|----------------------------|-----------------------|----------------------------------------|
| Bendale Acres              | 2920 Lawrence Ave. E. | 210,329                                |
| Carefree Lodge             | 306 Finch Ave. E.     | 67,490                                 |
| Cummer Lodge               | 205 Cummer Ave.       | 243,202                                |
| Castleview Wychwood Towers | 351 Christie St.      | 294,449                                |
| Fudger House               | 439 Sherbourne St.    | 118,996                                |
| Kipling Acres              | 2233 Kipling Ave.     | 184,592                                |
| Lakeshore Lodge            | 3197 Lakeshore Blvd.  | 88,964                                 |
| Seven Oaks                 | 9 Neilson Rd.         | 133,312                                |
| True Davidson Acres        | 200 Dawes Rd.         | 130,083                                |
| Wesburn Manor              | 400 The West Mall     | 150,868                                |

Table 171: Long-term Care Home Building Information

### 5.2 Energy Use Intensities

Below are the energy use intensities (total electricity, total gas and total energy) for the 10 long-term care home buildings included in this report and Plan. They are sorted by total energy use intensity, from lowest to highest energy use intensity.

| Building                   | 2012<br>Total<br>Electricity<br>Intensity<br>(kWh/ft <sup>2</sup> ) | 2012 Total<br>Gas<br>Intensity<br>(ekWh/ft <sup>2</sup> ) | 2012 Total<br>Energy<br>Intensity<br>(ekWh/ft <sup>2</sup> ) |
|----------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|
| Castleview Wychwood Towers | 17.75                                                               | 8.92                                                      | 26.68                                                        |
| Kipling Acres              | 10.93                                                               | 19.28                                                     | 30.20                                                        |
| Carefree Lodge             | 17.25                                                               | 18.65                                                     | 35.91                                                        |
| Wesburn Manor              | 14.05                                                               | 24.19                                                     | 38.25                                                        |
| Lakeshore Lodge            | 18.86                                                               | 19.76                                                     | 38.63                                                        |
| Cummer Lodge               | 21.25                                                               | 23.48                                                     | 44.73                                                        |
| True Davidson Acres        | 19.63                                                               | 26.51                                                     | 46.13                                                        |
| Bendale Acres              | 18.44                                                               | 28.83                                                     | 47.28                                                        |
| Fudger House               | 16.18                                                               | 32.87                                                     | 49.05                                                        |
| Seven Oaks                 | 20.93                                                               | 28.54                                                     | 49.47                                                        |

Table 172: Long-term Care Home 2012 Energy Intensity



# 5.3 Target-setting Method and Metrics

No long-term care homes and services were determined to be ineligible for determination of energy components or target-setting. See Appendix A.

All 10 City of Toronto facilities were used to calculate the energy use components.

The following benchmark charts show the resulting electricity and gas use by component. Electricity use was broken down into baseload, cooling and heating electricity as described in Appendix A, and gas use was broken down into baseload and heating.

The red line on each chart indicates the top quartile for each component which is the target for that component.



Figure 98: 2012 Electric Baseload Intensity Benchmark

Electric Baseload refers to year-round electricity use for lighting, fans, equipment and other systems that are not weather dependent. Electric Baseload for long-term care homes and services ranges from 11.2 to 20.6 ekWh/ft<sup>2</sup> and the top-quartile is 14.7 ekWh/ft<sup>2</sup>.



Figure 99: 2012 Electric Cooling Intensity Benchmark



Electric Cooling refers to additional electricity use in summer for cooling purposes. Electric Cooling for long-term care homes and services ranges from 0.1 to 1.5 ekWh/ft<sup>2</sup> and the top-quartile is 0.65 ekWh/ft<sup>2</sup>.



Figure 100: 2012 Electric Heating Intensity Benchmark

Electric Heating refers to additional electricity use in winter months for heating purposes. Electric Heating for long-term care homes and services ranges from 0.1 to 2.4 ekWh/ft<sup>2</sup> and the top-quartile is  $1.1 \text{ ekWh/ft}^2$ .



Figure 101: 2012 Gas Baseload Intensity Benchmark

Gas Baseload refers to natural gas used for domestic hot water and other equipment that runs year round. Gas Baseload for long-term care homes and services ranges from 3.4 to 10.5 ekWh/ft<sup>2</sup> and the top-quartile is 4.3 ekWh/ft<sup>2</sup>.



Figure 102: 2012 Gas Heating Intensity Benchmark

Gas Heating refers to the additional energy used in winter for heating and humidification. Gas Heating for long-term care homes and services ranges from 3.9 to 23.1 ekWh/ft<sup>2</sup> and the top-quartile is 13.7 ekWh/ft<sup>2</sup>.

As explained in Appendix A, all values less than 5% of the average of the top 3 facilities were removed for the calculation of the energy use components.

The top quartile values for each energy use component were adopted as targets.

Before calculation of potential savings for each building, component targets were adjusted taking into account factors specific to the facility type (see Appendix A). In the case of long-term care homes and services, the factors are % of the facility area served by electric heat, % of DHW heated by electricity, use of ground-source or water-source heat pumps, % of the area served by electric air conditioning and % of area served by food services.

# 5.4 Savings Potential by Energy Use Component

# Savings Potential by Energy Use Component for the 10 Mid Savings Potential Long-term Care Homes and Services

Buildings are sorted by total annual savings potential, starting with the highest saving potential buildings.

There are 10 long-term care homes and services with between \$5,000 and \$100,000 in annual savings potential. The highest potential buildings will be focused on first.



| Operation name Electricity Savings Potentia |               |         |         |       |           | Gas Savings Potential |         |       |           |     | al Energy<br>avings<br>otential | Incentives  |           | Indoor<br>Area | GHG<br>Emis-<br>sions |
|---------------------------------------------|---------------|---------|---------|-------|-----------|-----------------------|---------|-------|-----------|-----|---------------------------------|-------------|-----------|----------------|-----------------------|
|                                             |               | Avera   | age %   |       | \$/yr     | A                     | verage  | %     | \$/yr     | Avg | \$/yr                           | Electricity | Gas       | ft²            | kg/yr                 |
|                                             | Base-<br>load | Cooling | Heating | Total |           | Base-<br>load         | Heating | Total |           | %   |                                 |             |           |                |                       |
| TOTAL: 10 facilities                        | 00%           | 36%     | 11%     | 02%   | \$ 84,781 | 36%                   | 25%     | 28%   | \$250,460 | 16% | \$335,242                       | \$ 48,447   | \$ 96,331 | 1,622,285      | 1,876,671             |
| High potential savings facilities (0)       | 00%           | 00%     | 00%     | 00%   | \$-       | 00%                   | 00%     | 00%   | \$-       | 00% | \$-                             | \$-         | \$-       | 0              | 0                     |
| Mid-potential savings facilities (10)       | 00%           | 36%     | 11%     | 02%   | \$84,781  | 36%                   | 25%     | 28%   | \$250,460 | 16% | \$335,242                       | \$ 48,447   | \$ 96,331 | 1,622,285      | 1,876,671             |
| Low potential savings facilities (0)        | 00%           | 00%     | 00%     | 00%   | \$-       | 00%                   | 00%     | 00%   | \$-       | 00% | \$-                             | \$ -        | \$-       | 0              | 0                     |
| Cummer Lodge                                |               | 56%     |         | 4%    | \$ 28,362 | 59%                   |         | 26%   | \$ 37,956 | 16% | \$ 66,318                       | \$ 16,207   | \$ 14,599 | 243,202        | 296,591               |
| Bendale Acres                               |               | 36%     |         | 2%    | \$ 10,853 | 47%                   | 32%     | 35%   | \$ 53,750 | 22% | \$ 64,603                       | \$ 6,202    | \$ 20,673 | 210,329        | 396,974               |
| Fudger House                                |               | 45%     |         | 3%    | \$ 9,061  | 56%                   | 41%     | 45%   | \$ 44,500 | 31% | \$ 53,561                       | \$ 5,178    | \$ 17,115 | 118,996        | 328,715               |
| Seven Oaks                                  |               | 33%     |         | 2%    | \$ 5,907  | 39%                   | 37%     | 37%   | \$ 35,831 | 22% | \$ 41,738                       | \$ 3,376    | \$ 13,781 | 133,312        | 263,588               |
| True Davidson Acres                         |               | 40%     |         | 2%    | \$ 7,850  |                       | 39%     | 33%   | \$ 28,837 | 20% | \$ 36,687                       | \$ 4,486    | \$ 11,091 | 130,083        | 214,569               |
| Wesburn Manor                               |               | 18%     |         | 1%    | \$ 2,959  |                       | 36%     | 31%   | \$ 28,568 | 20% | \$ 31,527                       | \$ 1,691    | \$ 10,988 | 150,868        | 208,783               |
| Carefree Lodge                              |               |         | 53%     | 7%    | \$ 11,767 | 38%                   |         | 14%   | \$ 4,412  | 11% | \$ 16,179                       | \$ 6,724    | \$ 1,697  | 67,490         | 41,129                |
| Lakeshore Lodge                             |               | 49%     |         | 3%    | \$ 7,715  | 11%                   | 9%      | 9%    | \$ 4,005  | 6%  | \$ 11,721                       | \$ 4,409    | \$ 1,540  | 88,964         | 35,007                |
| Kipling Acres                               |               |         |         | 0%    | \$-       |                       | 10%     | 8%    | \$ 6,732  | 5%  | \$ 6,732                        | \$-         | \$ 2,589  | 184,592        | 48,650                |
| Castleview Wychwood Towers                  |               |         | 0%      | 0%    | \$ 306    | 16%                   |         | 9%    | \$ 5,870  | 3%  | \$ 6,177                        | \$ 175      | \$ 2,258  | 294,449        | 42,665                |

#### High savings Moderate savings Low savings

Table 173: Savings Potential for 10 Medium Savings Potential Long-term Care Homes and Services

Savings potential is considered high if 30% or more, moderate if between 11 and 29%, and low if 10% or less.

Average % savings for each energy component are calculated as (Actual Energy Use – Target Energy Use)/Actual Energy Use and \$/year savings for each component are calculated as (Actual Energy Use-Target Energy Use) \* utility company rates \$0.14 per kWh of electricity and \$0.26 per m<sup>3</sup> of gas.

GHG emissions reduction is based on 110g GHG/kWh of electricity and 1879g GHG/m<sup>3</sup> of natural gas. Utility company CDM Incentives are calculated based on \$0.08/kWh of electricity and \$0.10/m<sup>3</sup> of natural gas saved

# Performing Arts Facilities

| Table | of Con | tents |  |
|-------|--------|-------|--|
|       |        |       |  |

| 1 | Ben  | chmarking and Conservation Potential                                             |             |
|---|------|----------------------------------------------------------------------------------|-------------|
|   | 1.1  | Energy Use and Building Characteristics                                          |             |
|   | 1.1. | 1 Building Characteristics                                                       |             |
|   | 1.1. | 2 Summary of Energy Use and Costs                                                |             |
|   | 1.2  | Energy Targets                                                                   |             |
|   | 1.3  | Savings Potential                                                                |             |
| 2 | Con  | servation Measures and Budget                                                    |             |
|   | 2.1  | Proposed Energy Efficiency Measures                                              |             |
| 3 | Ene  | rgy Management and Retrofit Plan                                                 |             |
|   | 3.1  | Implementation Costs and Modeled Savings                                         |             |
|   | 3.2  | Implementation Process and Tools – Determining the Specific Measures for Each    | Building361 |
|   | 3.2. | 1 Building Performance Audit                                                     |             |
|   | 3.2. | 2 Energy Assessment                                                              |             |
|   | 3.3  | Implementation Budget                                                            |             |
|   | 3.4  | 10-Year Implementation Plan                                                      |             |
| 4 | Арр  | endix A                                                                          |             |
|   | 4.1  | Selection of 2012 Utility Bills for Calculation of Actual Energy Use Intensities |             |
|   | 4.2  | Determining Energy Use Components                                                |             |
|   | 4.3  | Determining Targets                                                              |             |
|   | 4.4  | Calculating Potential Savings                                                    |             |
|   | 4.5  | Implementation Costs by Measure Type and Modeled Savings                         |             |
|   | 4.6  | Assessment Tools                                                                 |             |
| 5 | Арр  | endix B - Performing Arts Facilities                                             |             |
|   | 5.1  | Buildings and Building Characteristics                                           |             |
|   | 5.2  | Energy Use Intensities                                                           |             |
|   | 5.3  | Target-setting Method and Metrics                                                |             |
|   | 5.4  | Savings Potential by Energy Use Component                                        |             |

# **DÎ** Toronto

### List of Tables

| Table 174: 2012 Energy Use and Costs for 3 City of Toronto Performing Arts Facilities       | 349 |
|---------------------------------------------------------------------------------------------|-----|
| Table 175: Top Quartile Targets                                                             | 351 |
| Table 176: Savings Potential Summary                                                        | 352 |
| Table 177: Savings Potential based on Energy Use Component for 3 Performing Arts Facilities | 353 |
| Table 166: Energy Saving Measures for Performing Arts Facilities                            | 359 |
| Table 179: Estimated Implementation Costs and Modeled Savings                               | 360 |
| Table 180: Assessment Tools Used to Determine Specific Energy-saving Measures               | 361 |
| Table 181: Total Budget - Energy Management and Retrofit Plan                               | 363 |
| Table 182: Cash Flow for 10-Year Implementation Plan                                        | 364 |
| Table 183: Implementation Costs by Measure Type                                             | 367 |
| Table 184: Performing Arts Facility Building Information                                    | 370 |
| Table 185: Performing Arts Facility 2012 Energy Intensity                                   | 370 |
| Table 186: Savings Potential for 1 High Savings Potential Performing Arts Facility          | 373 |
| Table 187: Savings Potential for 2 Medium Savings Potential Performing Arts Facilities      | 373 |

# List of Figures

| Figure 103: 2012 Energy Use and Cost Breakdown for 3 City of Toronto Performing Arts Facilities | 349 |
|-------------------------------------------------------------------------------------------------|-----|
| Figure 104: 2012 Total Energy Intensity Benchmark                                               | 350 |
| Figure 105: 2012 Total Electricity Intensity Benchmark                                          | 350 |
| Figure 106: 2012 Total Gas Intensity Benchmark                                                  | 351 |
| Figure 107: Cash Flow for 10-Year Implementation Plan                                           | 364 |
| Figure 108: 2012 Electric Baseload Intensity Benchmark                                          | 371 |
| Figure 109: 2012 Electric Cooling Intensity Benchmark                                           | 371 |
| Figure 110: 2012 Gas Baseload Intensity Benchmark                                               | 372 |
| Figure 111: 2012 Gas Heating Intensity Benchmark                                                | 372 |

# **1** Benchmarking and Conservation Potential

# 1.1 Energy Use and Building Characteristics

### **1.1.1 Building Characteristics**

The City of Toronto is reporting on 3 performing arts facilities in the Energy Conservation Demand Management (ECDM) Plan. The names, addresses and building areas are provided in Appendix B.

The total area for all of the buildings is 430,370 ft<sup>2</sup>. The performing arts facilities range in size from approximately 80,700 ft<sup>2</sup> to almost 178,000 ft<sup>2</sup>.

None of the facilities are equipped with a renewable energy system.

The facilities are all 100% air-conditioned and are served by approximately 5% electric heat. None of the facilities are served by ground or water source heat pumps.

#### **1.1.2 Summary of Energy Use and Costs**

This Energy Conservation Demand Management (ECDM) Plan is based on energy use taken from monthly bills for the 2012 calendar year. Energy costs are presented throughout using \$0.14 per kWh of electricity and \$0.26 per m<sup>3</sup> of gas. Refer to Appendix A (section 'Selection of 2012 utility bills for calculation of actual energy use intensities') for the methodology used to calculate the energy use intensities from the utility bills. Total energy use and costs for the 20 buildings are summarized below.

|                               | 2012 Energy Use |           |  |  |  |  |  |  |
|-------------------------------|-----------------|-----------|--|--|--|--|--|--|
|                               | Unit            | \$        |  |  |  |  |  |  |
| Electricity (kWh)             | 6,061,100       | \$848,554 |  |  |  |  |  |  |
| Natural Gas (m <sup>3</sup> ) | 271,413         | \$70,567  |  |  |  |  |  |  |
| Total                         |                 | \$919,121 |  |  |  |  |  |  |

Table 174: 2012 Energy Use and Costs for 3 City of Toronto Performing Arts Facilities







In the case of performing arts facilities, the range of energy performance between high and low users is substantially less than for the other facility types, implying a fairly consistent level of energy efficiency. Total energy use ranges from approximately 15.2 to 34.0 ekWh/ft<sup>2</sup> and electricity use ranges from 12.3 to 20.1 ekWh/ft<sup>2</sup>. Gas use has a wider range, and ranges from 2.2 to 13.9 ekWh/ft<sup>2</sup>. The red line represents the top quartile. The corresponding data for total energy, total electricity and total gas for each building is located in Appendix B.



Figure 104: 2012 Total Energy Intensity Benchmark



Figure 105: 2012 Total Electricity Intensity Benchmark



Figure 106: 2012 Total Gas Intensity Benchmark

# **1.2 Energy Targets**

The energy targets for performing arts facilities are presented in the table below. The target-setting methodology is based upon all buildings improving to the top quartile intensity for each component of energy use, and is described in Appendix B. The goal is for each performing arts facility to achieve its target over the duration of the ECDM Plan.

| Energy type  | Component | Value | Unit          |
|--------------|-----------|-------|---------------|
| Electricity  | Base      | 11.4  | kWh/ft²/year  |
|              | Cooling   | 0.9   | kWh/ft²/year  |
|              | Heating   | 0.0   | kWh/ft²/year  |
|              | Total     | 12.3  | kWh/ft²/year  |
| Gas          | Base      | 0.4   | ekWh/ft²/year |
|              | Heating   | 4.6   | ekWh/ft²/year |
|              | Total     | 5.0   | ekWh/ft²/year |
| Total energy | Total     | 17.3  | ekWh/ft²/year |

| Table | 175: | Тор | Quartile | Targets |
|-------|------|-----|----------|---------|
|-------|------|-----|----------|---------|

The data set for target-setting is made up of 3 performing arts facilities with complete and reliable data, all of which are City of Toronto buildings. Before calculation of potential savings for each building, the energy use component targets were adjusted for site specific factors including electric heat (% building served and % for Domestic Hot Water (DHW)) and % of the area which is air conditioned. The specific target adjustments are found in Appendix A.

### **1.3** Savings Potential

The difference between the actual 2012 energy use and the adjusted target represents the potential annual savings for each energy component in each performing arts facility. The total savings potential for each performing arts facility is then determined as the sum of the components. Some buildings have



very high percentage and dollar potential while other more efficient buildings have little or no potential. The 3 performing arts facilities are categorized as high potential (annual savings of over \$100,000), medium (mid) potential (annual savings between \$5,000 and \$100,000) and low potential (annual savings of less than \$5,000). The savings potential for each individual building is summarized in Appendix B.

There is 1 performing arts facility with annual savings potential greater than \$100,000. 2 performing arts facilities have annual savings potential between \$5,000 and \$100,000, and no performing arts facilities have annual savings potential less than \$5,000 (see Table 3).

The total annual savings potential for the 3 buildings is \$155,618 (\$124,444 for electricity and \$31,174 for gas) with an average total energy savings of 24%.

For the 1 high-potential savings facility, the total annual savings potential is \$109,046 (\$89,665 for electricity and \$19,380 for gas) with an average total energy savings of 51%.

For the 2 mid-potential savings facilities, the total annual savings potential is \$19,873 (\$34,779 for electricity and \$11,794 for gas) with an average total energy savings of 12%.

| Operation name                        | Electricity Savings Potential |     |                  |       | Gas Savings Potential |       |                   | Total Energy<br>Savings<br>Potential |          | Incentives |           | Indoor<br>Area | GHG<br>Emis-<br>sions |         |         |
|---------------------------------------|-------------------------------|-----|------------------|-------|-----------------------|-------|-------------------|--------------------------------------|----------|------------|-----------|----------------|-----------------------|---------|---------|
|                                       | Base-<br>load                 |     | age %<br>Heating | Total | \$/yr                 | Base- | verage<br>Heating |                                      | \$/yr    | Avg<br>%   | \$/yr     | Electricity    | Gas                   | ft²     | kg/yr   |
| TOTAL: 3 facilities                   | 14%                           | 27% | 00%              | 15%   | \$124,444             | 00%   |                   |                                      | \$31,174 | 24%        | \$155,618 | \$71,111       | \$11,990              | 430,370 | 323,068 |
| High potential savings facilities (1) | 41%                           | 00% | 00%              | 39%   | \$ 89,665             | 00%   | 69%               | 69%                                  | \$19,380 | 51%        | \$109,046 | \$51,237       | \$ 7,454              | 80,729  | 210,510 |
| Mid-potential savings facilities (2)  | 03%                           | 31% | 00%              | 06%   | \$ 34,779             | 00%   | 29%               | 28%                                  | \$11,794 | 12%        | \$ 46,572 | \$19,873       | \$ 4,536              | 349,640 | 112,558 |
| Low potential savings facilities (0)  | 00%                           | 00% | 00%              | 00%   | \$ -                  | 00%   | 00%               | 00%                                  | \$-      | 00%        | \$ -      | \$ -           | \$ -                  | 0       | 0       |

#### **Table 176: Savings Potential Summary**

GHG emissions reduction is based on 110g GHG/kWh of electricity and 1879g GHG/m<sup>3</sup> of natural gas. Utility company incentives are calculated based on \$0.08/kWh of electricity (a composite of \$0.05/kWh for lighting retrofits and \$0.10 for non-lighting measures) and \$0.10/m<sup>3</sup> of natural gas saved.

The savings potential for each individual energy component points to where the biggest savings are to be found and guides the priorities for implementation. Table 4 below shows the total potential savings for all 3 buildings and highlights where the greatest percentage savings are.



| 2012 Use | Target                                         | Savings<br>Potential %                                                                                                                                                        |                                                                                                                                                                                                                                                                                                         | Savings<br>Potential \$                                                                                                                                                                                                                                                                                                                                                              |  |  |
|----------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 12.9     | 11.1                                           | 14%                                                                                                                                                                           | \$                                                                                                                                                                                                                                                                                                      | 104,882                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 1.2      | 0.9                                            | 27%                                                                                                                                                                           | \$                                                                                                                                                                                                                                                                                                      | 19,562                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 0.0      | 0.0                                            | 0%                                                                                                                                                                            | \$                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 0.0      | 0.0                                            | 0%                                                                                                                                                                            | \$                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 0.4      | 0.4                                            | 0%                                                                                                                                                                            | \$                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 6.3      | 3.5                                            | 45%                                                                                                                                                                           | \$                                                                                                                                                                                                                                                                                                      | 31,174                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 0.0      | 0.0                                            | 0%                                                                                                                                                                            | \$                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 20.6     | 15.7                                           | 24%                                                                                                                                                                           | \$                                                                                                                                                                                                                                                                                                      | 155,618                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|          | 12.9<br>1.2<br>0.0<br>0.0<br>0.4<br>6.3<br>0.0 | 12.9         11.1           1.2         0.9           0.0         0.0           0.0         0.0           0.4         0.4           6.3         3.5           0.0         0.0 | Image: Potential %           12.9         11.1         14%           1.2         0.9         27%           0.0         0.0         0%           0.10         0.0         0%           0.2         0.4         0.4         0%           0.3         3.5         45%           0.0         0.0         0% | Potential %         Potential %           12.9         11.1         14%         \$           1.2         0.9         27%         \$           0.0         0.0         0%         \$           0.0         0.0         0%         \$           0.4         0.4         0%         \$           6.3         3.5         45%         \$           0.0         0.0         0%         \$ |  |  |

High savings Moderate Low savings

#### Table 177: Savings Potential based on Energy Use Component for 3 Performing Arts Facilities

Savings potential is considered high if it is 30% and above, moderate if between 10 and 29% and low if less than 10%.

Components with the highest percentage savings potential (i.e. Electric Cooling and Gas Heating) will be given higher priority in terms of recommended measures for implementation. In many cases, Electric Baseload measures can provide a significant portion of dollar savings. However, they generally require significant capital investment and will therefore be implemented in later years.

# 2 Conservation Measures and Budget

# 2.1 Proposed Energy Efficiency Measures

Table 5 below shows the full range of possible energy efficiency measures for the entire portfolio of performing arts facilities. The measures are grouped based on the component of energy use they relate to and have been sorted based on chronology of implementation.

The measures are categorized by system type - lighting (L), mechanical (M), electrical (EL), envelope (EN), process (P) (i.e. domestic hot water) and behavioural (B) measures. The profiles of energy use and conservation potential for the 3 facilities indicate that the highest percentage reductions will come from measures associated with gas heating and electric cooling.

The measures have been prioritized in order to help make an informed decision on which to implement first. Priorities are set using the criteria of 'Energy Savings Potential' and 'Ease of Implementation'. Each measure was assigned a score from 1 to 4 for both energy savings potential and ease of implementation.

For Energy Savings Potential, a score of 4 was assigned to measures with the greatest percentage energy savings potential and a score of 1 was assigned to measures with the smallest percentage energy savings potential. For Ease of Implementation, a score of 4 was assigned to measures that are the easiest to implement and a score of 1 to measures that are the most difficult to implement.

The Energy Savings Potential scoring was determined using the following criteria:

- 4 Savings potential is greater than 40%
- 3 Savings potential is 30-40%
- 2 Savings potential is 20-30%
- 1 Savings potential is less than 20%

The Ease of Implementation scoring was determined using the following criteria:

- 4 Measure can be done immediately by building occupants or service contractors (little/no cost)
- 3 Measure involves testing, tuning, measuring (low cost)
- 2 Measure involves significant investigation/optimization (more significant costs)
- 1 Measure involves replacement/installation involving capital costs

The measures with the highest combined Energy Savings Potential and Ease of Implementation scores (out of 8) are deemed the highest priority.



Accordingly the Overall score associated to the proposed measures can be summarized as follows:

1 - Least energy savings potential; Most difficult to implement



8 - Greatest energy savings potential; Easiest to implement

#### Timelines

Measures recommended to be implemented in Year 1 (the year of the initial assessment) are behavioural measures that can be done immediately without capital budgets. Measures recommended for Year 2 will generally result in high percentage savings, are mainly operational and do not require significant capital costs. Year 3 measures will provide high percentage savings (i.e. measures related to electric cooling and gas baseload) but have associated capital costs (i.e. installation and replacement measures). Measures to be implemented in Year 4 and Year 5 are those that have significant associated capital costs and may result in high dollar savings but less significant percentage energy savings (i.e. measures related to all other energy components).

|     | Electric Baseload Measures                                                                          | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline  | Life Expectancy<br>(yrs) | Responsibility     |
|-----|-----------------------------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|-----------|--------------------------|--------------------|
|     | ELECTRIC BASELOAD - refers to year-round electricity use for lighting, fans, ec                     | Juipmen                   | t and othe                  | r syste     | ms that a | re not weather depen     | ident              |
| B1  | Turn off machines, office and kitchen equipment when not needed                                     | 4                         | 1                           | 5           | Year 1    | Annual Review            | Building Occupants |
| B2  | Unplug machines, office and kitchen equipment if not actively used                                  | 4                         | 1                           | 5           | Year 1    | Annual Review            | Building Occupants |
| B3  | Turn off computer monitors when not in use                                                          | 4                         | 1                           | 5           | Year 1    | Annual Review            | Building Occupants |
| B4  | Enable ENERGY STAR power settings on your computer                                                  | 4                         | 1                           | 5           | Year 1    | Annual Review            | Building Occupants |
| B5  | Unplug chargers when not in use                                                                     | 4                         | 1                           | 5           | Year 1    | Annual Review            | Building Occupants |
| B6  | Turn off lights when areas not in use                                                               | 4                         | 1                           | 5           | Year 1    | Annual Review            | Building Occupants |
| B7  | Make use of natural light instead of turning on lights where possible                               | 4                         | 1                           | 5           | Year 1    | Annual Review            | Building Occupants |
| M1  | Optimize operating schedules for fans and pumps                                                     | 3                         | 1                           | 4           | Year 2    | Seasonal Review          |                    |
| M2  | Test and adjust ventilation systems to reduce fan power                                             | З                         | 1                           | 4           | Year 2    | Seasonal Review          |                    |
| L1  | Conduct audit of stage and audience lighting to identify possible<br>improvements                   | 3                         | 1                           | 4           | Year 4    | 4 to 6                   |                    |
| L2  | Replace incandescent and halogen light bulbs with high efficiency<br>lighting                       | 1                         | 1                           | 2           | Year 5    | 10 to 15                 |                    |
| L3  | Install motion sensors in washrooms/occasional use spaces to shut<br>off lights when unoccupied     | 1                         | 1                           | 2           | Year 5    | 10 to 15                 |                    |
| L4  | Install photo-sensors and/or a timer on outdoor and daylit interior<br>area lighting                | 1                         | 1                           | 2           | Year 5    | 10 to 15                 |                    |
| L5  | Replace HID lighting with high efficiency fluorescent                                               | 1                         | 1                           | 2           | Year 5    | 10 to 15                 |                    |
| L6  | Replace outdoor lights and signage with high efficiency fixtures                                    | 1                         | 1                           | 2           | Year 5    | 10 to 15                 |                    |
| L7  | Replace festive lighting with LED                                                                   | 1                         | 1                           | 2           | Year 5    | 10 to 15                 |                    |
| L8  | Install sufficient manual switching to allow occupants to effectively<br>control lighting operation | 1                         | 1                           | 2           | Year 5    | 15+                      |                    |
| EL1 | Replace refrigerators, dishwasher, microwaves with ENERGY STAR rated appliances                     | 1                         | 1                           | 2           | Year 5    | 8 to 12                  |                    |
| EL2 | Replace computers with ENERGY STAR rated units                                                      | 1                         | 1                           | 2           | Year 5    | 4 to 6                   |                    |
| EL3 | Install controls on vending machines                                                                | 1                         | 1                           | 2           | Year 5    | 10 to 15                 |                    |
| EL4 | Install power factor correction                                                                     | 3                         | 1                           | 4           | Year 5    | 15+                      |                    |
| M3  | Install variable frequency drives (VFDs) on suitable fans and pumps                                 | 1                         | 1                           | 2           | Year 5    | 10 to 20                 |                    |
| M4  | Convert electric hot water heaters to natural gas                                                   | 1                         | 1                           | 2           | Year 5    | 10 to 15                 |                    |
|     | Other:                                                                                              |                           |                             |             |           |                          | •                  |

Behavioural Measures

Operational Measures

Retrofit/Capital Measures

# hil Toronto

|     | Electric Heating Measures                                                      | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility            |
|-----|--------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|----------|--------------------------|---------------------------|
|     | ELECTRIC HEATING (IF APPLICABLE) - refers to electricity use for heating purpe | oses                      |                             |             |          |                          |                           |
| B8  | Adjust blinds (to retain heat in winter)                                       | 4                         | 1                           | 5           | Year 1   | annual review            | Building Occupants        |
| B9  | Avoid use of electric heaters                                                  | 4                         | 1                           | 5           | Year 1   |                          | <b>Building Occupants</b> |
|     | Use recommended thermostat set points (in winter set to 68 degrees             |                           |                             |             |          |                          |                           |
| B10 | or less during daytime)                                                        | 4                         | 1                           | 5           | Year 1   |                          | Building Occupants        |
| M8  | Control fan coil and entrance heaters to optimize run-times                    | 3                         | 1                           | 4           | Year 2   | seasonal review          |                           |
| M9  | Evaluate conversion from electric heating to natural gas                       | 2                         | 1                           | 3           | Year 2   | n/a                      |                           |
| M5  | Install snow sensors to control the snow-melting system                        | 1                         | 1                           | 2           | Year 5   | seasonal review          |                           |
| M6  | Upgrade base building heating system to avoid use of electric heaters          | 1                         | 1                           | 2           | Year 5   | seasonal review          |                           |
|     | Upgrade electric heating controls to optimize space temperatures and           |                           |                             |             |          |                          |                           |
| M7  | operating periods                                                              | 1                         | 1                           | 2           | Year 5   | seasonal review          |                           |
|     | Other:                                                                         |                           |                             |             |          |                          |                           |
|     |                                                                                |                           |                             |             |          |                          |                           |

Behavioural Measures Operational Measures Retrofit/Capital Measures

|       | Electric Cooling Measures                                                          | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility     |
|-------|------------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|----------|--------------------------|--------------------|
|       | ELECTRIC COOLING (IF APPLICABLE) - refers to electricity use for cooling purpo     | oses                      |                             |             |          |                          |                    |
| B11   | Winterize room air-conditioners                                                    | 4                         | 2                           | 6           | Year 1   |                          | Building Occupants |
| B12   | Use recommended thermostat set points (during the summer, set to                   |                           |                             |             |          |                          |                    |
| 012   | 78 degrees or more)                                                                | 4                         | 2                           | 6           | Year 1   |                          | Building Occupants |
| B13   | Only cool rooms that are being used                                                | 4                         | 2                           | 6           | Year 1   |                          | Building Occupants |
| B14   | Install and use energy efficient ceiling fans                                      | 4                         | 2                           | 6           | Year 1   |                          | Building Occupants |
| B15   | Close blinds (to shade space from direct sunlight)                                 | 4                         | 2                           | 6           | Year 1   |                          | Building Occupants |
| B16   | Install window film, solar screens or awnings on south and west facing<br>windows  | 4                         | 2                           | 6           | Year 1   |                          | Building Occupants |
| M10   | Optimize operating periods of ventilation systems supplying air conditioned spaces | 2                         | 2                           | 4           | Year 2   | seasonal review          |                    |
| M12   | Upgrade control of air conditioning units to optimize space                        | -                         |                             | _           |          |                          |                    |
|       | temperatures & operating periods                                                   | 3                         | 2                           | 5           | Year 2   | seasonal review          |                    |
| IVI13 | Test and tune the air conditioning units                                           | 3                         | 2                           | 5           | Year 2   | 3                        |                    |
| M11   | Replace and right-size air conditioning units with ENERGY STAR rated<br>units      | 1                         | 2                           | 3           | Year 5   | 10 to 15                 |                    |
|       | Other:                                                                             |                           |                             |             |          |                          |                    |
|       |                                                                                    |                           |                             |             |          |                          |                    |
|       |                                                                                    |                           |                             |             |          |                          |                    |

#### Behavioural Measures

**Operational Measures** 

Retrofit/Capital Measures

|     | Gas Baseload Measures                                                       | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline  | Life Expectancy<br>(yrs) | Responsibility     |
|-----|-----------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|-----------|--------------------------|--------------------|
|     | GAS BASELOAD - refers to the annual natural gas energy used for domestic ho | ot water                  | and other                   | equipr      | nent that | runs year round          |                    |
| B17 | Optimize dishwasher operation (only run when full)                          | 4                         | 1                           | 5           | Year 1    |                          | Building Occupants |
| P1  | Optimize DHW temperature control                                            | 2                         | 1                           | 3           | Year 2    | annual review            |                    |
| P3  | Test and tune DHW boiler efficiency                                         | 3                         | 1                           | 4           | Year 2    | annual review            |                    |
| M16 | Investigate and repair possible gas leaks                                   | 3                         | 1                           | 4           | Year 2    | annual review            |                    |
| P2  | Implement DHW circulation pump control                                      | 1                         | 1                           | 2           | Year 2    | annual review            |                    |
| P4  | Install low flow showerheads and faucet aerators                            | 1                         | 1                           | 2           | Year 5    | 10 to 15                 |                    |
| M14 | Insulate DHW tanks and distribution piping                                  | 2                         | 1                           | 3           | Year 5    | 10 to 15                 |                    |
| M15 | Replace DHW boilers with more efficient models                              | 1                         | 1                           | 2           | Year 5    | 10 to 15                 |                    |
|     | Other:                                                                      |                           |                             |             |           |                          |                    |
|     |                                                                             |                           |                             |             |           |                          |                    |
|     |                                                                             |                           |                             |             |           |                          |                    |

Behavioural Measures

Operational Measures Retrofit/Capital Measures

|      | Gas Heating Measures                                                         | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility     |
|------|------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|----------|--------------------------|--------------------|
|      | GAS HEATING - refers to the additional energy used in winter for heating and | humidif                   | ication                     |             |          |                          |                    |
| B18  | Check and clear baseboard heaters of obstructions                            | 4                         | 4                           | 8           | Year 1   |                          | Building Occupants |
| B19  | Adjust blinds (to retain heat in winter)                                     | 4                         | 4                           | 8           | Year 1   |                          | Building Occupants |
|      | Use recommended thermostat set points (in winter set to 68 degrees           |                           |                             |             |          |                          |                    |
| B20  | or less during daytime)                                                      | 4                         | 4                           | 8           | Year 1   |                          | Building Occupants |
|      | Optimize operating periods of ventilation systems supplying heated           | 2                         | 4                           | 6           | V        |                          |                    |
| M17  | spaces                                                                       | 2                         | 4                           | 6           | Year 2   | seasonal review          |                    |
| M18  | Test and adjust ventilation systems to optimize outside air volumes          | 3                         | 4                           | 7           | Year 2   | seasonal review          |                    |
| M20  | Test and tune boiler efficiency                                              | 3                         | 4                           | 7           | Year 2   | seasonal review          |                    |
| M22  | Check heating system for flow balancing and air venting                      | 3                         | 4                           | 7           | Year 2   | seasonal review          |                    |
| EN1  | Check and seal exterior walls and openings                                   | 3                         | 4                           | 7           | Year 2   | 10 to 15                 |                    |
| EN5  | Seal window and door frames                                                  | 3                         | 4                           | 7           | Year 2   | 5                        |                    |
| M23  | Optimize fan-coil unit and entrance heater controls                          | 3                         | 4                           | 7           | Year 2   | seasonal review          |                    |
| M24  | Consider heating system zoning                                               | 2                         | 4                           | 6           | Year 2   | n/a                      |                    |
|      | Test, repair, replace and right-size heating control valves and outside      |                           |                             |             |          |                          |                    |
| M19  | air dampers                                                                  | 2                         | 4                           | 6           | Year 3   | 10 to 15                 |                    |
| 1421 | Upgrade heating system control to optimize space temperatures and            |                           |                             | 5           | V        | 10 +- 15                 |                    |
|      | operating periods                                                            | 1                         | 4                           |             | Year 3   | 10 to 15                 |                    |
|      | Insulate the attic adequately                                                | 1                         | 4                           | 5           | Year 3   | 10 to 15                 |                    |
|      | Reclad the building's exterior                                               | 1                         | 4                           | 5           | Year 3   | 20 to 24                 |                    |
| EN4  | Replace single-pane windows with double-pane windows                         | 1                         | 4                           | 5           | Year 3   | 20 to 24                 |                    |
| EN6  | If replacing the roof, ensure R-value at least 22                            | 1                         | 4                           | 5           | Year 3   | n/a                      |                    |
| M25  | Install high efficiency burners                                              | 1                         | 4                           | 5           | Year 3   | 15 to 20                 |                    |
| M26  | Replace boilers with more efficient models                                   | 1                         | 4                           | 5           | Year 3   | 15 to 20                 |                    |
| M27  | Replace old rooftop units with energy efficient units                        | 1                         | 4                           | 5           | Year 3   | 15 to 20                 |                    |
| M28  | Install heat recovery or solar heating units                                 | 1                         | 4                           | 5           | Year 3   | 10 to 15                 |                    |
|      | Other:                                                                       |                           |                             |             |          |                          |                    |

Behavioural Measures Operational Measures Retrofit/Capital Measures

\_\_\_\_\_

#### **Table 178: Energy Saving Measures for Performing Arts Facilities**

The specific measures and implementation timeline for each individual performing arts facility will be determined from the results of the Energy Assessments and Checklists (explained in the Implementation section of this plan).

\_\_\_\_\_

# 3 Energy Management and Retrofit Plan

# 3.1 Implementation Costs and Modeled Savings

The average budgeted cost for implementing suggested measures, based on previous experience with similar facilities, is \$4.65/ft<sup>2</sup> (see Appendix A). The budget allows for lighting audits, lighting retrofits and controls, mechanical system efficiency improvements, appliance replacement and controls and localized efficiency measures for the building envelope. The budget does not allow for major plant or equipment replacement or substantial building upgrades such as roof or window replacement. These items may be included if appropriate in projects for individual buildings, but would not provide rational Return on Investments (ROIs) based on energy savings alone and would therefore be budgeted separately.

Similar measures for consideration apply to high and medium potential buildings. A 20 percent premium is included for high potential buildings to ensure that all improvements necessary to achieve the targets are covered. Still, the ROIs for high-potential buildings will be better than the rest.

Low potential buildings do not merit the more in-depth investigations planned for the other two categories. Rather, a checklist approach, guided by the indicated component energy savings potential, would identify the particular measures for each building. The budget allowance for low-potential buildings is set at 40 percent of the basic amount to provide a rational ROI for this group.

In the case of performing arts facilities, the range of energy performance between high and low users is less than for the other facility types, implying a fairly consistent level of energy efficiency. As a result, the targeted % savings are relatively low, so that the required level of investment in energy efficiency improvements is lower. In order to achieve a rational ROI, an implementation cost of \$1.00/ft<sup>2</sup> has been applied to the facilities with savings potential between \$5,000 and \$100,000. See Table 6.

The total implementation costs, payback and cash flows for the portfolios of high medium and lowpotential performing arts facilities are summarized in Table 6 below.

| Annual Savings<br>Potential | Number of<br>facilities | Average Area (ft <sup>2</sup> ) | Estimated<br>Implementation<br>Cost \$/ft <sup>2</sup> | Estimated<br>Implementation<br>Cost \$ |         | Implementation |       | stimated<br>Savings<br>otential \$ | % of total<br>savings | Payback |
|-----------------------------|-------------------------|---------------------------------|--------------------------------------------------------|----------------------------------------|---------|----------------|-------|------------------------------------|-----------------------|---------|
| >\$100,000                  | 1                       | 80,729                          | 5.58                                                   | \$                                     | 450,469 | \$<br>109,046  | 70.1% | 4.13                               |                       |         |
| \$5,000 - \$100,000         | 2                       | 174,820                         | 1.00                                                   | \$                                     | 349,640 | \$<br>46,572   | 29.9% | 7.51                               |                       |         |
| < \$5,000                   | 0                       | -                               | 1.86                                                   | \$                                     | -       | \$<br>-        | 0.0%  |                                    |                       |         |
|                             | 3                       |                                 |                                                        | \$                                     | 800,110 | \$<br>155,618  |       | 5.14                               |                       |         |

#### Table 179: Estimated Implementation Costs and Modeled Savings

Paybacks are determined by actual current implementation costs divided by first year savings (so costs are not adjusted for inflation and utility prices are not adjusted for escalation).



# **3.2** Implementation Process and Tools – Determining the Specific Measures for Each Building

Three types of tools are recommended to enable identification of specific measures in individual buildings:

- High Potential Buildings will undergo a Building Performance Audit incorporating measurement and testing to define retrofits and operational improvements. This also includes interval meter analysis and water consumption.
- Mid Potential Buildings will undergo an Energy Assessment including more in-depth analysis of monthly utility billing data for a number of years and analysis of interval meter or data-logger recordings of daily electricity use.
- Low Potential Buildings will use a simple Checklist to identify priority measures based on the conservation potential profile in this Plan.

The three approaches, budgeted analysis cost and numbers of buildings to which they apply are summarized in Table 7 below.

|                |                                        | # | Cost     | Savings Potential   | Resources                      |
|----------------|----------------------------------------|---|----------|---------------------|--------------------------------|
| High Potential | Building<br>Performance<br>Audit (BPA) | 1 | \$ 7,500 | > \$100,000         | engineer; energy<br>analyst    |
| Mid Potential  | Energy<br>Assessments                  | 2 | \$ 750   | \$5,000 - \$100,000 | energy analyst                 |
| Low Potential  | Checklists                             | 0 | \$ 150   | < \$5,000           | Division Champion and<br>staff |
|                |                                        | 3 |          |                     |                                |

#### Table 180: Assessment Tools Used to Determine Specific Energy-saving Measures

#### 3.2.1 Building Performance Audit

There is 1 performing arts facility (St Lawrence Centre) with over \$100,000 in annual energy saving potential. Over 70% of the total energy savings for all performing arts facilities can be found at this facility.

St Lawrence Centre can save an average of 51% of its total energy use. The total annual energy savings are estimated to be over \$109,000 and the annual GHG savings are approximately 210,500 kg.

St Lawrence Centre can save an average of 39% of its total electricity use (41% Electric Baseload, 0% Electric Cooling and 0% Electric Heating). The total annual electricity savings are estimated to be approximately \$89,660.

St Lawrence Centre can save an average of 69% of its total gas use, and all of the savings are in Gas Heating. The total annual gas savings are estimated to be approximately \$19,400.



St Lawrence Centre will undergo a Building Performance Audit (see the Implementation Plan for further details). For a complete description of the Building Performance Audit, refer to Appendix A.

See Appendix B for the associated energy savings potential by energy use component.

All of the savings for this facility can be found in Gas Heating and Electric Baseload. After the implementation of the proposed measures, this facility is eligible to receive over \$58,000 in incentives based on current incentives available from the Ontario Power Authority.

#### 3.2.2 Energy Assessment

There are 2 performing arts facilities with between \$5,000 and \$100,000 in annual energy saving potential. Approximately 30% of the total energy savings for all 3 performing arts facilities can be found in these 2 facilities.

These 2 performing arts facilities can save an average of 12% of their total energy use. The total annual energy savings are estimated to be over \$46,500. The annual GHG savings are approximately 112,550 kg.

These 2 performing arts facilities can save an average of 6% of their total electricity use (3% Electric Baseload, 31% Electric Cooling and 0% Electric Heating). The total annual electricity savings are estimated to be approximately \$34,780.

These 2 performing arts facilities can save an average of 28% of their total gas use (all in gas heating). The total annual gas savings are estimated to be approximately \$11,800.

These 2 facilities will undergo an Energy Assessment with highest potential performing arts facilities focused on first (see the Implementation Plan for further details).

See Appendix B for a list of these 2 performing arts facilities and their associated energy savings potential by energy use component.

The highest percentage reductions for this group of 2 performing arts facilities can be found in Electric Cooling and Gas Heating. For each individual building, the energy components with highest percentage savings potential will be the focus of the Energy Assessment in order to maximize energy savings. For a complete description of the Energy Assessment, refer to Appendix A.

After the implementation of the proposed measures, these performing arts facilities are eligible to receive over \$24,000 in incentives based on current incentives available from the Ontario Power Authority.

#### 3.3 Implementation Budget

Table 8 below shows the total budget to implement the energy management and retrofit plan, including costs for identifying measures and the implementation costs for all 3 facilities. The total costs to implement the energy management and retrofit plan for performing arts facilities is estimated to be \$809,110. Note the Implementation costs are not adjusted for inflation.

| BUDGE                               | T  |         |
|-------------------------------------|----|---------|
| Building Performance<br>Audit (BPA) | \$ | 7,500   |
| Energy Assessment                   | \$ | 1,500   |
| Checklist                           | \$ | ~       |
| Implementation                      | \$ | 800,110 |
| Total                               | \$ | 809,110 |

#### Table 181: Total Budget - Energy Management and Retrofit Plan

#### 3.4 10-Year Implementation Plan

The 10-year implementation plan is summarized in Table 9 and Figure 5 below.

The plan will roll-out over 10 years, and the buildings with the highest savings potential will be focused on first.

Identification of measures from the Building Performance Audit will occur in Year 1 and the implementation of these measures will occur in Year 2. Identification of measures from Energy Assessments will begin in Year 1, with both Energy Assessments completed by the end of Year 2. The implementation of these measures will begin in Year 2, and will be completed by the end of Year 3.

Annual Costs refer to the assessment and implementation costs, training, measurement and verification (M&V), and maintenance costs.

Over a 10 year period, the cumulative net cash flow for this plan is estimated to be \$478,037. The cumulative net cash flow becomes positive in Year 8.

The implementation plan includes the following assumptions:

- Approximately 77% of the project budget will be spent in the first 5 years, and the other 23% in the following 5 years.
- The percentage of facilities to be retrofitted in each year is proportional to the percentage of the budget spent in that year. 77% of facilities will be retrofitted in the first 5 years and 23% in the following 5 years.
- 25% of energy savings potential of retrofitted facilities is achieved in the first year, 75% in the second year, and 100% in each of the following years.
- Project costs are adjusted for inflation (2% annually) and energy savings are adjusted for utility price escalation (5% annually).
- 100% of incentives are achieved in the year when facilities are retrofitted, and incentives are NOT adjusted for utility price escalation.



|                                       |     | Year 1 |     | Year 2  |     | Year 3  |     | Year 4  |     | Year 5  |     | Year 6  |     | Year 7  |     | Year 8  | Year 9        |    | Year 10 |     | Totals    |
|---------------------------------------|-----|--------|-----|---------|-----|---------|-----|---------|-----|---------|-----|---------|-----|---------|-----|---------|---------------|----|---------|-----|-----------|
|                                       |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |               |    |         |     |           |
| High Potential - Building Performance |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |               |    |         |     |           |
| Audit                                 |     | 1      |     | 0       |     | 0       |     | 0       |     | 0       |     | 0       |     | 0       |     | 0       | 0             |    | 0       |     | 1         |
| Mid Potential - Energy Assessment     |     | 1      |     | 1       |     | 0       |     | 0       |     | 0       |     | 0       |     | 0       |     | 0       | 0             |    | 0       |     | 2         |
| Assessment Costs                      | \$  | 8,250  | \$  | 750     | \$  | -       | \$  | -       | \$  | -       | \$  |         | \$  | -       | \$  | -       | \$<br>-       | \$ | -       | \$  | 9,000     |
| Implementation Costs                  | Ş   | -      | Ş   | 650,551 | Ş   | 185,521 | Ş   | -       | \$  | -       | \$  | -       | \$  | -       | Ş   | -       | \$            | Ş  | -       | Ş   | 836,072   |
| Training and M&V costs (10.0% of      |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |               |    |         |     |           |
| Assessment and Implementation         |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |               |    |         |     |           |
| Costs)                                | \$  | 825    | \$  | 65,130  | \$  | 18,552  | \$  |         | \$  | -       | \$  |         | \$  |         | \$  | -       | \$<br>-       | \$ | -       | \$  | 84,507    |
| Maintenance costs (5.0% of            |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |               |    |         |     |           |
| Implementation Costs, cumulative)     | Ş   | -      | Ş   | 32,528  | \$  | 41,804  | Ş   | 41,804  | \$  | 41,804  | \$  | 41,804  | \$  | 41,804  | \$  | 41,804  | \$<br>41,804  | \$ | 41,804  |     |           |
| Annual Costs                          | \$  | 9,075  | \$  | 748,959 | Ş   | 245,876 | Ş   | 41,804  | \$  | 41,804  | \$  | 41,804  | \$  | 41,804  | \$  | 41,804  | \$<br>41,804  | \$ | 41,804  | \$  | 1,296,535 |
| Estimated Achieved Annual Savings     |     |        | \$  | 37,910  | \$  | 118,960 | \$  | 183,661 | \$  | 198,612 | \$  | 208,543 | \$  | 218,970 | \$  | 229,918 | \$<br>241,414 | \$ | 253,485 | \$  | 1,691,472 |
| Estimated Incentives                  | \$  | -      | \$  | 72,771  | \$  | 10,330  | \$  | -       | \$  |         | \$  | -       | \$  | -       | \$  | -       | \$<br>-       | \$ | -       | \$  | 83,101    |
| Annual Savings and Incentives         | \$  | -      | \$  | 110,680 | \$  | 129,290 | \$  | 183,661 | \$  | 198,612 | \$  | 208,543 | \$  | 218,970 | \$  | 229,918 | \$<br>241,414 | \$ | 253,485 | \$  | 1,774,573 |
| Borrowing costs based on cumulative   |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |               |    |         |     |           |
| cash flows (4.0% per annum)           |     |        | -\$ | 363     | -\$ | 25,894  | -\$ | 30,558  | -\$ | 24,883  | -\$ | 18,611  | -\$ | 11,941  | -\$ | 4,855   | \$<br>-       | \$ | -       | -\$ | 117,105   |
| Net Cash Flow incl borrowing costs    | -\$ | 9,075  | -\$ | 638,642 | -\$ | 142,480 | \$  | 111,300 | \$  | 131,925 | \$  | 148,128 | \$  | 165,225 | \$  | 183,260 | \$<br>199,610 | \$ | 211,681 | \$  | 360,932   |
| Cumulative Net Cash Flow              | -\$ | 9,075  | -\$ | 647,354 | -\$ | 763,940 | -\$ | 622,082 | -\$ | 465,274 | -\$ | 298,535 | -\$ | 121,369 | \$  | 66,746  | \$<br>266,356 | \$ | 478,037 |     |           |

Table 182: Cash Flow for 10-Year Implementation Plan



Figure 107: Cash Flow for 10-Year Implementation Plan



# 4 Appendix A

### 4.1 Selection of 2012 Utility Bills for Calculation of Actual Energy Use Intensities

Utility bills were used covering the period from January to December 2012.

If the total number of days in the combined bills was greater than 385 or less than 345 (because of adjustment bills spanning a few months), the facility was excluded from the dataset used to determine energy use components and targets.

To calculate 2012 actual energy use, the combined usage was normalized for the number of days in the calendar year 2012 (366).

# 4.2 Determining Energy Use Components

The energy use components and targets were calculated using data available for eligible facilities at the City of Toronto (see above) and facilities of the same type from other municipalities. Energy use components were determined as follows:

**Electric Baseload**: Relates to systems which run year-round such as lighting, fans and equipment. Electric Baseload for performing arts facilities is determined as the average kWh/day for March, April, October and November multiplied by 366 days.

**Electric Cooling**: Was determined as the additional electricity use above the year-round base from May to September, and relates to air conditioning.

**Electric Heating**: Was determined as the additional use in January, February and December, and relates to electric heat or electricity use for heating systems (pumps, blowers etc.).

**Gas Baseload**: Relates to systems which run year-round (domestic hot water) and is determined as the average  $m^3/day$  for June, July and August multiplied by 366 days.

**Gas Heating**: Was determined as the additional gas use to heat the building from January to May, and September to December.

### 4.3 Determining Targets

Component energy targets were set based on the top quartile intensity of the eligible data set. Thus achievement of the targets anticipates all buildings with component energy intensities greater than the top quartile will reach that level already attained by one quarter of the buildings.

All values less than 5% of the average of the top 3 facilities were removed for the calculation of the component energy targets.

Before the calculation of potential savings for each building, component targets were adjusted taking into account factors specific to the facility type. Individual targets are adjusted for energy types, non-



standard space types or equipment, and high energy intensity spaces or equipment. The target adjustments are listed below.

#### Target Adjustments

**Electric Heating:** Add Gas Heating multiplied by % of area served and 75% efficiency to Electric Heating AND Multiply Gas Heating by (100% - % of area served)

**GSHP:** Add Gas Heating \* 0.19 \* % of area served to Electric Heating AND Subtract Gas Heating \* 0.13 \* % of area served from Gas Heating

**WSHP:** Add Gas Heating \* 0.19 \* % of area served to Electric Heating Electricity AND Subtract Gas Heating \* 0.75 \* % of area served from Gas Heating

**Electric DHW:** Add Gas Baseload \* % of area served \* 75% efficiency to Electric Baseload AND Multiply Gas Baseload by (100% - % of area served)

**Air-Conditioning:** Divide Electric Cooling by Average % of building served by A/C for all facilities of the type and multiply by % of the facility area served by A/C

Data Centre: Add 50 kWh/ft<sup>2</sup> \* % of building occupied by Data Centre to Electric Baseload

**Food Services**: Add 30 kWh/ft<sup>2</sup> \* % of facility area occupied by Food Services (including seating area) to Electric Baseload

**Outdoor Rink:** If rink has associated ice plant, add (1.04 kWh/ft<sup>2</sup> of ice/week \* ft<sup>2</sup> of ice surface area \* 16 weeks/year) divided by  $ft^2$  of the total building area to Electric Baseload

**Solar Hot Water:** Subtract the product of System Power Rating (kW thermal) and (Average Actual) Annual Performance (kWh (t)/kW) divided by the facility area (ft<sup>2</sup>) from Gas Baseload (ekWh/ft<sup>2</sup>)

**Solar Photovoltaic**: Subtract the product of System Power Rating (kW thermal) and (Average Actual) Annual Performance (kWh(t)/kW) divided by the facility area (ft<sup>2</sup>) from Electric Baseload (kWh/ft<sup>2</sup>)

Garage: Add 20 ekWh/ft<sup>2</sup> to Gas Heating

High-intensity electric equipment: Add 30 kWh/ft<sup>2</sup> to Electric Baseload

#### Indoor Rink(s) and/or Indoor Pool(s) within Community Centres and Indoor Recreational Facilities:

<u>Adjustment for Electric Baseload</u> – Electric Baseload adjusted for Indoor Rink and/or Indoor Pool, kWh/ft<sup>2</sup> of total area = (Electric Baseload for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>))+ Assumed Electricity Requirement of Ice Plant (ekWh/ft<sup>2</sup> of ice/week) \* Months ice-in \* 52 weeks a year /12 months a year \* Rink area, ft<sup>2</sup> + Electric Baseload for Pool (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>) / Total Area, ft<sup>2</sup>



<u>Adjustment for Gas Baseload</u> – Gas Baseload adjusted for Indoor Rink and/or Indoor Pool, ekWh/ft<sup>2</sup> of total area = Gas Baseload for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>)) + Gas Baseload for Indoor Sports Arenas (ekWh/ft<sup>2</sup> of rink) \* Rink area, ft<sup>2</sup> + Gas Baseload for Indoor Swimming Pools (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>

<u>Adjustment for Gas Heating</u> – Gas Heating adjusted for Indoor Rink and/or Indoor Pool, ekWh/ft<sup>2</sup> of total area = Gas Heating for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>)) + Gas Heating for Indoor Sports Arenas (ekWh/ft<sup>2</sup> of rink) \* Rink area, ft<sup>2</sup> + Gas Heating for Indoor Swimming Pools (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>

# 4.4 Calculating Potential Savings

The difference between the actual energy use component intensity and adjusted target represents potential annual savings for the component after multiplication by the facility area (and conversion from ekWh to m<sup>3</sup> in the case of gas).

For the facilities that were previously excluded from the dataset for setting targets, potential savings were calculated based on total electricity and gas use (normalized to 366 days) compared with total adjusted electricity and natural gas targets.

### 4.5 Implementation Costs by Measure Type and Modeled Savings

The following table summarizes the implementation costs and savings estimates for measures under each type of operational system. Note that the costs are based on previous experience with similar projects.

These apply to the following building types:

- Performing arts facilities
- Cultural facilities

|            | Cost \$/ft <sup>2</sup> | % electric | Payback (yrs) | kWh/ft²/yr | m³/ft²/yr |
|------------|-------------------------|------------|---------------|------------|-----------|
| Lighting   | 2.25                    | 100%       | 6.5           | 2.9        |           |
|            |                         |            |               |            |           |
| Mechanical | 1.50                    | 30%        | 6             | 0.6        | 0.7       |
|            |                         |            |               |            |           |
| Electrical | 0.25                    | 100%       | 8             | 0.3        |           |
| Envelope   | 0.50                    | 0%         | 10            |            | 0.2       |
| · ·        |                         |            |               |            |           |
| Process    | 0.15                    | 0%         | 5             |            | 0.1       |
| Total      | 4.65                    |            | 6.7           | 3.77       | 1.02      |

Table 183: Implementation Costs by Measure Type



Implementation costs for lighting include measures such as re-lamping and re-ballasting with about 20% fixture retrofits, replacement or relocation, along with selective, local occupancy and photo-controls. They also include lighting audits.

Costs for mechanical system measures include mechanical system testing and minor retrofits such as VFDs, re-balancing, right-sizing, tuning and repairs, along with upgraded controls.

Costs for electrical measures include appliance and equipment replacements and upgraded controls.

Costs for envelope measures include thermographic testing along with draft-proofing, re-insulation and roof/wall air sealing.

Costs for process (domestic hot water) measures include low flow shower heads and aerators, controls on hot water use for vehicle washing and minor retrofits such as pipe insulation.

# 4.6 Assessment Tools

#### **Building Performance Audit**

The Building Performance Audit determines how well a building's existing systems and operational practices compare to other similar buildings, including top performers. The audit identifies problem areas in building systems, examines building operations, and determines improvements that will deliver the greatest energy savings and maximize return on investment. The outcome will be a clear, evidence-based picture of how much can be saved and what areas to focus on to optimize performance.

The Building Performance Audit includes:

- Benchmarking against comparable buildings including top-performers
- Performance based target setting customized for your building
- Interval meter analysis and examination of prior years' energy trends pinpointing specific system and operational inefficiencies
- Motor testing and equipment data-logging analysis
- Deeper understanding of operating practices through energy use profiles
- Power density and plant capacity analysis to identify retrofit opportunities
- Power factor analysis to uncover over-sized equipment
- Inventory and efficiency analysis of main energy-using equipment
- Verification and documentation of the proper operation of the building systems
- Payback and business case analysis



#### **Initial Energy Targets**

Initial energy targets are created by a mass screening tool which uses a standardized logic to produce a preliminary estimate of savings potential for every building, and thereby identify high-, medium- and low-potential buildings. This initial target-setting process creates the overall economic envelope for the program.

#### **Energy Assessment**

Medium-potential buildings are subjected to more in-depth analysis through an Energy Assessment which drills deeper into utility consumption data to refine the savings target and uncover more specific conservation measures. Regression analysis of monthly billing data against heating and cooling degreedays highlights billing anomalies such as estimated bills, and provides a more accurate breakdown of energy components, and hence component energy savings. Where multiple years of billing data are available the Energy Assessment produces weather-normalized performance trends which can uncover changes in energy use and seasonal anomalies which point to specific energy saving opportunities. The Energy Assessment also analyzes electrical interval meter (or data-logger test results) to help identify operational improvements such as equipment running when the building is unoccupied.

# **5** Appendix B - Performing Arts Facilities

# 5.1 Buildings and Building Characteristics

Below are the names, addresses and building areas for the 3 performing arts facility buildings included in this report and Plan.

| Building                            | Address       | Building<br>Area (ft <sup>2</sup> ) |
|-------------------------------------|---------------|-------------------------------------|
| Sony Centre for the Performing Arts | 1 Front St E  | 171,649                             |
| St Lawrence Centre                  | 27 Front St E | 80,729                              |
| Toronto Centre for the Arts         | 5040 Yonge St | 177,992                             |

#### Table 184: Performing Arts Facility Building Information

### 5.2 Energy Use Intensities

Below are the energy use intensities (total electricity, total gas and total energy) for the 3 performing arts facility buildings included in this report and Plan. They are sorted by total energy use intensity, from lowest to highest energy use intensity.

| Building                            | 2012<br>Total<br>Electricity<br>Intensity<br>(kWh/ft <sup>2</sup> ) | 2012 Total<br>Gas<br>Intensity<br>(ekWh/ft <sup>2</sup> ) | 2012 Total<br>Energy<br>Intensity<br>(ekWh/ft²) |
|-------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|
| Sony Centre for the Performing Arts | 12.66                                                               | 2.15                                                      | 14.82                                           |
| Toronto Centre for the Arts         | 12.16                                                               | 7.44                                                      | 19.60                                           |
| St Lawrence Centre                  | 19.28                                                               | 13.90                                                     | 33.19                                           |

#### Table 185: Performing Arts Facility 2012 Energy Intensity

#### **5.3 Target-setting Method and Metrics**

No performing arts facilities were determined to be ineligible for determination of energy components or target-setting. See Appendix A.

3 City of Toronto facilities were used to calculate the energy use components.

The following benchmark charts show the resulting electricity and gas use by component. Electricity use was broken down into baseload, cooling and heating electricity as described in Appendix A, and gas use was broken down into baseload and heating.

The red line on each chart indicates the top quartile for each component which is the target for that component.


Figure 108: 2012 Electric Baseload Intensity Benchmark

Electric Baseload refers to year-round electricity use for lighting, fans, equipment and other systems that are not weather dependent. Electric Baseload for performing arts facilities ranges from 10.8 to 19.3 ekWh/ft<sup>2</sup> and the top-quartile is 11.4 ekWh/ft<sup>2</sup>.



Figure 109: 2012 Electric Cooling Intensity Benchmark

Electric Cooling refers to additional electricity use in summer for cooling purposes. Electric Cooling for performing arts facilities ranges from 0.8 to 1.6 ekWh/ft<sup>2</sup> and the top-quartile is 0.9 ekWh/ft<sup>2</sup>.

Electric Heating refers to additional electricity use in winter months for heating purposes. There is no Electric Heating for performing arts facilities.



Figure 110: 2012 Gas Baseload Intensity Benchmark

Gas Baseload refers to natural gas used for domestic hot water and other equipment that runs year round. There is Gas Baseload only at Toronto Centre for the Arts and it is 0.44 ekWh/ft<sup>2</sup>.



Figure 111: 2012 Gas Heating Intensity Benchmark

Gas Heating refers to the additional energy used in winter for heating and humidification. Gas Heating for performing arts facilities ranges from 2.2 to 13.9 ekWh/ft<sup>2</sup> and the top-quartile is 4.8 ekWh/ft<sup>2</sup>.

The top quartile values for each energy use component were adopted as targets.

Before calculation of potential savings for each building, component targets were adjusted taking into account factors specific to the facility type (see Appendix A). In the case of performing arts facilities, the factors are % of the facility area served by electric heat, %of DHW heated by electricity, use of ground-source or water-source heat pumps and % of the area served by electric air conditioning.

For the facilities that were previously excluded from the dataset for setting targets, potential savings were calculated by subtraction of the sum of individual energy use component targets adjusted to specific characteristics of the facility from Total Electricity use (or Total Gas use).

### 5.4 Savings Potential by Energy Use Component

#### Savings Potential by Energy Use Component for the 1 High Savings Potential Performing Arts Facility

Buildings are sorted by total annual savings potential, starting with the highest saving potential buildings.

There is one performing arts facility with over \$100,000 in annual savings potential.

|                                       |       |                               | Hi      | gh savin | gs Mo                 | derate s | avings  | Lo                                   | w savings |            |           |                |                       |        |         |
|---------------------------------------|-------|-------------------------------|---------|----------|-----------------------|----------|---------|--------------------------------------|-----------|------------|-----------|----------------|-----------------------|--------|---------|
| Operation name                        | E     | Electricity Savings Potential |         |          | Gas Savings Potential |          |         | Total Energy<br>Savings<br>Potential |           | Incentives |           | Indoor<br>Area | GHG<br>Emis-<br>sions |        |         |
|                                       |       | Avera                         | age %   |          | \$/yr                 | A        | verage  | %                                    | \$/yr     | Avg        | \$/yr     | Electricity    | Gas                   | ft²    | kg/yr   |
|                                       | Base- |                               |         |          |                       | Base-    |         |                                      | -         | %          |           |                |                       |        |         |
|                                       | load  | Cooling                       | Heating | Total    |                       | load     | Heating | Total                                |           |            |           |                |                       |        |         |
| High potential savings facilities (1) | 41%   | 00%                           | 00%     | 39%      | \$ 89,665             | 00%      | 69%     | 69%                                  | \$19,380  | 51%        | \$109,046 | \$51,237       | \$ 7,454              | 80,729 | 210,510 |
| St Lawrence Centre                    | 41%   |                               |         | 39%      | \$ 89,665             |          | 69%     | 69%                                  | \$19,380  | 51%        | \$109,046 | \$51,237       | \$ 7,454              | 80,729 | 210,510 |

#### Table 186: Savings Potential for 1 High Savings Potential Performing Arts Facility

#### Savings Potential by Energy Use Component for the 2 Mid-Savings Potential Performing arts Facilities

Buildings are sorted by total annual savings potential, starting with the highest saving potential buildings.

There are 2 performing arts facilities with between \$5,000 and \$100,000 in annual savings potential. The highest potential buildings will be focused on first.

|                                      |       |                               | HI      | ghsavin | gs <mark>IVIC</mark> | derate s  | avings  | LO     | w savings |                                      |           |             |          |                |                       |
|--------------------------------------|-------|-------------------------------|---------|---------|----------------------|-----------|---------|--------|-----------|--------------------------------------|-----------|-------------|----------|----------------|-----------------------|
| Operation name                       | E     | Electricity Savings Potential |         |         |                      | Ga        | s Saviı | ngs Po | tential   | Total Energy<br>Savings<br>Potential |           | Incentives  |          | Indoor<br>Area | GHG<br>Emis-<br>sions |
|                                      |       | Avera                         | age %   |         |                      | Average % |         | %      |           | Avg the                              |           |             |          |                |                       |
|                                      | Base- |                               |         |         | \$/yr                | Base-     |         |        | \$/yr     | %                                    | \$/yr     | Electricity | Gas      | ft²            | kg/yr                 |
|                                      |       |                               | Heating | Total   |                      | load      | Heating | Total  |           | ,                                    |           |             |          |                |                       |
| Mid-potential savings facilities (2) | 03%   | 31%                           | 00%     | 06%     | \$ 34,779            | 00%       | 29%     | 28%    | \$11,794  | 12%                                  | \$ 46,572 | \$19,873    | \$ 4,536 | 349,640        | 112,558               |
| Toronto Centre for the Arts          |       | 42%                           |         | 6%      | \$ 16,701            |           | 38%     | 35%    | \$11,794  | 17%                                  | \$ 28,495 | \$ 9,543    | \$ 4,536 | 177,992        | 98,354                |
| Sony Centre for the Performing Arts  | 5%    | 12%                           |         | 6%      | \$ 18,077            |           |         |        | \$-       | 5%                                   | \$ 18,077 | \$10,330    | \$ -     | 171,649        | 14,204                |

#### High savings Moderate savings Low savings

Table 187: Savings Potential for 2 Medium Savings Potential Performing Arts Facilities

Savings potential is considered high if 30% or more, moderate if between 11 and 29%, and low if 10% or less.

Average % savings for each energy component are calculated as (Actual Energy Use – Target Energy Use)/Actual Energy Use and \$/year savings for each component are calculated as (Actual Energy Use - Target Energy Use) \* utility company rates \$0.14 per kWh of electricity and \$0.26 per m<sup>3</sup> of gas.

GHG emissions reduction is based on 110g GHG/kWh of electricity and 1879g GHG/m<sup>3</sup> of natural gas. Utility company CDM Incentives are calculated based on \$0.08/kWh of electricity and \$0.10/m<sup>3</sup> of natural gas saved.

# **Police Services Facilities**

# **DI TORONTO**

#### **Table of Contents**

| 1 | Ben  | chmarking and Conservation Potential                                             |             |
|---|------|----------------------------------------------------------------------------------|-------------|
|   | 1.1  | Energy Use and Building Characteristics                                          |             |
|   | 1.1. | 1 Building Characteristics                                                       |             |
|   | 1.1. | 2 Summary of Energy Use and Costs                                                |             |
|   | 1.2  | Energy Targets                                                                   |             |
|   | 1.3  | Savings Potential                                                                |             |
| 2 | Con  | servation Measures and Budget                                                    |             |
|   | 2.1  | Previous Energy Efficiency Initiatives                                           |             |
|   | 2.2  | Proposed Energy Efficiency Measures                                              |             |
| 3 | Ene  | rgy Management and Retrofit Plan                                                 |             |
|   | 3.1  | Implementation Costs and Modeled Savings                                         |             |
|   | 3.2  | Implementation Process and Tools – Determining the Specific Measures for Each    | Building392 |
|   | 3.2. | 1 Building Performance Audit                                                     |             |
|   | 3.2. | 2 Energy Assessment                                                              |             |
|   | 3.2. | 3 Energy Savings Checklist                                                       |             |
|   | 3.3  | Implementation Budget                                                            |             |
|   | 3.4  | 10-Year Implementation Plan                                                      |             |
| 4 | Арр  | endix A                                                                          |             |
|   | 4.1  | Selection of 2012 Utility Bills for Calculation of Actual Energy Use Intensities |             |
|   | 4.2  | Determining Energy Use Components                                                |             |
|   | 4.3  | Determining Targets                                                              |             |
|   | 4.4  | Calculating Potential Savings                                                    |             |
|   | 4.5  | Implementation Costs by Measure Type and Modeled Savings                         |             |
|   | 4.6  | Assessment Tools                                                                 |             |
| 5 | Арр  | endix B - Police Services Facilities                                             |             |
|   | 5.1  | Buildings and Building Characteristics                                           |             |
|   | 5.2  | Energy Use Intensities                                                           |             |
|   | 5.3  | Target-setting Method and Metrics                                                |             |
|   | 5.4  | Savings Potential by Energy Use Component                                        | 408         |

# **DÎ** Toronto

#### List of Tables

| Table 188: Current Renewable Energy Systems on Police Services Facilities                    | 377 |
|----------------------------------------------------------------------------------------------|-----|
| Table 189: 2012 Energy Use and Costs for 39 City of Toronto Police Services Facilities       | 378 |
| Table 190: Top Quartile Targets                                                              | 380 |
| Table 191: Savings Potential Summary                                                         | 381 |
| Table 192: Savings Potential based on Energy Use Component for 39 Police Services Facilities | 382 |
| Table 193: 2007 Police Station Project Estimated Project Costs and Savings                   | 383 |
| Table 194: Measures from 2007 Police Station Project                                         | 385 |
| Table 182: Energy Saving Measures for Police Services Facilities                             | 390 |
| Table 196: Proposed Renewable Energy Systems on Police Services Facilities                   | 391 |
| Table 197: Estimated Implementation Costs and Modeled Savings                                | 392 |
| Table 198: Assessment Tools used to Determine Specific Energy-saving Measures                | 393 |
| Table 199: Total Budget - Energy Management and Retrofit Plan                                | 395 |
| Table 200: Cash Flow for 10-Year Implementation Plan                                         | 397 |
| Table 201: Implementation Costs by Measure Type                                              | 401 |
| Table 202: Police Services Facilities Building Information                                   | 404 |
| Table 203: Police Services Facilities 2012 Energy Intensity                                  | 405 |
| Table 204: Excluded Facilities                                                               | 405 |
| Table 205: Savings Potential for 3 High Savings Potential Police Services Facilities         | 409 |
| Table 206: Savings Potential for 19 Medium Savings Potential Police Services Facilities      | 409 |
| Table 207: Savings Potential for 17 Low-Savings Potential Police Services Facilities         | 410 |

### List of Figures

| Figure 112: 2012 Energy Use and Cost Breakdown for 39 City of Toronto Police Services Facilities | 378 |
|--------------------------------------------------------------------------------------------------|-----|
| Figure 113: 2012 Total Energy Intensity Benchmark                                                | 379 |
| Figure 114: 2012 Total Electricity Intensity Benchmark                                           | 379 |
| Figure 115: 2012 Total Gas Intensity Benchmark                                                   | 380 |
| Figure 116: Cash Flow for 10-Year Implementation Plan                                            | 397 |
| Figure 117: 2012 Electric Baseload Intensity Benchmark                                           | 406 |
| Figure 118: 2012 Electric Cooling Intensity Benchmark                                            | 406 |
| Figure 119: 2012 Electric Heating Intensity Benchmark                                            | 407 |
| Figure 120: 2012 Gas Baseload Intensity Benchmark                                                | 407 |
| Figure 121: 2012 Gas Heating Intensity Benchmark                                                 | 408 |

## **1** Benchmarking and Conservation Potential

### **1.1 Energy Use and Building Characteristics**

#### **1.1.1 Building Characteristics**

The City of Toronto is reporting on 39 police services facilities in the Energy Conservation Demand Management (ECDM) Plan. The names, addresses and building areas are provided in Appendix B.

The total area for all of the buildings is 2,589,421 ft<sup>2</sup>. The police services facilities range in size from less than 500 ft<sup>2</sup> (Leuty Beach) to almost 300,000 ft<sup>2</sup>.

| Building Name                               | Building Address        | Renewable<br>Installation  | System<br>Size | Unit |
|---------------------------------------------|-------------------------|----------------------------|----------------|------|
| Police Garage (Forensic)                    | 2050 Jane St            | Solar Air                  | 49             | kW   |
| Police Headquarters                         | 40 College St           | Deep Lake Water<br>Cooling | 450            | kW   |
| Police No.11 Division                       | 2054 Davenport Rd       | Geothermal                 | N/A            | N/A  |
| Police No.14 Divison                        | 350 Dovercourt Rd       | Geothermal                 | N/A            | N/A  |
| Police Traffic Services and<br>Garage       | 9 Hanna Ave             | Solar Photovoltaic         | 50             | kW   |
| Toronto Police Services<br>Training College | 70 Birmingham<br>Street | Geothermal                 | N/A            | N/A  |
| Toronto Police Services<br>Training College | 70 Birmingham<br>Street | Solar Photovoltaic         | 216            | kW   |

The facilities equipped with a renewable energy system are presented below:

Table 188: Current Renewable Energy Systems on Police Services Facilities

The facilities range from 0% to 100% air-conditioned. Two facilities (Centre Island Marine Unit and Centre Island Police Division) are fully served by electric heat. Even though they are not reported to be using electric heat, the electricity profiles show that the majority of the other police stations have significant additional use of electricity in winter months. While some of this usage may be due to longer hours of lighting or electric motors, use of electric heaters is indicated and should be further explored. Identifying and limiting electricity use associated with space heating will be one of the first measures recommended in the plan (see section on proposed energy efficiency measures).



### 1.1.2 Summary of Energy Use and Costs

This Energy Conservation Demand Management (ECDM) Plan is based on energy use taken from monthly bills for the 2012 calendar year. Energy costs are presented throughout using \$0.14 per kWh of electricity and \$0.26 per m<sup>3</sup> of gas. Refer to Appendix A (section 'Selection of 2012 utility bills for calculation of actual energy use intensities') for the methodology used to calculate the energy use intensities from the utility bills. Total energy use and costs for the 39 buildings are summarized below.

|                               | 2012 Ene   | ergy Use    |
|-------------------------------|------------|-------------|
|                               | Unit       | \$          |
| Electricity (kWh)             | 38,388,047 | \$5,374,327 |
| Natural Gas (m <sup>3</sup> ) | 2,622,208  | \$681,774   |
| Total                         |            | \$6,056,101 |

Table 189: 2012 Energy Use and Costs for 39 City of Toronto Police Services Facilities



Figure 112: 2012 Energy Use and Cost Breakdown for 39 City of Toronto Police Services Facilities

There is a wide range of energy use intensities as presented below, due primarily to differences in efficiency between the 39 buildings. Total energy use ranges from approximatley 2 to 138 ekWh/ft<sup>2</sup> (Leuty Beach). It should be noted that this could be a data error and should be investigated. There are also wide ranges for electricity and gas use per ft<sup>2</sup>. The red line represents the top quartile. The corresponding data for total energy, total electricity and total gas for each building is located in Appendix B.





Figure 113: 2012 Total Energy Intensity Benchmark



Figure 114: 2012 Total Electricity Intensity Benchmark



Figure 115: 2012 Total Gas Intensity Benchmark

### **1.2 Energy Targets**

The energy targets for police services facilities are presented in the table below. The target-setting methodology is based upon all buildings improving to the top quartile intensity for each component of energy use, and is described in Appendix B. The goal is for each police station to achieve its target over the duration of the ECDM Plan.

| Energy type  | Component | Value | Unit          |
|--------------|-----------|-------|---------------|
| Electricity  | Baseload  | 12.9  | kWh/ft²/year  |
|              | Cooling   | 1.2   | kWh/ft²/year  |
|              | Heating   | 0.3   | kWh/ft²/year  |
|              | Total     | 14.4  | kWh/ft²/year  |
| Gas          | Baseload  | 1.0   | ekWh/ft²/year |
|              | Heating   | 7.7   | ekWh/ft²/year |
|              | Total     | 8.7   | ekWh/ft²/year |
| Total energy | Total     | 23.1  | ekWh/ft²/year |

**Table 190: Top Quartile Targets** 

The data set for target-setting is made up of 33 police services facilities with complete and reliable data, all of which are City of Toronto buildings. Before calculation of potential savings for each building, the energy use component targets were adjusted for site specific factors including electric heat (% building served and % for Domestic Hot Water (DHW)), % of the area which is air conditioned and % of the area served by a data centre. The specific target adjustments are found in Appendix A.



### **1.3 Savings Potential**

The difference between the actual 2012 energy use and the adjusted target represents the potential annual savings for each energy component in each police station. The total savings potential for each police services facility is then determined as the sum of the components. Some buildings have very high percentage and dollar potential while other more efficient buildings have little or no potential. The 39 police services facilities are categorized as high potential (annual savings of over \$100,000), medium (mid) potential (annual savings between \$5,000 and \$100,000) and low potential (annual savings of less than \$5,000). The savings potential for each individual building is summarized in Appendix B.

There are 3 police services facilities with annual savings potential greater than \$100,000. 19 police services facilities have annual savings potential between \$5,000 and \$100,000 and 17 police services facilities have annual savings potential less than \$5,000 (see Table 3).

The total annual savings potential for the 39 buildings is \$1,200,163 (\$1,118,748 for electricity and \$81,415 for gas) with an average total energy savings of 17%.

For the 3 high-potential savings facilities, the total annual savings potential is \$796,242 (\$747,820 for electricity and \$48,422 for gas) with an average total energy savings of 36%.

For the 19 mid-potential savings facilities, the total annual savings potential is \$380,761 (\$350,730 for electricity and \$30,031 for gas) with an average total energy savings of 19%.

For the 17 low-potential savings facilities, the total annual savings potential is \$23,160 (\$20,198 for electricity and \$2,962 for gas) with an average total energy savings of 1%.

|                                       | Electricity Savings Potential |     |                  | Ga    | Gas Savings Potential |      |                   |     | tal Energy<br>Igs Potential | Incentives |             | Indoor<br>Area | GHG<br>Emis-<br>sions |           |           |
|---------------------------------------|-------------------------------|-----|------------------|-------|-----------------------|------|-------------------|-----|-----------------------------|------------|-------------|----------------|-----------------------|-----------|-----------|
|                                       | Base-<br>Ioad                 |     | age %<br>Heating | Total | \$/yr                 | Baco | verage<br>Heating |     | \$/yr                       | Avg<br>%   | \$/yr       | Electricity    | Gas                   | ft²       | kg/yr     |
| TOTAL: 39 facilities                  | 22%                           | 27% | 27%              | 21%   | \$1,118,748           | 56%  | 06%               | 12% | \$81,415                    | 17%        | \$1,200,163 | \$639,284      | \$31,313              | 2,589,421 | 1,467,396 |
| High potential savings facilities (3) | 37%                           | 49% | 64%              | 38%   | \$ 747,820            | 70%  | 20%               | 31% | \$48,422                    | 36%        | \$ 796,242  | \$427,326      | \$18,624              | 410,374   | 937,516   |
| Mid-potential savings facilities (19) | 21%                           | 18% | 09%              | 21%   | \$ 350,730            | 57%  | 05%               | 15% | \$30,031                    | 19%        | \$ 380,761  | \$200,417      | \$11,550              | 646,598   | 492,603   |
| Low potential savings facilities (17) | 00%                           | 15% | 17%              | 01%   | \$ 20,198             | 09%  | 00%               | 01% | \$ 2,962                    | 01%        | \$ 23,160   | \$ 11,542      | \$ 1,139              | 1,532,449 | 37,277    |

#### **Table 191: Savings Potential Summary**

GHG emissions reduction is based on 110g GHG/kWh of electricity and 1879g GHG/m<sup>3</sup> of natural gas. Utility company incentives are calculated based on \$0.08/kWh of electricity (a composite of \$0.05/kWh for lighting retrofits and \$0.10 for non-lighting measures) and \$0.10/m<sup>3</sup> of natural gas saved.

The savings potential for each individual energy component points to where the biggest savings are to be found and guides the priorities for implementation. Table 4 below shows the total potential savings for all 39 buildings and highlights where the greatest percentage savings are.



| Energy and Water Components                                          | 2012 Use | Target | Savings<br>Potential % | Savings<br>Potential \$ |           |  |
|----------------------------------------------------------------------|----------|--------|------------------------|-------------------------|-----------|--|
| Electric Baseload (kWh/ft²)                                          | 14.0     | 10.9   | 22%                    | \$                      | 998,223   |  |
| Electric Cooling (kWh/ft²)                                           | 1.1      | 0.8    | 27%                    | \$                      | 77,811    |  |
| Electric Heating (kWh/ft²)                                           | 0.5      | 0.3    | 27%                    | \$                      | 14,615    |  |
| Total Electricity (kWh/ft²) for facilities w/o component intensities | 13.0     | 12.1   | 7%                     | \$                      | 28,098    |  |
| Gas Baseload (ekWh/ft²)                                              | 1.4      | 0.6    | 56%                    | \$                      | 43,076    |  |
| Gas Heating (ekWh/ft²)                                               | 9.1      | 8.6    | 6%                     | \$                      | 32,727    |  |
| Total Gas (ekWh/ft²) for facilities w/o component intensities        | 11.4     | 10.4   | 9%                     | \$                      | 5,612     |  |
| Total Energy (ekWh/ft²)                                              | 25.3     | 21.0   | 17%                    | \$                      | 1,200,163 |  |

High savings Moderate savings Low savings

#### Table 192: Savings Potential based on Energy Use Component for 39 Police Services Facilities

Savings potential is considered high if it is 30% and above, moderate if between 10 and 29% and low if less than 10%.

Components with the highest percentage savings potential (i.e. Electric Cooling, Electric Heating (i.e. higher electricity use in winter months as described above under Building Characteristics) and Gas Baseload) will be given higher priority in terms of recommended measures for implementation. In many cases, Electric Baseload measures can provide a significant portion of dollar savings. However, they generally require significant capital investment and will therefore be implemented in later years.

# 2 Conservation Measures and Budget

### 2.1 Previous Energy Efficiency Initiatives

In 2007, the City of Toronto undertook a study to identify building improvement measures that would improve energy and water efficiency and reduce the operating cost and environmental impact of police services facilities located throughout the City of Toronto.

Table 5 below summarizes the estimated overall project costs, savings and estimated energy reduction for 21 police services facilities as a result of the 2007 project.

|                     |       |             | Р             | Estimated Energy Reduction |            |           |         |            |            |             |         |
|---------------------|-------|-------------|---------------|----------------------------|------------|-----------|---------|------------|------------|-------------|---------|
|                     |       |             |               |                            |            | Total CO2 |         | Electrcity | Electrcity |             | Water   |
|                     | # of  | Total Floor |               | Total                      | Total ekWh | Savings   |         | Savings    | Savings    | Natural Gas | Savings |
| Project Name & Year | Bldgs | Area (m2)   | Retrofit Cost | \$Savings                  | Savings    | (tonnes)  | Payback | kWh        | kW         | Savings m3  | m3      |
| Police Station 2007 | 21    | 73,283      | \$2,280,021   | \$285,003                  | 3,459,456  | 792       | 8.0     | 2,417,933  | 2,257      | 100,711     | 17,759  |

#### Table 193: 2007 Police Station Project Estimated Project Costs and Savings

Table 6 below lists the specific buildings where projects occurred, and what the specific measures were.

| Building # | <b>Building Name</b> | Measure Name                    |
|------------|----------------------|---------------------------------|
| 1          | #12 Police Division  | Advance Lighting Control System |
| 1          | #12 Police Division  | Building Envelope Sealing       |
| 1          | #12 Police Division  | Domestic Water Retrofits        |
| 2          | #13 Police Division  | HVAC Modifications              |
| 2          | #13 Police Division  | Demand Control Ventilation      |
| 2          | #13 Police Division  | Building Envelope Sealing       |
| 2          | #13 Police Division  | Domestic Water Retrofits        |
| 3          | #22 Police Division  | Lighting Retrofits and Redesign |
| 3          | #22 Police Division  | Lighting Controls               |
| 3          | #22 Police Division  | HVAC Modifications              |
| 3          | #22 Police Division  | Building Envelope Sealing       |
| 3          | #22 Police Division  | Domestic Water Retrofits        |
| 4          | #31 Police Division  | Building Envelope Sealing       |
| 4          | #31 Police Division  | Domestic Water Retrofits        |
| 5          | #32 Police Division  | Lighting Retrofits and Redesign |
| 5          | #32 Police Division  | Lighting Controls               |
| 5          | #32 Police Division  | Building Envelope Sealing       |
| 5          | #32 Police Division  | Domestic Water Retrofits        |
| 6          | #33 Police Division  | Lighting Retrofits and Redesign |
| 6          | #33 Police Division  | Lighting Controls               |
| 6          | #33 Police Division  | Building Envelope Sealing       |
| 6          | #33 Police Division  | Domestic Water Retrofits        |
| 7          | #41 Police Division  | Lighting Retrofits and Redesign |
| 7          | #41 Police Division  | Lighting Controls               |
| 7          | #41 Police Division  | Building Envelope Sealing       |

| 7  | #41 Doline Division  | Domostic Mator Dotrofite        |
|----|----------------------|---------------------------------|
| 7  | #41 Police Division  | Domestic Water Retrofits        |
| 8  | #42 Police Division  | Building Envelope Sealing       |
| 8  | #42 Police Division  | Domestic Water Retrofits        |
| 9  | #51 Police Division  | Lighting Retrofits and Redesign |
| 9  | #51 Police Division  | Lighting Controls               |
| 9  | #51 Police Division  | Building Envelope Sealing       |
| 9  | #51 Police Division  | Domestic Water Retrofits        |
| 10 | #52 Police Division  | Lighting Retrofits and Redesign |
| 10 | #52 Police Division  | Lighting Controls               |
| 10 | #52 Police Division  | HVAC Modifications              |
| 10 | #52 Police Division  | BAS Upgrade                     |
| 10 | #52 Police Division  | Demand Control Ventilation      |
| 10 | #52 Police Division  | Building Envelope Sealing       |
| 10 | #52 Police Division  | Domestic Water Retrofits        |
| 11 | #53 Police Division  | Lighting Retrofits and Redesign |
| 11 | #53 Police Division  | Lighting Controls               |
| 11 | #53 Police Division  | HVAC Modifications              |
| 11 | #53 Police Division  | Demand Control Ventilation      |
| 11 | #53 Police Division  | Building Envelope Sealing       |
| 11 | #53 Police Division  | Domestic Water Retrofits        |
| 12 | #54 Police Division  | Lighting Retrofits and Redesign |
| 12 | #54 Police Division  | Lighting Controls               |
| 12 | #54 Police Division  | Building Envelope Sealing       |
| 12 | #54 Police Division  | Domestic Water Retrofits        |
| 13 | #55 Police Division  | Lighting Retrofits and Redesign |
| 13 | #55 Police Division  | Lighting Controls               |
| 13 | #55 Police Division  | HVAC Modifications              |
| 13 | #55 Police Division  | BAS Upgrade                     |
| 13 | #55 Police Division  | Building Envelope Sealing       |
| 13 | #55 Police Division  | Domestic Water Retrofits        |
| 14 | Emergency Task Force | Building Envelope Sealing       |
| 14 | Emergency Task Force | Domestic Water Retrofits        |
| 15 | Forensic Service     | Building Envelope Sealing       |
| 15 | Forensic Service     | Domestic Water Retrofits        |
| 16 | Intelligence Bureau  | Building Envelope Sealing       |
| 16 | Intelligence Bureau  | Domestic Water Retrofits        |
| 17 | Police Dog Service   | Building Envelope Sealing       |
| 17 | Police Dog Service   | Domestic Water Retrofits        |
| 17 | Police Garage        | Lighting Retrofits and Redesign |
| 18 | Police Garage        | Lighting Controls               |
| 18 |                      |                                 |
| 10 | Police Garage        | Building Envelope Sealing       |



| 18 | Police Garage    | Domestic Water Retrofits        |
|----|------------------|---------------------------------|
| 19 | Police Marine HQ | Lighting Retrofits and Redesign |
| 19 | Police Marine HQ | Lighting Controls               |
| 19 | Police Marine HQ | Building Envelope Sealing       |
| 19 | Police Marine HQ | Domestic Water Retrofits        |
| 20 | Property Bureau  | Lighting Retrofits and Redesign |
| 20 | Property Bureau  | Lighting Controls               |
| 20 | Property Bureau  | Building Envelope Sealing       |
| 20 | Property Bureau  | Domestic Water Retrofits        |
| 21 | Public Order     | Lighting Retrofits and Redesign |
| 21 | Public Order     | Lighting Controls               |
| 21 | Public Order     | Building Envelope Sealing       |
| 21 | Public Order     | Domestic Water Retrofits        |

| <b>Table 194:</b> | Measures  | from | 2007 | Police | Station | Project |
|-------------------|-----------|------|------|--------|---------|---------|
| TUDIC 134.        | incusuics |      | 2007 | 1 Once | Station | TOJECC  |

### 2.2 Proposed Energy Efficiency Measures

Table 7 below shows the full range of possible energy efficiency measures for the entire portfolio of police services facilities. The measures are grouped based on the component of energy use they relate to and have been sorted based on chronology of implementation.

The measures are categorized by system type - lighting (L), mechanical (M), electrical (EL), envelope (EN), process (P) (i.e. domestic hot water) and behavioural (B) measures. The profiles of energy use and conservation potential for the 39 facilities indicate that the largest percentage reductions will come from measures associated with electric cooling, electric heating and gas baseload, the majority of which are low/no cost measures.

The measures have been prioritized in order to help make an informed decision on which to implement first. Priorities are set using the criteria of 'Energy Savings Potential' and 'Ease of Implementation'. Each measure was assigned a score from 1 to 4 for both energy savings potential and ease of implementation.

For Energy Savings Potential, a score of 4 was assigned to measures with the greatest percentage energy savings potential and a score of 1 was assigned to measures with the smallest percentage energy savings potential. For Ease of Implementation, a score of 4 was assigned to measures that are the easiest to implement and a score of 1 to measures that are the most difficult to implement.

The Energy Savings Potential scoring was determined using the following criteria:

- 4 Savings potential is greater than 40%
- 3 Savings potential is 30-40%
- 2 Savings potential is 20-30%
- 1 Savings potential is less than 20%



The Ease of Implementation scoring was determined using the following criteria:

- 4 Measure can be done immediately by building occupants or service contractors (little/no cost)
- 3 Measure involves testing, tuning, measuring (low cost)
- 2 Measure involves significant investigation/optimization (more significant costs)
- 1 Measure involves replacement/installation involving capital costs

<u>The measures with the highest combined Energy Savings Potential and Ease of Implementation scores</u> (out of 8) are deemed the highest priority.

Accordingly the Overall score associated to the proposed measures can be summarized as follows:

1 - Least energy savings potential; Most difficult to implement

#### 8 - Greatest energy savings potential; Easiest to implement

#### Timelines

Measures recommended to be implemented in Year 1 (the year of the initial assessment) are behavioural measures that can be done immediately without capital budgets. Measures recommended for Year 2 will generally result in high percentage savings, are mainly operational and do not require significant capital costs. Year 3 measures will provide high percentage savings (i.e. measures related to electric cooling and gas baseload) but have associated capital costs (i.e. installation and replacement measures). Measures to be implemented in Year 4 and Year 5 are those that have significant associated capital costs and may result in high dollar savings but less significant percentage energy savings (i.e. measures related to all other energy components).

|     | Electric Baseload Measures                                                                                                              | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility            |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|----------|--------------------------|---------------------------|
|     | ELECTRIC BASELOAD - refers to year-round electricity use for lighting, fans, equipment and other systems that are not weather dependent |                           |                             |             |          |                          |                           |
| B1  | Turn off machines, office and kitchen equipment when not needed                                                                         | 4                         | 2                           | 6           | Year 1   | Annual Review            | Building Occupants        |
| B2  | Unplug machines, office and kitchen equipment if not actively used                                                                      | 4                         | 2                           | 6           | Year 1   | Annual Review            | Building Occupants        |
| B3  | Turn off computer monitors when not in use                                                                                              | 4                         | 2                           | 6           | Year 1   | Annual Review            | Building Occupants        |
| B4  | Enable ENERGY STAR power settings on your computer                                                                                      | 4                         | 2                           | 6           | Year 1   | Annual Review            | <b>Building Occupants</b> |
| B5  | Unplug chargers when not in use                                                                                                         | 4                         | 2                           | 6           | Year 1   | Annual Review            | Building Occupants        |
| B6  | Turn off lights when areas not in use                                                                                                   | 4                         | 2                           | 6           | Year 1   | Annual Review            | Building Occupants        |
| B7  | Make use of natural light instead of turning on lights where possible                                                                   | 4                         | 2                           | 6           | Year 1   | Annual Review            | Building Occupants        |
| M1  | Optimize operating schedules for fans and pumps                                                                                         | 3                         | 2                           | 5           | Year 2   | Seasonal Review          |                           |
| M2  | Test and adjust ventilation systems to reduce fan power                                                                                 | 3                         | 2                           | 5           | Year 2   | Seasonal Review          |                           |
| EL4 | Install power factor correction                                                                                                         | 3                         | 2                           | 5           | Year 3   | 15+                      |                           |
| L1  | Replace incandescent and halogen light bulbs with high efficiency<br>lighting                                                           | 1                         | 2                           | 3           | Year 5   | 10 to 15                 |                           |
| L2  | Install motion sensors in washrooms/occasional use spaces to shut<br>off lights when unoccupied                                         | 1                         | 2                           | 3           | Year 5   | 10 to 15                 |                           |
| L3  | Install photo-sensors and/or a timer on outdoor and daylit interior area lighting                                                       | 1                         | 2                           | 3           | Year 5   | 10 to 15                 |                           |
| L4  | Replace HID lighting with high efficiency fluorescent                                                                                   | 1                         | 2                           | 3           | Year 5   | 10 to 15                 |                           |
| L5  | Replace outdoor lights and signage with high efficiency fixtures                                                                        | 1                         | 2                           | 3           | Year 5   | 10 to 15                 |                           |
| L6  | Replace festive lighting with LED                                                                                                       | 1                         | 2                           | 3           | Year 5   | 10 to 15                 |                           |
| L7  | Install sufficient manual switching to allow occupants to effectively control lighting operation                                        | 1                         | 2                           | 3           | Year 5   | 15+                      |                           |
| EL1 | Replace refrigerators, dishwasher, microwaves with ENERGY STAR rated appliances                                                         | 1                         | 2                           | 3           | Year 5   | 8 to 12                  |                           |
| EL2 | Replace computers with ENERGY STAR rated units                                                                                          | 1                         | 2                           | 3           | Year 5   | 4 to 6                   |                           |
| EL3 | Install controls on vending machines                                                                                                    | 1                         | 2                           | 3           | Year 5   | 10 to 15                 |                           |
| EL5 | Submeter data and call centres                                                                                                          | 1                         | 2                           | 3           | Year 5   | Seasonal Review          |                           |
| M3  | Install variable frequency drives (VFDs) on suitable fans and pumps                                                                     | 1                         | 2                           | 3           | Year 5   | 10 to 20                 |                           |
| M4  | Convert electric hot water heaters to natural gas                                                                                       | 1                         | 2                           | 3           | Year 5   | 10 to 15                 |                           |
|     | Other:                                                                                                                                  | -                         |                             |             |          |                          |                           |

Behavioural Measures

Operational Measures Retrofit/Capital Measures

# ni Toronto

|           | Electric Heating Measures                                                      | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility     |
|-----------|--------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|----------|--------------------------|--------------------|
|           | ELECTRIC HEATING (IF APPLICABLE) - refers to electricity use for heating purpo | oses                      |                             |             |          |                          |                    |
| <b>B8</b> | Adjust blinds (to retain heat in winter)                                       | 4                         | 2                           | 6           | Year 1   | annual review            | Building Occupants |
| B9        | Avoid use of electric heaters                                                  | 4                         | 2                           | 6           | Year 1   |                          | Building Occupants |
|           | Use recommended thermostat set points (in winter set to 68 degrees             |                           |                             |             |          |                          |                    |
| B10       | or less during daytime)                                                        | 4                         | 2                           | 6           | Year 1   |                          | Building Occupants |
| M8        | Control fan coil and entrance heaters to optimize run-times                    | 3                         | 2                           | 5           | Year 2   | seasonal review          |                    |
| M9        | Evaluate conversion from electric heating to natural gas                       | 2                         | 2                           | 4           | Year 2   | n/a                      |                    |
| M5        | Install snow sensors to control the snow-melting system                        | 1                         | 2                           | 3           | Year 5   | seasonal review          |                    |
| M6        | Upgrade base building heating system to avoid use of electric heaters          | 1                         | 2                           | 3           | Year 5   | seasonal review          |                    |
|           | Upgrade electric heating controls to optimize space temperatures and           |                           |                             |             |          |                          |                    |
| M7        | operating periods                                                              | 1                         | 2                           | 3           | Year 5   | seasonal review          |                    |
| M10       | Install controls on vehicle plug-in heaters                                    | 1                         | 2                           | 3           | Year 5   | 10 to 15                 |                    |
|           | Other:                                                                         |                           |                             |             |          |                          |                    |
|           |                                                                                |                           |                             |             |          |                          |                    |

#### Behavioural Measures

#### Operational Measures Retrofit/Capital Measures

|     | Electric Cooling Measures                                                                       | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility     |
|-----|-------------------------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|----------|--------------------------|--------------------|
|     | ELECTRIC COOLING (IF APPLICABLE) - refers to electricity use for cooling purpo                  | oses                      |                             |             |          |                          |                    |
| B11 | Winterize room air-conditioners                                                                 | 4                         | 2                           | 6           | Year 1   |                          | Building Occupants |
| B12 | Use recommended thermostat set points (during the summer, set to 78 degrees or more)            | 4                         | 2                           | 6           | Year 1   |                          | Building Occupants |
| B13 | Only cool rooms that are being used                                                             | 4                         | 2                           | 6           | Year 1   |                          | Building Occupants |
| B14 | Install and use energy efficient ceiling fans                                                   | 4                         | 2                           | 6           | Year 1   |                          | Building Occupants |
| B15 | Close blinds (to shade space from direct sunlight)                                              | 4                         | 2                           | 6           | Year 1   |                          | Building Occupants |
| B16 | Install window film, solar screens or awnings on south and west facing windows                  | 4                         | 2                           | 6           | Year 1   |                          | Building Occupants |
| M11 | Optimize operating periods of ventilation systems supplying air<br>conditioned spaces           | 2                         | 2                           | 4           | Year 2   | seasonal review          |                    |
| M13 | Upgrade control of air conditioning units to optimize space<br>temperatures & operating periods | 3                         | 2                           | 5           | Year 2   | seasonal review          |                    |
| M14 | Test and tune the air conditioning units                                                        | 3                         | 2                           | 5           | Year 2   | 3                        |                    |
| M12 | Replace and right-size air conditioning units with ENERGY STAR rated units                      | 1                         | 2                           | 3           | Year 5   | 10 to 15                 |                    |
|     | Other:                                                                                          |                           |                             |             |          |                          |                    |

#### Behavioural Measures

**Operational Measures** 

Retrofit/Capital Measures

-

\_

|     | Gas Baseload Measures                                                       | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline  | Life Expectancy<br>(yrs) | Responsibility     |
|-----|-----------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|-----------|--------------------------|--------------------|
|     | GAS BASELOAD - refers to the annual natural gas energy used for domestic ho | ot water                  | and other                   | equip       | nent that | runs year round          |                    |
| B17 | Optimize dishwasher operation (only run when full)                          | 4                         | 4                           | 8           | Year 1    |                          | Building Occupants |
| P1  | Optimize DHW temperature control                                            | 2                         | 4                           | 6           | Year 2    | annual review            |                    |
| P3  | Test and tune DHW boiler efficiency                                         | 3                         | 4                           | 7           | Year 2    | annual review            |                    |
| M17 | Investigate and repair possible gas leaks                                   | 3                         | 4                           | 7           | Year 2    | annual review            |                    |
| P2  | Implement DHW circulation pump control                                      | 1                         | 4                           | 5           | Year 2    | annual review            |                    |
| P4  | Install low flow showerheads and faucet aerators                            | 1                         | 4                           | 5           | Year 3    | 10 to 15                 |                    |
| M15 | Insulate DHW tanks and distribution piping                                  | 2                         | 4                           | 6           | Year 3    | 10 to 15                 |                    |
| M16 | Replace DHW boilers with more efficient models                              | 1                         | 4                           | 5           | Year 3    | 10 to 15                 |                    |
|     | Other:                                                                      |                           |                             |             |           |                          |                    |
|     |                                                                             |                           |                             |             |           |                          |                    |
|     |                                                                             |                           |                             |             |           |                          |                    |

Behavioural Measures

Operational Measures Retrofit/Capital Measures

|       | Gas Heating Measures                                                                          | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility     |
|-------|-----------------------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|----------|--------------------------|--------------------|
|       | GAS HEATING - refers to the additional energy used in winter for heating and                  | humidif                   | ication                     |             |          |                          |                    |
| B18   | Check and clear baseboard heaters of obstructions                                             | 4                         | 1                           | 5           | Year 1   |                          | Building Occupants |
| B19   | Adjust blinds (to retain heat in winter)                                                      | 4                         | 1                           | 5           | Year 1   |                          | Building Occupants |
|       | Use recommended thermostat set points (in winter set to 68 degrees                            |                           |                             | _           |          |                          |                    |
| B20   | or less during daytime)<br>Optimize operating periods of ventilation systems supplying heated | 4                         | 1                           | 5           | Year 1   |                          | Building Occupants |
| M10   | spaces                                                                                        | 2                         | 1                           | 3           | Year 2   | seasonal review          |                    |
| IVI15 | spaces                                                                                        | 2                         | 1                           | 5           |          | Seasonal review          |                    |
| M20   | Test and adjust ventilation systems to optimize outside air volumes                           | 3                         | 1                           | 4           | Year 2   | seasonal review          |                    |
| M23   | Test and tune boiler efficiency                                                               | 3                         | 1                           | 4           | Year 2   | seasonal review          |                    |
| M25   | Check heating system for flow balancing and air venting                                       | 3                         | 1                           | 4           | Year 2   | seasonal review          |                    |
| EN1   | Check and seal exterior walls and openings                                                    | 3                         | 1                           | 4           | Year 2   | 10 to 15                 |                    |
| EN5   | Seal window and door frames                                                                   | 3                         | 1                           | 4           | Year 2   | 5                        |                    |
| M26   | Optimize fan-coil unit and entrance heater controls                                           | 3                         | 1                           | 4           | Year 2   | seasonal review          |                    |
| M27   | Consider heating system zoning                                                                | 2                         | 1                           | 3           | Year 2   | n/a                      |                    |
|       | Test, repair, replace and right-size heating control valves and outside                       |                           |                             |             |          | · ·                      |                    |
| M22   | air dampers                                                                                   | 2                         | 1                           | 3           | Year 5   | 10 to 15                 |                    |
|       | Use controls to prevent heaters from running when overhead doors                              |                           |                             | _           |          |                          |                    |
|       | are open                                                                                      | 1                         | 1                           | 2           | Year 2   | seasonal review          |                    |
| M21   | Apply CO control to vehicle area exhaust fans                                                 | 1                         | 1                           | 2           | Year 5   | 10 to 15                 |                    |
| 1424  | Upgrade heating system control to optimize space temperatures and<br>operating periods        | 1                         | 1                           | 2           | Year 5   | 10 to 15                 |                    |
|       | Insulate the attic adequately                                                                 | 1                         | 1                           | 2           | Year 5   | 10 to 15                 |                    |
|       |                                                                                               | 1                         | 1                           | 2           | Year 5   | 20 to 24                 |                    |
|       | Reclad the building's exterior                                                                |                           |                             |             |          |                          |                    |
|       | Replace single-pane windows with double-pane windows                                          | 1                         | 1                           | 2           | Year 5   | 20 to 24                 |                    |
|       | If replacing the roof, ensure R-value at least 22                                             | 1                         | 1                           | 2           | Year 5   | n/a                      |                    |
|       | Install high efficiency burners                                                               | 1                         | 1                           | 2           | Year 5   | 15 to 20                 |                    |
|       | Replace boilers with more efficient models                                                    | 1                         | 1                           | 2           | Year 5   | 15 to 20                 |                    |
|       | Replace old rooftop units with energy efficient units                                         | 1                         | 1                           | 2           | Year 5   | 15 to 20                 |                    |
| M31   | Install heat recovery or solar heating units<br>Other:                                        | 1                         | 1                           | 2           | Year 5   | 10 to 15                 |                    |
|       | Other                                                                                         |                           |                             |             |          |                          |                    |
|       |                                                                                               |                           |                             |             |          |                          |                    |

Behavioural Measures Operational Measures Retrofit/Capital Measures

Table 195: Energy Saving Measures for Police Services Facilities

The specific measures and implementation timeline for each individual police services facility will be determined from the results of the Energy Assessments and Checklists (explained in the Implementation section of this plan).

### Proposed / Future Renewable Energy Installations

| Building Name                 | Building Address    | Renewable<br>Installation | System Size | Unit |
|-------------------------------|---------------------|---------------------------|-------------|------|
| Police Div. 42                | 242 Milner Ave      | Geothermal                | 350         | kW   |
| Police Div. 55                | 101 Coxwell Ave     | Geothermal                | 140         | kW   |
| Police Cranfield Garage       | 18 Cranfield Road   | Solar PV                  | 100         | kW   |
| Police Div. 13                | 1435 Eglinton Ave W | Solar PV                  | 37          | kW   |
| Police Div. 33                | 50 Upjohn Rd        | Solar PV                  | 45          | kW   |
| Police Property &<br>Evidence | 799 Islington Ave   | Solar PV                  | 150         | kW   |

 Table 196: Proposed Renewable Energy Systems on Police Services Facilities

## 3 Energy Management and Retrofit Plan

### 3.1 Implementation Costs and Modeled Savings

The average budgeted cost for implementing suggested measures, based on previous experience with similar facilities, is \$4.20/ft<sup>2</sup> (see Appendix A). The budget allows for lighting audits, lighting retrofits and controls, mechanical system efficiency improvements, appliance replacement and controls and localized efficiency measures for the building envelope. The budget does not allow for major plant or equipment replacement or substantial building upgrades such as roof or window replacement. These items may be included if appropriate in projects for individual buildings, but would not provide rational Return on Investments (ROIs) based on energy savings alone and would therefore be budgeted separately.

Similar measures for consideration apply to high and medium potential buildings. A 20 percent premium is included for high potential buildings to ensure that all improvements necessary to achieve the targets are covered. Still, the ROIs for high potential buildings will be better than the rest.

Low potential buildings do not merit the more in-depth investigations planned for the other two categories. Rather, a checklist approach, guided by the indicated component energy savings potential, would identify the particular measures for each building. The budget allowance for low potential buildings is set at 40 percent of the basic amount to provide a rational ROI for this group.

The total implementation costs, payback and cash flows for the portfolios of high, medium, and low potential police services facilities are summarized in Table 8 below.

| Annual Savings<br>Potential | Number of<br>facilities | Average Area<br>(ft <sup>2</sup> ) | Estimated<br>Implementation<br>Cost \$/ft <sup>2</sup> | Estimated<br>lementation<br>Cost \$ |      | stimated<br>Savings<br>otential \$ | % of total<br>savings | Payback |
|-----------------------------|-------------------------|------------------------------------|--------------------------------------------------------|-------------------------------------|------|------------------------------------|-----------------------|---------|
| >\$100,000                  | 3                       | 136,791                            | 5.04                                                   | \$<br>2,068,283                     | \$   | 796,242                            | 66.3%                 | 2.60    |
| \$5,000 - \$100,000         | 19                      | 34,031                             | 4.20                                                   | \$<br>2,715,713                     | \$   | 380,761                            | 31.7%                 | 7.13    |
| < \$5,000                   | 17                      | 90,144                             | 1.68                                                   | \$<br>2,574,514                     | \$   | 23,160                             | 1.9%                  | 111.16  |
|                             | 39                      |                                    |                                                        | \$<br>7,358,510                     | \$ : | 1,200,163                          |                       | 6.13    |

#### Table 197: Estimated Implementation Costs and Modeled Savings

Paybacks are determined by actual current implementation costs divided by first year savings (so costs are not adjusted for inflation and utility prices are not adjusted for escalation).

# **3.2** Implementation Process and Tools – Determining the Specific Measures for Each Building

Three types of tools are recommended to enable identification of specific measures in individual buildings:

• High Potential Buildings will undergo a Building Performance Audit incorporating measurement and testing to define retrofits and operational improvements. This also includes interval meter analysis and water consumption.



- Mid Potential Buildings will undergo an Energy Assessment including more in-depth analysis of monthly utility billing data for a number of years and analysis of interval meter or data-logger recordings of daily electricity use.
- Low Potential Buildings will use a simple Checklist to identify priority measures based on the conservation potential profile in this Plan.

The three approaches, budgeted analysis cost and numbers of buildings to which they apply are summarized in Table 9 below.

|                |                                        | #  | Cost     | Savings Potential   | Resources                      |
|----------------|----------------------------------------|----|----------|---------------------|--------------------------------|
| High Potential | Building<br>Performance<br>Audit (BPA) | 3  | \$ 7,500 | > \$100,000         | engineer; energy<br>analyst    |
| Mid Potential  | Energy<br>Assessments                  | 19 | \$ 750   | \$5,000 - \$100,000 | energy analyst                 |
| Low Potential  | Checklists                             | 17 | \$ 150   | < \$5,000           | Division Champion and<br>staff |
|                |                                        | 39 |          |                     |                                |

#### Table 198: Assessment Tools used to Determine Specific Energy-saving Measures

#### 3.2.1 Building Performance Audit

There are 3 police services facilities (Police Headquarters, #51 Police Division New, and Forensic Service, Store & Garage) with over \$100,000 in annual energy saving potential. Over 65% of the total energy savings for all police services facilities can be found at these 3 facilities.

These 3 police services facilities can save an average of 36% of their total energy use. The total annual energy savings are estimated to be over \$796,000 and individual building annual savings range from approximately \$123,000 to over \$536,000. The annual GHG savings are estimated to be approximately 937,500 kg.

These 3 police services facilities can save an average of 38% of their total electricity use (37% Electric Baseload, 49% Electric Cooling and 64% Electric Heating). The total annual electricity savings are estimated to be approximately \$747,820 and individual building annual savings range from just over \$106,000 to over \$747,800.

These 3 police services facilities can save an average of 31% of their total gas use (70% Gas Baseload and 20% Gas Heating). The total annual gas savings are estimated to be approximately \$48,400 and individual building annual savings range from approximately \$17,000 to over \$20,000.

These 3 police services facilities will undergo Building Performance Audits (see the Implementation Plan for further details). For a complete description of the Building Performance Audit, refer to Appendix A.

See Appendix B for the associated energy savings potential by energy use component.



The highest percentage reductions for these facilities can be found in Gas Baseload and Electric Heating. After the implementation of the proposed measures, these facilities are eligible to receive over \$445,000 in incentives based on current incentives available from the Ontario Power Authority.

#### 3.2.2 Energy Assessment

There are 19 police services facilities with between \$5,000 and \$100,000 in annual energy saving potential. Approximately 33% of the total energy savings for all 39 police services facilities can be found in these 19 facilities.

These 19 police services facilities can save an average of 19% of their total energy use. The total annual energy savings are estimated to be over \$380,700 and individual building annual savings range from approximately \$5,500 to almost \$94,000. The annual GHG savings are approximately 492,600 kg.

These 19 police services facilities can save an average of 21% of their total electricity use (21% Electric Baseload, 18% Electric Cooling and 9% Electric Heating). The total annual electricity savings are estimated to be approximately \$350,700 and individual building annual savings range from just over \$4,300 to over \$93,700.

These 19 police services facilities can save an average of 15% of their total gas use (57% Gas Baseload and 5% Gas Heating). The total annual gas savings are estimated to be approximately \$30,000 and individual building annual savings range from \$0 to over \$4,600.

These 19 facilities will undergo an Energy Assessment with highest potential police services facilities focused on first (see the Implementation Plan for further details).

See Appendix B for a list of these 19 police services facilities and their associated energy savings potential by energy use component.

The highest percentage reductions for this group of 19 police services facilities can be found in Electric Baseload and Gas Baseload. For each individual building, the energy components with highest percentage savings potential will be the focus of the Energy Assessment in order to maximize energy savings. For a complete description of the Energy Assessment, refer to Appendix A.

After the implementation of the proposed measures, these police services facilities are eligible to receive almost \$212,000 in incentives based on current incentives available from the Ontario Power Authority.

#### 3.2.3 Energy Savings Checklist

There are 17 police services facilities with less than \$5,000 in savings potential. Approximately 2% of the total energy savings for all 39 police services facilities can be found in these 17 facilities.

These 17 police services facilities can save an average of 1% of their total energy use. The total annual energy savings are estimated to be approximately \$23,000 and individual building annual savings range from \$0 to almost \$5,000. The annual GHG savings are approximately 37,300 kg.



These 17 police services facilities can save an average of 1% of their total electricity use (0% Electric Baseload, 15% Electric Cooling and 17% Electric Heating). The total annual electricity savings are estimated to be approximately \$20,200 and individual building annual savings range from \$0 to almost \$5,000.

These 17 police services facilities can save an average of 1% of their total gas use (9% Gas Baseload and 0% Gas Heating). The total annual gas savings are estimated to be approximately \$3,000 and individual building annual savings range from \$0 to over \$1,600.

These 17 facilities will undergo a checklist approach with highest potential police services facilities focused on first (see the Implementation Plan for further details).

See Appendix B for a list of these 17 police services facilities and their associated energy savings potential by energy use component.

The highest percentage reductions for this group of 17 police services facilities can be found in Electric Heating and Electric Cooling.

The energy savings checklist will be used by the Division Champion for the police services facilities in conjunction with the building operator and/or service contractor for each police services facility. They will focus on measures related to energy components with high potential savings (colour-coded red) in order to maximize savings.

### **3.3 Implementation Budget**

Table 10 below shows the total budget to implement the energy management and retrofit plan, including costs for identifying measures and the implementation costs for all 39 facilities. The total costs to implement the energy management and retrofit plan for police services facilities are estimated to be \$7,397,810. Note the Implementation costs are not adjusted for inflation.

| BUDGET               |    |           |  |  |  |  |
|----------------------|----|-----------|--|--|--|--|
| Building Performance |    |           |  |  |  |  |
| Audit (BPA)          | \$ | 22,500    |  |  |  |  |
| Energy Assessment    | \$ | 14,250    |  |  |  |  |
| Checklist            | \$ | 2,550     |  |  |  |  |
| Implementation       | \$ | 7,358,510 |  |  |  |  |
| Total                | \$ | 7,397,810 |  |  |  |  |

Table 199: Total Budget - Energy Management and Retrofit Plan

### 3.4 10-Year Implementation Plan

The 10-year implementation plan is summarized in Table 11 and Figure 5 below.



The plan will roll-out over 10 years, and the buildings with the highest savings potential will be focused on first.

Identification of measures from the Building Performance Audit will occur in Year 1, with all 3 Building Performance Audits completed by the end of Year 3. The implementation of these measures will begin in Year 2. Identification of measures from Energy Assessments will begin in Year 1, with all 19 Energy Assessments completed by the end of Year 4. The implementation of these measures will begin in Year 2, and will be completed by the end of Year 5. Identification of measures from the Checklists will begin in Year 2, with all 17 Checklists completed by the end of Year 6. The implementation of these measures will begin in Year 3.

Annual Costs refer to the assessment and implementation costs, training, measurement and verification (M&V), and maintenance costs.

Over a 10 year period, the cumulative net cash flow for this plan is estimated to be \$1,470,746. The cumulative net cash flow becomes positive in Year 10.

The implementation plan includes the following assumptions:

- Approximately 75% of the project budget will be spent in the first 5 years, and the other 25% in the following 5 years.
- The percentage of facilities to be retrofitted in each year is proportional to the percentage of the budget spent in that year. 75% of facilities will be retrofitted in the first 5 years and 25% in the following 5 years.
- 25% of energy savings potential of retrofitted facilities is achieved in the first year, 75% in the second year, and 100% in each of the following years.
- Project costs are adjusted for inflation (2% annually) and energy savings are adjusted for utility price escalation (5% annually).
- 100% of incentives are achieved in the year when facilities are retrofitted, and incentives are NOT adjusted for utility price escalation.



|                                     | 1   | Year 1 |     | Year 2    |     | Year 3    |     | Year 4    |     | Year 5    |     | Year 6    |     | Year 7    |     | Year 8    |     | Year 9    |     | Year 10   |     | Totals     |
|-------------------------------------|-----|--------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|------------|
|                                     |     |        |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |            |
| High Potential - Building           |     |        |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |            |
| Performance Audit                   |     | 1      |     | 1         |     | 1         |     | 0         |     | 0         |     | 0         |     | 0         |     | 0         |     | 0         |     | 0         |     | 3          |
| Mid Potential - Energy Assessment   |     | 5      |     | 5         |     | 5         |     | 4         |     | 0         |     | 0         |     | 0         |     | 0         |     | 0         |     | 0         |     | 19         |
| Low Potential - Checklist           |     | 0      |     | 4         |     | 4         |     | 4         |     | 4         |     | 1         |     | 0         |     | 0         |     | 0         |     | 0         |     | 17         |
| Assessment Costs                    | \$  | 11,250 | \$  | 11,874    | \$  | 11,887    | \$  | 3,649     | \$  | 662       | \$  | 169       | \$  | -         | \$  | -         | \$  | -         | \$  | -         | \$  | 39,492     |
| Implementation Costs                | \$  | -      | \$  | 1,460,814 | \$  | 2,132,876 | \$  | 2,175,534 | \$  | 1,300,052 | \$  | 682,193   | \$  | 173,959   | \$  | -         | \$  | -         | \$  | -         | \$  | 7,925,429  |
| Training and M&V costs (10.0% of    |     |        |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |            |
| Assessment and Implementation       |     |        |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |            |
| Costs)                              | \$  | 1,125  | \$  | 147,269   | \$  | 214,476   | \$  | 217,918   | \$  | 130,071   | \$  | 68,236    | \$  | 17,396    | \$  | -         | \$  | -         | \$  | -         | \$  | 796,492    |
| Maintenance costs (5.0% of          |     |        |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |            |
| Implementation Costs, cumulative)   | \$  | -      | \$  | 73,041    | \$  | 179,685   | \$  | 288,461   | \$  | 353,464   | \$  | 387,573   | \$  | 396,271   | \$  | 396,271   | \$  | 396,271   | \$  | 396,271   |     |            |
| Annual Costs                        | \$  | 12,375 | \$  | 1,692,998 | \$  | 2,538,924 | \$  | 2,685,563 | \$  | 1,784,250 | \$  | 1,138,172 | \$  | 587,627   | \$  | 396,271   | \$  | 396,271   | \$  | 396,271   | \$  | 11,628,722 |
| Estimated Achieved Annual Savings   |     |        | \$  | 208,634   | \$  | 696,211   | \$  | 1,194,487 | \$  | 1,451,214 | \$  | 1,599,602 | \$  | 1,688,750 | \$  | 1,773,187 | \$  | 1,861,846 | \$  | 1,954,939 | \$  | 12,428,870 |
| Estimated Incentives                | \$  | -      | \$  | 427,503   | \$  | 134,086   | \$  | 94,452    | \$  | 14,557    | \$  | -         | \$  | -         | \$  | -         | \$  | -         | \$  | -         | \$  | 670,598    |
| Annual Savings and Incentives       | \$  | -      | \$  | 636,137   | \$  | 830,297   | \$  | 1,288,939 | \$  | 1,465,771 | \$  | 1,599,602 | \$  | 1,688,750 | \$  | 1,773,187 | \$  | 1,861,846 | \$  | 1,954,939 | \$  | 13,099,468 |
|                                     |     |        |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |            |
| Borrowing costs based on cumulative |     |        |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |           |     |            |
| cash flows (4.0% per annum)         |     |        | -\$ | 495       | -\$ | 42,769    | -\$ | 111,115   | -\$ | 166,979   | -\$ | 179,719   | -\$ | 161,261   | -\$ | 117,216   | -\$ | 62,140    | -\$ | 3,517     | -\$ | 845,212    |
| Net Cash Flow incl borrowing costs  | -\$ | 12,375 | -\$ | 1,057,356 | -\$ | 1,751,396 | -\$ | 1,507,738 | -\$ | 485,458   | \$  | 281,711   | \$  | 939,862   | \$  | 1,259,699 | \$  | 1,403,435 | \$  | 1,555,150 | \$  | 625,534    |
| Cumulative Net Cash Flow            | -\$ | 12,375 | -\$ | 1,069,236 | -\$ | 2,777,863 | -\$ | 4,174,486 | -\$ | 4,492,965 | -\$ | 4,031,535 | -\$ | 2,930,412 | -\$ | 1,553,496 | -\$ | 87,921    | \$  | 1,470,746 |     |            |

Table 200: Cash Flow for 10-Year Implementation Plan



Figure 116: Cash Flow for 10-Year Implementation Plan

# **DI TORONTO**

# 4 Appendix A

### 4.1 Selection of 2012 Utility Bills for Calculation of Actual Energy Use Intensities

Utility bills were used covering the period from January to December 2012.

If the total number of days in the combined bills was greater than 385 or less than 345 (because of adjustment bills spanning a few months), the facility was excluded from the dataset used to determine energy use components and targets.

To calculate 2012 actual energy use, the combined usage was normalized for the number of days in the calendar year 2012 (366).

### 4.2 Determining Energy Use Components

The energy use components and targets were calculated using data available for eligible facilities at the City of Toronto (see above). Energy use components were determined as follows:

**Electric Baseload**: Relates to systems which run year-round such as lighting, fans and equipment. Electric Baseload for police services facilities is determined as the average kWh/day for March, April, October and November multiplied by 366 days.

**Electric Cooling**: Was determined as the additional electricity use above the year-round base from May to September, and relates to air conditioning.

**Electric Heating**: Was determined as the additional use in January, February and December, and relates to electric heat or electricity use for heating systems (pumps, blowers etc.).

**Gas Baseload**: Relates to systems which run year-round (domestic hot water) and is determined as the average  $m^3/day$  for June, July and August multiplied by 366 days.

**Gas Heating**: Was determined as the additional gas use to heat the building from January to May, and September to December.

### 4.3 Determining Targets

Component energy targets were set based on the top quartile intensity of the eligible data set. Thus achievement of the targets anticipates all buildings with component energy intensities greater than the top quartile will reach that level already attained by one quarter of the buildings.

All values less than 5% of the average of the top 3 facilities were removed for the calculation of the component energy targets.

Before the calculation of potential savings for each building, component targets were adjusted taking into account factors specific to the facility type. Individual targets are adjusted for energy types, non-



standard space types or equipment, and high energy intensity spaces or equipment. The target adjustments are listed below.

#### Target Adjustments

**Electric Heating:** Add Gas Heating multiplied by % of area served and 75% efficiency to Electric Heating AND Multiply Gas Heating by (100% - % of area served)

**GSHP:** Add Gas Heating \* 0.19 \* % of area served to Electric Heating AND Subtract Gas Heating \* 0.13 \* % of area served from Gas Heating

**WSHP:** Add Gas Heating \* 0.19 \* % of area served to Electric Heating Electricity AND Subtract Gas Heating \* 0.75 \* % of area served from Gas Heating

Deep Lake Water Cooling: Multiply Electric Cooling Target by 0.29

**Electric DHW:** Add Gas Baseload \* % of area served \* 75% efficiency to Electric Baseload AND Multiply Gas Baseload by (100% - % of area served)

**Air-Conditioning:** Divide Electric Cooling by Average % of building served by A/C for all facilities of the type and multiply by % of the facility area served by A/C

Data Centre: Add 50 kWh/ft<sup>2</sup> \* % of building occupied by Data Centre to Electric Baseload

**Food Services**: Add 30 kWh/ft<sup>2</sup> \* % of facility area occupied by Food Services (including seating area) to Electric Baseload

**Outdoor Rink:** If rink has associated ice plant, add (1.04 kWh/ft<sup>2</sup> of ice/week \* ft<sup>2</sup> of ice surface area \* 16 weeks/year) divided by  $ft^2$  of the total building area to Electric Baseload

**Solar Hot Water:** Subtract the product of System Power Rating (kW thermal) and (Average Actual) Annual Performance (kWh (t)/kW) divided by the facility area (ft<sup>2</sup>) from Gas Baseload (ekWh/ft<sup>2</sup>)

**Solar Photovoltaic**: Subtract the product of System Power Rating (kW thermal) and (Average Actual) Annual Performance (kWh(t)/kW) divided by the facility area (ft<sup>2</sup>) from Electric Baseload (kWh/ft<sup>2</sup>)

Garage: Add 20 ekWh/ft<sup>2</sup> to Gas Heating

High-intensity electric equipment: Add 30 kWh/ft<sup>2</sup> to Electric Baseload

#### Indoor Rink(s) and/or Indoor Pool(s) within Community Centres and Indoor Recreational Facilities:

<u>Adjustment for Electric Baseload</u> – Electric Baseload adjusted for Indoor Rink and/or Indoor Pool, kWh/ft<sup>2</sup> of total area = (Electric Baseload for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>))+ Assumed Electricity Requirement of Ice Plant (ekWh/ft<sup>2</sup> of ice/week) \* Months ice-in \* 52 weeks a year /12 months a year \* Rink area, ft<sup>2</sup> + Electric Baseload for Pool (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>) / Total Area, ft<sup>2</sup>



<u>Adjustment for Gas Baseload</u> – Gas Baseload adjusted for Indoor Rink and/or Indoor Pool, ekWh/ft<sup>2</sup> of total area = Gas Baseload for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>)) + Gas Baseload for Indoor Sports Arenas (ekWh/ft<sup>2</sup> of rink) \* Rink area, ft<sup>2</sup> + Gas Baseload for Indoor Swimming Pools (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>

<u>Adjustment for Gas Heating</u> – Gas Heating adjusted for Indoor Rink and/or Indoor Pool, ekWh/ft<sup>2</sup> of total area = Gas Heating for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>)) + Gas Heating for Indoor Sports Arenas (ekWh/ft<sup>2</sup> of rink) \* Rink area, ft<sup>2</sup> + Gas Heating for Indoor Swimming Pools (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>

### 4.4 Calculating Potential Savings

The difference between the actual energy use component intensity and adjusted target represents potential annual savings for the component after multiplication by the facility area (and conversion from ekWh to m<sup>3</sup> in the case of gas).

For the facilities that were previously excluded from the dataset for setting targets, potential savings were calculated based on total electricity and gas use (normalized to 366 days) compared with total adjusted electricity and natural gas targets.

### 4.5 Implementation Costs by Measure Type and Modeled Savings

The following table summarizes the implementation costs and savings estimates for measures under each type of operational system. Note that the costs are based on previous experience with similar projects.

These apply to the following building types:

- Fire stations and associated offices and facilities
- Shelter, Support and Housing Administration
- Ambulance stations and associated offices and facilities
- Storage facilities where equipment or vehicles are maintained, repaired or stored
- Public libraries
- Long-Term Care Homes and Services
- Police services facilities
- Children's Services
- Administrative offices and related facilities, including municipal council chambers



|            | Cost \$/ft <sup>2</sup> | % electric | Payback (yrs) | kWh/ft²/yr | m³/ft²/yr |
|------------|-------------------------|------------|---------------|------------|-----------|
| Lighting   | 1.80                    | 100%       | 6.5           | 2.3        |           |
|            |                         |            |               |            |           |
| Mechanical | 1.50                    | 30%        | 6             | 0.6        | 0.7       |
|            |                         |            |               |            |           |
| Electrical | 0.25                    | 100%       | 8             | 0.3        |           |
| Envelope   | 0.50                    | 0%         | 10            |            | 0.2       |
| Process    | 0.15                    | 0%         | 5             |            | 0.1       |
| Total      | 4.20                    |            | 6.8           | 3.19       | 1.02      |

#### Table 201: Implementation Costs by Measure Type

Implementation costs for lighting include measures such as re-lamping and re-ballasting with about 20% fixture retrofits, replacement or relocation, along with selective, local occupancy and photo-controls. They also include lighting audits.

Costs for mechanical system measures include mechanical system testing and minor retrofits such as VFDs, re-balancing, right-sizing, tuning and repairs, along with upgraded controls.

Costs for electrical measures include appliance and equipment replacements and upgraded controls.

Costs for envelope measures include thermographic testing along with draft-proofing, re-insulation and roof/wall air sealing.

Costs for process (domestic hot water) measures include low flow shower heads and aerators, controls on hot water use for vehicle washing and minor retrofits such as pipe insulation.

#### 4.6 Assessment Tools

#### **Building Performance Audit**

The Building Performance Audit determines how well a building's existing systems and operational practices compare to other similar buildings, including top performers. The audit identifies problem areas in building systems, examines building operations, and determines improvements that will deliver the greatest energy savings and maximize return on investment. The outcome will be a clear, evidence-based picture of how much can be saved and what areas to focus on to optimize performance.

The Building Performance Audit includes:

- Benchmarking against comparable buildings including top-performers
- Performance based target setting customized for your building



- Interval meter analysis and examination of prior years' energy trends pinpointing specific system and operational inefficiencies
- Motor testing and equipment data-logging analysis
- Deeper understanding of operating practices through energy use profiles
- Power density and plant capacity analysis to identify retrofit opportunities
- Power factor analysis to uncover over-sized equipment
- Inventory and efficiency analysis of main energy-using equipment
- Verification and documentation of the proper operation of the building systems
- Payback and business case analysis

#### **Initial Energy Targets**

Initial energy targets are created by a mass screening tool which uses a standardized logic to produce a preliminary estimate of savings potential for every building, and thereby identify high-, medium- and low-potential buildings. This initial target-setting process creates the overall economic envelope for the program.

#### **Energy Assessment**

Medium-potential buildings are subjected to more in-depth analysis through an Energy Assessment which drills deeper into utility consumption data to refine the savings target and uncover more specific conservation measures. Regression analysis of monthly billing data against heating and cooling degreedays highlights billing anomalies such as estimated bills, and provides a more accurate breakdown of energy components, and hence component energy savings. Where multiple years of billing data are available the Energy Assessment produces weather-normalized performance trends which can uncover changes in energy use and seasonal anomalies which point to specific energy saving opportunities. The Energy Assessment also analyzes electrical interval meter (or data-logger test results) to help identify operational improvements such as equipment running when the building is unoccupied.

# **DI TORONTO**

# 5 Appendix B - Police Services Facilities

# 5.1 Buildings and Building Characteristics

Below are the names, addresses and building areas for the 39 police services facilities included in this report and Plan.

| Building                         | Address                       | Building<br>Area (ft <sup>2</sup> ) |
|----------------------------------|-------------------------------|-------------------------------------|
| #11 Police Division              | 211 Mavety St                 | 21,119                              |
| #11 Police Division - NEW        | 2054 Davenport Rd             | 89,610                              |
| #12 Police Division              | 200 Trethewey Dr              | 25,780                              |
| #13 Police Division              | 1435 Eglinton Ave W           | 20,344                              |
| #14 Police Division              | 150 Harrison St               | 24,197                              |
| #14 Police Division - NEW        | 11 St. Annes Rd.              | 84,896                              |
| #21 Police Division              | 791 Islington Ave             | 7,492                               |
| #22 Police Division              | 3699 Bloor St W               | 32,270                              |
| #23 Police Division              | 2126 Kipling Ave              | 13,616                              |
| #23 Police Division New          | 5230 Finch Ave W              | 55,972                              |
| #31 Police Division              | 40 Norfinch Dr                | 35,489                              |
| #32 Police Division              | 30 Ellerslie Ave              | 47,652                              |
| #33 Police Division              | 50 Upjohn Rd                  | 27,889                              |
| #41 Police Division              | 2222 Eglington Ave E          | 52,183                              |
| #42 Police Division              | 242 Milner Ave                | 41,990                              |
| #43 Police Division              | 4331 Lawrence Ave E           | 51,990                              |
| #51 Police Division New          | 51 Parliament St              | 47,899                              |
| #52 Police Division              | 255 Dundas St W               | 71,677                              |
| #53 Police Division              | 75 Eglinton Ave W             | 52,183                              |
| #54 Police Division              | 41 Cranfield                  | 23,358                              |
| #55 Police Division              | 101 Coxwell                   | 23,519                              |
| C.O Bick College                 | 4620 Finch Ave E              | 92,849                              |
| Centre Island Marine Unit        | 1 Centre Island Pk Unit M Yrd | 1,001                               |
| Centre Island Police Division    | 0 Centre Isl                  | 1,001                               |
| Detective Services Building      | 160-180 Duncan Mill Rd        | 172,192                             |
| Emergency Task Force             | 300 Lesmill Rd                | 35,994                              |
| Forensic Service, Store & Garage | 2050 Jane St                  | 62,484                              |
| Humber Bay Life Stn              | 2233 Lakeshore Blvd           | 1,475                               |
| Intelligence Bureau              | 30 Upjohn St                  | 70,547                              |
| Leuty Beach                      | 1 Leuty Ave                   | 495                                 |
| Police Academy                   | 70 Birmingham Street          | 296,987                             |
| Police Dog Service               | 44 Beechwood Dr               | 9,203                               |
| Police Garage                    | 18 Cranfield Rd               | 33,024                              |



| Police Headquarters         | 40 College St     | 299,990 |  |  |
|-----------------------------|-------------------|---------|--|--|
| Police Marine Hq            | 259 Queens Quay W | 22,992  |  |  |
| Property Bureau             | 799 Islington Ave | 43,992  |  |  |
| Property Evident Unit       | 330 Progress Ave  | 287,741 |  |  |
| Public Order                | 4610 Finch Ave E  | 8,342   |  |  |
| Traffic Services and Garage | 9 Hanna Ave       | 297,988 |  |  |

#### Table 202: Police Services Facilities Building Information

### 5.2 Energy Use Intensities

Below are the energy use intensities (total electricity, total gas and total energy) for the 39 police services facilities included in this report and Plan. They are sorted by total energy use intensity, from lowest to highest energy use intensity.

| Building                      | 2012<br>Total<br>Electricity<br>Intensity<br>(kWh/ft <sup>2</sup> ) | 2012 Total<br>Gas<br>Intensity<br>(ekWh/ft <sup>2</sup> ) | 2012 Total<br>Energy<br>Intensity<br>(ekWh/ft²) |
|-------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|
| Humber Bay Life Stn           | -33.79                                                              | 0.00                                                      | -33.79                                          |
| Centre Island Marine Unit     | 1.99                                                                | 0.00                                                      | 1.99                                            |
| Detective Services Building   | 2.36                                                                | 0.69                                                      | 3.05                                            |
| Property Evident Unit         | 4.83                                                                | 3.04                                                      | 7.87                                            |
| C.O Bick College              | 2.37                                                                | 10.02                                                     | 12.40                                           |
| Centre Island Police Division | 17.03                                                               | 0.00                                                      | 17.03                                           |
| Traffic Services and Garage   | 9.22                                                                | 11.10                                                     | 20.32                                           |
| #14 Police Division - NEW     | 13.75                                                               | 7.49                                                      | 21.24                                           |
| Property Bureau               | 11.27                                                               | 10.18                                                     | 21.46                                           |
| #53 Police Division           | 15.15                                                               | 6.35                                                      | 21.50                                           |
| #11 Police Division           | 3.34                                                                | 18.76                                                     | 22.10                                           |
| Police Academy                | 9.46                                                                | 13.12                                                     | 22.58                                           |
| #52 Police Division           | 14.90                                                               | 7.95                                                      | 22.84                                           |
| #23 Police Division New       | 16.38                                                               | 6.80                                                      | 23.18                                           |
| #11 Police Division - NEW     | 12.72                                                               | 10.66                                                     | 23.38                                           |
| #14 Police Division           | 16.12                                                               | 7.33                                                      | 23.45                                           |
| #32 Police Division           | 14.66                                                               | 9.13                                                      | 23.79                                           |
| #33 Police Division           | 15.52                                                               | 8.49                                                      | 24.00                                           |
| #12 Police Division           | 22.26                                                               | 2.39                                                      | 24.66                                           |
| #42 Police Division           | 15.24                                                               | 10.73                                                     | 25.97                                           |
| Police Garage                 | 10.57                                                               | 15.56                                                     | 26.13                                           |
| Police Dog Service            | 15.70                                                               | 11.23                                                     | 26.93                                           |
| Police Marine Hq              | 15.36                                                               | 12.77                                                     | 28.13                                           |
| #43 Police Division           | 16.76                                                               | 11.47                                                     | 28.23                                           |

| #55 Police Division              | 21.13  | 7.67  | 28.79  |
|----------------------------------|--------|-------|--------|
| Public Order                     | 20.15  | 11.93 | 32.08  |
| Intelligence Bureau              | 23.85  | 9.57  | 33.42  |
| #41 Police Division              | 15.32  | 18.76 | 34.07  |
| #31 Police Division              | 21.25  | 13.50 | 34.75  |
| #23 Police Division              | 18.82  | 16.93 | 35.75  |
| Emergency Task Force             | 17.79  | 18.53 | 36.31  |
| #22 Police Division              | 16.33  | 21.38 | 37.70  |
| #21 Police Division              | 21.48  | 17.99 | 39.47  |
| #54 Police Division              | 20.20  | 22.46 | 42.65  |
| #13 Police Division              | 26.58  | 20.78 | 47.36  |
| Forensic Service, Store & Garage | 27.25  | 26.45 | 53.70  |
| #51 Police Division New          | 33.06  | 23.99 | 57.05  |
| Police Headquarters              | 35.72  | 11.43 | 68.43  |
| Leuty Beach                      | 137.99 | 0.00  | 137.99 |

 Table 203: Police Services Facilities 2012 Energy Intensity

### **5.3 Target-setting Method and Metrics**

6 police services facilities were determined to be ineligible for determination of energy components or target-setting. See Appendix A. The excluded facilities are listed below.

| Facility                  | Days in 2012                                   | Energy type |
|---------------------------|------------------------------------------------|-------------|
| Leuty Beach               | huge adjustment bill in Feb 2012               | Electricity |
| Humber Bay Life Stn       | huge negative consumption in March 2012        | Electricity |
| #14 Police Division - NEW | huge negative consumption in September 2012    | Electricity |
| #54 Police Division       | 333                                            | Electricity |
| #11 Police Division       | significant negative consumption in March 2012 | Electricity |
| #11 Police Division - NEW | incomplete gas data                            | Gas         |

**Table 204: Excluded Facilities** 

After excluding these 6 facilities, 33 City of Toronto facilities were used to calculate the energy use components.

The following benchmark charts show the resulting electricity and gas use by component. Electricity use was broken down into baseload, cooling and heating electricity as described in Appendix A, and gas use was broken down into baseload and heating.

The red line on each chart indicates the top quartile for each component which is the target for that component.



Figure 117: 2012 Electric Baseload Intensity Benchmark

Electric Baseload refers to year-round electricity use for lighting, fans, equipment and other systems that are not weather dependent. Electric Baseload for police services facilities ranges from 5.0 to 34.5 ekWh/ft<sup>2</sup> and the top-quartile is 12.95 ekWh/ft<sup>2</sup>.



Figure 118: 2012 Electric Cooling Intensity Benchmark

Electric Cooling refers to additional electricity use in summer for cooling purposes. Electric Cooling for police services facilities ranges from 0.7 to 3.5 ekWh/ft<sup>2</sup> and the top-quartile is 1.2 ekWh/ft<sup>2</sup>.




Figure 119: 2012 Electric Heating Intensity Benchmark

Electric Heating refers to additional electricity use in winter months for heating purposes. Electric Heating for police services facilities ranges from 0.2 to 4.2 ekWh/ft<sup>2</sup> and the top-quartile is 0.25 ekWh/ft<sup>2</sup>.



Figure 120: 2012 Gas Baseload Intensity Benchmark

Gas Baseload refers to natural gas used for domestic hot water and other equipment that runs year round. Gas Baseload for police services facilities ranges from 0.3 to 4.6 ekWh/ft<sup>2</sup> and the top-quartile is 0.95 ekWh/ft<sup>2</sup>.



Figure 121: 2012 Gas Heating Intensity Benchmark

Gas Heating refers to the additional energy used in winter for heating and humidification. Gas Heating for police services facilities ranges from 3.1 to 24.7 ekWh/ft<sup>2</sup> and the top-quartile is 7.7 ekWh/ft<sup>2</sup>.

As explained in Appendix A, all values less than 5% of the average of the top 3 facilities were removed for the calculation of the energy use components.

The top quartile values for each energy use component were adopted as targets.

Before calculation of potential savings for each building, component targets were adjusted taking into account factors specific to the facility type (see Appendix A). In the case of police services facilities, the factors are % of the facility area served by electric heat, % of DHW heated by electricity, use of ground-source or water-source heat pumps, % of the area served by electric air conditioning and % of the area served by a data centre.

For the facilities that were previously excluded from the dataset for setting targets, potential savings were calculated by subtraction of the sum of individual energy use component targets adjusted to specific characteristics of the facility from Total Electricity use (or Total Gas use).

# 5.4 Savings Potential by Energy Use Component

#### Savings Potential by Energy Use Component for the 3 High Savings Potential Police Services Facilities

Buildings are sorted by total annual savings potential, starting with the highest savings potential buildings.

There are 3 police services facilities with over \$100,000 in annual savings potential.



#### High savings Moderate savings Low savings

| Operation Name                        | Electricity Savings Po |     |                  | ote   |    |         |      | tential           | ial Total Energy<br>Savings Potential |          |          | Incen | tives   | Indoor<br>Area | GHG<br>Emis-<br>sions |         |         |
|---------------------------------------|------------------------|-----|------------------|-------|----|---------|------|-------------------|---------------------------------------|----------|----------|-------|---------|----------------|-----------------------|---------|---------|
|                                       | Base-<br>load          |     | age %<br>Heating | Total |    | \$/yr   | Baco | verage<br>Heating |                                       | \$/yr    | Avg<br>% |       | \$/уг   | Electricity    | Gas                   | ft²     | kg/yr   |
| High potential savings facilities (3) | 37%                    | 49% | 64%              | 38%   | \$ | 747,820 | 70%  | 20%               | 31%                                   | \$48,422 | 36%      | \$    | 796,242 | \$427,326      | \$18,624              | 410,374 | 937,516 |
| Police Headquarters                   | 34%                    | 60% |                  | 36%   | \$ | 515,605 | 74%  |                   | 24%                                   | \$20,700 | 32%      | \$    | 536,305 | \$294,631      | \$ 7,961              | 299,990 | 554,714 |
| #51 Police Division New               | 58%                    | 29% |                  | 57%   | \$ | 125,822 | 58%  | 35%               | 38%                                   | \$11,023 | 49%      | \$    | 136,845 | \$ 71,898      | \$ 4,240              | 47,899  | 178,523 |
| Forensic Service, Store & Garage      | 44%                    | 41% | 64%              | 45%   | \$ | 106,393 | 42%  | 40%               | 40%                                   | \$16,699 | 42%      | \$    | 123,092 | \$ 60,796      | \$ 6,423              | 62,484  | 204,278 |

#### Table 205: Savings Potential for 3 High Savings Potential Police Services Facilities

#### Savings Potential by Energy Use Component for the 19 Mid Savings Potential Police Services Facilities

Buildings are sorted by total annual savings potential, starting with the highest savings potential buildings.

There are 19 police services facilities with between \$5,000 and \$100,000 in annual savings potential. The highest potential buildings will be focused on first.

| Operation name                        | E     | Electric | ity Sav | ings P | otentia | al     | Ga    | ıs Saviı | ngs Po | tential  |     | nergy<br>Potential | Incentives |          |      |      | Indoor<br>Area | GHG<br>Emis-<br>sions |
|---------------------------------------|-------|----------|---------|--------|---------|--------|-------|----------|--------|----------|-----|--------------------|------------|----------|------|------|----------------|-----------------------|
|                                       |       | Avera    | ige %   |        | \$/     | /yr    | A     | verage   | %      | \$/yr    | Avg | \$/yr              | Elec       | ctricity | G    | as   | ft²            | kg/yr                 |
|                                       | Base- |          |         |        |         |        | Base- |          |        |          | %   |                    |            |          |      |      |                |                       |
|                                       | load  | Cooling  |         | Total  |         |        | load  | Heating  | Total  |          |     |                    |            |          |      |      |                |                       |
| Mid-potential savings facilities (19) | 21%   | 18%      | 09%     | 21%    |         | 50,730 | 57%   | 05%      | 15%    | \$30,031 | 19% | \$<br>380,761      |            | 0,417    |      | ,550 | 646,598        | 492,603               |
| Intelligence Bureau                   | 42%   |          |         | 40%    |         | 93,791 |       |          | 0%     | \$-      | 28% | \$<br>93,791       |            | 3,595    |      | -    | 70,547         | 73,693                |
| #13 Police Division                   | 46%   | 24%      | 14%     | 44%    |         | 33,267 | 79%   |          | 24%    | \$ 2,583 | 35% | \$<br>35,850       |            | 9,010    |      | 994  | 20,344         | 44,80                 |
| #31 Police Division                   | 32%   | 21%      |         | 30%    |         | 32,038 | 75%   |          | 21%    | \$ 2,569 | 27% | \$<br>34,607       |            | 8,307    | \$   | 988  | 35,489         | 43,740                |
| #12 Police Division                   | 40%   |          |         | 39%    | \$ 3    | 31,698 | 52%   |          | 43%    | \$ 664   | 40% | \$<br>32,361       | \$ 1       | 8,113    | \$   | 255  | 25,780         | 29,70                 |
| #55 Police Division                   | 36%   |          |         | 34%    | \$ 2    | 23,571 | 45%   |          | 10%    | \$ 465   | 28% | \$<br>24,036       | \$ 1       | 3,469    | \$   | 179  | 23,519         | 21,878                |
| #43 Police Division                   | 18%   |          |         | 17%    | \$ 2    | 20,749 | 65%   |          | 16%    | \$ 2,350 | 16% | \$<br>23,098       | \$ 1       | 1,856    | \$   | 904  | 51,990         | 33,282                |
| #54 Police Division                   |       |          |         | 25%    | \$ 1    | 16,668 |       |          | 30%    | \$ 3,977 | 28% | \$<br>20,645       | \$         | 9,524    | \$ 1 | ,530 | 23,358         | 41,840                |
| #23 Police Division New               | 14%   |          |         | 13%    | \$ 1    | 16,463 |       |          | 0%     | \$-      | 9%  | \$<br>16,463       | \$         | 9,407    | \$   |      | 55,972         | 12,93                 |
| Emergency Task Force                  | 5%    | 55%      |         | 15%    | \$ 1    | 13,557 | 77%   |          | 17%    | \$ 2,869 | 16% | \$<br>16,426       | \$         | 7,747    | \$ 1 | ,103 | 35,994         | 31,386                |
| #22 Police Division                   | 14%   |          |         | 13%    | \$      | 9,407  | 67%   | 21%      | 27%    | \$ 4,648 | 21% | \$<br>14,055       | \$         | 5,376    | \$ 1 | ,788 | 32,270         | 40,983                |
| #41 Police Division                   | 2%    | 28%      |         | 6%     | \$      | 6,684  | 46%   | 14%      | 17%    | \$ 4,156 | 12% | \$<br>10,840       | \$         | 3,820    | \$ 1 | ,598 | 52,183         | 35,286                |
| #23 Police Division                   | 25%   |          |         | 23%    | \$      | 8,222  | 60%   |          | 8%     | \$ 479   | 16% | \$<br>8,701        | \$         | 4,698    | \$   | 184  | 13,616         | 9,92                  |
| Leuty Beach                           |       |          |         | 90%    | \$      | 8,628  |       |          |        | \$-      | 90% | \$<br>8,628        | \$         | 4,930    | \$   | -    | 495            | 6,779                 |
| #21 Police Division                   | 35%   |          |         | 33%    | \$      | 7,377  |       | 14%      | 13%    | \$ 450   | 24% | \$<br>7,827        | \$         | 4,215    | \$   | 173  | 7,492          | 9,050                 |
| #42 Police Division                   | 5%    |          |         | 5%     | \$      | 4,341  | 77%   |          | 29%    | \$ 3,333 | 15% | \$<br>7,674        | \$         | 2,481    | \$ 1 | ,282 | 41,990         | 27,495                |
| #32 Police Division                   |       | 41%      |         | 8%     | \$      | 7,376  |       |          | 0%     | \$ -     | 5%  | \$<br>7,376        | \$         | 4,215    | \$   | -    | 47,652         | 5,796                 |
| #52 Police Division                   | 5%    |          |         | 4%     | \$      | 6,242  | 19%   |          | 3%     | \$ 406   | 4%  | \$<br>6,648        | \$         | 3,567    | \$   | 156  | 71,677         | 7,837                 |
| Public Order                          | 21%   | 20%      | 66%     | 25%    | \$      | 5,810  | 63%   |          | 14%    | \$ 343   | 21% | 6,153              | \$         | 3,320    | \$   | 132  | 8,342          | 7,046                 |
| #33 Police Division                   | 9%    |          |         | 8%     | \$      | 4.841  | 53%   |          | 12%    | \$ 739   | 10% | \$<br>5,580        |            | 2,766    | \$   | 284  | 27,889         | 9,145                 |

#### High savings Moderate savings Low savings

Table 206: Savings Potential for 19 Medium Savings Potential Police Services Facilities

Savings potential is considered high if 30% or more, moderate if between 11 and 29%, and low if 10% or less.

#### Savings Potential by Energy Use Component for the 17 Low Savings Potential Police Services Facilities

Buildings are sorted by total savings potential, starting with the highest saving potential buildings.

There are 17 police services facilities with less than \$5,000 in savings potential. The highest potential buildings will be focused on first.



| Operation name                        | E             | Electric | ity Sav | ings P | otei | ntial  | Ga            | s Savii | ngs Po | ten | tial  |     | nergy<br>Potential |    | Incen     | tive | es    | Indoor<br>Area | GHG<br>Emis-<br>sions |
|---------------------------------------|---------------|----------|---------|--------|------|--------|---------------|---------|--------|-----|-------|-----|--------------------|----|-----------|------|-------|----------------|-----------------------|
|                                       |               | Avera    | age %   |        |      | \$/yr  | A             | verage  | %      |     | \$/yr | Avg | \$/yr              | EI | ectricity |      | Gas   | ft²            | kg/yr                 |
|                                       | Base-<br>load | Cooling  | Heating | Total  |      |        | Base-<br>load | Heating | Total  |     |       | %   |                    |    |           |      |       |                |                       |
| Low potential savings facilities (17) | 00%           |          |         | 01%    | \$   | 20,198 | 09%           |         |        | \$  | 2,962 | 01% | \$<br>23,160       | \$ | 11,542    | \$   | 1,139 | 1,532,449      | 37,277                |
| Property Bureau                       |               | 100%     |         | 6%     | \$   | 4,474  |               |         | 0%     | \$  | -     | 3%  | \$<br>4,474        | \$ | 2,557     | \$   | -     | 43,992         | 3,515                 |
| #14 Police Division                   | 5%            | 11%      | 16%     | 6%     | \$   | 3,372  | 45%           |         | 11%    | \$  | 472   | 8%  | \$<br>3,843        | \$ | 1,927     | \$   | 181   | 24,197         | 6,057                 |
| #53 Police Division                   |               |          | 47%     | 3%     | \$   | 3,749  | 1%            |         | 0%     | \$  | 16    | 2%  | \$<br>3,765        | \$ | 2,142     | \$   | 6     | 52,183         | 3,062                 |
| Detective Services Building           |               | 100%     |         | 6%     | \$   | 3,324  |               |         | 0%     | \$  | -     | 5%  | \$<br>3,324        | \$ | 1,900     | \$   | -     | 172,192        | 2,612                 |
| #14 Police Division - NEW             |               |          |         | 2%     | \$   | 2,802  |               |         | 0%     | \$  | -     | 1%  | \$<br>2,802        | \$ | 1,601     | \$   | -     | 84,896         | 2,202                 |
| Police Marine Hq                      | 3%            |          |         | 3%     | \$   | 1,476  | 36%           |         | 4%     | \$  | 311   | 4%  | \$<br>1,787        | \$ | 843       | \$   | 120   | 22,992         | 3,407                 |
| #11 Police Division                   |               |          |         | 0%     | \$   | -      |               |         | 16%    | \$  | 1,634 | 14% | \$<br>1,634        | \$ | -         | \$   | 629   | 21,119         | 11,810                |
| Police Dog Service                    |               | 32%      | 3%      | 5%     | \$   | 1,001  | 51%           |         | 9%     | \$  | 226   | 7%  | \$<br>1,226        | \$ | 572       | \$   | 87    | 9,203          | 2,416                 |
| Police Garage                         |               |          |         | 0%     | \$   | -      |               | 2%      | 2%     | \$  | 304   | 1%  | \$<br>304          | \$ | -         | \$   | 117   | 33,024         | 2,195                 |
| Centre Island Police Division         |               |          |         | 0%     | \$   | -      |               |         |        | \$  | -     | 0%  | \$<br>-            | \$ | -         | \$   | -     | 1,001          | 0                     |
| Humber Bay Life Stn                   |               |          |         | 0%     | \$   | -      |               |         |        | \$  | -     | 0%  | \$<br>-            | \$ | -         | \$   | -     | 1,475          | 0                     |
| Centre Island Marine Unit             |               |          |         | 0%     | \$   | -      |               |         |        | \$  | -     | 0%  | \$<br>-            | \$ | -         | \$   | -     | 1,001          | 0                     |
| Property Evident Unit                 |               |          |         | 0%     | \$   | -      |               |         | 0%     | \$  | -     | 0%  | \$<br>-            | \$ | -         | \$   | -     | 287,741        | 0                     |
| C.O Bick College                      |               |          |         | 0%     | \$   | -      |               |         | 0%     | \$  | -     | 0%  | \$<br>-            | \$ | -         | \$   | -     | 92,849         | 0                     |
| #11 Police Division - NEW             |               |          |         | 0%     | \$   | -      |               |         | 0%     | \$  | -     | 0%  | \$<br>-            | \$ | -         | \$   | -     | 89,610         | 0                     |
| Traffic Services and Garage           |               |          |         | 0%     | \$   | -      |               |         | 0%     | \$  | -     | 0%  | \$<br>-            | \$ | -         | \$   | -     | 297,988        | 0                     |
| Police Academy                        |               |          |         | 0%     | \$   | -      |               |         | 0%     | \$  | -     | 0%  | \$<br>-            | \$ | -         | \$   | -     | 296,987        | 0                     |

#### High savings Moderate savings Low savings

#### Table 207: Savings Potential for 17 Low-Savings Potential Police Services Facilities

Savings potential is considered high if 30% or more, moderate if between 11 and 29%, and low if 10% or less.

Average % savings for each energy component are calculated as (Actual Energy Use – Target Energy Use)/Actual Energy Use and \$/year savings for each component are calculated as (Actual Energy Use - Target Energy Use) \* utility company rates \$0.14 per kWh of electricity and \$0.26 per m<sup>3</sup> of gas.

GHG emissions reduction is based on 110g GHG/kWh of electricity and 1879g GHG/m<sup>3</sup> of natural gas. Utility company CDM Incentives are calculated based on \$0.08/kWh of electricity and \$0.10/m<sup>3</sup> of natural gas saved **Public Libraries** 

# **DI TORONTO**

#### **Table of Contents**

| 1 | Ben                                                                   | chmarking and Conservation Potential                                                                                                                                                  |                   |
|---|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|   | 1.1                                                                   | Energy Use and Building Characteristics                                                                                                                                               |                   |
|   | 1.1.                                                                  | 1 Building Characteristics                                                                                                                                                            |                   |
|   | 1.1.                                                                  | 2 Summary of Energy Use and Costs                                                                                                                                                     |                   |
|   | 1.2                                                                   | Energy Targets                                                                                                                                                                        |                   |
|   | 1.3                                                                   | Savings Potential                                                                                                                                                                     |                   |
| 2 | Con                                                                   | servation Measures and Budget                                                                                                                                                         |                   |
|   | 2.1                                                                   | Proposed Energy Efficiency Measures                                                                                                                                                   |                   |
| 3 | Ene                                                                   | rgy Management and Retrofit Plan                                                                                                                                                      | 425               |
|   | 3.1                                                                   | Implementation Costs and Modeled Savings                                                                                                                                              |                   |
|   | 3.2                                                                   | Implementation Process and Tools – Determining the Specific Measures for Each                                                                                                         | Building425       |
|   | 3.2.                                                                  | 1 Building Performance Audit                                                                                                                                                          |                   |
|   | 3.2.                                                                  | 2 Energy Assessment                                                                                                                                                                   |                   |
|   | 3.2.                                                                  | 3 Energy Savings Checklist                                                                                                                                                            |                   |
|   | 3.3                                                                   | Implementation Budget                                                                                                                                                                 |                   |
|   | 3.4                                                                   | 10-Year Implementation Plan                                                                                                                                                           |                   |
| 4 | Арр                                                                   | endix A                                                                                                                                                                               |                   |
|   | 4.1                                                                   | Selection of 2012 Utility Bills for Calculation of Actual Energy Use Intensities                                                                                                      | 431               |
|   | 4.2                                                                   | Determining Energy Use Components                                                                                                                                                     | 431               |
|   |                                                                       |                                                                                                                                                                                       |                   |
|   | 4.3                                                                   | Determining Targets                                                                                                                                                                   | 431               |
|   | 4.3<br>4.4                                                            | Determining Targets<br>Calculating Potential Savings                                                                                                                                  |                   |
|   |                                                                       |                                                                                                                                                                                       | 433               |
|   | 4.4                                                                   | Calculating Potential Savings                                                                                                                                                         | 433<br>433        |
| 5 | 4.4<br>4.5<br>4.6                                                     | Calculating Potential Savings<br>Implementation Costs by Measure Type and Modeled Savings                                                                                             | 433<br>433<br>434 |
| 5 | 4.4<br>4.5<br>4.6                                                     | Calculating Potential Savings<br>Implementation Costs by Measure Type and Modeled Savings<br>Assessment Tools                                                                         |                   |
| 5 | 4.4<br>4.5<br>4.6<br>App                                              | Calculating Potential Savings<br>Implementation Costs by Measure Type and Modeled Savings<br>Assessment Tools<br>endix B - Public Libraries                                           |                   |
| 5 | <ul><li>4.4</li><li>4.5</li><li>4.6</li><li>App</li><li>5.1</li></ul> | Calculating Potential Savings<br>Implementation Costs by Measure Type and Modeled Savings<br>Assessment Tools<br>endix B - Public Libraries<br>Buildings and Building Characteristics |                   |

#### List of Tables

| Table 208: 2012 Energy Use and Costs for 73 City of Toronto Public Libraries       | 414 |
|------------------------------------------------------------------------------------|-----|
| Table 209: Top Quartile Targets                                                    | 416 |
| Table 210: Savings Potential Summary                                               | 417 |
| Table 211: Savings Potential based on Energy Use Component for 73 Public Libraries | 418 |
| Table 198: Energy Saving Measures for Public Libraries                             | 424 |
| Table 213: Estimated Implementation Costs and Modeled Savings                      | 425 |
| Table 214: Assessment Tools Used to Determine Specific Energy-saving Measures      |     |
| Table 215: Total Budget - Energy Management and Retrofit Plan                      | 428 |
| Table 216: Cash Flow for 10-Year Implementation Plan                               |     |
| Table 217: Implementation Costs by Measure Type                                    | 434 |
| Table 218: Public Library Building Information                                     | 438 |
| Table 219: Public Library 2012 Energy Intensity                                    |     |
| Table 220: Excluded Facilities                                                     | 440 |
| Table 221: Savings Potential for 4 High Savings Potential Public Libraries         |     |
| Table 222: Savings Potential for 33 Medium Savings Potential Public Libraries      |     |
| Table 223: Savings Potential for 36 Low Savings Potential Public libraries         |     |

## List of Figures

| Figure 122: 2012 Energy Use and Cost Breakdown for 73 City of Toronto Public Libraries |     |
|----------------------------------------------------------------------------------------|-----|
| Figure 123: 2012 Total Energy Intensity Benchmark                                      | 415 |
| Figure 124: 2012 Total Electricity Intensity Benchmark                                 | 415 |
| Figure 125: 2012 Total Gas Intensity Benchmark                                         | 416 |
| Figure 126: Cash Flow for 10-Year Implementation Plan                                  | 430 |
| Figure 127: 2012 Electric Baseload Intensity Benchmark                                 | 441 |
| Figure 128: 2012 Electric Cooling Intensity Benchmark                                  | 441 |
| Figure 129: 2012 Electric Heating Intensity Benchmark                                  | 442 |
| Figure 130: 2012 Gas Baseload Intensity Benchmark                                      | 442 |
| Figure 131: 2012 Gas Heating Intensity Benchmark                                       | 443 |
|                                                                                        |     |

# **1** Benchmarking and Conservation Potential

## **1.1 Energy Use and Building Characteristics**

#### **1.1.1 Building Characteristics**

The City of Toronto is reporting on 73 public libraries in the Energy Conservation Demand Management (ECDM) Plan. The names, addresses and building areas are provided in Appendix B.

The total area for all of the buildings is 1,548,904 ft<sup>2</sup>. The public libraries range in size from approximately 2,400 ft<sup>2</sup> to over 400,000 ft<sup>2</sup>. There are 2 facilities over 100,000 ft<sup>2</sup>.

None of the facilities are equipped with a renewable energy system.

The majority of the public libraries are 100% air-conditioned. One facility (Palmerston) is fully served by electric heat. The majority of the other public libraries are using some electric heat, ranging from 5% to 60%. One public library (Agincourt) is served by a water source heat pump.

#### 1.1.2 Summary of Energy Use and Costs

This Energy Conservation Demand Management (ECDM) Plan is based on energy use taken from monthly bills for the 2012 calendar year. Energy costs are presented throughout using \$0.14 per kWh of electricity and \$0.26 per m<sup>3</sup> of gas. Refer to Appendix A (section 'Selection of 2012 utility bills for calculation of actual energy use intensities') for the methodology used to calculate the energy use intensities from the utility bills. Total energy use and costs for the 73 buildings are summarized below.

|                               | 2012 En    | ergy Use    |
|-------------------------------|------------|-------------|
|                               | Unit       | \$          |
| Electricity (kWh)             | 28,794,910 | \$4,031,287 |
| Natural Gas (m <sup>3</sup> ) | 1,822,936  | \$473,963   |
| Total                         |            | \$4,505,251 |

Table 208: 2012 Energy Use and Costs for 73 City of Toronto Public Libraries



Figure 122: 2012 Energy Use and Cost Breakdown for 73 City of Toronto Public Libraries



There is a wide range of energy use intensities as presented below, due primarily to differences in efficiency between the 73 buildings. Total energy use ranges from approximatley 10 to over 88 ekWh/ft<sup>2</sup>. There are also wide ranges for electricity and gas use per ft<sup>2</sup>. The red line represents the top quartile. The corresponding data for total energy, total electricity and total gas for each building is located in Appendix B.



Figure 123: 2012 Total Energy Intensity Benchmark



Figure 124: 2012 Total Electricity Intensity Benchmark

# **DI TORONTO**



Figure 125: 2012 Total Gas Intensity Benchmark

# **1.2 Energy Targets**

The energy targets for public libraries are presented in the table below. The target-setting methodology is based upon all buildings improving to the top quartile intensity for each component of energy use, and is described in Appendix B. The goal is for each public library to achieve its target over the duration of the ECDM Plan.

| Energy type  | Component | Value | Unit          |
|--------------|-----------|-------|---------------|
| Electricity  | Baseload  | 9.97  | kWh/ft²/year  |
|              | Cooling   | 1.02  | kWh/ft²/year  |
|              | Heating   | 0.51  | kWh/ft²/year  |
|              | Total     | 11.50 | kWh/ft²/year  |
| Gas          | Baseload  | 0.15  | ekWh/ft²/year |
|              | Heating   | 7.14  | ekWh/ft²/year |
|              | Total     | 7.29  | ekWh/ft²/year |
| Total energy | Total     | 18.78 | ekWh/ft²/year |

 Table 209: Top Quartile Targets

The data set for target-setting is made up of the 56 public libraries with complete and reliable data, 52 of which are City of Toronto buildings and 4 are from other municipalities. Before calculation of potential savings for each building, the energy use component targets were adjusted for site specific factors including electric heat (% building served and % for Domestic Hot Water (DHW)) and % of the area which is air conditioned. The specific target adjustments are found in Appendix A.



## **1.3** Savings Potential

The difference between the actual 2012 energy use and the adjusted target represents the potential annual savings for each energy component in each public library. The total savings potential for each public library is then determined as the sum of the components. Some buildings have very high percentage and dollar potential while other more efficient buildings have little or no potential. The 73 public libraries are categorized as high potential (annual savings of over \$100,000), medium (mid) potential (annual savings between \$5,000 and \$100,000) and low potential (annual savings of less than \$5,000). The savings potential for each individual building is summarized in Appendix B.

There are 4 public libraries with annual savings potential greater than \$100,000. 33 public libraries have annual savings potential between \$5,000 and \$100,000 and 36 public libraries have annual savings potential less than \$5,000 (see Table 3).

The total annual savings potential for the 73 buildings is \$1,879,499 (\$1,660,543 for electricity and \$218,956 for gas) with an average total energy savings of 43%.

For the 4 high-potential savings facilities, the total annual savings potential is \$1,067,994 (\$980,828 for electricity and \$87,166 for gas) with an average total energy savings of 52%.

For the 33 mid-potential savings facilities, the total annual savings potential is \$745,956 (\$643,612 for electricity and \$102,344 for gas) with an average total energy savings of 41%.

For the 36 low-potential savings facilities, the total annual savings potential is \$65,548 (\$36,103 for electricity and \$29,445 for gas) with an average total energy savings of 23%.

|                                       | Electricity Savings Potential |         |         |       |             | G     | as Sav  | ings Po | otential  |     | tal Energy<br>Igs Potential | Incentives  |          | Indoor<br>Area | GHG<br>Emis-<br>sions |
|---------------------------------------|-------------------------------|---------|---------|-------|-------------|-------|---------|---------|-----------|-----|-----------------------------|-------------|----------|----------------|-----------------------|
|                                       |                               | Avera   | age %   |       | \$/yr       | A     | verage  | %       | \$/yr     | Avg | \$/yr                       | Electricity | Gas      | ft²            | kg/yr                 |
|                                       | Base-                         |         |         |       |             | Base- |         |         |           | %   |                             |             |          |                |                       |
|                                       | load                          | Cooling | Heating | Total |             | load  | Heating | Total   |           |     |                             |             |          |                |                       |
| TOTAL: 73 facilities                  | 40%                           | 48%     | 35%     | 41%   | \$1,660,543 | 92%   | 43%     | 46%     | \$218,956 | 43% | \$1,879,499                 | \$948,882   | \$84,214 | 1,548,904      | 2,887,088             |
| High potential savings facilities (4) | 50%                           | 52%     | 63%     | 54%   | \$ 980,828  | 64%   | 48%     | 48%     | \$ 87,166 | 52% | \$1,067,994                 | \$560,473   | \$33,525 | 528,755        | 1,400,593             |
| Mid-potential savings facilities (33) | 36%                           | 48%     | 11%     | 36%   | \$ 643,612  | 94%   | 40%     | 47%     | \$102,344 | 41% | \$ 745,956                  | \$367,778   | \$39,363 | 723,345        | 1,245,328             |
| Low potential savings facilities (36) | 05%                           | 34%     | 14%     | 08%   | \$ 36,103   | 92%   | 37%     | 39%     | \$ 29,445 | 23% | \$ 65,548                   | \$ 20,630   | \$11,325 | 296,804        | 241,167               |

#### Table 210: Savings Potential Summary

GHG emissions reduction is based on 110g GHG/kWh of electricity and 1879g GHG/m<sup>3</sup> of natural gas. Utility company incentives are calculated based on \$0.08/kWh of electricity (a composite of \$0.05/kWh for lighting retrofits and \$0.10 for non-lighting measures) and \$0.10/m<sup>3</sup> of natural gas saved.

The savings potential for each individual energy component points to where the biggest savings are to be found and guides the priorities for implementation. Table 4 below shows the total potential savings for all 73 buildings and highlights where the greatest percentage savings are.



| Energy and Water Components                                                       | 2012 Use | Target | Savings<br>Potential % | Savings<br>Potential \$ |
|-----------------------------------------------------------------------------------|----------|--------|------------------------|-------------------------|
| Electric Baseload (kWh/ft²)                                                       | 13.8     | 8.3    | 40%                    | \$ 1,193,624            |
| Electric Cooling (kWh/ft²)                                                        | 1.4      | 0.7    | 48%                    | \$ 148,664              |
| Electric Heating (kWh/ft²)                                                        | 0.4      | 0.2    | 35%                    | \$ 27,182               |
| Total Electricity (kWh/ft <sup>2</sup> ) for facilities w/o component intensities | 20.2     | 11.3   | 44%                    | \$ 291,074              |
| Gas Baseload (ekWh/ft²)                                                           | 0.8      | 0.1    | 92%                    | \$ 27,574               |
| Gas Heating (ekWh/ft²)                                                            | 9.8      | 5.6    | 43%                    | \$ 163,757              |
| Total Gas (ekWh/ft²) for facilities w/o component intensities                     | 10.7     | 6.0    | 44%                    | \$ 27,625               |
| Total Energy (ekWh/ft²)                                                           | 31.4     | 17.6   | 44%                    | \$ 1,879,499            |
|                                                                                   |          |        |                        |                         |

High savings Moderate savings Low savings

#### Table 211: Savings Potential based on Energy Use Component for 73 Public Libraries

Savings potential is considered high if it is 30% and above, moderate if between 10 and 29% and low if less than 10%.

Components with the highest savings potential (i.e. Electric Cooling and Gas Baseload) will be given higher priority in terms of recommended measures for implementation. In many cases, Electric Baseload measures can provide a significant portion of dollar savings. However, they generally require significant capital investment and will therefore be implemented in later years.

# 2 Conservation Measures and Budget

## 2.1 Proposed Energy Efficiency Measures

Table 5 below shows the full range of possible energy efficiency measures for the entire portfolio of public libraries. The measures are grouped based on the component of energy use they relate to and have been sorted based on chronology of implementation.

The measures are categorized by system type - lighting (L), mechanical (M), electrical (EL), envelope (EN), process (P) (i.e. domestic hot water) and behavioural (B) measures. The profiles of energy use and conservation potential for the 73 facilities indicate that the larger part of the savings will come from measures associated with electric cooling and gas baseload, the majority of which are low/no cost measures.

The measures have been prioritized in order to help make an informed decision on which to implement first. Priorities are set using the criteria of 'Energy Savings Potential' and 'Ease of Implementation'. Each measure was assigned a score from 1 to 4 for both energy savings potential and ease of implementation.

For Energy Savings Potential, a score of 4 was assigned to measures with the greatest percentage energy savings potential and a score of 1 was assigned to measures with the smallest percentage energy savings potential. For Ease of Implementation, a score of 4 was assigned to measures that are the easiest to implement and a score of 1 to measures that are the most difficult to implement.

The Energy Savings Potential scoring was determined using the following criteria:

- 4 Savings potential is greater than 40%
- 3 Savings potential is 30-40%
- 2 Savings potential is 20-30%
- 1 Savings potential is less than 20%

The Ease of Implementation scoring was determined using the following criteria:

- 4 Measure can be done immediately by building occupants or service contractors (little/no cost)
- 3 Measure involves testing, tuning, measuring (low cost)
- 2 Measure involves significant investigation/optimization (more significant costs)
- 1 Measure involves replacement/installation involving capital costs

<u>The measures with the highest combined Energy Savings Potential and Ease of Implementation scores</u> (out of 8) are deemed the highest priority.



Accordingly the Overall score associated to the proposed measures can be summarized as follows:

1 - Least energy savings potential; Most difficult to implement



8 - Greatest energy savings potential; Easiest to implement

#### Timelines

Measures recommended to be implemented in Year 1 (the year of the initial assessment) are behavioural measures that can be done immediately without capital budgets. Measures recommended for Year 2 will generally result in high percentage savings, are mainly operational and do not require significant capital costs. Year 3 measures will provide high percentage savings (i.e. measures related to electric cooling and gas baseload) but have associated capital costs (i.e. installation and replacement measures). Measures to be implemented in Year 4 and Year 5 are those that have significant associated capital costs and may result in high dollar savings but less significant percentage energy savings (i.e. measures related to all other energy components).

|           | Electric Baseload Measures                                                                          | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline  | Life Expectancy<br>(yrs) | Responsibility     |
|-----------|-----------------------------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|-----------|--------------------------|--------------------|
|           | ELECTRIC BASELOAD - refers to year-round electricity use for lighting, fans, ea                     | luipmen                   | t and othe                  | r syste     | ms that a | re not weather depen     | dent               |
| B1        | Turn off machines, office and kitchen equipment when not needed                                     | 4                         | 4                           | 8           | Year 1    | Annual Review            | Building Occupants |
| B2        | Unplug machines, office and kitchen equipment if not actively used                                  | 4                         | 4                           | 8           | Year 1    | Annual Review            | Building Occupants |
| B3        | Turn off computer monitors when not in use                                                          | 4                         | 4                           | 8           | Year 1    | Annual Review            | Building Occupants |
| B4        | Enable ENERGY STAR power settings on your computer                                                  | 4                         | 4                           | 8           | Year 1    | Annual Review            | Building Occupants |
| B5        | Unplug chargers when not in use                                                                     | 4                         | 4                           | 8           | Year 1    | Annual Review            | Building Occupants |
| <b>B6</b> | Turn off lights when areas not in use                                                               | 4                         | 4                           | 8           | Year 1    | Annual Review            | Building Occupants |
| В7        | Make use of natural light instead of turning on lights where possible                               | 4                         | 4                           | 8           | Year 1    | Annual Review            | Building Occupants |
| M1        | Optimize operating schedules for fans and pumps                                                     | 3                         | 4                           | 7           | Year 2    | Seasonal Review          |                    |
| M2        | Test and adjust ventilation systems to reduce fan power                                             | 3                         | 4                           | 7           | Year 2    | Seasonal Review          |                    |
| EL4       | Install power factor correction                                                                     | 3                         | 4                           | 7           | Year 2    | 15+                      |                    |
| L1        | Replace incandescent and halogen light bulbs with high efficiency<br>lighting                       | 1                         | 4                           | 5           | Year 4    | 10 to 15                 |                    |
| L2        | Install motion sensors in washrooms/occasional use spaces to shut off lights when unoccupied        | 1                         | 4                           | 5           | Year 4    | 10 to 15                 |                    |
| L3        | Install photo-sensors and/or a timer on outdoor and daylit interior area lighting                   | 1                         | 4                           | 5           | Year 4    | 10 to 15                 |                    |
| L4        | Replace HID lighting with high efficiency fluorescent                                               | 1                         | 4                           | 5           | Year 4    | 10 to 15                 |                    |
| L5        | Replace outdoor lights and signage with high efficiency fixtures                                    | 1                         | 4                           | 5           | Year 4    | 10 to 15                 |                    |
| L6        | Replace festive lighting with LED                                                                   | 1                         | 4                           | 5           | Year 4    | 10 to 15                 |                    |
| L7        | Install sufficient manual switching to allow occupants to effectively<br>control lighting operation | 1                         | 4                           | 5           | Year 4    | 15+                      |                    |
| EL1       | Replace refrigerators, dishwasher, microwaves with ENERGY STAR rated appliances                     | 1                         | 4                           | 5           | Year 4    | 8 to 12                  |                    |
| EL2       | Replace computers with ENERGY STAR rated units                                                      | 1                         | 4                           | 5           | Year 4    | 4 to 6                   |                    |
| EL3       | Install controls on vending machines                                                                | 1                         | 4                           | 5           | Year 4    | 10 to 15                 |                    |
| M3        | Install variable frequency drives (VFDs) on suitable fans and pumps                                 | 1                         | 4                           | 5           | Year 4    | 10 to 20                 |                    |
| M4        | Convert electric hot water heaters to natural gas                                                   | 1                         | 4                           | 5           | Year 4    | 10 to 15                 |                    |
|           | Other:                                                                                              |                           |                             |             |           |                          |                    |

Behavioural Measures

**Operational Measures** 

Retrofit/Capital Measures

# n Toronto

|           | Electric Heating Measures                                                      | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility     |
|-----------|--------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|----------|--------------------------|--------------------|
|           | ELECTRIC HEATING (IF APPLICABLE) - refers to electricity use for heating purpe | oses                      |                             |             |          |                          |                    |
| <b>B8</b> | Adjust blinds (to retain heat in winter)                                       | 4                         | 4                           | 8           | Year 1   | annual review            | Building Occupants |
| В9        | Avoid use of electric heaters                                                  | 4                         | 4                           | 8           | Year 1   |                          | Building Occupants |
|           | Use recommended thermostat set points (in winter set to 68 degrees             |                           |                             |             |          |                          |                    |
| B10       | or less during daytime)                                                        | 4                         | 4                           | 8           | Year 1   |                          | Building Occupants |
| M8        | Control fan coil and entrance heaters to optimize run-times                    | 3                         | 4                           | 7           | Year 2   | seasonal review          |                    |
| M9        | Evaluate conversion from electric heating to natural gas                       | 2                         | 4                           | 6           | Year 2   | n/a                      |                    |
| M5        | Install snow sensors to control the snow-melting system                        | 1                         | 4                           | 5           | Year 4   | seasonal review          |                    |
| M6        | Upgrade base building heating system to avoid use of electric heaters          | 1                         | 4                           | 5           | Year 4   | seasonal review          |                    |
|           | Upgrade electric heating controls to optimize space temperatures and           |                           |                             |             |          |                          |                    |
| M7        | operating periods                                                              | 1                         | 4                           | 5           | Year 4   | seasonal review          |                    |
|           | Other:                                                                         |                           |                             |             |          |                          |                    |
|           |                                                                                |                           |                             |             |          |                          |                    |

#### Behavioural Measures

#### Operational Measures Retrofit/Capital Measures

|      | Electric Cooling Measures                                                                       | Ease of<br>Implementatio | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility     |
|------|-------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|-------------|----------|--------------------------|--------------------|
|      | ELECTRIC COOLING (IF APPLICABLE) - refers to electricity use for cooling purpo                  | oses                     |                             |             |          |                          |                    |
| B11  | Winterize room air-conditioners                                                                 | 4                        | 4                           | 8           | Year 1   |                          | Building Occupants |
| B12  | Use recommended thermostat set points (during the summer, set to                                |                          |                             |             |          |                          |                    |
| DIZ  | 78 degrees or more)                                                                             | 4                        | 4                           | 8           | Year 1   |                          | Building Occupants |
| B13  | Only cool rooms that are being used                                                             | 4                        | 4                           | 8           | Year 1   |                          | Building Occupants |
| B14  | Install and use energy efficient ceiling fans                                                   | 4                        | 4                           | 8           | Year 1   |                          | Building Occupants |
| B15  | Close blinds (to shade space from direct sunlight)                                              | 4                        | 4                           | 8           | Year 1   |                          | Building Occupants |
| B16  | Install window film, solar screens or awnings on south and west facing<br>windows               | 4                        | 4                           | 8           | Year 1   |                          | Building Occupants |
| M10  | Optimize operating periods of ventilation systems supplying air conditioned spaces              | 2                        | 4                           | 6           | Year 2   | seasonal review          |                    |
| M12  | Upgrade control of air conditioning units to optimize space<br>temperatures & operating periods | 3                        | 4                           | 7           | Year 2   | seasonal review          |                    |
| M13  | Test and tune the air conditioning units                                                        | 3                        | 4                           | 7           | Year 2   | 3                        |                    |
| INIT | Replace and right-size air conditioning units with ENERGY STAR rated<br>units                   | 1                        | 4                           | 5           | Year 4   | 10 to 15                 |                    |
|      | Other:                                                                                          |                          |                             |             |          |                          |                    |

#### Behavioural Measures

**Operational Measures** 

Retrofit/Capital Measures

\_



|     | Gas Baseload Measures                                                       | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline  | Life Expectancy<br>(yrs) | Responsibility     |
|-----|-----------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|-----------|--------------------------|--------------------|
|     | GAS BASELOAD - refers to the annual natural gas energy used for domestic he | ot water                  | and other                   | equip       | nent that | runs year round          |                    |
| B17 | Optimize dishwasher operation (only run when full)                          | 4                         | 4                           | 8           | Year 1    |                          | Building Occupants |
| P1  | Optimize DHW temperature control                                            | 2                         | 4                           | 6           | Year 2    | annual review            |                    |
| P3  | Test and tune DHW boiler efficiency                                         | 3                         | 4                           | 7           | Year 2    | annual review            |                    |
| M16 | Investigate and repair possible gas leaks                                   | 3                         | 4                           | 7           | Year 2    | annual review            |                    |
| P2  | Implement DHW circulation pump control                                      | 1                         | 4                           | 5           | Year 2    | annual review            |                    |
| M14 | Insulate DHW tanks and distribution piping                                  | 2                         | 4                           | 6           | Year 3    | 10 to 15                 |                    |
| P4  | Install low flow showerheads and faucet aerators                            | 1                         | 4                           | 5           | Year 4    | 10 to 15                 |                    |
| M15 | Replace DHW boilers with more efficient models                              | 1                         | 4                           | 5           | Year 4    | 10 to 15                 |                    |
|     | Other:                                                                      |                           |                             |             |           |                          |                    |
|     |                                                                             |                           |                             |             |           |                          |                    |
|     |                                                                             |                           |                             |             |           |                          |                    |

**Behavioural Measures** 

Operational Measures Retrofit/Capital Measures

|     | Gas Heating Measures                                                         | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility     |
|-----|------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|----------|--------------------------|--------------------|
|     | GAS HEATING - refers to the additional energy used in winter for heating and | humidif                   | ication                     |             |          |                          |                    |
| B18 | Check and clear baseboard heaters of obstructions                            | 4                         | 4                           | 8           | Year 1   |                          | Building Occupants |
|     | Adjust blinds (to retain heat in winter)                                     | 4                         | 4                           | 8           | Year 1   |                          | Building Occupants |
|     | Use recommended thermostat set points (in winter set to 68 degrees           |                           |                             |             |          |                          |                    |
|     | or less during daytime)                                                      | 4                         | 4                           | 8           | Year 1   |                          | Building Occupants |
|     | Optimize operating periods of ventilation systems supplying heated           |                           |                             | -           |          |                          |                    |
|     | spaces                                                                       | 2                         | 4                           | 6           | Year 2   | seasonal review          |                    |
|     | Test and adjust ventilation systems to optimize outside air volumes          | 3                         | 4                           | 7           | Year 2   | seasonal review          |                    |
| M20 | Test and tune boiler efficiency                                              | 3                         | 4                           | 7           | Year 2   | seasonal review          |                    |
| M22 | Check heating system for flow balancing and air venting                      | 3                         | 4                           | 7           | Year 2   | seasonal review          |                    |
| EN1 | Check and seal exterior walls and openings                                   | 3                         | 4                           | 7           | Year 2   | 10 to 15                 |                    |
| EN5 | Seal window and door frames                                                  | 3                         | 4                           | 7           | Year 2   | 5                        |                    |
| M23 | Optimize fan-coil unit and entrance heater controls                          | 3                         | 4                           | 7           | Year 2   | seasonal review          |                    |
| M24 | Consider heating system zoning                                               | 2                         | 4                           | 6           | Year 2   | n/a                      |                    |
|     | Test, repair, replace and right-size heating control valves and outside      |                           |                             |             |          |                          |                    |
|     | air dampers                                                                  | 2                         | 4                           | 6           | Year 3   | 10 to 15                 |                    |
|     | Upgrade heating system control to optimize space temperatures and            |                           | _                           | _           |          |                          |                    |
|     | operating periods                                                            | 1                         | 4                           | 5           | Year 4   | 10 to 15                 |                    |
| EN2 | Insulate the attic adequately                                                | 1                         | 4                           | 5           | Year 4   | 10 to 15                 |                    |
| EN3 | Reclad the building's exterior                                               | 1                         | 4                           | 5           | Year 4   | 20 to 24                 |                    |
| EN4 | Replace single-pane windows with double-pane windows                         | 1                         | 4                           | 5           | Year 4   | 20 to 24                 |                    |
| EN6 | If replacing the roof, ensure R-value at least 22                            | 1                         | 4                           | 5           | Year 4   | n/a                      |                    |
| M25 | Install high efficiency burners                                              | 1                         | 4                           | 5           | Year 4   | 15 to 20                 |                    |
| M26 | Replace boilers with more efficient models                                   | 1                         | 4                           | 5           | Year 4   | 15 to 20                 |                    |
| M27 | Replace old rooftop units with energy efficient units                        | 1                         | 4                           | 5           | Year 4   | 15 to 20                 |                    |
| M28 | Install heat recovery or solar heating units                                 | 1                         | 4                           | 5           | Year 4   | 10 to 15                 |                    |
|     | Other:                                                                       | -                         |                             |             |          |                          |                    |

Behavioural Measures Operational Measures Retrofit/Capital Measures

Table 212: Energy Saving Measures for Public Libraries

The specific measures and implementation timeline for each individual public library will be determined from the results of the Energy Assessments and Checklists (explained in the Implementation section of this plan).

# 3 Energy Management and Retrofit Plan

# 3.1 Implementation Costs and Modeled Savings

The average budgeted cost for implementing suggested measures, based on previous experience with similar facilities is \$4.20/ft<sup>2</sup> (see Appendix A). The budget allows for lighting retrofits and controls, mechanical system efficiency improvements, appliance replacement and controls and localized efficiency measures for the building envelope. The budget does not allow for major plant or equipment replacement or substantial building upgrades such as roof or window replacement. These items may be included if appropriate in projects for individual buildings, but would not provide rational Return on Investments (ROIs) based on energy savings alone and would therefore be budgeted separately.

Similar measures for consideration apply to high and medium potential buildings. A 20 percent premium is included for high potential buildings to ensure that all improvements necessary to achieve the targets are covered. Still, the ROIs for high-potential buildings will be better than the rest.

Low potential buildings do not merit the more in-depth investigations planned for the other two categories. Rather, a checklist approach, guided by the indicated component energy savings potential, would identify the particular measures for each building. The budget allowance for low-potential buildings is set at 40 percent of the basic amount to provide a rational ROI for this group.

The total implementation costs, payback and cash flows for the portfolios of high medium and lowpotential public libraries are summarized in Table 166 below.

| Annual Savings<br>Potential | Number of<br>facilities | Average Area<br>(ft²) | Estimated<br>Implementation<br>Cost \$/ft <sup>2</sup> | Estimated<br>Implementation<br>Cost \$ | Estimated<br>Savings<br>potential \$ | Estimated<br>Savings<br>potential<br>% | Payback |
|-----------------------------|-------------------------|-----------------------|--------------------------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|---------|
| >\$100,000                  | 4                       | 132,189               | 5.04                                                   | \$ 2,664,926                           | \$ 1,067,994                         | 56.8%                                  | 2.50    |
| \$5,000 - \$100,000         | 33                      | 21,920                | 4.20                                                   | \$ 3,038,049                           | \$ 745,956                           | 39.7%                                  | 4.07    |
| < \$5,000                   | 36                      | 8,245                 | 1.68                                                   | \$ 498,631                             | \$ 65,548                            | 3.5%                                   | 7.61    |
|                             | 73                      |                       |                                                        | \$ 6,201,605                           | \$ 1,879,499                         |                                        | 3.30    |

#### Table 213: Estimated Implementation Costs and Modeled Savings

Paybacks are determined by actual current implementation costs divided by first year savings (so costs are not adjusted for inflation and utility prices are not adjusted for escalation).

# **3.2** Implementation Process and Tools – Determining the Specific Measures for Each Building

Three types of tools are recommended to enable identification of specific measures in individual buildings:



- High Potential Buildings will undergo a Building Performance Audit incorporating measurement and testing to define retrofits and operational improvements. This also includes interval meter analysis and water consumption.
- Mid Potential Buildings will undergo an Energy Assessment including more in-depth analysis of monthly utility billing data for a number of years and analysis of interval meter or data-logger recordings of daily electricity use.
- Low Potential Buildings will use a simple Checklist to identify priority measures based on the conservation potential profile in this Plan.

The three approaches, budgeted analysis cost and numbers of buildings to which they apply are summarized in Table 167 below.

|                |             | #  | Cost     | Savings Potential   | Resources |
|----------------|-------------|----|----------|---------------------|-----------|
|                | Building    |    |          |                     | engineer; |
|                | Performance | 4  | \$ 7,500 | > \$100,000         | energy    |
| High Potential | Audit (BPA) |    |          |                     | analyst   |
|                | Energy      | 33 | ć 750    | \$5,000 - \$100,000 | energy    |
| Mid Potential  | Assessments | 33 | \$ 750   | \$5,000 - \$100,000 | analyst   |
|                | Checklists  | 36 | Ś 150    | < \$5,000           | Division  |
| Low Potential  | Checklists  | 30 | \$ 150   | < \$5,000           | Champion  |
|                |             | 73 |          |                     |           |

#### Table 214: Assessment Tools Used to Determine Specific Energy-saving Measures

#### 3.2.1 Building Performance Audit

There are 4 public libraries with over \$100,000 in annual energy saving potential. Approximately 56% of the total energy savings for all public libraries can be found at these 4 facilities.

These 4 public libraries can save an average of 52% of their total energy use. The total annual energy savings are estimated to be over \$1,067,000 and individual building annual savings range from approximately \$110,000 to almost \$450,000. The annual GHG savings are approximately 1,400,000 kg.

These 4 public libraries can save an average of 54% of their total electricity use (50% Electric Baseload, 52% Electric Cooling and 63% Electric Heating). The total annual electricity savings are estimated to be approximately \$980,800.

These 4 public libraries can save an average of 48% of their total gas use (64% Gas Baseload and 48% Gas Heating). The total annual gas savings are estimated to be approximately \$87,000.

These 4 public libraries will undergo a Building Performance Audit (see the Implementation Plan for further details). For a complete description of the Building Performance Audit, refer to Appendix A.

See Appendix B for the associated energy savings potential by energy use component.



The highest percentage reductions for these facilities can be found in Gas Baseload and Electric Heating. After the implementation of the proposed measures, these facilities are eligible to receive almost \$600,000 in incentives based on current incentives available from the Ontario Power Authority.

#### 3.2.2 Energy Assessment

There are 33 public libraries with between \$5,000 and \$100,000 in annual energy saving potential. Approximately 40% of the total energy savings for all 73 public libraries can be found in these 33 facilities.

These 33 public libraries can save an average of 41% of their total energy use. The total annual energy savings are estimated to be over \$745,000 and individual building annual savings range from approximately \$5,700 to over \$95,000. The annual GHG savings are approximately 1,245,000 kg.

These 33 public libraries can save an average of 36% of their total electricity use (36% Electric Baseload, 48% Electric Cooling and 11% Electric Heating). The total annual electricity savings are estimated to be approximately \$643,000 and individual building annual savings range from just over \$2,200 to almost \$83,000.

These 33 public libraries can save an average of 47% of their total gas use (94% Gas Baseload and 40% Gas Heating). The total annual gas savings are estimated to be approximately \$102,000 and individual building annual savings range from under \$100 to approximately \$13,000.

These 33 facilities will undergo an Energy Assessment with highest potential public libraries focused on first (see the Implementation Plan for further details).

See Appendix B for a list of these 33 Public libraries and their associated energy savings potential by energy use component.

The highest percentage reductions for this group of 33 public libraries can be found in Electric Cooling and Gas Baseload. For each individual building, the energy components with highest percentage savings potential will be the focus of the Energy Assessment in order to maximize energy savings. For a complete description of the Energy Assessment, refer to Appendix A.

After the implementation of the proposed measures, these public libraries are eligible to receive over \$400,000 in incentives based on current incentives available from the Ontario Power Authority.

### 3.2.3 Energy Savings Checklist

There are 36 public libraries with less than \$5,000 in savings potential. Approximately 4% of the total energy savings for all 73 public libraries can be found in these 36 facilities.

These 36 public libraries can save an average of 23% of their total energy use. The total annual energy savings are estimated to be approximately \$65,500 and individual building annual savings range from under \$100 to approximately \$4,800. The annual GHG savings are approximately 241,000 kg.



These 36 public libraries can save an average of 8% of their total electricity use (5% Electric Baseload, 34% Electric Cooling and 14% Electric Heating). The total annual electricity savings are estimated to be approximately \$36,000 and individual building annual savings range from under \$100 to over \$4,600.

These 36 public libraries can save an average of 39% of their total gas use (92% Gas Baseload and 37% Gas Heating). The total annual gas savings are estimated to be approximately \$29,400 and individual building annual savings range from under \$100 to over \$2,400.

These 36 facilities will undergo a checklist approach with highest potential public libraries focused on first (see the Implementation Plan for further details).

See Appendix B for a list of these 36 public libraries and their associated energy savings potential by energy use component.

The highest percentage reductions for this group of 36 public libraries can be found in Gas Baseload and Gas Heating.

The energy savings checklist will be used by the Division Champion for the public libraries in conjunction with the building operator and/or service contractor for each public library. They will focus on measures related to energy components with high potential savings (colour-coded red) in order to maximize savings.

# 3.3 Implementation Budget

Table 168 below shows the total budget to implement the energy management and retrofit plan, including costs for identifying measures and the implementation costs for all 73 facilities. The total costs to implement the energy management and retrofit plan for Fire Halls is estimated to be \$6,261,755. Note the Implementation costs are not adjusted for inflation.

| BUDGET               | Γ  |           |
|----------------------|----|-----------|
| Building Performance |    |           |
| Audit (BPA)          | \$ | 30,000    |
| Energy Assessment    | \$ | 24,750    |
| Checklist            | \$ | 5,400     |
| Implementation       | \$ | 6,201,605 |
| Total                | \$ | 6,261,755 |

Table 215: Total Budget - Energy Management and Retrofit Plan

#### 3.4 10-Year Implementation Plan

The 10-year implementation plan is summarized in Table 169 and Figure 97 below.



The plan will roll-out over 10 years, and the buildings with the highest savings potential will be focused on first.

Identification of measures from the Building Performance Audits will begin in Year 1, with all 4 Building Performance Audits completed by the end of Year 4. The implementation of these measures will begin in Year 2, and be completed by the end of Year 5. Identification of measures from Energy Assessments will begin in Year 1, with all 33 Energy Assessments completed by the end of Year 5. The implementation of these measures will begin in Year 2, and be completed by the end of Year 6. Identification of measures from the Checklists will begin in Year 2, with all 36 Checklists completed by the end of Year 6. The implementation of these measures will begin in Year 3.

Annual Costs refer to the assessment and implementation costs, training, measurement and verification (M&V), and maintenance costs.

Over a 10 year period, the cumulative net cash flow for this plan is estimated to be \$9,810,031. The cumulative net cash flow becomes positive in Year 7.

The implementation plan includes the following assumptions:

- Approximately 75% of the project budget will be spent in the first 5 years, and the other 25% in the following 5 years.
- The percentage of facilities to be retrofitted in each year is proportional to the percentage of the budget spent in that year. 75% of medium and low potential savings facilities will be retrofitted in the first 5 years and 25% in the following 5 years.
- 25% of energy savings potential of retrofitted facilities is achieved in the first year, 75% in the second year, and 100% in each of the following years.
- Project costs are adjusted for inflation (2% annually) and energy savings are adjusted for utility price escalation (5% annually).
- 100% of incentives are achieved in the year when facilities are retrofitted, and incentives are NOT adjusted for utility price escalation.



|                                    |     | Year 1 |     | Year 2    |     | Year 3    |     | Year 4    |     | Year 5    |     | Year 6    |     | Year 7    |    | Year 8    | Year 9          | Year 10          |             | Totals     |
|------------------------------------|-----|--------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|----|-----------|-----------------|------------------|-------------|------------|
| High Potential - Building          |     |        |     |           |     |           |     |           |     |           |     |           |     |           |    |           |                 |                  |             |            |
| Performance Audit                  |     | 1      |     | 1         |     | 1         |     | 1         |     | 0         |     | 0         |     | 0         |    | 0         | 0               | 0                |             | 4          |
| Mid Potential - Energy Assessment  |     | 7      |     | 7         |     | 7         |     | 7         |     | 5         |     | 0         |     | 0         |    | 0         | 0               | 0                |             | 33         |
| Low Potential - Checklist          |     | 0      |     | 8         |     | 7         |     | 7         |     | 7         |     | 7         |     | 0         |    | 0         | 0               | 0                |             | 36         |
| Assessment Costs                   | \$  | 12,750 | \$  | 13,998    | \$  | 13,864    | \$  | 13,887    | \$  | 4,909     | \$  | 1,182     | \$  | -         | \$ | -         | \$<br>-         | \$<br>-          | \$          | 60,591     |
| Implementation Costs               | Ş   | -      | \$  | 1,363,617 | Ş   | 1,508,478 | \$  | 1,523,655 | \$  | 1,554,128 | Ş   | 627,573   | \$  | 111,372   | Ş  | -         | \$<br>-         | \$<br>-          | Ş           | 6,688,824  |
| Training and M&V costs (10.0% of   |     |        |     |           |     |           |     |           |     |           |     |           |     |           |    |           |                 |                  |             |            |
| Assessment and Implementation      |     |        |     |           |     |           |     |           |     |           |     |           |     |           |    |           |                 |                  |             |            |
| Costs)                             | \$  | 1,275  | \$  | 137,762   | \$  | 152,234   | \$  | 153,754   | \$  | 155,904   | \$  | 62,876    | \$  | 11,137    | \$ | -         | \$<br>-         | \$<br>-          | \$          | 674,941    |
| Maintenance costs (5.0% of         |     |        |     |           |     |           |     |           |     |           |     |           |     |           |    |           |                 |                  |             |            |
| Implementation Costs, cumulative)  | \$  | -      | \$  | 68,181    | \$  | 143,605   | \$  | 219,788   | \$  | 297,494   | \$  | 328,873   | \$  | 334,441   | \$ | 334,441   | \$<br>334,441   | \$<br>334,441.18 |             |            |
| Annual Costs                       | Ş   | 14,025 | Ş   | 1,583,558 | Ş   | 1,818,182 | \$  | 1,911,084 | Ş   | 2,012,435 | \$  | 1,020,503 | \$  | 456,950   | \$ | 334,441   | \$<br>334,441   | \$<br>334,441    | \$          | 9,820,061  |
|                                    |     |        |     |           |     |           |     |           |     |           |     |           |     |           |    |           |                 |                  |             |            |
| Estimated Achieved Annual Savings  |     |        | \$  | 237,832   | \$  | 861,954   | \$  | 1,604,449 | \$  | 2,089,070 | \$  | 2,420,455 | \$  | 2,629,793 | \$ | 2,776,220 | \$<br>2,915,719 | \$<br>3,061,505  | <b>\$</b> : | 18,596,996 |
| Estimated Incentives               | \$  | -      | \$  | 480,040   | Ş   | 281,376   | \$  | 160,996   | \$  | 91,895    | Ş   | 18,041    | \$  | 747       | Ş  | -         | \$<br>-         | \$<br>-          | Ş           | 1,033,095  |
| Annual Savings and Incentives      | \$  |        | \$  | 717,872   | \$  | 1,143,330 | \$  | 1,765,445 | \$  | 2,180,965 | \$  | 2,438,496 | \$  | 2,630,540 | \$ | 2,776,220 | \$<br>2,915,719 | \$<br>3,061,505  | \$ :        | 19,630,091 |
| Borrowing costs based on           |     |        |     |           |     |           |     |           |     |           |     |           |     |           |    |           |                 |                  |             |            |
| cumulative cash flows (4.0% per    |     |        |     |           |     |           |     |           |     |           |     |           |     |           |    |           |                 |                  |             |            |
| annum)                             |     |        | -\$ | 561       | -\$ | 35,188    | -\$ | 62,183    | -\$ | 68,008    | -\$ | 61,267    | -\$ | 4,547     | Ş  | -         | \$<br>-         | \$<br>-          | -\$         | 231,754    |
| Net Cash Flow incl borrowing costs | -\$ | 14,025 | -\$ | 866,247   | -\$ | 710,040   | -\$ | 207,821   | \$  | 100,521   | \$  | 1,356,726 | \$  | 2,169,042 | \$ | 2,441,779 | \$<br>2,581,278 | \$<br>2,727,064  | \$          | 9,578,277  |
| Cumulative Net Cash Flow           | -\$ | 14,025 | -\$ | 879,711   | -\$ | 1,554,563 | -\$ | 1,700,202 | -\$ | 1,531,672 | -\$ | 113,679   | Ş   | 2,059,910 | Ş  | 4,501,689 | \$<br>7,082,967 | \$<br>9,810,031  |             |            |

Table 216: Cash Flow for 10-Year Implementation Plan







# 4 Appendix A

### 4.1 Selection of 2012 Utility Bills for Calculation of Actual Energy Use Intensities

Utility bills were used covering the period from January to December 2012.

If the total number of days in the combined bills was greater than 385 or less than 345 (because of adjustment bills spanning a few months), the facility was excluded from the dataset used to determine energy use components and targets.

To calculate 2012 actual energy use, the combined usage was normalized for the number of days in the calendar year 2012 (366).

## 4.2 Determining Energy Use Components

The energy use components and targets were calculated using data available for eligible facilities at the City of Toronto (see above) and facilities of the same type from other municipalities. Energy use components were determined as follows:

**Electric Baseload**: Relates to systems which run year-round such as lighting, fans and equipment. Electric Baseload for public libraries is determined as the average kWh/day for March, April, October and November multiplied by 366 days.

**Electric Cooling**: Was determined as the additional electricity use above the year-round base from May to September, and relates to air conditioning.

**Electric Heating**: Was determined as the additional use in January, February and December, and relates to electric heat or electricity use for heating systems (pumps, blowers etc.).

**Gas Baseload**: Relates to systems which run year-round (domestic hot water) and is determined as the average  $m^3/day$  for June, July and August multiplied by 366 days.

**Gas Heating**: Was determined as the additional gas use to heat the building from January to May, and September to December.

### 4.3 Determining Targets

Component energy targets were set based on the top quartile intensity of the eligible data set. Thus achievement of the targets anticipates all buildings with component energy intensities greater than the top quartile will reach that level already attained by one quarter of the buildings.

All values less than 5% of the average of the top 3 facilities were removed for the calculation of the component energy targets.

Before the calculation of potential savings for each building, component targets were adjusted taking into account factors specific to the facility type. Individual targets are adjusted for energy types, non-



standard space types or equipment, and high energy intensity spaces or equipment. The target adjustments are listed below.

#### Target Adjustments

**Electric Heating:** Add Gas Heating multiplied by % of area served and 75% efficiency to Electric Heating AND Multiply Gas Heating by (100% - % of area served)

**GSHP:** Add Gas Heating \* 0.19 \* % of area served to Electric Heating AND Subtract Gas Heating \* 0.13 \* % of area served from Gas Heating

**WSHP:** Add Gas Heating \* 0.19 \* % of area served to Electric Heating Electricity AND Subtract Gas Heating \* 0.75 \* % of area served from Gas Heating

**Electric DHW:** Add Gas Baseload \* % of area served \* 75% efficiency to Electric Baseload AND Multiply Gas Baseload by (100% - % of area served)

**Air-Conditioning:** Divide Electric Cooling by Average % of building served by A/C for all facilities of the type and multiply by % of the facility area served by A/C

Data Centre: Add 50 kWh/ft<sup>2</sup> \* % of building occupied by Data Centre to Electric Baseload

**Food Services**: Add 30 kWh/ft<sup>2</sup> \* % of facility area occupied by Food Services (including seating area) to Electric Baseload

**Outdoor Rink:** If rink has associated ice plant, add (1.04 kWh/ft<sup>2</sup> of ice/week \* ft<sup>2</sup> of ice surface area \* 16 weeks/year) divided by  $ft^2$  of the total building area to Electric Baseload

**Solar Hot Water:** Subtract the product of System Power Rating (kW thermal) and (Average Actual) Annual Performance (kWh (t)/kW) divided by the facility area (ft<sup>2</sup>) from Gas Baseload (ekWh/ft<sup>2</sup>)

**Solar Photovoltaic**: Subtract the product of System Power Rating (kW thermal) and (Average Actual) Annual Performance (kWh (t)/kW) divided by the facility area (ft<sup>2</sup>) from Electric Baseload (kWh/ft<sup>2</sup>)

Garage: Add 20 ekWh/ft<sup>2</sup> to Gas Heating

High-intensity electric equipment: Add 30 kWh/ft<sup>2</sup> to Electric Baseload

#### Indoor Rink(s) and/or Indoor Pool(s) within Community Centres and Indoor Recreational Facilities:

<u>Adjustment for Electric Baseload</u> – Electric Baseload adjusted for Indoor Rink and/or Indoor Pool, kWh/ft<sup>2</sup> of total area = (Electric Baseload for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>))+ Assumed Electricity Requirement of Ice Plant (ekWh/ft<sup>2</sup> of ice/week) \* Months ice-in \* 52 weeks a year /12 months a year \* Rink area, ft<sup>2</sup> + Electric Baseload for Pool (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>) / Total Area, ft<sup>2</sup>



<u>Adjustment for Gas Baseload</u> – Gas Baseload adjusted for Indoor Rink and/or Indoor Pool, ekWh/ft<sup>2</sup> of total area = Gas Baseload for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>)) + Gas Baseload for Indoor Sports Arenas (ekWh/ft<sup>2</sup> of rink) \* Rink area, ft<sup>2</sup> + Gas Baseload for Indoor Swimming Pools (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>

<u>Adjustment for Gas Heating</u> – Gas Heating adjusted for Indoor Rink and/or Indoor Pool, ekWh/ft<sup>2</sup> of total area = Gas Heating for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>)) + Gas Heating for Indoor Sports Arenas (ekWh/ft<sup>2</sup> of rink) \* Rink area, ft<sup>2</sup> + Gas Heating for Indoor Swimming Pools (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>

## 4.4 Calculating Potential Savings

The difference between the actual energy use component intensity and adjusted target represents potential annual savings for the component after multiplication by the facility area (and conversion from ekWh to m<sup>3</sup> in the case of gas).

For the facilities that were previously excluded from the dataset for setting targets, potential savings were calculated based on total electricity and gas use (normalized to 366 days) compared with total adjusted electricity and natural gas targets.

## 4.5 Implementation Costs by Measure Type and Modeled Savings

The following table summarizes the implementation costs and savings estimates for measures under each type of operational system. Note that the costs are based on previous experience with similar projects.

These apply to the following building types:

- Fire stations and associated offices and facilities
- Shelter, Support and Housing Administration
- Ambulance stations and associated offices and facilities
- Storage facilities where equipment or vehicles are maintained, repaired or stored
- Public libraries
- Long-Term Care Homes and Services
- Police stations and associated offices and facilities
- Children's Services
- Administrative offices and related facilities, including municipal council chambers



|            | Cost \$/ft <sup>2</sup> | % electric | Payback (yrs) | kWh/ft²/yr | m³/ft²/yr |
|------------|-------------------------|------------|---------------|------------|-----------|
| Lighting   | 1.80                    | 100%       | 6.5           | 2.3        |           |
|            |                         |            |               |            |           |
| Mechanical | 1.50                    | 30%        | 6             | 0.6        | 0.7       |
|            |                         |            |               |            |           |
| Electrical | 0.25                    | 100%       | 8             | 0.3        |           |
|            |                         |            |               |            |           |
| Envelope   | 0.50                    | 0%         | 10            |            | 0.2       |
|            |                         |            |               |            |           |
| Process    | 0.15                    | 0%         | 5             |            | 0.1       |
| Total      | 4.20                    |            | 6.8           | 3.19       | 1.02      |

#### Table 217: Implementation Costs by Measure Type

Implementation costs for lighting include measures such as re-lamping and re-ballasting with about 20% fixture retrofits, replacement or relocation, along with selective, local occupancy and photo-controls.

Costs for mechanical system measures include mechanical system testing and minor retrofits such as VFDs, re-balancing, right-sizing, tuning and repairs, along with upgraded controls.

Costs for electrical measures include appliance and equipment replacements and upgraded controls.

Costs for envelope measures include thermographic testing along with draft-proofing, re-insulation and roof/wall air sealing.

Costs for process (domestic hot water) measures include low flow shower heads and aerators, controls on hot water use for vehicle washing and minor retrofits such as pipe insulation.

### 4.6 Assessment Tools

#### **Building Performance Audit**

The Building Performance Audit determines how well a building's existing systems and operational practices compare to other similar buildings, including top performers. The audit identifies problem areas in building systems, examines building operations, and determines improvements that will deliver the greatest energy savings and maximize return on investment. The outcome will be a clear, evidence-based picture of how much can be saved and what areas to focus on to optimize performance.

The Building Performance Audit includes:

- Benchmarking against comparable buildings including top-performers
- Performance based target setting customized for your building
- Interval meter analysis and examination of prior years' energy trends pinpointing specific system and operational inefficiencies



- Motor testing and equipment data-logging analysis
- Deeper understanding of operating practices through energy use profiles
- Power density and plant capacity analysis to identify retrofit opportunities
- Power factor analysis to uncover over-sized equipment
- Inventory and efficiency analysis of main energy-using equipment
- Verification and documentation of the proper operation of the building systems
- Payback and business case analysis

#### **Initial Energy Targets**

Initial energy targets are created by a mass screening tool which uses a standardized logic to produce a preliminary estimate of savings potential for every building, and thereby identify high-, medium- and low-potential buildings. This initial target-setting process creates the overall economic envelope for the program.

#### **Energy Assessment**

Medium-potential buildings are subjected to more in-depth analysis through an Energy Assessment which drills deeper into utility consumption data to refine the savings target and uncover more specific conservation measures. Regression analysis of monthly billing data against heating and cooling degreedays highlights billing anomalies such as estimated bills, and provides a more accurate breakdown of energy components, and hence component energy savings. Where multiple years of billing data are available the Energy Assessment produces weather-normalized performance trends which can uncover changes in energy use and seasonal anomalies which point to specific energy saving opportunities. The Energy Assessment also analyzes electrical interval meter (or data-logger test results) to help identify operational improvements such as equipment running when the building is unoccupied.

# 5 Appendix B - Public Libraries

# 5.1 Buildings and Building Characteristics

Below are the names, addresses and building areas for the 73 public library buildings included in this report and Plan.

| Building                 | Address              | Building<br>Area (ft <sup>2</sup> ) |
|--------------------------|----------------------|-------------------------------------|
| Agincourt District       | 155 Bonis Ave        | 26,996                              |
| Albert Campbell District | 496 Birchmount Rd    | 26,102                              |
| Albion                   | 1515 Albion Rd       | 32,281                              |
| Amesbury Park            | 1565 Lawrence Ave W  | 6,318                               |
| Annette Street           | 145 Annette St       | 7,804                               |
| Barbara Frum             | 20 Covington Rd      | 39,224                              |
| Beaches                  | 2161 Queen St E      | 7,804                               |
| Bendale                  | 1515 Danforth Rd     | 8,503                               |
| Black Creek              | 1700 Wilson Ave      | 7,093                               |
| Bloor Gladstone          | 1101 Bloor St W      | 11,410                              |
| Brookbanks               | 210 Brookbanks Dr    | 7,933                               |
| Cedarbrae                | 545 Markham Rd       | 26,200                              |
| Centennial               | 578 Finch Ave W      | 6,867                               |
| Cliffcrest               | 3017 Kingston Rd     | 4,898                               |
| College Shaw             | 766 College St       | 7,685                               |
| Danforth Coxwell         | 1675 Danforth Ave    | 9,612                               |
| Deer Park                | 40 St Clair Ave E    | 16,576                              |
| Don Mills                | 888 Lawrence Ave E   | 21,560                              |
| Downsview                | 2793 Keele St        | 20,021                              |
| Dufferin St Clair        | 1625 Dufferin St     | 8,966                               |
| Eatonville               | 430 Burnhamthorpe Rd | 12,217                              |
| Elmbrook Park            | 2 Elmbrook Crescent  | 3,595                               |
| Evelyn Gregory           | 120 Trowell Ave      | 6,200                               |
| Fairview Mall            | 35 Fairview Mall Dr  | 64,670                              |
| Gerrard Ashdale          | 1432 Gerrard St E    | 6,501                               |
| Goldhawk Park            | 295 Alton Towers Cir | 7,998                               |
| Guildwood                | 123 Guildwood Pkwy   | 3,014                               |
| High Park                | 228 Roncesvalles Ave | 9,494                               |
| Highland Creek           | 3550 Ellesmere Rd    | 6,997                               |
| Hillcrest                | 5801 Leslie St       | 7,470                               |
| Humber Bay               | 200 Parklawn Rd      | 2,400                               |
| Humber Summit            | 2990 Islington Ave   | 9,042                               |
| Jane & Dundas            | 620 Jane St          | 11,603                              |
| Jones                    | 118 Jones Ave        | 3,638                               |

| Building                  | Address               | Building<br>Area (ft <sup>2</sup> ) |
|---------------------------|-----------------------|-------------------------------------|
| Leaside                   | 165 McRae Dr          | 11,991                              |
| Lillian H Smith           | 239 College St        | 38,933                              |
| Locke                     | 3083 Yonge St         | 11,647                              |
| Long Branch               | 3500 Lakeshore Blvd W | 6,415                               |
| Main Street               | 137 Main St           | 8,665                               |
| Martin Ross Serv Bldg     | 120 Martin Ross Ave   | 27,997                              |
| Maryvale                  | 85 Ellesmere Rd       | 4,424                               |
| Mimico                    | 47 Station Rd         | 17,470                              |
| Morningside               | 4279 Lawrence Ave E   | 6,997                               |
| Mount Dennis              | 1123 Weston Rd        | 11,345                              |
| Mount Pleasant            | 599 Mt Pleasant Rd    | 5,834                               |
| New Toronto               | 110 Eleventh St       | 9,924                               |
| North York Central        | 5120 Yonge St         | 168,014                             |
| Northern District         | 40 Orchard View Blvd  | 45,800                              |
| Oakwood Village           | 341 Oakwood Ave       | 17,287                              |
| Palmerston                | 560 Palmerston Ave    | 8,493                               |
| Pape Danforth             | 701 Pape Ave          | 8,181                               |
| Parkdale                  | 1305 Queen St W       | 24,079                              |
| Parliament                | 269 Gerrard St E      | 14,639                              |
| Perth Dupont              | 1589 Dupont St        | 3,627                               |
| Pleasant View             | 575 Van Horne Ave     | 6,997                               |
| Rexdale                   | 2243 Kipling Ave      | 5,091                               |
| Richview                  | 1806 Islington Ave    | 47,254                              |
| Riverdale                 | 370 Broadview Ave     | 9,655                               |
| Runnymede                 | 2178 Bloor St W       | 7,955                               |
| S Walter Stewart          | 170 Memorial Park Dr  | 24,133                              |
| Sanderson                 | 327 Bathurst St       | 12,701                              |
| Spadina Road              | 10 Spadina Rd         | 3,950                               |
| St Clair Silverthorn      | 1748 St Clair Ave W   | 4,585                               |
| Steeles                   | 375 Bamburgh Cir      | 5,005                               |
| Taylor Memorial           | 1440 Kingston Rd      | 5,005                               |
| Toronto Reference Library | 789 Yonge St          | 416,025                             |
| Victoria Village          | 184 Sloane Ave        | 5,382                               |
| Weston                    | 2 King St             | 11,948                              |
| Woodside Square           | 1571 Sandhurst Circle | 9,795                               |
| Woodview Park             | 16-18 Bradstock Rd    | 5,360                               |
| Wychwood                  | 1431 Bathurst St      | 6,383                               |
| York Woods                | 1785 Finch Ave W      | 42,173                              |
| Yorkville                 | 22 Yorkville Ave      | 9,052                               |



#### Table 218: Public Library Building Information

### 5.2 Energy Use Intensities

Below are the energy use intensities (total electricity, total gas and total energy) for the 73 public library buildings included in this report and Plan. They are sorted by total energy use intensity, from lowest to highest energy use intensity.

| Building                 | 2012 Total<br>Electricity<br>Intensity<br>(kWh/ft <sup>2</sup> ) | 2012 Total<br>Gas<br>Intensity<br>(ekWh/ft <sup>2</sup> ) | 2012 Total<br>Energy<br>Intensity<br>(ekWh/ft <sup>2</sup> ) |
|--------------------------|------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|
| Mount Dennis             | 4.82                                                             | 5.37                                                      | 10.20                                                        |
| St Clair Silverthorn     | 6.29                                                             | 3.92                                                      | 10.21                                                        |
| Black Creek              | 7.29                                                             | 3.35                                                      | 10.63                                                        |
| Oakwood Village          | 8.16                                                             | 6.42                                                      | 14.58                                                        |
| Guildwood                | 9.11                                                             | 7.37                                                      | 16.48                                                        |
| Mimico                   | 4.88                                                             | 11.81                                                     | 16.70                                                        |
| Main Street              | 10.06                                                            | 7.52                                                      | 17.58                                                        |
| Richview                 | 12.69                                                            | 5.19                                                      | 17.88                                                        |
| Parkdale                 | 11.53                                                            | 6.89                                                      | 18.42                                                        |
| Sanderson                | 11.34                                                            | 7.15                                                      | 18.49                                                        |
| Parliament               | 11.81                                                            | 7.73                                                      | 19.54                                                        |
| Perth Dupont             | 7.34                                                             | 12.40                                                     | 19.74                                                        |
| Elmbrook Park            | 13.82                                                            | 5.93                                                      | 19.74                                                        |
| Mount Pleasant           | 10.40                                                            | 9.43                                                      | 19.84                                                        |
| Danforth Coxwell         | 13.47                                                            | 6.42                                                      | 19.89                                                        |
| Rexdale                  | 6.98                                                             | 13.26                                                     | 20.24                                                        |
| Gerrard Ashdale          | 9.03                                                             | 11.28                                                     | 20.31                                                        |
| Jane & Dundas            | 10.92                                                            | 10.26                                                     | 21.18                                                        |
| Morningside              | 16.30                                                            | 4.95                                                      | 21.26                                                        |
| College Shaw             | 9.20                                                             | 12.66                                                     | 21.86                                                        |
| Downsview                | 14.37                                                            | 7.55                                                      | 21.92                                                        |
| Bendale                  | 12.01                                                            | 9.96                                                      | 21.97                                                        |
| Woodview Park            | 9.09                                                             | 13.13                                                     | 22.22                                                        |
| Steeles                  | 16.69                                                            | 5.54                                                      | 22.24                                                        |
| Humber Summit            | 11.26                                                            | 11.03                                                     | 22.29                                                        |
| Highland Creek           | 14.98                                                            | 7.55                                                      | 22.52                                                        |
| New Toronto              | 13.62                                                            | 9.24                                                      | 22.86                                                        |
| Long Branch              | 10.40                                                            | 12.62                                                     | 23.02                                                        |
| North York Central       | 14.76                                                            | 8.34                                                      | 23.09                                                        |
| Weston                   | 12.08                                                            | 11.45                                                     | 23.53                                                        |
| Albert Campbell District | 18.75                                                            | 4.89                                                      | 23.64                                                        |



| Building                  | 2012 Total<br>Electricity<br>Intensity<br>(kWh/ft <sup>2</sup> ) | 2012 Total<br>Gas<br>Intensity<br>(ekWh/ft <sup>2</sup> ) | 2012 Total<br>Energy<br>Intensity<br>(ekWh/ft <sup>2</sup> ) |
|---------------------------|------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|
| Albion                    | 12.77                                                            | 11.01                                                     | 23.79                                                        |
| S Walter Stewart          | 16.33                                                            | 7.73                                                      | 24.05                                                        |
| Palmerston                | 24.27                                                            | 0.00                                                      | 24.27                                                        |
| Humber Bay                | 15.67                                                            | 9.31                                                      | 24.98                                                        |
| Maryvale                  | 9.85                                                             | 15.83                                                     | 25.68                                                        |
| Agincourt District        | 24.79                                                            | 1.47                                                      | 26.26                                                        |
| Eatonville                | 13.05                                                            | 14.16                                                     | 27.21                                                        |
| Pape Danforth             | 18.22                                                            | 9.21                                                      | 27.44                                                        |
| Victoria Village          | 11.63                                                            | 15.82                                                     | 27.45                                                        |
| Dufferin St Clair         | 12.58                                                            | 15.27                                                     | 27.85                                                        |
| Toronto Reference Library | 18.32                                                            | 9.62                                                      | 27.94                                                        |
| Don Mills                 | 18.11                                                            | 10.09                                                     | 28.21                                                        |
| York Woods                | 17.92                                                            | 11.01                                                     | 28.93                                                        |
| Woodside Square           | 13.42                                                            | 16.83                                                     | 30.26                                                        |
| Centennial                | 17.73                                                            | 12.78                                                     | 30.51                                                        |
| Cedarbrae                 | 18.41                                                            | 12.99                                                     | 31.40                                                        |
| Spadina Road              | 12.59                                                            | 19.04                                                     | 31.64                                                        |
| Annette Street            | 21.40                                                            | 10.39                                                     | 31.80                                                        |
| Evelyn Gregory            | 12.66                                                            | 19.16                                                     | 31.82                                                        |
| Beaches                   | 18.11                                                            | 13.81                                                     | 31.92                                                        |
| High Park                 | 13.72                                                            | 18.96                                                     | 32.68                                                        |
| Leaside                   | 17.00                                                            | 15.70                                                     | 32.69                                                        |
| Wychwood                  | 16.46                                                            | 16.28                                                     | 32.74                                                        |
| Riverdale                 | 18.86                                                            | 15.77                                                     | 34.64                                                        |
| Fairview Mall             | 19.64                                                            | 15.31                                                     | 34.95                                                        |
| Runnymede                 | 16.56                                                            | 18.93                                                     | 35.49                                                        |
| Taylor Memorial           | 10.91                                                            | 24.92                                                     | 35.83                                                        |
| Yorkville                 | 21.53                                                            | 14.66                                                     | 36.19                                                        |
| Amesbury Park             | 17.41                                                            | 18.88                                                     | 36.29                                                        |
| Jones                     | 11.96                                                            | 25.01                                                     | 36.97                                                        |
| Cliffcrest                | 20.21                                                            | 17.13                                                     | 37.34                                                        |
| Deer Park                 | 21.65                                                            | 15.93                                                     | 37.58                                                        |
| Barbara Frum              | 22.73                                                            | 16.26                                                     | 39.00                                                        |
| Pleasant View             | 26.02                                                            | 13.47                                                     | 39.49                                                        |
| Brookbanks                | 12.91                                                            | 27.22                                                     | 40.13                                                        |
| Hillcrest                 | 17.09                                                            | 23.59                                                     | 40.68                                                        |
| Goldhawk Park             | 31.58                                                            | 16.03                                                     | 47.61                                                        |
| Lillian H Smith           | 26.03                                                            | 36.69                                                     | 62.73                                                        |



| Building              | 2012 Total<br>Electricity<br>Intensity<br>(kWh/ft <sup>2</sup> ) | 2012 Total<br>Gas<br>Intensity<br>(ekWh/ft <sup>2</sup> ) | 2012 Total<br>Energy<br>Intensity<br>(ekWh/ft <sup>2</sup> ) |
|-----------------------|------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|
| Locke                 | 17.02                                                            | 48.79                                                     | 65.82                                                        |
| Bloor Gladstone       | 32.44                                                            | 36.84                                                     | 69.28                                                        |
| Martin Ross Serv Bldg | 57.98                                                            | 13.61                                                     | 71.59                                                        |
| Northern District     | 57.53                                                            | 30.79                                                     | 88.32                                                        |

Table 219: Public Library 2012 Energy Intensity

### 5.3 Target-setting Method and Metrics

21 public libraries were determined to be ineligible for determination of energy components or targetsetting. See Appendix A. The excluded facilities are listed below.

| Facility 🚽            | <sup>1</sup> Days in 2012 | -    | Energy type 💌 |
|-----------------------|---------------------------|------|---------------|
| Annette Street        |                           | 426  | Electricity   |
| Beaches               |                           | 456  | Electricity   |
| Bendale               |                           | 398  | Electricity   |
| Cliffcrest            |                           | 335  | Gas           |
| Danforth Coxwell      |                           | 330  | Electricity   |
| Deer Park             |                           | 331  | Electricity   |
| Don Mills             |                           | 334  | Electricity   |
| Gerrard Ashdale       |                           | 332  | Electricity   |
| Guildwood             |                           | 332  | Electricity   |
| Jones                 |                           | 427  | Electricity   |
| Leaside               | huge adj bill in Aug 2012 |      | Electricity   |
| Martin Ross Serv Bldg |                           | 329  | Electricity   |
| Morningside           |                           | 335  | Gas           |
| Mount Pleasant        |                           | 397  | Electricity   |
| Parliament            |                           | 454  | Electricity   |
| Perth Dupont          |                           | 332  | Electricity   |
| Pleasant View         |                           | 304  | Electricity   |
| Rexdale               |                           | 459  | Electricity   |
| Richview              |                           | 333  | Electricity   |
| Long Branch           | huge adj bill in Jun 2012 |      | Electricity   |
| Wychwood              | negative consump in Jan   | bill | Electricity   |

#### **Table 220: Excluded Facilities**

After excluding these 21 facilities, 52 City of Toronto facilities and 4 from other municipalities were used to calculate the energy use components.

The following benchmark charts show the resulting electricity and gas use by component. Electricity use was broken down into baseload, cooling and heating electricity as described in Appendix A, and gas use was broken down into baseload and heating.

The red line on each chart indicates the top quartile for each component which is the target for that component.





Figure 127: 2012 Electric Baseload Intensity Benchmark

Electric Baseload refers to year-round electricity use for lighting, fans, equipment and other systems that are not weather dependent. Electric Baseload for public libraries ranges from 3.7 to 52.7 ekWh/ft<sup>2</sup> and the top-quartile is 9.97 ekWh/ft<sup>2</sup>.



Figure 128: 2012 Electric Cooling Intensity Benchmark

Electric Cooling refers to additional electricity use in summer for cooling purposes. Electric Cooling for public libraries ranges from 0.3 to  $3.1 \text{ ekWh/ft}^2$  and the top-quartile is  $1.02 \text{ ekWh/ft}^2$ .





Figure 129: 2012 Electric Heating Intensity Benchmark

Electric Heating refers to additional electricity use in winter months for heating purposes. Electric Heating for public libraries ranges from 0.2 to 4.5  $ekWh/ft^2$  and the top-quartile is 0.51  $ekWh/ft^2$ .



Figure 130: 2012 Gas Baseload Intensity Benchmark

Gas Baseload refers to natural gas used for domestic hot water and other equipment that runs year round. Gas Baseload for public libraries ranges from 0.01 to 7.3  $ekWh/ft^2$  and the top-quartile is 0.15  $ekWh/ft^2$ .


Figure 131: 2012 Gas Heating Intensity Benchmark

Gas Heating refers to the additional energy used in winter for heating and humidification. Gas Heating for public libraries ranges from 1.5 to 47.5 ekWh/ft<sup>2</sup> and the top-quartile is 7.14 ekWh/ft<sup>2</sup>.

As explained in Appendix A, all values less than 5% of the average of the top 3 facilities were removed for the calculation of the energy use components.

The top quartile values for each energy use component were adopted as targets.

Before calculation of potential savings for each building, component targets were adjusted taking into account factors specific to the facility type (see Appendix A). In the case of public libraries, the factors are % of the facility area served by electric heat, % of DHW heated by electricity, use of ground-source or water-source heat pumps and % of the area served by electric air conditioning.

For the facilities that were previously excluded from the dataset for setting targets, potential savings were calculated by subtraction of the sum of individual energy use component targets adjusted to specific characteristics of the facility from Total Electricity use (or Total Gas use).

# 5.4 Savings Potential by Energy Use Component

#### Savings Potential by Energy Use Component for the 4 High Savings Potential Public Libraries

Buildings are sorted by total annual savings potential, starting with the highest saving potential buildings.

There are 4 public libraries with over \$100,000 in annual savings potential. The highest potential buildings will be focused on first.

| Operation name                        | Electricity Savings Poter |              |                | ntial        | Gi | as Savi | ings Po     | otential       |       | tal Energy<br>Igs Potential | Incen | tives       | Indoor<br>Area | GHG<br>Emis-<br>sions |         |           |
|---------------------------------------|---------------------------|--------------|----------------|--------------|----|---------|-------------|----------------|-------|-----------------------------|-------|-------------|----------------|-----------------------|---------|-----------|
|                                       |                           | Avera        | age %          |              |    |         | A           | verage         | %     |                             | Avg   |             |                |                       |         |           |
|                                       | Base-                     | O a a line a | l la atia a    | Tetal        |    | \$/yr   | Base-       | Unations       | Tetel | \$/yr                       | %     | \$/yr       | Electricity    | Gas                   | ft²     | kg/yr     |
| High potential savings facilities (4) | load<br>50%               |              | Heating<br>63% | Total<br>54% | ¢  | 980.828 | load<br>64% | Heating<br>48% |       | \$ 87.166                   | 52%   | \$1.067.994 | \$560.473      | ¢22 525               | E20 7EE | 1.400.593 |
|                                       |                           |              |                |              |    |         | 04%         |                |       | 1 - 1                       |       | 1 1 1       | 1 1            | 1 /                   |         | 1 1       |
| Toronto Reference Library             | 38%                       | 53%          |                | 39%          | \$ | 421,053 |             | 26%            | 26%   | \$ 25,976                   | 35%   | \$ 447,029  | \$240,602      | \$ 9,991              | 416,025 | 518,553   |
| Northern District                     | 81%                       |              | 77%            | 80%          | \$ | 296,311 | 85%         | 79%            | 79%   | \$ 28,115                   | 80%   | \$ 324,426  | \$169,320      | \$10,813              | 45,800  | 435,999   |
| Martin Ross Serv Bldg                 |                           |              |                | 80%          | \$ | 182,205 |             |                | 46%   | \$ 4,446                    | 74%   | \$ 186,651  | \$104,117      | \$ 1,710              | 27,997  | 175,290   |
| Lillian H Smith                       | 59%                       | 43%          |                | 57%          | \$ | 81,259  | 54%         | 80%            | 80%   | \$ 28,630                   | 70%   | \$ 109,889  | \$ 46,434      | \$11,011              | 38,933  | 270,750   |

#### Table 221: Savings Potential for 4 High Savings Potential Public Libraries

#### Savings Potential by Energy Use Component for the 33 Mid Savings Potential Public libraries

Buildings are sorted by total annual savings potential, starting with the highest saving potential buildings.

There are 33 public libraries with between \$5,000 and \$100,000 in annual savings potential. The highest potential buildings will be focused on first.



| Operation name                        | Electricity Savings Potential |                  |                  |       |    |         | G                  | as Savi           | ngs Po     | otential  |          | Energy<br>Potential | Incen       | tives    | Indoor<br>Area | GHG<br>Emis-<br>sions |
|---------------------------------------|-------------------------------|------------------|------------------|-------|----|---------|--------------------|-------------------|------------|-----------|----------|---------------------|-------------|----------|----------------|-----------------------|
|                                       | Base-<br>load                 | Avera<br>Cooling | age %<br>Heating | Total |    | \$/yr   | A<br>Base-<br>load | verage<br>Heating | %<br>Total | \$/yr     | Avg<br>% | \$/yr               | Electricity | Gas      | ft²            | kg/yr                 |
| Mid-potential savings facilities (33) | 36%                           | 48%              | 11%              | 36%   | \$ | 643,612 | 94%                | 40%               | 47%        | \$102,344 | 41%      | \$<br>745,956       | \$367,778   | \$39,363 | 723,345        | 1,245,328             |
| Fairview Mall                         | 44%                           | 53%              |                  | 47%   | \$ | 82,848  | 98%                | 10%               | 52%        | \$ 13,007 | 49%      | \$<br>95,855        | \$ 47,342   | \$ 5,003 | 64,670         | 159,097               |
| North York Central                    | 23%                           | 25%              |                  | 22%   | \$ | 77,106  | 89%                |                   | 14%        | \$ 4,826  | 5 19%    | \$<br>81,932        | \$ 44,061   | \$ 1,856 | 168,014        | 95,462                |
| Barbara Frum                          | 49%                           | 67%              |                  | 52%   | \$ | 64,392  | 93%                | 52%               | 57%        | \$ 9,184  | 54%      | \$<br>73,577        | \$ 36,796   | \$ 3,532 | 39,224         | 116,969               |
| Agincourt District                    | 53%                           | 55%              | 17%              | 51%   | \$ | 47,601  |                    |                   | 0%         | \$        | - 48%    | \$<br>47,601        | \$ 27,200   | \$-      | 26,996         | 37,400                |
| York Woods                            | 36%                           | 51%              |                  | 37%   | \$ | 39,318  | 100%               | 34%               | 38%        | \$ 4,38   | 37%      | \$<br>43,699        | \$ 22,467   | \$ 1,685 | 42,173         | 62,553                |
| Bloor Gladstone                       | 66%                           | 63%              |                  | 65%   | \$ | 33,795  | 100%               | 81%               | 83%        | \$ 8,727  | 74%      | \$<br>42,522        | \$ 19,311   | \$ 3,357 | 11,410         | 89,625                |
| Cedarbrae                             | 41%                           | 32%              |                  | 40%   | \$ | 26,995  | 57%                | 43%               | 43%        | \$ 3,67   | 41%      | \$<br>30,666        | \$ 15,425   | \$ 1,412 | 26,200         | 47,742                |
| Deer Park                             |                               |                  |                  | 46%   | \$ | 23,015  |                    |                   | 81%        | \$ 5,385  | 61%      | \$<br>28,400        | \$ 13,151   | \$ 2,071 | 16,576         | 57,000                |
| Goldhawk Park                         | 67%                           |                  | 31%              | 68%   | \$ | 24,217  | 100%               | 64%               | 69%        | \$ 2,214  | 69%      | \$<br>26,430        | \$ 13,838   | \$ 851   | 7,998          | 35,024                |
| Albert Campbell District              | 37%                           | 42%              |                  | 35%   | \$ | 23,847  | 75%                | 34%               | 40%        | \$ 1,278  | 3 36%    | \$<br>25,125        | \$ 13,627   | \$ 491   | 26,102         | 27,971                |
| Don Mills                             |                               |                  |                  | 37%   | \$ | 19,964  |                    |                   | 28%        | \$ 1,520  | ) 33%    | \$<br>21,485        | \$ 11,408   | \$ 585   | 21,560         | 26,674                |
| Locke                                 | 27%                           | 44%              |                  | 26%   | \$ | 7,314   | 100%               | 89%               | 90%        | \$ 12,789 | 73%      | \$<br>20,102        | \$ 4,179    | \$ 4,919 | 11,647         | 98,169                |
| S Walter Stewart                      | 27%                           | 61%              |                  | 32%   | \$ | 17,775  | 85%                |                   | 11%        | \$ 504    | 25%      | \$<br>18,279        | \$ 10,157   | \$ 194   | 24,133         | 17,609                |
| Yorkville                             | 55%                           |                  |                  | 56%   | \$ | 15,410  | 100%               | 55%               | 55%        | \$ 1,84   | 56%      | \$<br>17,251        | \$ 8,806    | \$ 708   | 9,052          | 25,409                |
| Pleasant View                         |                               |                  |                  | 56%   | \$ | 14,225  |                    |                   | 46%        | \$ 1,088  | 3 52%    | \$<br>15,313        | \$ 8,129    | \$ 418   | 6,997          | 19,036                |
| Palmerston                            | 56%                           |                  |                  | 52%   | \$ | 15,068  |                    |                   |            | \$        | - 52%    | \$<br>15,068        | \$ 8,610    | \$-      | 8,493          | 11,839                |
| Riverdale                             | 38%                           | 63%              |                  | 41%   | \$ | 10,503  | 94%                | 45%               | 53%        | \$ 2,039  | 47%      | \$<br>12,542        | \$ 6,002    | \$ 784   | 9,655          | 22,985                |
| Leaside                               |                               |                  |                  | 32%   | \$ | 9,231   |                    |                   | 54%        | \$ 2,533  | 43%      | \$<br>11,764        | \$ 5,275    | \$ 974   | 11,991         | 25,562                |
| Albion                                | 16%                           |                  |                  | 15%   | \$ | 8,534   | 100%               | 25%               | 36%        | \$ 3,180  | 24%      | \$<br>11,714        | \$ 4,877    | \$ 1,223 | 32,281         | 29,684                |
| Annette Street                        |                               |                  |                  | 46%   | \$ | 10,660  |                    |                   | 38%        | \$ 778    | 43%      | \$<br>11,437        | \$ 6,091    | \$ 299   | 7,804          | 13,996                |
| Downsview                             | 16%                           | 57%              |                  | 23%   | \$ | 9,122   | 100%               | 3%                | 5%         | \$ 199    | ) 17%    | \$<br>9,321         | \$ 5,213    | \$ 77    | 20,021         | 8,608                 |
| Hillcrest                             | 32%                           | 46%              | 4%               | 32%   | \$ | 5,795   | 83%                | 69%               | 69%        | \$ 3,063  | 3 54%    | \$<br>8,858         | \$ 3,311    | \$ 1,178 | 7,470          | 26,690                |
| Beaches                               |                               |                  |                  | 36%   | \$ | 7,103   |                    |                   | 48%        | \$ 1,308  | 3 41%    | \$<br>8,411         | \$ 4,059    | \$ 503   | 7,804          | 15,035                |
| Pape Danforth                         | 36%                           | 55%              |                  | 38%   | \$ | 7,862   | 74%                | 17%               | 21%        | \$ 393    | 32%      | \$<br>8,255         | \$ 4,493    | \$ 151   | 8,181          | 9,016                 |
| Runnymede                             | 28%                           | 53%              | 6%               | 30%   | \$ | 5,610   | 85%                | 60%               | 61%        | \$ 2,317  | 47%      | \$<br>7,928         | \$ 3,206    | \$ 891   | 7,955          | 21,155                |
| Amesbury Park                         | 38%                           |                  |                  | 35%   | \$ | 5,386   |                    | 75%               | 75%        | \$ 2,244  | 1 56%    | \$<br>7,631         | \$ 3,078    | \$ 863   | 6,318          | 20,452                |
| Cliffcrest                            |                               |                  |                  | 43%   | \$ | 5,974   |                    |                   | 57%        | \$ 1,21   | 50%      | \$<br>7,185         | \$ 3,414    | \$ 466   | 4,898          | 13,446                |
| Richview                              |                               |                  |                  | 7%    | \$ | 6,277   |                    |                   | 11%        | \$ 648    | 3 8%     | \$<br>6,925         | \$ 3,587    | \$ 249   | 47,254         | 9,617                 |
| Centennial                            | 31%                           | 14%              | 75%              | 35%   | \$ | 5,949   | 75%                | 41%               | 43%        | \$ 939    | 38%      | \$<br>6,888         | \$ 3,399    | \$ 361   | 6,867          | 11,461                |
| Brookbanks                            | 13%                           | 31%              |                  | 15%   | \$ | 2,222   | 60%                | 74%               | 75%        | \$ 4,072  | 2 56%    | \$<br>6,294         | \$ 1,270    | \$ 1,566 | 7,933          | 31,174                |
| Wychwood                              |                               |                  |                  | 29%   | \$ | 4,263   |                    |                   | 65%        | \$ 1,696  | 6 47%    | \$<br>5,959         | \$ 2,436    | \$ 652   | 6,383          | 15,603                |
| Woodside Square                       | 17%                           | 30%              |                  | 19%   | \$ | 3,481   | 51%                | 57%               | 56%        | \$ 2,33   |          | 5,812               | \$ 1,989    | \$ 897   | 9,795          | 19,583                |
| High Park                             | 14%                           | 30%              |                  | 15%   | \$ | 2.751   | 100%               | 66%               | 66%        | \$ 2.978  |          | \$<br>5,728         | \$ 1,572    | \$ 1.145 | 9,494          | 23.680                |

Table 222: Savings Potential for 33 Medium Savings Potential Public Libraries

Savings potential is considered high if 30% or more, moderate if between 11 and 29%, and low if 10% or less.

#### Savings Potential by Energy Use Component for the 36 Low Savings Potential Public libraries

Buildings are sorted by total savings potential, starting with the highest savings potential buildings.

There are 36 public libraries with less than \$5,000 in savings potential. The highest potential buildings will be focused on first.



| Electricity Sav               |
|-------------------------------|
| Average %                     |
| Base-<br>load Cooling Heating |
| es (36) 05% 34% 14%           |
| 57%                           |
|                               |
| 21%                           |
| 12%                           |
| 25% 64%                       |
| 25%                           |
| 13%                           |
| 46%                           |
|                               |
| 40%                           |
| 2% 66%                        |
|                               |
| 38%                           |
| 8%                            |
|                               |
| 4% 29%                        |
| 26%                           |
| 29% 10%                       |
| 46%                           |
|                               |
| 39%                           |
| 31%                           |
|                               |
|                               |
|                               |
|                               |
| 4% 48%                        |
| 50%                           |
|                               |
|                               |
|                               |
| 1% 11%                        |
| 18%                           |
|                               |
|                               |
|                               |
|                               |

#### High savings Moderate savings Low savings

#### Table 223: Savings Potential for 36 Low Savings Potential Public libraries

Savings potential is considered high if 30% or more, moderate if between 11 and 29%, and low if 10% or less.

Average % savings for each energy component are calculated as (Actual Energy Use – Target Energy Use)/Actual Energy Use and \$/year savings for each component are calculated as (Actual Energy Use – Target Energy Use) \* utility company rates \$0.14 per kWh of electricity and \$0.26 per m<sup>3</sup> of gas.

GHG emissions reduction is based on 110g GHG/kWh of electricity and 1879g GHG/m<sup>3</sup> of natural gas. Utility company CDM Incentives are calculated based on \$0.08/kWh of electricity and \$0.10/m<sup>3</sup> of natural gas saved.

# Shelter, Support and Housing Administration

# **DI TORONTO**

### **Table of Contents**

| 1 | Ben  | chmarking and Conservation Potential                                             | 450          |
|---|------|----------------------------------------------------------------------------------|--------------|
|   | 1.1  | Energy Use and Building Characteristics                                          | 450          |
|   | 1.1. | 1 Building Characteristics                                                       | 450          |
|   | 1.1. | 2 Summary of Energy Use and Costs                                                | 450          |
|   | 1.2  | Energy Targets                                                                   | 452          |
|   | 1.3  | Savings Potential                                                                | 453          |
| 2 | Con  | servation Measures and Budget                                                    | 455          |
|   | 2.1  | Proposed Energy Efficiency Measures                                              | 455          |
| 3 | Ene  | rgy Management and Retrofit Plan                                                 | 459          |
|   | 3.1  | Implementation Costs and Modeled Savings                                         | 459          |
|   | 3.2  | Implementation Process and Tools – Determining the Specific Measures for Each    | Building 459 |
|   | 3.2. | 1 Energy Assessment                                                              | 460          |
|   | 3.2. | 2 Energy Savings Checklist                                                       |              |
|   | 3.3  | Implementation Budget                                                            |              |
|   | 3.4  | 10-Year Implementation Plan                                                      |              |
| 4 | Арр  | endix A                                                                          |              |
|   | 4.1  | Selection of 2012 Utility Bills for Calculation of Actual Energy Use Intensities | 464          |
|   | 4.2  | Determining Energy Use Components                                                |              |
|   | 4.3  | Determining Targets                                                              |              |
|   | 4.4  | Calculating Potential Savings                                                    | 466          |
|   | 4.5  | Implementation Costs by Measure Type and Modeled Savings                         |              |
|   | 4.6  | Assessment Tools                                                                 |              |
| 5 | Арр  | endix B – Shelter, Support and Housing Administration                            |              |
|   | 5.1  | Buildings and Building Characteristics                                           | 469          |
|   | 5.2  | Energy Use Intensities                                                           | 469          |
|   | 5.3  | Target-setting Method and Metrics                                                |              |



### **List of Tables**

| Table 224: 2012 Energy Use and Costs for 11 City of Toronto Shelter, Support and Housing          |     |
|---------------------------------------------------------------------------------------------------|-----|
| Administration Buildings                                                                          | 450 |
| Table 225: Top Quartile Targets                                                                   | 453 |
| Table 226: Savings Potential Summary                                                              | 454 |
| Table 227: Savings Potential Based on Energy Use Components for 11 City of Toronto Shelter, Suppo | ort |
| and Housing Administration Buildings                                                              | 454 |
| Table 214: Energy Savings Measures for Shelter, Support and Housing Administration Buildings      | 458 |
| Table 229: Estimated Implementation Costs and Modeled Savings                                     | 459 |
| Table 230: Assessment Tools Used to Determine Specific Energy-saving Measures                     | 460 |
| Table 231: Total Budget - Energy Management and Retrofit Plan                                     | 462 |
| Table 232: Cash Flow for 10-Year Implementation Plan                                              | 463 |
| Table 233: Implementation Costs by Measure Type                                                   | 467 |
| Table 234: Shelter, Support and Housing Administration Building Information                       | 469 |
| Table 235: Shelter, Support and Housing Administration 2012 Energy Intensity                      | 469 |
| Table 236: Excluded Facilities                                                                    | 470 |
| Table 237: Savings Potential for 7 Mid-Savings Potential Buildings                                | 473 |

# List of Figures

| Figure 132: 2012 Energy Use and Cost Breakdown for 11 City of Toronto Shelter, Support and Hous | ing |
|-------------------------------------------------------------------------------------------------|-----|
| Administration Buildings                                                                        | 451 |
| Figure 133: 2012 Total Energy Intensity Benchmark                                               | 451 |
| Figure 134: 2012 Total Electricity Intensity Benchmark                                          | 452 |
| Figure 135: 2012 Total Gas Intensity Benchmark                                                  | 452 |
| Figure 136: Cash Flow for 10-Year Implementation Plan                                           | 463 |
| Figure 137: 2012 Electricity Baseload Intensity Benchmark                                       | 470 |
| Figure 138: 2012 Electric Cooling Intensity Benchmark                                           | 471 |
| Figure 139: 2012 Electric Heating Intensity Benchmark                                           | 471 |
| Figure 140: 2012 Gas Baseload Intensity Benchmark                                               | 472 |
| Figure 141: 2012 Gas Heating Intensity Benchmark                                                | 472 |

# **DI TORONTO**

# **1** Benchmarking and Conservation Potential

# **1.1 Energy Use and Building Characteristics**

### 1.1.1 Building Characteristics

The City of Toronto is reporting on 11 shelter, support and housing administration buildings in the Energy Conservation Demand Management (ECDM) plan. The names and building areas are provided in Appendix B. The majority of the 11 buildings are residences, but also included is an office type facility.

The total area for all of the buildings is 280,617 ft<sup>2</sup>. The buildings range in size from just over 5,000 ft<sup>2</sup> to almost 100,000 ft<sup>2</sup>. The average size is approximately 25,000 ft<sup>2</sup>.

None of the buildings are equipped with renewable energy systems. Eight of the buildings are 100% airconditioned. Two are approximately 25% air-conditioned (Birchmount Residence and Seaton House) and only one is not air-conditioned (Women's Residence). Four facilities are reported to be partially served by electric heat (Downsview Dell, Fort York Residence, Seaton House and Family Residence). Even though they are not reported to be using electric heat, the electricity profiles show that the majority of the other facilities have additional use of electricity in winter months. While some of this usage may be due to longer hours of lighting or electric motors, use of electric heaters is indicated and should be further explored. Identifying and limiting electricity use associated with space heating will be one of the first measures recommended in the plan (see section on proposed energy efficiency measures). The Family Residence and 129 Peter St. are both served by water source heat pumps (WSHP).

### **1.1.2** Summary of Energy Use and Costs

This ECDM Plan is based on energy use taken from monthly bills for the 2012 calendar year. Energy costs are presented throughout using \$0.14 per kWh of electricity and \$0.26 per m<sup>3</sup> of gas. Refer to Appendix A (section 'Selection of 2012 utility bills for calculation of actual energy use intensities') for the methodology used to calculate the energy use intensities from the utility bills. Total energy use and costs for the 11 buildings are summarized below.

|                               | 2012 Ene  | ergy Use  |
|-------------------------------|-----------|-----------|
|                               | Unit      | \$        |
| Electricity (kWh)             | 4,279,694 | \$599,157 |
| Natural Gas (m <sup>3</sup> ) | 860,380   | \$223,699 |
| Total                         |           | \$822,856 |

Table 224: 2012 Energy Use and Costs for 11 City of Toronto Shelter, Support and Housing Administration

 Buildings





Figure 132: 2012 Energy Use and Cost Breakdown for 11 City of Toronto Shelter, Support and Housing Administration Buildings

There is a wide range of energy use intensities, as presented below, due primarily to differences in efficiency between the 11 buildings. Total energy use ranges from less than 13 to over 70 ekWh/ft<sup>2</sup>. There is also a wide range for electricity and gas use per ft<sup>2</sup>. The red line represents the top quartile. The corresponding data for total energy, total electricity and total gas for each building is located in Appendix B.







Figure 134: 2012 Total Electricity Intensity Benchmark



Figure 135: 2012 Total Gas Intensity Benchmark

### **1.2 Energy Targets**

The energy targets for shelter, support and housing administration buildings are presented in the table below. The target-setting methodology is based upon all buildings improving to the top quartile intensity for each component of energy use, and is described in Appendix B. The goal is for each building to achieve its target over the duration of the ECDM Plan.

| Energy type  | Component | Value | Unit          |
|--------------|-----------|-------|---------------|
| Electricity  | Baseload  | 9.8   | kWh/ft²/year  |
|              | Cooling   | 1.0   | kWh/ft²/year  |
|              | Heating   | 0.2   | kWh/ft²/year  |
|              | Total     | 11.0  | kWh/ft²/year  |
| Gas          | Baseload  | 6.9   | ekWh/ft²/year |
|              | Heating   | 12.5  | ekWh/ft²/year |
|              | Total     | 19.3  | ekWh/ft²/year |
| Total energy | Total     | 30.3  | ekWh/ft²/year |

#### **Table 225: Top Quartile Targets**

9 buildings made up the data set for target-setting, all of which are City of Toronto buildings with complete and reliable data from the 11 which are part of this Plan. Before calculation of potential savings for each building, the energy use component targets were adjusted for site specific factors including electric heat (% building served and % for Domestic Hot Water (DHW)), and % of the area which is air conditioned. The specific target adjustments are found in Appendix A.

### **1.3** Savings Potential

The difference between the actual 2012 energy use and the adjusted target represents the potential annual savings for each energy component in each building. The total savings potential for each building is the sum of savings potential of the components. Some buildings have very high percentage and dollar potential while other more efficient buildings have little or no potential. The 11 buildings are categorized as high potential (annual savings of over \$100,000), medium (mid) potential (annual savings between \$5,000 and \$100,000) and low potential (annual savings of less than \$5,000). The savings potential for each individual building is summarized in Appendix B.

There are no buildings with annual savings potential greater than \$100,000. 7 buildings have annual savings potential between \$5,000 and \$100,000, and 4 buildings have annual savings potential less than \$5,000 (see Table 226).

The total annual savings potential for the 11 buildings is \$228,229 (\$114,653 for electricity and \$113,576 for gas) with an average total energy savings of 41%.

For the 7 mid-potential savings facilities, the total annual savings potential is \$225,072 (\$112,096 for electricity and \$112,976 for gas) with an average total energy savings of 45%.

For the 4 low-potential savings facilities, the total annual savings potential is \$3,157 (\$2,557 for electricity and \$600 for gas) with an average total energy savings of 3%.



|                                      | Electricity Savings Potential |         |         |       | G         | as Savi | ings Po | otential | S         | ll Energy<br>avings<br>otential | Incer     | Incentives |           | GHG<br>Emis-<br>sions |         |
|--------------------------------------|-------------------------------|---------|---------|-------|-----------|---------|---------|----------|-----------|---------------------------------|-----------|------------|-----------|-----------------------|---------|
|                                      | Average % \$/yr               |         |         | A     | verage    | %       | \$/yr   | Avg      | \$/yr     | Electricity                     | Gas       | ft²        | kg/yr     |                       |         |
|                                      | Base-                         |         |         |       |           | Base-   |         |          |           | %                               |           |            |           |                       |         |
|                                      | load                          | Cooling | Heating | Total |           | load    | Heating | Total    |           |                                 |           |            |           |                       |         |
| TOTAL: 11 facilities                 | 18%                           | 66%     | 20%     | 19%   | \$114,653 | 39%     | 58%     | 51%      | \$113,576 | 41%                             | \$228,229 | \$ 65,516  | \$ 43,683 | 280,617               | 910,889 |
| Mid-potential savings facilities (7) | 20%                           | 66%     | 21%     | 23%   | \$112,096 | 39%     | 60%     | 54%      | \$112,976 | 45%                             | \$225,072 | \$ 64,055  | \$ 43,452 | 211,017               | 904,541 |
| Low potential savings facilities (4) | 00%                           | 00%     | 17%     | 02%   | \$ 2,557  | 00%     | 00%     | 04%      | \$ 600    | 03%                             | \$ 3,157  | \$ 1,461   | \$ 231    | 69,600                | 6,348   |

#### **Table 226: Savings Potential Summary**

GHG emissions reduction is based on 110g GHG/kWh of electricity and 1879g GHG/m<sup>3</sup> of natural gas. Utility company incentives are calculated based on \$0.08/kWh of electricity (a composite of \$0.05/kWh for lighting retrofits and \$0.10 for non-lighting measures) and \$0.10/m<sup>3</sup> of natural gas saved.

The savings potential for each individual energy component points to where the biggest savings are to be found and guides the priorities for implementation. Table 227 below shows the total potential savings for all 11 buildings and highlights where the greatest percentage savings are.

| Energy                    | and Water Compo                      | nents            | 2012 Use | Target      | Savings<br>Potential % |         | Savings<br>Stential \$ |
|---------------------------|--------------------------------------|------------------|----------|-------------|------------------------|---------|------------------------|
| Electric Baseload (kWh    | n/ft²)                               | 14.4             | 11.8     | 18%         | \$                     | 93,480  |                        |
| Electric Cooling (kWh/f   | t²)                                  | 1.1              | 0.4      | 66%         | \$                     | 17,362  |                        |
| Electric Heating (kWh/f   | t²)                                  | 0.2              | 0.2      | 20%         | \$                     | 1,623   |                        |
| Total Electricity (kWh/fl | <sup>2</sup> ) for facilities w/o co | 14.3             | 13.6     | 5%          | \$                     | 2,189   |                        |
| Gas Baseload (ekWh/ft     | 2)                                   |                  | 9.0      | 5.5         | 39%                    | \$      | 22,313                 |
| Gas Heating (ekWh/ft²)    |                                      |                  | 24.5     | 10.3        | 58%                    | \$      | 90,663                 |
| Total Gas (ekWh/ft²) for  | facilities w/o compo                 | nent intensities | 15.2     | 14.4        | 6%                     | \$      | 600                    |
| Total Energy (ekWh/f      | ( <sup>2</sup> )                     | 47.0             | 28.0     | 41%         | \$                     | 228,229 |                        |
|                           |                                      |                  |          |             | -                      |         |                        |
|                           | High savings                         | Moderate         | Low sa   | Low savings |                        |         |                        |

 

 Table 227: Savings Potential Based on Energy Use Components for 11 City of Toronto Shelter, Support and Housing Administration Buildings

Savings potential is considered high if it is 30% and above, moderate if between 10 and 29% and low if less than 10%.

Components with the highest percentage savings potential (i.e. Electric Cooling, Gas Heating and Gas Baseload) will be given higher priority in terms of recommended measures for implementation. In many cases, Electric Baseload measures can provide a significant portion of dollar savings. However, they generally require significant capital investment and will therefore be implemented in later years.

# 2 Conservation Measures and Budget

### 2.1 Proposed Energy Efficiency Measures

**Error! Reference source not found.** shows the full range of possible energy efficiency measures for the entire portfolio of shelter, support and housing administration buildings. The measures are grouped based on the component of energy use they relate to and have been sorted based on chronology of implementation.

The measures are categorized by system type - lighting (L), mechanical (M), electrical (EL), envelope (EN), process (P) (i.e. domestic hot water) and behavioural (B) measures. The profiles of energy use and conservation potential for the 11 buildings indicate that the largest percentage reductions will come from measures associated with Electric Cooling, Gas Heating and Gas Baseload.

The measures have been prioritized in order to help make an informed decision on which to implement first. Priorities are set using the criteria of 'Energy Savings Potential' and 'Ease of Implementation'. Each measure was assigned a score from 1 to 4 for both Energy Savings Potential and Ease of Implementation.

For Energy Savings Potential, a score of 4 was assigned to measures with the greatest percentage energy savings potential and a score of 1 was assigned to measures with the smallest percentage energy savings potential. For Ease of Implementation, a score of 4 was assigned to measures that are the easiest to implement and a score of 1 to measures that are the most difficult to implement.

The Energy Savings Potential scoring was determined using the following criteria:

- 4 Savings potential is greater than 40%
- 3 Savings potential is 30-40%
- 2 Savings potential is 20-30%
- 1 Savings potential is less than 20%

The Ease of Implementation scoring was determined using the following criteria:

- 4 Measure can be done immediately by building occupants or service contractors (little/no cost)
- 3 Measure involves testing, tuning, measuring (low cost)
- 2 Measure involves significant investigation/optimization (more significant costs)
- 1 Measure involves replacement/installation involving capital costs

# The measures with the highest combined Energy Savings Potential and Ease of Implementation scores (out of 8) are deemed the highest priority.



Accordingly the Overall score associated to the proposed measures can be summarized as follows:

1 - Least energy savings potential; Most difficult to implement



8 - Greatest energy savings potential; Easiest to implement

#### Timelines

Measures recommended to be implemented in Year 1 (the year of the initial assessment) are behavioural measures that can be done immediately without capital budgets. Measures recommended for Year 2 will generally result in high percentage savings, are mainly operational and do not require significant capital costs. Year 3 measures will provide high percentage savings (i.e. measures related to electric cooling and gas baseload) but have associated capital costs (i.e. installation and replacement measures). Measures to be implemented in Year 4 and Year 5 are those that have significant associated capital costs and may result in high dollar savings but less significant percentage energy savings (i.e. measures related to all other energy components).

|     | Electric Heating Measures                                                      | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility     |
|-----|--------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|----------|--------------------------|--------------------|
|     | ELECTRIC HEATING (IF APPLICABLE) - refers to electricity use for heating purpe | oses                      |                             |             |          |                          |                    |
| B8  | Adjust blinds (to retain heat in winter)                                       | 4                         | 2                           | 6           | Year 1   | annual review            | Building Occupants |
| B9  | Avoid use of electric heaters                                                  | 4                         | 2                           | 6           | Year 1   |                          | Building Occupants |
|     | Use recommended thermostat set points (in winter set to 68 degrees             |                           |                             |             |          |                          |                    |
| B10 | or less during daytime)                                                        | 4                         | 2                           | 6           | Year 1   |                          | Building Occupants |
| M8  | Control fan coil and entrance heaters to optimize run-times                    | 3                         | 2                           | 5           | Year 2   | seasonal review          |                    |
| M9  | Evaluate conversion from electric heating to natural gas                       | 2                         | 2                           | 4           | Year 2   | n/a                      |                    |
| M5  | Install snow sensors to control the snow-melting system                        | 1                         | 2                           | 3           | Year 4   | seasonal review          |                    |
| M6  | Upgrade base building heating system to avoid use of electric heaters          | 1                         | 2                           | 3           | Year 4   | seasonal review          |                    |
|     | Upgrade electric heating controls to optimize space temperatures and           |                           |                             |             |          |                          |                    |
| M7  | operating periods                                                              | 1                         | 2                           | 3           | Year 4   | seasonal review          |                    |
|     | Other:                                                                         |                           |                             |             |          |                          |                    |
|     |                                                                                |                           |                             |             |          |                          |                    |

Behavioural Measures Operational Measures Retrofit/Capital Measures

|     | Electric Cooling Measures                                                                       | Ease of<br>Implementatio | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility            |
|-----|-------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|-------------|----------|--------------------------|---------------------------|
|     | ELECTRIC COOLING (IF APPLICABLE) - refers to electricity use for cooling purpo                  | oses                     |                             |             |          |                          |                           |
| B11 | Winterize room air-conditioners                                                                 | 4                        | 4                           | 8           | Year 1   |                          | Building Occupants        |
| B12 | Use recommended thermostat set points (during the summer, set to                                |                          |                             |             |          |                          |                           |
| DIZ | 78 degrees or more)                                                                             | 4                        | 4                           | 8           | Year 1   |                          | <b>Building Occupants</b> |
| B13 | Only cool rooms that are being used                                                             | 4                        | 4                           | 8           | Year 1   |                          | Building Occupants        |
| B14 | Install and use energy efficient ceiling fans                                                   | 4                        | 4                           | 8           | Year 1   |                          | Building Occupants        |
| B15 | Close blinds (to shade space from direct sunlight)                                              | 4                        | 4                           | 8           | Year 1   |                          | Building Occupants        |
| B16 | Install window film, solar screens or awnings on south and west facing<br>windows               | 4                        | 4                           | 8           | Year 1   |                          | Building Occupants        |
| M10 | Optimize operating periods of ventilation systems supplying air<br>conditioned spaces           | 2                        | 4                           | 6           | Year 2   | seasonal review          |                           |
| M12 | Upgrade control of air conditioning units to optimize space<br>temperatures & operating periods | 3                        | 4                           | 7           | Year 2   | seasonal review          |                           |
| M13 | Test and tune the air conditioning units                                                        | 3                        | 4                           | 7           | Year 2   | 3                        |                           |
| M11 | Replace and right-size air conditioning units with ENERGY STAR rated<br>units                   | 1                        | 4                           | 5           | Year 3   | 10 to 15                 |                           |
|     | Other:                                                                                          |                          |                             |             |          |                          |                           |

# Behavioural Measures

Operational Measures

#### Retrofit/Capital Measures

|     | Gas Baseload Measures                                                       | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline  | Life Expectancy<br>(yrs) | Responsibility     |
|-----|-----------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|-----------|--------------------------|--------------------|
|     | GAS BASELOAD - refers to the annual natural gas energy used for domestic he | ot water                  | and other                   | equip       | nent that | runs year round          |                    |
| B17 | Optimize dishwasher operation (only run when full)                          | 4                         | 3                           | 7           | Year 1    |                          | Building Occupants |
| P1  | Optimize DHW temperature control                                            | 2                         | 3                           | 5           | Year 2    | annual review            |                    |
| P3  | Test and tune DHW boiler efficiency                                         | 3                         | 3                           | 6           | Year 2    | annual review            |                    |
| M16 | Investigate and repair possible gas leaks                                   | 3                         | 3                           | 6           | Year 2    | annual review            |                    |
| P2  | Implement DHW circulation pump control                                      | 1                         | 3                           | 4           | Year 2    | annual review            |                    |
| P4  | Install low flow showerheads and faucet aerators                            | 1                         | 3                           | 4           | Year 4    | 10 to 15                 |                    |
| M14 | Insulate DHW tanks and distribution piping                                  | 2                         | 3                           | 5           | Year 3    | 10 to 15                 |                    |
| M15 | Replace DHW boilers with more efficient models                              | 1                         | 3                           | 4           | Year 4    | 10 to 15                 |                    |
|     | Other:                                                                      |                           |                             |             |           |                          |                    |
|     |                                                                             |                           |                             |             |           |                          |                    |
|     |                                                                             |                           |                             |             |           |                          |                    |

Behavioural Measures Operational Measures Retrofit/Capital Measures

|         | Gas Heating Measures                                                         | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility     |
|---------|------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|----------|--------------------------|--------------------|
|         | GAS HEATING - refers to the additional energy used in winter for heating and | humidif                   | ication                     |             |          |                          |                    |
| B18     | Check and clear baseboard heaters of obstructions                            | 4                         | 4                           | 8           | Year 1   |                          | Building Occupants |
| B19     | Adjust blinds (to retain heat in winter)                                     | 4                         | 4                           | 8           | Year 1   |                          | Building Occupants |
|         | Use recommended thermostat set points (in winter set to 68 degrees           |                           |                             |             |          |                          |                    |
| B20     | or less during daytime)                                                      | 4                         | 4                           | 8           | Year 1   |                          | Building Occupants |
| N 4 4 7 | Optimize operating periods of ventilation systems supplying heated           | 2                         | 4                           | 6           | V        | seasonal review          |                    |
|         | spaces                                                                       | 2                         | 4                           | 6           | Year 2   | seasonal review          |                    |
| M18     | Test and adjust ventilation systems to optimize outside air volumes          | 3                         | 4                           | 7           | Year 2   | seasonal review          |                    |
| M20     | Test and tune boiler efficiency                                              | 3                         | 4                           | 7           | Year 2   | seasonal review          |                    |
| M22     | Check heating system for flow balancing and air venting                      | 3                         | 4                           | 7           | Year 2   | seasonal review          |                    |
| EN1     | Check and seal exterior walls and openings                                   | 3                         | 4                           | 7           | Year 2   | 10 to 15                 |                    |
| EN5     | Seal window and door frames                                                  | 3                         | 4                           | 7           | Year 2   | 5                        |                    |
| M23     | Optimize fan-coil unit and entrance heater controls                          | 3                         | 4                           | 7           | Year 2   | seasonal review          |                    |
| M24     | Consider heating system zoning                                               | 2                         | 4                           | 6           | Year 2   | n/a                      |                    |
|         | Test, repair, replace and right-size heating control valves and outside      |                           |                             |             |          |                          |                    |
| M19     | air dampers                                                                  | 2                         | 4                           | 6           | Year 3   | 10 to 15                 |                    |
|         | Upgrade heating system control to optimize space temperatures and            |                           |                             | -           | V        | 10+- 15                  |                    |
| -       | operating periods                                                            | 1                         | 4                           | 5           | Year 3   | 10 to 15                 |                    |
|         | Insulate the attic adequately                                                | 1                         | 4                           | 5           | Year 3   | 10 to 15                 |                    |
| EN3     | Reclad the building's exterior                                               | 1                         | 4                           | 5           | Year 3   | 20 to 24                 |                    |
| EN4     | Replace single-pane windows with double-pane windows                         | 1                         | 4                           | 5           | Year 3   | 20 to 24                 |                    |
| EN6     | If replacing the roof, ensure R-value at least 22                            | 1                         | 4                           | 5           | Year 3   | n/a                      |                    |
| M25     | Install high efficiency burners                                              | 1                         | 4                           | 5           | Year 3   | 15 to 20                 |                    |
| M26     | Replace boilers with more efficient models                                   | 1                         | 4                           | 5           | Year 3   | 15 to 20                 |                    |
| M27     | Replace old rooftop units with energy efficient units                        | 1                         | 4                           | 5           | Year 3   | 15 to 20                 |                    |
| M28     | Install heat recovery or solar heating units                                 | 1                         | 4                           | 5           | Year 3   | 10 to 15                 |                    |
|         | Other:                                                                       |                           |                             |             |          |                          |                    |

Behavioural Measures Operational Measures Retrofit/Capital Measures

#### Table 228: Energy Savings Measures for Shelter, Support and Housing Administration Buildings

The specific measures and implementation timeline for each individual building will be determined from the results of the Energy Assessments and Checklists (explained in the Implementation section of this plan).

# 3 Energy Management and Retrofit Plan

# 3.1 Implementation Costs and Modeled Savings

The average budgeted cost for implementing suggested measures, based on previous experience with similar facilities is \$4.20/ft<sup>2</sup> (see Appendix A). The budget allows for lighting retrofits and controls, mechanical system efficiency improvements, appliance replacement and controls and localized efficiency measures for the building envelope. The budget does not allow for major plant or equipment replacement or substantial building upgrades such as roof or window replacement. These items may be included if appropriate in projects for individual buildings, but would not provide rational Return on Investments (ROIs) based on energy savings alone and would therefore be budgeted separately.

Similar measures for consideration apply to high and medium potential buildings. A 20 percent premium is included for high potential buildings to ensure that all improvements necessary to achieve the targets are covered. Still, the ROIs for high-potential buildings will be better than the rest.

Low potential buildings do not merit the more in-depth investigations planned for the other two categories. Rather, a checklist approach, guided by the indicated component energy savings potential, would identify the particular measures for each building. The budget allowance for low potential buildings is set at 40 percent of the basic amount to provide a rational ROI for this group.

The total implementation costs, payback and cash flows for the portfolios of high, medium, and low potential buildings are summarized in Table 229 below.

| Annual Savings<br>Potential | Number of<br>facilities | Average area (ft <sup>2</sup> ) | Estimated<br>Implementation<br>Cost \$/ft <sup>2</sup> | Estimated<br>Implementation<br>Cost \$ |           |    | stimated<br>Savings<br>otential \$ | Estimated<br>Savings<br>potential<br>% | Payback |
|-----------------------------|-------------------------|---------------------------------|--------------------------------------------------------|----------------------------------------|-----------|----|------------------------------------|----------------------------------------|---------|
| >\$100,000                  | 0                       | -                               | 5.04                                                   | \$                                     | -         | \$ | -                                  | 0.0%                                   |         |
| \$5,000 - \$100,000         | 7                       | 30,145                          | 4.20                                                   | \$                                     | 886,273   | \$ | 225,072                            | 98.6%                                  | 3.94    |
| < \$5,000                   | 4                       | 17,400                          | 1.68                                                   | \$                                     | 116,928   | \$ | 3,157                              | 1.4%                                   | 37.04   |
|                             | 11                      |                                 |                                                        | \$                                     | 1,003,201 | \$ | 228,229                            |                                        | 4.40    |

#### Table 229: Estimated Implementation Costs and Modeled Savings

Paybacks are determined by actual current implementation costs divided by first year savings (so costs are not adjusted for inflation and utility prices are not adjusted for escalation).

# **3.2** Implementation Process and Tools – Determining the Specific Measures for Each Building

Three types of tools are recommended to enable identification of specific measures in individual buildings:

• High Potential Buildings will undergo a Building Performance Audit incorporating measurement and testing to define retrofits and operational improvements. This also includes interval meter analysis and water consumption.



- Mid Potential Buildings will undergo an Energy Assessment including more in-depth analysis of monthly utility billing data for a number of years and analysis of interval meter or data-logger recordings of daily electricity use.
- Low Potential Buildings will use a simple Checklist to identify priority measures based on the conservation potential profile in this Plan.

The three approaches, budgeted analysis cost and numbers of buildings to which they apply are summarized in Table 230 below.

|                |                                        | #  | Cost      | Savings Potential                        | Resources                         |
|----------------|----------------------------------------|----|-----------|------------------------------------------|-----------------------------------|
| High Potential | Building<br>Performance<br>Audit (BPA) | 0  | \$ 7,500  | savings potential<br>> \$100,000         | engineer;<br>energy analyst       |
| Mid Potential  | Energy<br>Assessments                  | 7  | \$    750 | savings potential<br>\$5,000 - \$100,000 | energy analyst                    |
| Low Potential  | Checklists                             | 4  | \$ 150    | savings potential<br>< \$5,000           | Division<br>Champion and<br>staff |
|                |                                        | 11 |           |                                          |                                   |

#### Table 230: Assessment Tools Used to Determine Specific Energy-saving Measures

#### **3.2.1** Energy Assessment

There are 7 buildings with between \$5,000 and \$100,000 in annual energy saving potential. Over 98% of the total energy savings for all 11 buildings can be found in these 7 buildings.

These 7 buildings can save an average of 45% of their total energy use. The total annual energy savings are estimated to be over \$225,000 and individual building annual savings range from approximately \$5,800 to over \$90,000. The annual GHG savings are approximately 900,000 kg.

These 7 buildings can save an average of 23% of their total electricity use (20% Electric Baseload, 66% Electric Cooling and 21% Electric Heating). The total annual electricity savings are estimated to be approximately \$112,000 and individual building annual savings range from just over \$3,000 to almost \$32,000.

These 7 buildings can save an average of 54% of their total gas use (39% Gas Baseload and 60% Gas Heating). The total annual gas savings are estimated to be almost \$113,000 and individual building annual savings range from \$0 to approximately \$83,000.

These 7 buildings will undergo an Energy Assessment with highest potential buildings focused on first (see the Implementation Plan for further details).

Over 90% of the total energy savings can be found at the top 5 buildings with the highest savings potential. Approximately 40% comes from Seaton House alone.



See Appendix B for a list of these 7 buildings and their associated energy savings potential by energy use component.

The highest percentage reductions for this group of 7 buildings can be found in Electric Cooling, Gas Heating and Gas Baseload. For each individual building, the energy components with highest percentage savings potential will be the focus of the Energy Assessment in order to maximize energy savings. For a complete description of the Energy Assessment, refer to Appendix A.

After the implementation of the proposed measures, these buildings are eligible to receive over \$100,000 in incentives based on current incentives available from the Ontario Power Authority.

# 3.2.2 Energy Savings Checklist

There are 4 buildings with less than \$5,000 in savings potential. In fact, only 2 of these buildings (Adelaide Street Office and Greenfield Family Centre) have savings potential. The other two (Asquith Green Social Housing and Family Residence) have met the top quartile targets and have no savings potential.

Approximately 7% of the total energy savings for all 11 buildings can be found at the Adelaide Street Office and Greenfield Family Centre. These buildings can save an average of 3% of their total energy use. The total annual energy savings are estimated to be approximately \$3,000 and the annual GHG savings are approximately 6,300 kg.

All of the electricity savings potential for these 2 buildings is in electric heating, with an average savings potential of 17%. The total annual electricity savings are estimated to be approximately \$2,500. Only the Adelaide Street Office has gas savings potential (7% or approximately \$600).

The 2 facilities less than \$5,000 in savings potential with will undergo a checklist approach with highest potential buildings focused on first (see the Implementation Plan for further details).

See Appendix B for a list of these 4 buildings and their associated energy savings potential by energy use component.

The energy savings checklist will be used by the Division Champion in conjunction with the building operator and/or service contractor for each building. They will focus on measures related to energy components with high potential savings (colour-coded red) in order to maximize savings.

# 3.3 Implementation Budget

Table 231: Total Budget - Energy Management and Retrofit PlanTable 231 below shows the total budget to implement the energy management and retrofit plan, including costs for identifying measures and the implementation costs for all 11 buildings. The total costs to implement the energy management and retrofit plan for shelter, support and housing administration buildings is estimated to be \$1,009,051. Note the Implementation costs are not adjusted for inflation.

| BUDGE                | Г  |           |
|----------------------|----|-----------|
| Building Performance |    |           |
| Audit (BPA)          | \$ | -         |
| Energy Assessment    | \$ | 5,250     |
| Checklist            | \$ | 600       |
| Implementation       | \$ | 1,003,201 |
| Total                | \$ | 1,009,051 |

Table 231: Total Budget - Energy Management and Retrofit Plan

### 3.4 10-Year Implementation Plan

The 10-year implementation plan is summarized in Table 9 and Figure 5 below.

The plan will roll-out over 10 years, and the buildings with the highest savings potential will be focused on first.

Identification of measures from Energy Assessments will begin in Year 1, with all 7 Energy Assessments completed by the end of Year 5. The implementation of these measures will begin in Year 2, and be completed by the end of Year 6. Identification of measures from the Checklists will begin in Year 2, with both Checklists completed by the end of Year 5. The implementation of these measures will begin in Year 3.

Annual Costs refer to the assessment and implementation costs, training, measurement and verification (M&V), and maintenance costs.

Over a 10 year period, the cumulative net cash flow for this plan is estimated to be \$861,004. The cumulative net cash flow becomes positive in Year 8.

The implementation plan includes the following assumptions:

- Approximately 70% of the project budget will be spent in the first 5 years, and the other 30% in the following 5 years.
- The percentage of facilities to be retrofitted in each year is proportional to the percentage of the budget spent in that year. 70% of medium and low potential savings facilities will be retrofitted in the first 5 years and 30% in the following 5 years.
- 25% of energy savings potential of retrofitted facilities is achieved in the first year, 75% in the second year, and 100% in each of the following years.
- Project costs are adjusted for inflation (2% annually) and energy savings are adjusted for utility price escalation (5% annually).



 100% of incentives are achieved in the year when facilities are retrofitted, and incentives are NOT adjusted for utility price escalation.

|                                    |     | Year 1 |     | Year 2  |     | Year 3  |     | Year 4  |     | Year 5  |     | Year 6  |     | Year 7  |     | Year 8  |    | Year 9  |             | Year 10   |             | Totals    |
|------------------------------------|-----|--------|-----|---------|-----|---------|-----|---------|-----|---------|-----|---------|-----|---------|-----|---------|----|---------|-------------|-----------|-------------|-----------|
| Mid Potential - Energy Assessment  |     | 2      |     | 2       |     | 1       |     | 1       |     | 1       |     | 0       |     | 0       |     | 0       |    | 0       |             | 0         |             | 7         |
| Low Potential - Checklist          |     | 0      |     | 1       |     | 1       |     | 1       |     | 1       |     | 0       |     | 0       |     | 0       |    | 0       |             | 0         |             | 4         |
| Assessment Costs                   | \$  | 1,500  | \$  | 1,656   | \$  | 909     | \$  | 912     | \$  | 916     | \$  | -       | \$  | -       | \$  | -       | \$ | -       | \$          | -         | \$          | 5,893     |
| Implementation Costs               | \$  | -      | \$  | 263,451 | \$  | 299,741 | \$  | 168,689 | \$  | 172,063 | Ş   | 175,504 | \$  |         | Ş   |         | \$ |         | \$          |           | \$ 3        | 1,079,448 |
| Training and M&V costs (10.0% of   |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |    |         |             |           |             |           |
| Assessment and Implementation      |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |    |         |             |           |             |           |
| Costs)                             | \$  | 150    | \$  | 26,511  | \$  | 30,065  | \$  | 16,960  | \$  | 17,298  | \$  | 17,550  | \$  | -       | \$  |         | \$ | -       | \$          |           | \$          | 108,534   |
| Maintenance costs (5.0% of         |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |    |         |             |           |             |           |
| Implementation Costs, cumulative)  | Ş   | -      | \$  | 13,173  | Ş   | 28,160  | \$  | 36,594  | \$  | 45,197  | \$  | 53,972  | Ş   | 53,972  | \$  | 53,972  | Ş  | 53,972  | <b>\$</b> ! | 53,972.40 |             |           |
| Annual Costs                       | Ş   | 1,650  | Ş   | 304,790 | Ş   | 358,875 | \$  | 223,155 | Ş   | 235,473 | \$  | 247,027 | \$  | 53,972  | \$  | 53,972  | \$ | 53,972  | \$          | 53,972    | <b>\$</b> : | 1,586,861 |
|                                    |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |    |         |             |           |             |           |
| Estimated Achieved Annual Savings  |     |        | \$  | 35,941  | \$  | 126,762 | \$  | 224,393 | \$  | 271,510 | \$  | 297,956 | \$  | 319,085 | \$  | 337,198 | \$ | 354,058 | \$          | 371,761   | \$ :        | 2,338,666 |
| Estimated Incentives               | \$  | -      | \$  | 57,445  | \$  | 33,939  | \$  | 11,552  | \$  | 3,443   | \$  | 2,820   | \$  | -       | \$  | -       | \$ | -       | \$          | -         | \$          | 109,199   |
| Annual Savings and Incentives      | \$  | -      | \$  | 93,386  | \$  | 160,701 | \$  | 235,945 | \$  | 274,953 | \$  | 300,776 | \$  | 319,085 | \$  | 337,198 | \$ | 354,058 | \$          | 371,761   | \$ 3        | 2,447,865 |
| Borrowing costs based on           |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |    |         |             |           |             |           |
| cumulative cash flows (4.0% per    |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |    |         |             |           |             |           |
| annum)                             |     |        | -\$ | 66      | -\$ | 8,522   | -\$ | 16,449  | -\$ | 15,938  | -\$ | 14,358  | -\$ | 12,208  | -\$ | 1,604   | \$ | -       | \$          | -         | -\$         | 69,145    |
| Net Cash Flow incl borrowing costs | -\$ | 1,650  | -\$ | 211,470 | -\$ | 206,696 | -\$ | 3,660   | \$  | 23,542  | \$  | 39,391  | \$  | 252,905 | \$  | 281,622 | \$ | 300,086 | \$          | 317,789   | Ş           | 791,858   |
| Cumulative Net Cash Flow           | -\$ | 1,650  | -\$ | 213,054 | -\$ | 411,229 | -\$ | 398,439 | -\$ | 358,959 | -\$ | 305,210 | -\$ | 40,097  | \$  | 243,129 | \$ | 543,215 | \$          | 861,004   |             |           |





Figure 136: Cash Flow for 10-Year Implementation Plan



# 4 Appendix A

### 4.1 Selection of 2012 Utility Bills for Calculation of Actual Energy Use Intensities

Utility bills were used covering the period from January to December 2012.

If the total number of days in the combined bills was greater than 385 or less than 345 (because of adjustment bills spanning a few months), the facility was excluded from the dataset used to determine energy use components and targets.

To calculate 2012 actual energy use, the combined usage was normalized for the number of days in the calendar year 2012 (366).

### 4.2 Determining Energy Use Components

The energy use components and targets were calculated using data available for eligible facilities at the City of Toronto (see above) and facilities of the same type from other municipalities. Energy use components were determined as follows:

**Electric Baseload**: Relates to systems which run year-round such as lighting, fans and equipment. Electric Baseload for shelter, support and housing administration buildings is determined as the average kWh/day for April, May, September and October multiplied by 366 days.

**Electric Cooling**: Was determined as the additional electricity use above the year-round base from June to August, and relates to air conditioning.

**Electric Heating**: Was determined as the additional use in January, February, March, November and December, and relates to electric heat or electricity use for heating systems (pumps, blowers etc.).

**Gas Baseload**: Relates to systems which run year-round (domestic hot water) and is determined as the average  $m^3/day$  for June, July and August multiplied by 366 days.

**Gas Heating**: Was determined as the additional gas use to heat the building from January to May, and September to December.

### 4.3 Determining Targets

Component energy targets were set based on the top quartile intensity of the eligible data set. Thus achievement of the targets anticipates all buildings with component energy intensities greater than the top quartile will reach that level already attained by one quarter of the buildings.

All values less than 5% of the average of the top 3 facilities were removed for the calculation of the component energy targets.

Before the calculation of potential savings for each building, component targets were adjusted taking into account factors specific to the facility type. Individual targets are adjusted for energy types, non-



standard space types or equipment, and high energy intensity spaces or equipment. The target adjustments are listed below.

#### Target Adjustments

**Electric Heating:** Add Gas Heating multiplied by % of area served and 75% efficiency to Electric Heating AND Multiply Gas Heating by (100% - % of area served)

**GSH Pump:** Add Gas Heating \* 0.19 \* % of area served to Electric Heating AND Subtract Gas Heating \* 0.13 \* % of area served from Gas Heating

**WSHP:** Add Gas Heating \* 0.19 \* % of area served to Electric Heating Electricity AND Subtract Gas Heating \* 0.75 \* % of area served from Gas Heating

**Electric DHW:** Add Gas Baseload \* % of area served \* 75% efficiency to Electric Baseload AND Multiply Gas Baseload by (100% - % of area served)

**Air-Conditioning:** Divide Electric Cooling by Average % of building served by A/C for all facilities of the type and multiply by % of the facility area served by A/C

Data Centre: Add 50 kWh/ft<sup>2</sup> \* % of building occupied by Data Centre to Electric Baseload

**Food Services**: Add 30 kWh/ft<sup>2</sup> \* % of facility area occupied by Food Services (including seating area) to Electric Baseload

**Outdoor Rink:** If rink has associated ice plant, add (1.04 kWh/ft<sup>2</sup> of ice/week \* ft<sup>2</sup> of ice surface area \* 16 weeks/year) divided by  $ft^2$  of the total building area to Electric Baseload

**Solar Hot Water:** Subtract the product of System Power Rating (kW thermal) and (Average Actual) Annual Performance (kWh (t)/kW) divided by the facility area (ft<sup>2</sup>) from Gas Baseload (ekWh/ft<sup>2</sup>)

**Solar Photovoltaic**: Subtract the product of System Power Rating (kW thermal) and (Average Actual) Annual Performance (kWh(t)/kW) divided by the facility area (ft<sup>2</sup>) from Electric Baseload (kWh/ft<sup>2</sup>)

Garage: Add 20 ekWh/ft<sup>2</sup> to Gas Heating

High-intensity electric equipment: Add 30 kWh/ft<sup>2</sup> to Electric Baseload

#### Indoor Rink(s) and/or Indoor Pool(s) within Community Centres and Indoor Recreational Facilities:

<u>Adjustment for Electric Baseload</u> – Electric Baseload adjusted for Indoor Rink and/or Indoor Pool, kWh/ft<sup>2</sup> of total area = (Electric Baseload for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>))+ Assumed Electricity Requirement of Ice Plant (ekWh/ft<sup>2</sup> of ice/week) \* Months ice-in \* 52 weeks a year /12 months a year \* Rink area, ft<sup>2</sup> + Electric Baseload for Pool (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>) / Total Area, ft<sup>2</sup>



<u>Adjustment for Gas Baseload</u> – Gas Baseload adjusted for Indoor Rink and/or Indoor Pool, ekWh/ft<sup>2</sup> of total area = Gas Baseload for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>)) + Gas Baseload for Indoor Sports Arenas (ekWh/ft<sup>2</sup> of rink) \* Rink area, ft<sup>2</sup> + Gas Baseload for Indoor Swimming Pools (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>

<u>Adjustment for Gas Heating</u> – Gas Heating adjusted for Indoor Rink and/or Indoor Pool, ekWh/ft<sup>2</sup> of total area = Gas Heating for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>)) + Gas Heating for Indoor Sports Arenas (ekWh/ft<sup>2</sup> of rink) \* Rink area, ft<sup>2</sup> + Gas Heating for Indoor Swimming Pools (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>

# 4.4 Calculating Potential Savings

The difference between the actual energy use component intensity and adjusted target represents potential annual savings for the component after multiplication by the facility area (and conversion from ekWh to m<sup>3</sup> in the case of gas).

For the facilities that were previously excluded from the dataset for setting targets, potential savings were calculated based on total electricity and gas use (normalized to 366 days) compared with total adjusted electricity and natural gas targets.

# 4.5 Implementation Costs by Measure Type and Modeled Savings

The following table summarizes the implementation costs and savings estimates for measures under each type of operational system. Note that the costs are based on previous experience with similar projects.

These apply to the following building types:

- Fire stations and associated offices and facilities
- Shelter, Support and Housing Administration
- Ambulance stations and associated offices and facilities
- Storage facilities where equipment or vehicles are maintained, repaired or stored
- Public libraries
- Long-Term Care Homes and Services
- Police stations and associated offices and facilities
- Children's Services
- Administrative offices and related facilities, including municipal council chambers



|            | Cost \$/ft <sup>2</sup> | % electric | Payback (yrs) | kWh/ft²/yr | m³/ft²/yr |
|------------|-------------------------|------------|---------------|------------|-----------|
|            |                         |            |               |            |           |
| Lighting   | 1.80                    | 100%       | 6.5           | 2.3        |           |
|            |                         |            |               |            |           |
| Mechanical | 1.50                    | 30%        | 6             | 0.6        | 0.7       |
|            |                         |            |               |            |           |
| Electrical | 0.25                    | 100%       | 8             | 0.3        |           |
|            |                         |            |               |            |           |
| Envelope   | 0.50                    | 0%         | 10            |            | 0.2       |
|            |                         |            |               |            |           |
| Process    | 0.15                    | 0%         | 5             |            | 0.1       |
| Total      | 4.20                    |            | 6.8           | 3.19       | 1.02      |

#### Table 233: Implementation Costs by Measure Type

Implementation costs for lighting include measures such as re-lamping and re-ballasting with about 20% fixture retrofits, replacement or relocation, along with selective, local occupancy and photo-controls.

Costs for mechanical system measures include mechanical system testing and minor retrofits such as VFDs, re-balancing, right-sizing, tuning and repairs, along with upgraded controls.

Costs for electrical measures include appliance and equipment replacements and upgraded controls.

Costs for envelope measures include thermographic testing along with draft-proofing, re-insulation and roof/wall air sealing.

Costs for process (domestic hot water) measures include low flow shower heads and aerators, controls on hot water use for vehicle washing and minor retrofits such as pipe insulation.

### 4.6 Assessment Tools

#### Building Performance Audit

The Building Performance Audit determines how well a building's existing systems and operational practices compare to other similar buildings, including top performers. The audit identifies problem areas in building systems, examines building operations, and determines improvements that will deliver the greatest energy savings and maximize return on investment. The outcome will be a clear, evidence-based picture of how much can be saved, and what areas to focus on to optimize performance.

The Building Performance Audit includes:

- Benchmarking against comparable buildings including top-performers
- Performance based target setting customized for your building
- Interval meter analysis and examination of prior years' energy trends pinpointing specific system and operational inefficiencies



- Motor testing and equipment data-logging analysis
- Deeper understanding of operating practices through energy use profiles
- Power density and plant capacity analysis to identify retrofit opportunities
- Power factor analysis to uncover over-sized equipment
- Inventory and efficiency analysis of main energy-using equipment
- Verification and documentation of the proper operation of the building systems
- Payback and business case analysis

#### **Initial Energy Targets**

Initial energy targets are created by a mass screening tool which uses a standardized logic to produce a preliminary estimate of savings potential for every building, and thereby identify high-, medium- and low-potential buildings. This initial target-setting process creates the overall economic envelope for the program.

#### **Energy Assessment**

Medium-potential buildings are subjected to more in-depth analysis through an Energy Assessment which drills deeper into utility consumption data to refine the savings target and uncover more specific conservation measures. Regression analysis of monthly billing data against heating and cooling degreedays highlights billing anomalies such as estimated bills, and provides a more accurate breakdown of energy components, and hence component energy savings. Where multiple years of billing data are available the Energy Assessment produces weather-normalized performance trends which can uncover changes in energy use and seasonal anomalies which point to specific energy saving opportunities. The Energy Assessment also analyzes electrical interval meter (or data-logger test results) to help identify operational improvements such as equipment running when the building is unoccupied.



# 5 Appendix B – Shelter, Support and Housing Administration

# 5.1 Buildings and Building Characteristics

Below are the names, addresses and building areas for the 11 buildings included in this report and Plan.

| Building                     | Address                | Building<br>Area ft <sup>2</sup> |
|------------------------------|------------------------|----------------------------------|
| 129 Peter St                 | 129 Peter St           | 11,776                           |
| Adelaide Street Office       | 67 Adelaide St. E.     | 15,888                           |
| Asquith Green Social Housing | 1673 Kingston Rd       | 22,002                           |
| Birchmount Residence         | 1651 Sheppard Ave W    | 5,199                            |
| Downsview Dell               | 4222 Kingston Rd       | 39,999                           |
| Family Residence             | 38 Bathurst St         | 25,995                           |
| Fort York Residence          | 305-311 Greenfield Ave | 7,384                            |
| Greenfield Family Centre     | 21 Park Rd             | 6,329                            |
| Robertson House              | 291-295 Sherbourne St  | 19,795                           |
| Seaton House                 | 339 George St          | 97,995                           |
| Women's Residence            | 674 Dundas St. W       | 28,256                           |

Table 234: Shelter, Support and Housing Administration Building Information

### 5.2 Energy Use Intensities

Below are the energy use intensities (total electricity, total gas and total energy) for the 11 buildings included in this report and Plan. They are sorted by total energy use intensity, from lowest to highest energy use intensity.

| Building                     | 2012<br>Total<br>Electricity<br>Intensity<br>(kWh/ft <sup>2</sup> ) | 2012<br>Total Gas<br>Intensity<br>(ekWh/ft <sup>2</sup> | 2012 Total<br>Energy<br>Intensity<br>(ekWh/ft <sup>2</sup> ) |
|------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|
| Greenfield Family Centre     | 8.06                                                                | 9.43                                                    | 17.48                                                        |
| Family Residence             | 8.93                                                                | 12.64                                                   | 21.57                                                        |
| Downsview Dell               | 26.69                                                               | 0.00                                                    | 26.69                                                        |
| Adelaide Street Office       | 12.24                                                               | 20.85                                                   | 33.09                                                        |
| Asquith Green Social Housing | 19.46                                                               | 13.71                                                   | 33.17                                                        |
| Birchmount Residence         | 11.27                                                               | 22.98                                                   | 34.26                                                        |
| Fort York Residence          | 15.97                                                               | 25.52                                                   | 41.49                                                        |
| 129 Peter St                 | 21.58                                                               | 22.55                                                   | 44.12                                                        |
| Women's Residence            | 18.01                                                               | 31.36                                                   | 49.37                                                        |
| Seaton House                 | 16.97                                                               | 51.45                                                   | 68.41                                                        |
| Robertson House              | 27.35                                                               | 43.66                                                   | 71.01                                                        |

Table 235: Shelter, Support and Housing Administration 2012 Energy Intensity



# 5.3 Target-setting Method and Metrics

2 buildings were determined to be ineligible for determination of energy components or target-setting. See Appendix A. The excluded facilities are listed below.

| Building                     | Days in 2012                 | Energy type |
|------------------------------|------------------------------|-------------|
| Adelaide Street Office       | huge adjustment bill in June | Electricity |
| Asquith Green Social Housing | adjustment bill for Apr-Sep  | Gas         |

**Table 236: Excluded Facilities** 

After excluding these 2 facilities, 9 City of Toronto facilities were used to calculate the energy use components.

The following benchmark charts show the resulting electricity and gas use by component. Electricity use was broken down into baseload, cooling and heating electricity as described in Appendix A, and gas use was broken down into baseload and heating.

The red line on each chart indicates the top quartile for each component which is the target for that component.



Figure 137: 2012 Electricity Baseload Intensity Benchmark

Electric Baseload refers to year-round electricity use for lighting, fans, equipment and other systems that are not weather dependent. Electric Baseload for these buildings ranges from 7.1 to 28.2 ekWh/ft<sup>2</sup> and the top-quartile is 9.8 ekWh/ft<sup>2</sup>.



Figure 138: 2012 Electric Cooling Intensity Benchmark

Electric Cooling refers to additional electricity use in summer for cooling purposes. There are only 4 buildings with electric cooling. The range is 0.8 to 2.3 ekWh/ft<sup>2</sup> and the top-quartile is 0.98 ekWh/ft<sup>2</sup>.



Figure 139: 2012 Electric Heating Intensity Benchmark

Electric Heating refers to additional electricity use in winter months for heating purposes. Electric Heating for these buildings ranges from 0.01 to 0.67 ekWh/ft<sup>2</sup> and the top-quartile is 0.18 ekWh/ft<sup>2</sup>.





Figure 140: 2012 Gas Baseload Intensity Benchmark

Gas Baseload refers to natural gas used for domestic hot water and other equipment that runs year round. Gas Baseload for these buildings ranges from 1.97 to 13.97 ekWh/ft<sup>2</sup> and the top-quartile is 6.85 ekWh/ft<sup>2</sup>.



Figure 141: 2012 Gas Heating Intensity Benchmark

Gas Heating refers to the additional energy used in winter for heating and humidification. Gas Heating for these buildings ranges from 3.9 to 37.8 ekWh/ft<sup>2</sup> and the top-quartile is 12.5 ekWh/ft<sup>2</sup>.

As explained in Appendix A, all values less than 5% of the average of the top 3 facilities were removed for the calculation of the energy use components.

The top quartile values for each energy use component were adopted as targets.

Before calculation of potential savings for each building, component targets were adjusted taking into account factors specific to the facility type (see Appendix A). In the case of shelters, support and housing administration buildings, the factors are % of the facility area served by electric heat, % of DHW heated by electricity, use of ground-source or water-source heat pumps, and % of the area served by electric air conditioning.



For the facilities that were previously excluded from the dataset for setting targets, potential savings were calculated by subtraction of the sum of individual energy use component targets adjusted to specific characteristics of the facility from Total Electricity use (or Total Gas use).

# 5.4 Savings Potential by Energy Use Component

#### Savings Potential by Energy Use Component for the 7 Mid-Savings Potential Buildings

Buildings are sorted by total annual savings potential, starting with the highest saving potential buildings.

There are 7 buildings with between \$5,000 and \$100,000 in annual savings potential. The highest potential buildings will be focused on first.

| Operation name                       | E               | lectrici | ty Savi | ngs Po | tential   | G                     | as Savi | ings Po | otential  | S   | al Energy<br>avings<br>otential | Incer       | ntives    | Indoor<br>Area | GHG<br>Emis-<br>sions |
|--------------------------------------|-----------------|----------|---------|--------|-----------|-----------------------|---------|---------|-----------|-----|---------------------------------|-------------|-----------|----------------|-----------------------|
|                                      |                 | Avera    | age %   |        | \$/yr     | A                     | verage  | %       | \$/yr     | Avg | \$/yr                           | Electricity | Gas       | ft²            | kg/yr                 |
|                                      | Base-<br>load   | Cooling  | Heating | Total  |           | Base-<br>load Heating |         | Total   |           | %   |                                 |             |           |                |                       |
| Mid-potential savings facilities (7) | 20%             |          | v.      |        | \$112,096 | 39%                   |         | 54%     | \$112,976 | 45% | \$225,072                       | \$ 64,055   | \$ 43,452 | 211,017        | 904,541               |
| Seaton House                         |                 | 63%      |         | 3%     | \$ 7,360  | 51%                   | 70%     | 66%     | \$ 82,957 | 50% | \$ 90,318                       | \$ 4,206    | \$ 31,907 | 97,995         | 605,310               |
| Women's Residence                    | 41%             | 100%     | 61%     | 44%    | \$ 31,669 | 18%                   | 45%     | 38%     | \$ 8,413  | 40% | \$ 40,082                       | \$ 18,097   | \$ 3,236  | 28,256         | 85,679                |
| Robertson House                      | 30%             | 45%      | 20%     | 32%    | \$ 23,883 | 30%                   | 63%     | 57%     | \$ 12,294 | 47% | \$ 36,177                       | \$ 13,647   | \$ 4,728  | 19,795         | 107,611               |
| Fort York Residence                  | 37%             |          |         | 36%    | \$ 20,877 | 29%                   | 37%     | 34%     | \$ 5,595  | 34% | \$ 26,472                       | \$ 11,930   | \$ 2,152  | 25,995         | 56,839                |
| 129 Peter St                         | 54%             |          |         | 54%    | \$ 19,219 | 17%                   | 12%     | 14%     | \$ 936    | 34% | \$ 20,155                       | \$ 10,982   | \$ 360    | 11,776         | 21,863                |
| Downsview Dell                       | 29%             |          |         | 31%    | \$ 6,025  |                       |         |         | \$-       | 31% | \$ 6,025                        | \$ 3,443    | \$ -      | 5,199          | 4,734                 |
| Birchmount Residence                 | 76% 9% \$ 3,063 |          |         |        |           |                       | 29%     | 22%     | \$ 2,781  | 18% | \$ 5,844                        | \$ 1,750    | \$ 1,070  | 22,002         | 22,505                |

High savings Moderate savings Low savings

#### Table 237: Savings Potential for 7 Mid-Savings Potential Buildings

Savings potential is considered high if 30% or more, moderate if between 11 and 29%, and low if 10% or less.

#### Savings Potential by Energy Use Component for the 4 Low-Savings Potential Buildings

Buildings are sorted by total savings potential, starting with the highest saving potential buildings.

There are 4 buildings with less than \$5,000 in savings potential. The highest potential buildings will be focused on first.



|                                              |                 |         |                | nigri savi | iigs |       | uerate s    | avings          |         | .Uw : | savings |                                      |    |       |             |       |       |                |                       |       |
|----------------------------------------------|-----------------|---------|----------------|------------|------|-------|-------------|-----------------|---------|-------|---------|--------------------------------------|----|-------|-------------|-------|-------|----------------|-----------------------|-------|
| Dperation name Electricity Savings Potential |                 |         |                |            |      |       | G           | as Savi         | ings Po | otei  | ntial   | Total Energy<br>Savings<br>Potential |    |       |             | Incer | ntive | Indoor<br>Area | GHG<br>Emis-<br>sions |       |
|                                              | Average % \$/yr |         |                |            |      |       |             | Average % \$/yr |         |       |         |                                      |    | \$/yr | Electricity |       | Gas   |                | ft²                   | kg/yr |
|                                              | Base-           | Casling | l la atia a    | Total      |      |       | Base-       | Heating         | Tetal   |       |         | %                                    |    |       |             |       |       |                |                       |       |
| Low potential savings facilities (4)         | load<br>00%     |         | Heating<br>17% |            | \$   | 2,557 | load<br>00% |                 |         | \$    | 600     | 03%                                  | \$ | 3,157 | \$          | 1,461 | \$    | 231            | 69,600                | 6,348 |
| Adelaide Street Office                       |                 |         |                | 8%         | \$   | 2,189 |             |                 | 7%      | \$    | 600     | 8%                                   | \$ | 2,789 | \$          | 1,251 | \$    | 231            | 15,888                | 6,059 |
| Greenfield Family Centre                     |                 |         | 66%            | 4%         | \$   | 368   |             |                 | 0%      | \$    | -       | 2%                                   | \$ | 368   | \$          | 210   | \$    | -              | 7,384                 | 289   |
| Asquith Green Social Housing                 |                 |         |                | 0%         | \$   | -     |             |                 | 0%      | \$    | -       | 0%                                   | \$ | -     | \$          | -     | \$    | -              | 6,329                 | 0     |
| Family Residence                             |                 |         |                | 0%         | \$   | -     |             |                 | 0%      | \$    | -       | 0%                                   | \$ | -     | \$          | -     | \$    | -              | 39,999                | 0     |

#### High savings Moderate savings Low savings

#### Table 238: Savings Potential for 4 Low-Savings Potential Buildings

Savings potential is considered high if 30% or more, moderate if between 11 and 29%, and low if 10% or less.

Average % savings for each energy component are calculated as (Actual Energy Use – Target Energy Use)/Actual Energy Use and \$/year savings for each component are calculated as (Actual Energy Use – Target Energy Use) \* utility company rates \$0.14 per kWh of electricity and \$0.26 per m<sup>3</sup> of gas.

GHG emissions reduction is based on 110g GHG/kWh of electricity and 1879g GHG/m<sup>3</sup> of natural gas. Utility company CDM incentives are calculated based on \$0.08/kWh of electricity and \$0.10/m<sup>3</sup> of natural gas saved.

# Service Yards and Storage Facilities

# **DI TORONTO**

### **Table of Contents**

| 1 | Ben   | chmarking and Conservation Potential                                                     | 481 |
|---|-------|------------------------------------------------------------------------------------------|-----|
|   | 1.1   | Energy Use and Building Characteristics                                                  | 481 |
|   | 1.1.  | 1 Building Characteristics                                                               | 481 |
|   | 1.1.  | 2 Summary of Energy Use and Costs                                                        | 483 |
|   | 1.2   | Energy Targets                                                                           | 485 |
|   | 1.3   | Savings Potential                                                                        | 486 |
| 2 | Con   | servation Measures and Budget                                                            | 488 |
|   | 2.1   | Proposed Energy Efficiency Measures                                                      | 488 |
| 3 | Ene   | rgy Management and Retrofit Plan                                                         | 495 |
|   | 3.1   | Implementation Costs and Modeled Savings for all Service Yards & Storage Facilities      | 495 |
|   | 3.2   | Implementation Process and Tools – Determining the Specific Measures for Each Building 4 | 495 |
|   | 3.3   | Facilities Management Plan                                                               | 496 |
|   | 3.3.  | 1 Building Performance Audit                                                             | 496 |
|   | 3.3.  | 2 Energy Assessment                                                                      | 497 |
|   | 3.3.  | 3 Energy Savings Checklist                                                               | 497 |
|   | 3.3.4 | 4 Implementation Budget                                                                  | 498 |
|   | 3.3.  | 5 10-Year Implementation Plan                                                            | 498 |
|   | 3.4   | Parks, Forestry & Recreation Plan                                                        | 500 |
|   | 3.4.  | 1 Building Performance Audit                                                             | 501 |
|   | 3.4.  | 2 Energy Assessment                                                                      | 501 |
|   | 3.4.  | 3 Energy Savings Checklist                                                               | 501 |
|   | 3.4.  | 4 Implementation Budget5                                                                 | 502 |
|   | 3.4.  | 5 10-Year Implementation Plan                                                            | 502 |
|   | 3.5   | Transportation Services Plan                                                             | 504 |
|   | 3.5.  | 1 Building Performance Audit                                                             | 505 |
|   | 3.5.  | 2 Energy Assessment                                                                      | 506 |
|   | 3.5.  | 3 Energy Savings Checklist                                                               | 506 |
|   | 3.5.4 | 4 Implementation Budget5                                                                 | 507 |
|   | 3.5.  | 5 10-Year Implementation Plan                                                            | 507 |
|   | 3.6   | Solid Waste Management Plan                                                              | 509 |
|   | 3.6.  | 1 Building Performance Audit                                                             | 510 |

|   |       | 3.6.2<br>3.6.3<br>3.6.4<br>3.6.5 |      | Energy Assessment                                                            | 510 |
|---|-------|----------------------------------|------|------------------------------------------------------------------------------|-----|
|   | :     |                                  |      | Energy Savings Checklist                                                     |     |
|   |       |                                  |      | Implementation Budget                                                        | 511 |
|   | 1     |                                  |      | 10-Year Implementation Plan                                                  | 511 |
|   | 3.7   | 7                                | Torc | nto Water Plan                                                               |     |
|   | 1     | 3.7.1                            | L    | Building Performance Audit                                                   | 514 |
|   | 1     | 3.7.2                            |      | Energy Assessment                                                            |     |
|   |       | 3.7.3                            |      | Energy Savings Checklist                                                     |     |
|   |       | 3.7.4                            |      | Implementation Budget                                                        |     |
|   |       | 3.7.5                            |      | 10-Year Implementation Plan                                                  |     |
| 4 |       | Appendi                          |      | Α                                                                            |     |
|   | 4.1   | 4.1 S                            |      | ction of 2012 Utility Bills for Calculation of Actual Energy Use Intensities | 517 |
|   | 4.2   | 2                                | Dete | ermining Energy Use Components                                               | 517 |
|   | 4.3   | 4.3 De                           |      | ermining Targets                                                             |     |
|   | 4.4   | ļ                                | Calc | ulating Potential Savings                                                    |     |
|   | 4.5   | 4.5 I                            |      | ementation Costs by Measure Type and Modeled Savings                         | 519 |
|   | 4.6   | 4.6 Ass                          |      | ssment Tools                                                                 |     |
| 5 |       | Appendix                         |      | B – Service Yards & Storage Facilities                                       |     |
|   | 5.1   | 5.1 Buil                         |      | lings and Building Characteristics                                           |     |
|   | 5.2   | 5.2 Ene                          |      | gy Use Intensities                                                           |     |
|   | 5.3   | 5.3 Targ                         |      | et-setting Method and Metrics                                                |     |
|   | 5.4   | ļ                                | Savi | ngs Potential by Energy Use Component                                        |     |
|   | 1     | 5.4.1                            |      | Facilities Management                                                        |     |
|   | 1     | 5.4.2                            | 2    | Parks, Forestry and Recreation                                               | 530 |
|   | 1     | 5.4.3                            |      | Transportation Services                                                      |     |
|   | !     | 5.4.4                            |      | Solid Waste Management                                                       | 531 |
|   | 5.4.5 |                                  | 5    | Toronto Water                                                                | 532 |

#### List of Tables

| Table 239: 2012 Energy Use and Costs for 50 City of Toronto Storage Facilities                    | . 483 |
|---------------------------------------------------------------------------------------------------|-------|
| Table 240: Top Quartile Targets                                                                   | . 485 |
| Table 241: Savings Potential Summary for Facilities Management Buildings                          | .486  |
| Table 242: Savings Potential Summary for Parks, Forestry and Recreation Buildings                 | .486  |
| Table 243: Savings Potential Summary for Transportation Services Buildings                        | .486  |
| Table 244: Savings Potential Summary for Solid Waste Management Buildings                         | .486  |
| Table 245: Savings Potential Summary for Toronto Water Buildings                                  | . 487 |
| Table 246: Savings Potential Based on Energy Use Component for 50 Storage Facilities              | .487  |
| Table 233: Energy Saving Measures for Storage Facilities                                          | . 493 |
| Table 248: Proposed Renewable Energy Systems on Service Yards & Storage Facilities                | .494  |
| Table 249: Estimated Implementation Costs and Modeled Savings for Facilities Management           | .496  |
| Table 250: Assessment Tools Used to Determine Specific Energy-saving Measures for Facilities      |       |
| Management                                                                                        | . 496 |
| Table 251: Total Budget - Energy Management and Retrofit Plan for Facilities Management           | . 498 |
| Table 252: Cash Flow for 10-Year Implementation Plan for Facilities Management                    | . 499 |
| Table 253: Estimated Implementation Costs and Modeled Savings for Parks, Forestry & Recreation    | .500  |
| Table 254: Assessment Tools Used to Determine Specific Energy-saving Measures for Parks, Forestry |       |
| Recreation                                                                                        | . 501 |
| Table 255: Total Budget - Energy Management and Retrofit Plan for Parks, Forestry & Recreation    | . 502 |
| Table 256: Cash Flow for 10-Year Implementation Plan for Parks, Forestry & Recreation             | .504  |
| Table 257: Estimated Implementation Costs and Modeled Savings for Transportation Services         | . 505 |
| Table 258: Assessment Tools Used to Determine Specific Energy-saving Measures for Transportation  |       |
| Services                                                                                          | . 505 |
| Table 259: Total Budget - Energy Management and Retrofit Plan for Transportation Services         | . 507 |
| Table 260: Cash Flow for 10-Year Implementation Plan for Transportation Services                  | . 508 |
| Table 261: Estimated Implementation Costs and Modeled Savings for Solid Waste Management          | . 509 |
| Table 262: Assessment Tools Used to Determine Specific Energy-saving Measures for Solid Waste     |       |
| Management                                                                                        |       |
| Table 263: Total Budget - Energy Management and Retrofit Plan for Solid Waste Management          | .511  |
| Table 264: Cash Flow for 10-Year Implementation Plan for Solid Waste Management                   | .512  |
| Table 265: Estimated Implementation Costs and Modeled Savings for Toronto Water                   | .513  |
| Table 266: Assessment Tools Used to Determine Specific Energy-saving Measures for Toronto Water   | 513   |
| Table 267: Total Budget - Energy Management and Retrofit Plan for Toronto Water                   | .515  |
| Table 268: Cash Flow for 10-Year Implementation Plan for Toronto Water                            | .516  |
| Table 269: Implementation Costs by Measure Type                                                   | . 519 |
| Table 270: Storage Facility Building Information                                                  | . 523 |
| Table 271: 2012 Energy Intensities for Facilities Management Buildings                            | .524  |
| Table 272: 2012 Energy Intensities for Parks, Forestry & Recreation Buildings                     | .524  |
| Table 273: 2012 Energy Intensities for Transportation Services Buildings                          | . 525 |
| Table 274: 2012 Energy Intensities for Solid Waste Management Buildings                           | .525  |
# **DI TORONTO**

| Table 275: 2012 Energy Intensities for Toronto Water Buildings                                    | 525 |
|---------------------------------------------------------------------------------------------------|-----|
| Table 276: Excluded Facilities                                                                    | 526 |
| Table 277: Savings Potential by Energy Use Component for Facilities Management Buildings          | 529 |
| Table 278: Savings Potential by Energy Use Component for Parks, Forestry and Recreation Buildings | 530 |
| Table 279: Savings Potential by Energy Use Component for Transportation Services Buildings        | 531 |
| Table 280: Savings Potential by Energy Use Component for Solid Waste Management Buildings         | 532 |
| Table 281: Savings Potential by Energy Use Component for Toronto Water Buildings                  | 532 |

# **List of Figures**

| Table 239: 2012 Energy Use and Costs for 50 City of Toronto Storage Facilities                      | 83  |
|-----------------------------------------------------------------------------------------------------|-----|
| Table 240: Top Quartile Targets                                                                     | 85  |
| Table 241: Savings Potential Summary for Facilities Management Buildings                            | 86  |
| Table 242: Savings Potential Summary for Parks, Forestry and Recreation Buildings                   | 86  |
| Table 243: Savings Potential Summary for Transportation Services Buildings                          | 86  |
| Table 244: Savings Potential Summary for Solid Waste Management Buildings                           | 86  |
| Table 245: Savings Potential Summary for Toronto Water Buildings                                    | 87  |
| Table 246: Savings Potential Based on Energy Use Component for 50 Storage Facilities                | 87  |
| Table 233: Energy Saving Measures for Storage Facilities                                            | .93 |
| Table 248: Proposed Renewable Energy Systems on Service Yards & Storage Facilities                  | .94 |
| Table 249: Estimated Implementation Costs and Modeled Savings for Facilities Management             | 96  |
| Table 250: Assessment Tools Used to Determine Specific Energy-saving Measures for Facilities        |     |
| Management                                                                                          | 96  |
| Table 251: Total Budget - Energy Management and Retrofit Plan for Facilities Management             | 98  |
| Table 252: Cash Flow for 10-Year Implementation Plan for Facilities Management                      | .99 |
| Table 253: Estimated Implementation Costs and Modeled Savings for Parks, Forestry & Recreation 50   | 00  |
| Table 254: Assessment Tools Used to Determine Specific Energy-saving Measures for Parks, Forestry & | L   |
| Recreation                                                                                          | 01  |
| Table 255: Total Budget - Energy Management and Retrofit Plan for Parks, Forestry & Recreation50    | 02  |
| Table 256: Cash Flow for 10-Year Implementation Plan for Parks, Forestry & Recreation               | 04  |
| Table 257: Estimated Implementation Costs and Modeled Savings for Transportation Services           | 05  |
| Table 258: Assessment Tools Used to Determine Specific Energy-saving Measures for Transportation    |     |
| Services                                                                                            | 05  |
| Table 259: Total Budget - Energy Management and Retrofit Plan for Transportation Services           | 07  |
| Table 260: Cash Flow for 10-Year Implementation Plan for Transportation Services                    | 08  |
| Table 261: Estimated Implementation Costs and Modeled Savings for Solid Waste Management 50         | 09  |
| Table 262: Assessment Tools Used to Determine Specific Energy-saving Measures for Solid Waste       |     |
| Management                                                                                          | 10  |
| Table 263: Total Budget - Energy Management and Retrofit Plan for Solid Waste Management            | 11  |
| Table 264: Cash Flow for 10-Year Implementation Plan for Solid Waste Management                     | 12  |
| Table 265: Estimated Implementation Costs and Modeled Savings for Toronto Water                     |     |
|                                                                                                     | 13  |

| Table 267: Total Budget - Energy Management and Retrofit Plan for Toronto Water                |         |
|------------------------------------------------------------------------------------------------|---------|
| Table 268: Cash Flow for 10-Year Implementation Plan for Toronto Water                         | 516     |
| Table 269: Implementation Costs by Measure Type                                                | 519     |
| Table 270: Storage Facility Building Information                                               | 523     |
| Table 271: 2012 Energy Intensities for Facilities Management Buildings                         |         |
| Table 272: 2012 Energy Intensities for Parks, Forestry & Recreation Buildings                  |         |
| Table 273: 2012 Energy Intensities for Transportation Services Buildings                       |         |
| Table 274: 2012 Energy Intensities for Solid Waste Management Buildings                        |         |
| Table 275: 2012 Energy Intensities for Toronto Water Buildings                                 | 525     |
| Table 276: Excluded Facilities                                                                 | 526     |
| Table 277: Savings Potential by Energy Use Component for Facilities Management Buildings       |         |
| Table 278: Savings Potential by Energy Use Component for Parks, Forestry and Recreation Buildi | ings530 |
| Table 279: Savings Potential by Energy Use Component for Transportation Services Buildings     | 531     |
| Table 280: Savings Potential by Energy Use Component for Solid Waste Management Buildings      | 532     |
| Table 281: Savings Potential by Energy Use Component for Toronto Water Buildings               | 532     |
|                                                                                                |         |

# **1** Benchmarking and Conservation Potential

# 1.1 Energy Use and Building Characteristics

## **1.1.1 Building Characteristics**

The City of Toronto is reporting on 50 storage facilities in the Energy Conservation Demand Management (ECDM) Plan.

These storage facilities fall under the following 5 Divisions:

- Facilities Management
- Parks, Forestry and Recreation
- Transportation Services
- Solid Waste Management
- Toronto Water

There are 13 facilities included in the ECDM Plan for Facilities Management. They are:

- 1. Central Garage
- 2. Disco Yard
- 3. Dohme Ave 3
- 4. Eastern Ave Yard / Office
- 5. Eastern Ave Yard / Shop
- 6. Ellesmere Yard
- 7. Fire Dept Repair Shop
- 8. Hamilton Street Yard
- 9. Health Materials Warehouse
- 10. Ingram Works Yard
- 11. Property Operation Workshop
- 12. Purchasing WH and Yard
- 13. Ramsden Yard

The names, addresses and building areas are provided in Appendix B.

There are 15 facilities included in the ECDM Plan for Parks, Forestry and Recreation. They are:

- 1. Alness Service Yard
- 2. Bentworth Park Yard
- 3. Birchmount Parks Yard
- 4. Brimley Parks Yard
- 5. Centennial Pk Svc Bldg
- 6. Eglinton Flats Service Bldg
- 7. Emery Parks Yard
- 8. Kipling Maintenance Yard

# M Toronto

- 9. Nashdene Yard
- 10. Northern Services Building
- 11. Northline Garage and Offices
- 12. Pharmacy Yard
- 13. Rockcliffe Yard
- 14. Train Storage Building
- 15. Western Services Yard

The names, addresses and building areas are provided in Appendix B.

There are 18 facilities included in the ECDM Plan for Transportation Services. They are:

- 1. Bartonville Park
- 2. Bering Yard
- 3. Castlefield Yard
- 4. Eastern & Booth Blocks
- 5. Emery Works Yard
- 6. King St Garage
- 7. Maintenance Yard #1&2
- 8. Maintenance Yard #3
- 9. Maintenance Yard #6
- 10. Maintenance Yard #7
- 11. Morningside Yard
- 12. North District Serv Yard
- 13. Oriole Yd- Signs and Markings
- 14. Oriole Yd- Works
- 15. Sixth St Garage
- 16. Wellington Yard & Office
- 17. Wellington Yard & Storage
- 18. Winter Maintenance Depot

The names, addresses and building areas are provided in Appendix B.

There are 2 facilities included in the ECDM Plan for Solid Waste Management. They are:

- 1. Dufferin Maintenance Yard
- 2. Old Eglinton Yard (former Bermondsey Yard)

The names, addresses and building areas are provided in Appendix B.

There are 2 facilities included in the ECDM Plan for Toronto Water. They are:

- 1. Central Equipment Yard
- 2. Kipling Yard



The names, addresses and building areas are provided in Appendix B.

The total area for all of the buildings is 1,740,016  $\text{ft}^2$ . Storage facilities range in size from approximately 800  $\text{ft}^2$  to over 236,000  $\text{ft}^2$ .

The Central Maintenance Garage on 843 Eastern Avenue is equipped with a solar air heating system.

The facilities range from 0% to 60% air-conditioned. Three facilities (Wellington Yard & Office, Maintenance Yard #3 and the Winter Maintenance Depot) are fully served by electric heat and there are a number of other facilities using between 5 and 60% electric heat. No facilities are served by a ground or water source heat pump.

# **1.1.2 Summary of Energy Use and Costs**

This Energy Conservation Demand Management (ECDM) Plan is based on energy use taken from monthly bills for the 2012 calendar year. Energy costs are presented throughout using \$0.14 per kWh of electricity and \$0.26 per m<sup>3</sup> of gas. Refer to Appendix A (section 'Selection of 2012 utility bills for calculation of actual energy use intensities') for the methodology used to calculate the energy use intensities from the utility bills. Total energy use and costs for the 50 buildings are summarized below.

|                               | 2012 En    | ergy Use    |
|-------------------------------|------------|-------------|
|                               | Unit       | \$          |
| Electricity (kWh)             | 17,760,078 | \$2,486,411 |
| Natural Gas (m <sup>3</sup> ) | 3,127,491  | \$813,148   |
| Total                         |            | \$3,299,559 |

 Table 239: 2012 Energy Use and Costs for 50 City of Toronto Storage Facilities





There is a wide range of energy use intensities as presented below, due primarily to differences in efficiency between the 50 buildings. Total energy use ranges from approximately 1.8 to 164.6 ekWh/ft<sup>2</sup>. There are also wide ranges for electricity and gas use per ft<sup>2</sup>. The red line represents the top quartile.



The corresponding data for total energy, total electricity and total gas for each building is located in Appendix B.



Figure 143: 2012 Total Energy Intensity Benchmark



Figure 144: 2012 Total Electricity Intensity Benchmark

# **DI TORONTO**



Figure 145: 2012 Total Gas Intensity Benchmark

# **1.2 Energy Targets**

The energy targets for storage facilities are presented in the table below. The target-setting methodology is based upon all buildings improving to the top quartile intensity for each component of energy use, and is described in Appendix B. The goal is for each storage facility to achieve its target over the duration of the ECDM Plan.

| Energy type  | Component | Value | Unit          |
|--------------|-----------|-------|---------------|
| Electricity  | Baseload  | 6.4   | kWh/ft²/year  |
|              | Cooling   | 0.2   | kWh/ft²/year  |
|              | Heating   | 1.2   | kWh/ft²/year  |
|              | Total     | 7.9   | kWh/ft²/year  |
| Gas          | Baseload  | 0.9   | ekWh/ft²/year |
|              | Heating   | 13.3  | ekWh/ft²/year |
|              | Total     | 14.2  | ekWh/ft²/year |
| Total Energy | Total     | 22.1  | ekWh/ft²/year |

#### Table 240: Top Quartile Targets

The data set for target-setting is made up of 50 storage facilities with complete and reliable data, all of which are City of Toronto facilities. Before calculation of potential savings for each building, the energy use component targets were adjusted for site specific factors including electric heat (% building served and % for Domestic Hot Water (DHW) and % of the area which is air conditioned. The specific target adjustments are found in Appendix A.



# **1.3** Savings Potential

The difference between the actual 2012 energy use and the adjusted target represents the potential annual savings for each energy component in each storage facility. The total savings potential for each storage facility is then determined as the sum of the components. Some buildings have very high percentage and dollar potential while other more efficient buildings have little or no potential. The 50 storage facilities are categorized as high potential (annual savings of over \$100,000), medium (mid) potential (annual savings between \$5,000 and \$100,000) and low potential (annual savings of less than \$5,000). The savings potential for each Division is summarized in the Tables below. The savings potential for each Division) is summarized in Appendix B.

| Operation name                        | E     | lectric | ity Savi | ings Po | oten | tial       | G     | as Sav  | ings P | otential Savings F |          |     |    | Energy<br>Potential | Incentives |                             |    |        | Indoor<br>Area | GHG<br>Emissions |
|---------------------------------------|-------|---------|----------|---------|------|------------|-------|---------|--------|--------------------|----------|-----|----|---------------------|------------|-----------------------------|----|--------|----------------|------------------|
|                                       |       | Avera   | ige %    |         |      | <b>C</b> 1 | A     | verage  | %      |                    | <b>*</b> | Avg |    | <b>C</b> 1          | _          | 1 <b>1</b> - i <b>1</b> - i |    | 0      | 62             | luntur           |
|                                       | Base- |         |          |         |      | \$/yr      | Base- |         |        |                    | \$/yr    | %   |    | \$/yr               | E          | lectricity                  |    | Gas    | ft²            | kg/yr            |
|                                       | load  | Cooling | Heating  | Total   |      |            | load  | Heating | Total  |                    |          |     |    |                     |            |                             |    |        |                |                  |
| TOTAL: 13 facilities                  | 32%   | 40%     | 4%       | 28%     | \$ 1 | 193,964    | 18%   | 48%     | 48%    | \$                 | 150,413  | 42% | \$ | 344,377             | \$         | 110,836                     | \$ | 57,851 | 561,821        | 1,239,424        |
| High potential savings facilities (1) | 44%   | 0%      | 0%       | 42%     | \$   | 60,384     | 0%    | 70%     | 69%    | \$                 | 65,900   | 64% | \$ | 126,285             | \$         | 34,505                      | \$ | 25,346 | 84,701         | 523,702          |
| Mid-potential savings facilities (9)  | 28%   | 43%     | 4%       | 26%     | \$ 1 | 133,579    | 20%   | 35%     | 40%    | \$                 | 83,916   | 36% | \$ | 217,495             | \$         | 76,331                      | \$ | 32,275 | 368,491        | 711,407          |
| Low potential savings facilities (3)  | 0%    | 0%      | 0%       | 0%      | \$   | -          | 0%    | 0%      | 6%     | \$                 | 597      | 3%  | \$ | 597                 | \$         | -                           | \$ | 230    | 108,629        | 4,315            |

| Table 241: Savings Potential Summar | y for Facilities Management Buildings |
|-------------------------------------|---------------------------------------|
|-------------------------------------|---------------------------------------|

| Operation name                        |               | Electri | city Sa | vings Pot | tential    | Gas Savings Po |           |       |    | ntial  |            | al Energy<br>gs Potential | Incen       | tives     | Indoor<br>Area | GHG<br>Emissions |
|---------------------------------------|---------------|---------|---------|-----------|------------|----------------|-----------|-------|----|--------|------------|---------------------------|-------------|-----------|----------------|------------------|
|                                       |               | Ave     | rage %  |           | C har      | A              | Average % |       |    | Avg    | <b>C</b> I | E la atri situ            | 0.00        | 62        | lem hun        |                  |
|                                       | Base-<br>load | Cooling | Heating | Total     | \$/yr      | Base-<br>load  | Heating   | Total |    | \$/yr  | %          | \$/yr                     | Electricity | Gas       | ft²            | kg/yr            |
| TOTAL: 15 facilities                  | 33%           | 59%     | 6%      | 36%       | \$ 131,623 | 31%            | 42%       | 41%   | \$ | 44,694 | 39%        | \$ 176,317                | \$ 75,213   | \$ 17,190 | 276,056        | 426,421          |
| High potential savings facilities (0) | 0%            | 0%      | 0%      | 0%        | \$ -       | 0%             | 0%        | 0%    | \$ | -      | 0%         | \$ -                      | \$ -        | \$-       | 0              | 0                |
| Mid-potential savings facilities (6)  | 49%           | 79%     | 14%     | 53%       | \$ 126,361 | 33%            | 57%       | 56%   | \$ | 30,023 | 55%        | \$ 156,384                | \$ 72,206   | \$ 11,547 | 117,702        | 316,257          |
| Low potential savings facilities (9)  | 4%            | 26%     | 0%      | 4%        | \$ 5,261   | 30%            | 27%       | 27%   | \$ | 14,671 | 20%        | \$ 19,933                 | \$ 3,007    | \$ 5,643  | 158,353        | 110,164          |

#### Table 242: Savings Potential Summary for Parks, Forestry and Recreation Buildings

| Operation name                        | I     | Electric | ty Sav  | ings Po | tential    | G     | ias Sav | ings P | otei | ntial  |     | al Energy<br>gs Potential | Incer            | ntives    | Indoor<br>Area | GHG<br>Emissions |
|---------------------------------------|-------|----------|---------|---------|------------|-------|---------|--------|------|--------|-----|---------------------------|------------------|-----------|----------------|------------------|
|                                       |       | Aver     | age %   |         |            | A     | verage  | %      |      |        | Avg | <b>A</b> 4                | <b>F</b> 1 (1.1) |           |                |                  |
|                                       | Base- |          |         | -       | \$/yr      | Base- |         | _      |      | \$/yr  | %   | \$/yr                     | Electricity      | Gas       | ft²            | kg/yr            |
|                                       | load  | Cooling  | Heating | Total   |            | load  | Heating | Total  |      |        |     |                           |                  |           |                |                  |
| TOTAL: 18 facilities                  | 31%   | 40%      | 18%     | 28%     | \$ 293,847 | 86%   | 32%     | 33%    | \$   | 95,103 | 31% | \$ 388,951                | \$ 167,913       | \$ 36,578 | 656,592        | 918,185          |
| High potential savings facilities (1) | 34%   | 0%       | 0%      | 27%     | \$ 120,263 | 100%  | 41%     | 42%    | \$   | 42,444 | 35% | \$ 162,707                | \$ 68,722        | \$ 16,325 | 236,644        | 401,231          |
| Mid-potential savings facilities (11) | 35%   | 54%      | 31%     | 35%     | \$ 171,712 | 80%   | 45%     | 47%    | \$   | 50,072 | 42% | \$ 221,784                | \$ 98,121        | \$ 19,258 | 253,139        | 496,782          |
| Low potential savings facilities (6)  | 1%    | 37%      | 0%      | 2%      | \$ 1,872   | 97%   | 0%      | 3%     | \$   | 2,588  | 3%  | \$ 4,460                  | \$ 1,070         | \$ 995    | 166,809        | 20,172           |

#### Table 243: Savings Potential Summary for Transportation Services Buildings

| Operation name                        |       | Electric | ity Sav | ings Pote | ential     | Gas Savings Pote |         |          |    | otential Total Energy<br>Savings<br>Potential |     |            |    | gs Incentives |    |     |        | GHG<br>Emissions |
|---------------------------------------|-------|----------|---------|-----------|------------|------------------|---------|----------|----|-----------------------------------------------|-----|------------|----|---------------|----|-----|--------|------------------|
|                                       |       | Ave      | rage %  |           | <b>A</b> 4 | A                | verage  | %        |    | <b>A</b> 4                                    | Avg | <b>A</b> / | _  |               |    |     |        |                  |
|                                       | Base- | 0.1      |         | <b>-</b>  | \$/yr      | Base-            |         | <b>T</b> |    | \$/yr                                         | %   | \$/yr      | E  | ectricity     |    | Gas | ft²    | kg/yr            |
|                                       | load  | Cooling  | Heating | Total     |            | load             | Heating | Total    |    |                                               | -   |            |    |               |    |     |        |                  |
| TOTAL: 2 facilities                   | 14%   | 100%     | 0%      | 13%       | \$ 15,695  | 8%               | 8%      | 8%       | \$ | 1,894                                         | 11% | \$ 17,590  | \$ | 8,969         | \$ | 729 | 86,349 | 26,023           |
| High potential savings facilities (0) | 0%    | 0%       | 0%      | 0%        | \$ -       | 0%               | 0%      | 0%       | \$ |                                               | 0%  | \$-        | \$ | -             | \$ | -   | 0      | 0                |
| Mid-potential savings facilities (1)  | 19%   | 100%     | 0%      | 23%       | \$ 15,695  | 9%               | 0%      | 1%       | \$ | 122                                           | 10% | \$ 15,818  | \$ | 8,969         | \$ | 47  | 54,681 | 13,217           |
| Low potential savings facilities (1)  | 0%    | 0%       | 0%      | 0%        | \$-        | 0%               | 29%     | 28%      | \$ | 1,772                                         | 12% | \$ 1,772   | \$ | -             | \$ | 682 | 31,667 | 12,806           |

#### Table 244: Savings Potential Summary for Solid Waste Management Buildings



| Operation name                        |               | Electri | city Sav | vings Pot | ential     | G             | Gas Savings Potential Total Energy Incentives |       |    |        |       | Indoor<br>Area | GHG<br>Emissions |           |            |         |
|---------------------------------------|---------------|---------|----------|-----------|------------|---------------|-----------------------------------------------|-------|----|--------|-------|----------------|------------------|-----------|------------|---------|
|                                       |               | Ave     | rage %   |           | ¢ 1        | A             | verage                                        | %     |    |        | A     | C har          | The state of the | 0         | <b>H</b> 2 | luntur  |
|                                       | Base-<br>load | Cooling | Heating  | Total     | \$/yr      | Base-<br>load | Heating                                       | Total |    | \$/yr  | Avg % | \$/yr          | Electricity      | Gas       | ft²        | kg/yr   |
| TOTAL: 2 facilities                   | 40%           | 100%    | 34%      | 40%       | \$ 103,287 | 4%            | 36%                                           | 35%   | \$ | 29,425 | 37%   | \$ 132,712     | \$ 59,021        | \$ 11,317 | 159,198    | 293,804 |
| High potential savings facilities (0) | 0%            | 0%      | 0%       | 0%        | \$-        | 0%            | 0%                                            | 0%    | \$ | -      | 0%    | \$-            | \$ -             | \$-       | 0          | 0       |
| Mid-potential savings facilities (2)  | 40%           | 100%    | 34%      | 40%       | \$ 103,287 | 4%            | 36%                                           | 35%   | \$ | 29,425 | 37%   | \$ 132,712     | \$ 59,021        | \$11,317  | 159,198    | 293,804 |
| Low potential savings facilities (0)  | 0%            | 0%      | 0%       | 0%        | \$ -       | 0%            | 0%                                            | 0%    | \$ | -      | 0%    | \$ -           | \$ -             | \$ -      | 0          | 0       |

#### Table 245: Savings Potential Summary for Toronto Water Buildings

GHG emissions reduction is based on 110g GHG/kWh of electricity and 1879g GHG/m<sup>3</sup> of natural gas. Utility company incentives are calculated based on \$0.08/kWh of electricity (a composite of \$0.05/kWh for lighting retrofits and \$0.10 for non-lighting measures) and \$0.10/m<sup>3</sup> of natural gas saved.

The savings potential for each individual energy component points to where the biggest savings are to be found and guides the priorities for implementation. Table 8 below shows the total potential savings for all 50 storage facilities as a whole and highlights where the greatest percentage savings are.

| Energy and Water Components                                    | 2012 Use    | Target | Savings<br>Potential % | Savings<br>Potential \$ |
|----------------------------------------------------------------|-------------|--------|------------------------|-------------------------|
| Electric Baseload (kWh/ft²)                                    | 8.8         | 6.0    | 32%                    | \$ 629,400              |
| Electric Cooling (kWh/ft²)                                     | 0.4         | 0.2    | 46%                    | \$ 33,037               |
| Electric Heating (kWh/ft <sup>2</sup> )                        | 1.6         | 1.4    | 14%                    | \$ 47,274               |
| Total Electricity (kWh/ft²) for facilities w/o component inter | nsities 5.0 | 3.4    | 31%                    | \$ 28,705               |
| Gas Baseload (ekWh/ft²)                                        | 0.7         | 0.4    | 43%                    | \$ 11,900               |
| Gas Heating (ekWh/ft²)                                         | 19.0        | 11.7   | 38%                    | \$ 285,515              |
| Total Gas (ekWh/ft²) for facilities w/o component intensitie   | s 12.8      | 5.4    | 57%                    | \$ 24,115               |
| Total Energy (ekWh/ft²)                                        | 28.8        | 18.4   | 36%                    | \$ 1,059,946            |
| High savings Modera                                            | te Low s    | avings |                        |                         |

Table 246: Savings Potential Based on Energy Use Component for 50 Storage Facilities

Savings potential is considered high if it is 30% and above, moderate if between 10 and 29% and low if less than 10%.

Components with the highest percentage savings potential (i.e. Electric Cooling and Gas Baseload) will be given higher priority in terms of recommended measures for implementation. In many cases, Electric Baseload measures can provide a significant portion of dollar savings. However, they generally require significant capital investment and will therefore be implemented in later years.

# **DI TORONTO**

# 2 Conservation Measures and Budget

# 2.1 Proposed Energy Efficiency Measures

Table 9 below shows the full range of possible energy efficiency measures for the entire portfolio of buildings. The measures are grouped based on the component of energy use they relate to and have been sorted based on chronology of implementation.

The measures are categorized by system type - lighting (L), mechanical (M), electrical (EL), envelope (EN), process (P) (i.e. domestic hot water) and behavioural (B) measures. The profiles of energy use and conservation potential for the 50 facilities indicate that the largest percentage reductions will come from measures associated with electric cooling and gas baseload, the majority of which are low/no cost measures.

The measures have been prioritized in order to help make an informed decision on which to implement first. Priorities are set using the criteria of 'Energy Savings Potential' and 'Ease of Implementation'. Each measure was assigned a score from 1 to 4 for both energy savings potential and ease of implementation.

For Energy Savings Potential, a score of 4 was assigned to measures with the greatest percentage energy savings potential and a score of 1 was assigned to measures with the smallest percentage energy savings potential. For Ease of Implementation, a score of 4 was assigned to measures that are the easiest to implement and a score of 1 to measures that are the most difficult to implement.

The Energy Savings Potential scoring was determined using the following criteria:

- 4 Savings potential is greater than 40%
- 3 Savings potential is 30-40%
- 2 Savings potential is 20-30%
- 1 Savings potential is less than 20%

The Ease of Implementation scoring was determined using the following criteria:

- 4 Measure can be done immediately by building occupants or service contractors (little/no cost)
- 3 Measure involves testing, tuning, measuring (low cost)
- 2 Measure involves significant investigation/optimization (more significant costs)
- 1 Measure involves replacement/installation involving capital costs

# The measures with the highest combined Energy Savings Potential and Ease of Implementation scores (out of 8) are deemed the highest priority.



Accordingly the Overall score associated to the proposed measures can be summarized as follows:

1 - Least energy savings potential; Most difficult to implement



8 - Greatest energy savings potential; Easiest to implement

#### Timelines

Measures recommended to be implemented in Year 1 (the year of the initial assessment) are behavioural measures that can be done immediately without capital budgets. Measures recommended for Year 2 will generally result in high percentage savings, are mainly operational and do not require significant capital costs. Year 3 measures will provide high percentage savings (i.e. measures related to electric cooling and gas baseload) but have associated capital costs (i.e. installation and replacement measures). Measures to be implemented in Year 4 and Year 5 are those that have significant associated capital costs and may result in high dollar savings but less significant percentage energy savings (i.e. measures related to all other energy components).

| Electric Baseload Measures                                                                | Ease of<br>Implementation                                                              | Energy Savings<br>Potential                                  | Total Score                                                    | Timeline                                                         | Life Expectancy<br>(yrs)                                                | Responsibility                                                                                       |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| CTRIC BASELOAD - refers to year-round electricity use for lighting, fans, e               | quipmen                                                                                | t and othe                                                   | r syste                                                        | ms that a                                                        | re not weather deper                                                    | ident                                                                                                |
| n off machines, office and kitchen equipment when not needed                              | 4                                                                                      | 3                                                            | 7                                                              | Year 1                                                           | Annual Review                                                           | Building Occupants                                                                                   |
| lug machines, office and kitchen equipment if not actively used                           | 4                                                                                      | 3                                                            | 7                                                              | Year 1                                                           | Annual Review                                                           | Building Occupants                                                                                   |
| n off computer monitors when not in use                                                   | 4                                                                                      | 3                                                            | 7                                                              | Year 1                                                           | Annual Review                                                           | <b>Building Occupants</b>                                                                            |
| ble ENERGY STAR power settings on your computer                                           | 4                                                                                      | 3                                                            | 7                                                              | Year 1                                                           | Annual Review                                                           | <b>Building Occupants</b>                                                                            |
| olug chargers when not in use                                                             | 4                                                                                      | 3                                                            | 7                                                              | Year 1                                                           | Annual Review                                                           | <b>Building Occupants</b>                                                                            |
| n off lights when areas not in use                                                        | 4                                                                                      | 3                                                            | 7                                                              | Year 1                                                           | Annual Review                                                           | <b>Building Occupants</b>                                                                            |
| ke use of natural light instead of turning on lights where possible                       | 4                                                                                      | 3                                                            | 7                                                              | Year 1                                                           | Annual Review                                                           | Building Occupants                                                                                   |
| imize operating schedules for fans and pumps                                              | 3                                                                                      | 3                                                            | 6                                                              | Year 2                                                           | Seasonal Review                                                         |                                                                                                      |
| t and adjust ventilation systems to reduce fan power                                      | 3                                                                                      | 3                                                            | 6                                                              | Year 2                                                           | Seasonal Review                                                         |                                                                                                      |
| all power factor correction                                                               | 3                                                                                      | 3                                                            | 6                                                              | Year 3                                                           | 15+                                                                     |                                                                                                      |
| lace incandescent and halogen light bulbs with high efficiency ting                       | 1                                                                                      | 3                                                            | 4                                                              | Year 4                                                           | 10 to 15                                                                |                                                                                                      |
| all motion sensors in washrooms/occasional use spaces to shut<br>lights when unoccupied   | 1                                                                                      | 3                                                            | 4                                                              | Year 4                                                           | 10 to 15                                                                |                                                                                                      |
| all photo-sensors and/or a timer on outdoor and daylit interior<br>a lighting             | 1                                                                                      | 3                                                            | 4                                                              | Year 4                                                           | 10 to 15                                                                |                                                                                                      |
| lace HID lighting with high efficiency fluorescent                                        | 1                                                                                      | 3                                                            | 4                                                              | Year 4                                                           | 10 to 15                                                                |                                                                                                      |
| lace outdoor lights and signage with high efficiency fixtures                             | 1                                                                                      | 3                                                            | 4                                                              | Year 4                                                           | 10 to 15                                                                |                                                                                                      |
| lace festive lighting with LED                                                            | 1                                                                                      | 3                                                            | 4                                                              | Year 4                                                           | 10 to 15                                                                |                                                                                                      |
| all sufficient manual switching to allow occupants to effectively trol lighting operation | 1                                                                                      | 3                                                            | 4                                                              | Year 4                                                           | 15+                                                                     |                                                                                                      |
| lace refrigerators, dishwasher, microwaves with ENERGY STAR                               | 1                                                                                      | 3                                                            | 4                                                              | Year 4                                                           | 8 to 12                                                                 |                                                                                                      |
| lace computers with ENERGY STAR rated units                                               | 1                                                                                      | 3                                                            | 4                                                              | Year 4                                                           | 4 to 6                                                                  |                                                                                                      |
| all controls on vending machines                                                          | 1                                                                                      | 3                                                            | 4                                                              | Year 4                                                           | 10 to 15                                                                |                                                                                                      |
| all variable frequency drives (VFDs) on suitable fans and pumps                           | 1                                                                                      | 3                                                            | 4                                                              | Year 4                                                           | 10 to 20                                                                |                                                                                                      |
| vert electric hot water heaters to natural gas                                            | 1                                                                                      | 3                                                            | 4                                                              | Year 4                                                           | 10 to 15                                                                |                                                                                                      |
| all co<br>all va                                                                          | ontrols on vending machines ariable frequency drives (VFDs) on suitable fans and pumps | ariable frequency drives (VFDs) on suitable fans and pumps 1 | ariable frequency drives (VFDs) on suitable fans and pumps 1 3 | ariable frequency drives (VFDs) on suitable fans and pumps 1 3 4 | ariable frequency drives (VFDs) on suitable fans and pumps 1 3 4 Year 4 | ariable frequency drives (VFDs) on suitable fans and pumps     1     3     4     Year 4     10 to 15 |

Behavioural Measures

Operational Measures Retrofit/Capital Measures

# n Toronto

|    | Electric Heating Measures                                                                                                                                                                                         | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline                   | Life Expectancy<br>(yrs)                       | Responsibility     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|----------------------------|------------------------------------------------|--------------------|
|    | ELECTRIC HEATING (IF APPLICABLE) - refers to electricity use for heating purpe                                                                                                                                    | oses                      |                             |             |                            |                                                |                    |
| B8 | Adjust blinds (to retain heat in winter)                                                                                                                                                                          | 4                         | 1                           | 5           | Year 1                     | annual review                                  | Building Occupants |
| B9 | Avoid use of electric heaters                                                                                                                                                                                     | 4                         | 1                           | 5           | Year 1                     |                                                | Building Occupants |
|    | Use recommended thermostat set points (in winter set to 68 degrees or less during daytime)                                                                                                                        | 4                         | 1                           | 5           | Year 1                     |                                                | Building Occupants |
| M8 | Control fan coil and entrance heaters to optimize run-times                                                                                                                                                       | 3                         | 1                           | 4           | Year 2                     | seasonal review                                |                    |
| M9 | Evaluate conversion from electric heating to natural gas                                                                                                                                                          | 2                         | 1                           | 3           | Year 5                     | n/a                                            |                    |
| M5 | Install snow sensors to control the snow-melting system                                                                                                                                                           | 1                         | 1                           | 2           | Year 5                     | seasonal review                                |                    |
| M7 | Upgrade base building heating system to avoid use of electric heaters<br>Upgrade electric heating controls to optimize space temperatures and<br>operating periods<br>Install controls on vehicle plug-in heaters | 1<br>1<br>1               | 1<br>1<br>1                 | 2<br>2<br>2 | Year 5<br>Year 5<br>Year 5 | seasonal review<br>seasonal review<br>10 to 15 |                    |
|    | Other:                                                                                                                                                                                                            |                           |                             |             |                            |                                                |                    |

#### Behavioural Measures

Operational Measures Retrofit/Capital Measures

|      | Electric Cooling Measures                                                                       | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility     |
|------|-------------------------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|----------|--------------------------|--------------------|
|      | ELECTRIC COOLING (IF APPLICABLE) - refers to electricity use for cooling purpo                  | oses                      |                             |             |          |                          |                    |
| B11  | Winterize room air-conditioners                                                                 | 4                         | 4                           | 8           | Year 1   |                          | Building Occupants |
| B12  | Use recommended thermostat set points (during the summer, set to                                |                           |                             |             |          |                          |                    |
| DIZ  | 78 degrees or more)                                                                             | 4                         | 4                           | 8           | Year 1   |                          | Building Occupants |
| B13  | Only cool rooms that are being used                                                             | 4                         | 4                           | 8           | Year 1   |                          | Building Occupants |
| B14  | Install and use energy efficient ceiling fans                                                   | 4                         | 4                           | 8           | Year 1   |                          | Building Occupants |
| B15  | Close blinds (to shade space from direct sunlight)                                              | 4                         | 4                           | 8           | Year 1   |                          | Building Occupants |
| 1816 | Install window film, solar screens or awnings on south and west facing<br>windows               | 4                         | 4                           | 8           | Year 1   |                          | Building Occupants |
| M111 | Optimize operating periods of ventilation systems supplying air<br>conditioned spaces           | 2                         | 4                           | 6           | Year 2   | seasonal review          |                    |
| M13  | Upgrade control of air conditioning units to optimize space<br>temperatures & operating periods | 3                         | 4                           | 7           | Year 2   | seasonal review          |                    |
| M14  | Test and tune the air conditioning units                                                        | 3                         | 4                           | 7           | Year 2   | 3                        |                    |
| M12  | Replace and right-size air conditioning units with ENERGY STAR rated<br>units                   | 1                         | 4                           | 5           | Year 3   | 10 to 15                 |                    |
|      | Other:                                                                                          |                           |                             |             |          |                          |                    |

#### **Behavioural Measures**

Operational Measures

Retrofit/Capital Measures

|     | Gas Baseload Measures                                                       | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline  | Life Expectancy<br>(yrs) | Responsibility     |
|-----|-----------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|-----------|--------------------------|--------------------|
|     | GAS BASELOAD - refers to the annual natural gas energy used for domestic ho | ot water                  | and other                   | equipr      | nent that | runs year round          |                    |
| B17 | Optimize dishwasher operation (only run when full)                          | 4                         | 4                           | 8           | Year 1    |                          | Building Occupants |
| P1  | Optimize DHW temperature control                                            | 2                         | 4                           | 6           | Year 2    | annual review            |                    |
| P3  | Test and tune DHW boiler efficiency                                         | 3                         | 4                           | 7           | Year 2    | annual review            |                    |
| M17 | Investigate and repair possible gas leaks                                   | 3                         | 4                           | 7           | Year 2    | annual review            |                    |
| P2  | Implement DHW circulation pump control                                      | 1                         | 4                           | 5           | Year 2    | annual review            |                    |
| P4  | Install low flow showerheads and faucet aerators                            | 1                         | 4                           | 5           | Year 3    | 10 to 15                 |                    |
| M15 | Insulate DHW tanks and distribution piping                                  | 2                         | 4                           | 6           | Year 3    | 10 to 15                 |                    |
| M16 | Replace DHW boilers with more efficient models                              | 1                         | 4                           | 5           | Year 3    | 10 to 15                 |                    |
|     | Other:                                                                      |                           |                             |             |           |                          |                    |
|     |                                                                             |                           |                             |             |           |                          |                    |
|     |                                                                             |                           |                             |             |           |                          |                    |

Behavioural Measures

Operational Measures Retrofit/Capital Measures



The specific measures and implementation timeline for each individual storage facility will be determined from the results of the Energy Assessments and Checklists (explained in the Implementation section of this plan).

|     | Gas Heating Measures                                                                                           | Ease of<br>Implementation | Energy Savings<br>Potential | Total Score | Timeline | Life Expectancy<br>(yrs) | Responsibility     |
|-----|----------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------|-------------|----------|--------------------------|--------------------|
|     | GAS HEATING - refers to the additional energy used in winter for heating and                                   | humidif                   | ication                     |             |          |                          |                    |
| B18 | Check and clear baseboard heaters of obstructions                                                              | 4                         | 3                           | 7           | Year 1   |                          | Building Occupants |
| B19 | Adjust blinds (to retain heat in winter)<br>Use recommended thermostat set points (in winter set to 68 degrees | 4                         | 3                           | 7           | Year 1   |                          | Building Occupants |
| B20 | or less during daytime)                                                                                        | 4                         | 3                           | 7           | Year 1   |                          | Building Occupants |
| M19 | Optimize operating periods of ventilation systems supplying heated spaces                                      | 2                         | 3                           | 5           | Year 2   | seasonal review          |                    |
| M20 | Test and adjust ventilation systems to optimize outside air volumes                                            | 3                         | 3                           | 6           | Year 2   | seasonal review          |                    |
| M23 | Test and tune boiler efficiency                                                                                | 3                         | 3                           | 6           | Year 2   | seasonal review          |                    |
| M25 | Check heating system for flow balancing and air venting                                                        | 3                         | 3                           | 6           | Year 2   | seasonal review          |                    |
| EN1 | Check and seal exterior walls and openings                                                                     | 3                         | 3                           | 6           | Year 2   | 10 to 15                 |                    |
| EN5 | Seal window and door frames                                                                                    | 3                         | 3                           | 6           | Year 2   | 5                        |                    |
| M26 | Optimize fan-coil unit and entrance heater controls                                                            | 3                         | 3                           | 6           | Year 2   | seasonal review          |                    |
| M27 | Consider heating system zoning                                                                                 | 2                         | 3                           | 5           | Year 2   | n/a                      |                    |
| M18 | Use controls to prevent heaters from running when overhead doors<br>are open                                   | 1                         | 3                           | 4           | Year 2   | seasonal review          |                    |
| M22 | Test, repair, replace and right-size heating control valves and outside<br>air dampers                         | 2                         | 3                           | 5           | Year 3   | 10 to 15                 |                    |
| M21 | Apply CO control to vehicle area exhaust fans                                                                  | 1                         | 3                           | 4           | Year 4   | 10 to 15                 |                    |
| M24 | Upgrade heating system control to optimize space temperatures and<br>operating periods                         | 1                         | 3                           | 4           | Year 4   | 10 to 15                 |                    |
| EN2 | Insulate the attic adequately                                                                                  | 1                         | 3                           | 4           | Year 4   | 10 to 15                 |                    |
| EN3 | Reclad the building's exterior                                                                                 | 1                         | 3                           | 4           | Year 4   | 20 to 24                 |                    |
| EN4 | Replace single-pane windows with double-pane windows                                                           | 1                         | 3                           | 4           | Year 4   | 20 to 24                 |                    |
| EN6 | If replacing the roof, ensure R-value at least 22                                                              | 1                         | 3                           | 4           | Year 4   | n/a                      |                    |
| M28 | Install high efficiency burners                                                                                | 1                         | 3                           | 4           | Year 4   | 15 to 20                 |                    |
| M29 | Replace boilers with more efficient models                                                                     | 1                         | 3                           | 4           | Year 4   | 15 to 20                 |                    |
| M30 | Replace old rooftop units with energy efficient units                                                          | 1                         | 3                           | 4           | Year 4   | 15 to 20                 |                    |
| M31 | Install heat recovery or solar heating units                                                                   | 1                         | 3                           | 4           | Year 4   | 10 to 15                 |                    |

Behavioural Measures

Operational Measures

Retrofit/Capital Measures

**Table 247: Energy Saving Measures for Storage Facilities** 

# Proposed / Future Renewable Energy Installations

| Building Name                                | Building Address  | Renewable<br>Installation | System Size | Unit |
|----------------------------------------------|-------------------|---------------------------|-------------|------|
| PMMD warehouse                               | 3 Dohme Ave       | Geothermal                | 175         | kW   |
| Booth Yard Block D                           | 433 Eastern Ave   | Solar PV                  | 86          | kW   |
| Disco Yard                                   | 150 Disco Rd      | Solar PV                  | 300         | kW   |
| Ellesmere Yard                               | 1050 Ellesmere Rd | Solar PV                  | 362         | kW   |
| King Yard                                    | 1116 King St      | Solar PV                  | 175         | kW   |
| Northline Yard - Office &<br>Storage         | 30 Northline Rd   | Solar PV                  | 138         | kW   |
| Toryork Yard - Road<br>Opertion Garage & EMS | 61 Toryork        | Solar PV                  | 103         | kW   |

 Table 248: Proposed Renewable Energy Systems on Service Yards & Storage Facilities

# 3 Energy Management and Retrofit Plan

# 3.1 Implementation Costs and Modeled Savings for all Service Yards & Storage Facilities

The average budgeted cost for implementing suggested measures, based on previous experience with similar facilities, is \$4.20/ft<sup>2</sup> (see Appendix A). The budget allows for lighting audits, lighting retrofits and controls, mechanical system efficiency improvements, appliance replacement and controls and localized efficiency measures for the building envelope. The budget does not allow for major plant or equipment replacement or substantial building upgrades such as roof or window replacement. These items may be included if appropriate in projects for individual buildings, but would not provide rational Return on Investments (ROIs) based on energy savings alone and would therefore be budgeted separately.

Similar measures for consideration apply to high and medium potential buildings. A 20 percent premium is included for high potential buildings to ensure that all improvements necessary to achieve the targets are covered. Still, the ROIs for high potential buildings will be better than the rest.

Low potential buildings do not merit the more in-depth investigations planned for the other two categories. Rather, a checklist approach, guided by the indicated component energy savings potential, would identify the particular measures for each building. The budget allowance for low-potential buildings is set at 40 percent of the basic amount to provide a rational ROI for this group.

Note that due to the lower savings potential at Solid Waste Management facilities, lower implementation costs were used to provide a rational ROI for this Division. Specifically for this Division, the budget allowance for mid-potential buildings is set at 40 percent of that of the other Divisions and the budget allowance for low-potential buildings is set at \$0.75/ft<sup>2</sup>.

The total implementation costs, payback and cash flows for each of the Divisions are summarized in their respective sections below.

# **3.2** Implementation Process and Tools – Determining the Specific Measures for Each Building

Three types of tools are recommended to enable identification of specific measures in individual buildings:

- High Potential Buildings will undergo a Building Performance Audit incorporating measurement and testing to define retrofits and operational improvements. This also includes interval meter analysis and water consumption.
- Mid Potential Buildings will undergo an Energy Assessment including more in-depth analysis of monthly utility billing data for a number of years and analysis of interval meter or data-logger recordings of daily electricity use.
- Low Potential Buildings will use a simple Checklist to identify priority measures based on the conservation potential profile in this Plan.



The three approaches, budgeted analysis cost and numbers of buildings to which they apply are summarized in their respective Plans below.

# 3.3 Facilities Management Plan

The total implementation costs, payback and cash flows for Facilities Management facilities are summarized in Table 10 below.

| Annual Savings<br>Potential | Number of<br>facilities | Average Area<br>(ft <sup>2</sup> ) | Estimated<br>Implement<br>ation Cost<br>\$/ft <sup>2</sup> | Estimated<br>Dementation<br>Cost \$ | stimated<br>Savings<br>otential \$ | % of total<br>savings | Payback |
|-----------------------------|-------------------------|------------------------------------|------------------------------------------------------------|-------------------------------------|------------------------------------|-----------------------|---------|
| >\$100,000                  | 1                       | 84,701                             | 5.04                                                       | \$<br>426,894                       | \$<br>126,285                      | 36.7%                 | 3.38    |
| \$5,000 - \$100,000         | 9                       | 40,943                             | 4.20                                                       | \$<br>1,547,663                     | \$<br>217,495                      | 63.2%                 | 7.12    |
| < \$5,000                   | 3                       | 36,210                             | 1.68                                                       | \$<br>182,497                       | \$<br>597                          | 0.2%                  | 305.69  |
|                             | 13                      |                                    |                                                            | \$<br>2,157,053                     | \$<br>344,377                      |                       | 6.26    |

#### Table 249: Estimated Implementation Costs and Modeled Savings for Facilities Management

Paybacks are determined by actual current implementation costs divided by first year savings (so costs are not adjusted for inflation and utility prices are not adjusted for escalation).

The three implementation tools, budgeted analysis cost and numbers of Facilities Management facilities to which they apply are summarized in Table 11 below.

|                |                                        | #  | Cost     | Savings Potential   | Resources                      |
|----------------|----------------------------------------|----|----------|---------------------|--------------------------------|
| High Potential | Building<br>Performance<br>Audit (BPA) | 1  | \$ 7,500 | > \$100,000         | engineer; energy<br>analyst    |
| Mid Potential  | Energy<br>Assessments                  | 9  | \$ 750   | \$5,000 - \$100,000 | energy analyst                 |
| Low Potential  | Checklists                             | 3  | \$ 150   | < \$5,000           | Division Champion and<br>staff |
|                |                                        | 13 |          |                     |                                |

Table 250: Assessment Tools Used to Determine Specific Energy-saving Measures for Facilities Management

### 3.3.1 Building Performance Audit

There is 1 facilities management building with over \$100,000 in annual energy saving potential. This building can save an average of 64% of its total energy use. The total annual energy savings are estimated to be over \$126,280 and the annual GHG savings are estimated to be approximately 523,700 kg.

This building can save an average of 42% of its total electricity use (44% Electric Baseload, 0% Electric Cooling and 0% Electric Heating). The total annual electricity savings are estimated to be approximately \$60,384.



This building can save an average of 69% of its total gas use (0% Gas Baseload and 70% Gas Heating). The total annual gas savings are estimated to be approximately \$65,900.

This building will undergo a Building Performance Audit (see the Implementation Plan for further details). For a complete description of the Building Performance Audit, refer to Appendix A.

See Appendix B for the associated energy savings potential by energy use component.

The highest percentage reductions for this building can be found in Electric Baseload and Gas Heating. After the implementation of the proposed measures, these facilities are eligible to receive over \$59,850 in incentives based on current incentives available from the Ontario Power Authority.

# 3.3.2 Energy Assessment

There are 9 facilities management buildings with between \$5,000 and \$100,000 in annual energy saving potential.

These 9 buildings can save an average of 36% of their total energy use. The total annual energy savings are estimated to be over \$217,490 and the annual GHG savings are approximately 711,400 kg.

These 9 buildings can save an average of 26% of their total electricity use (28% Electric Baseload, 43% Electric Cooling and 4% Electric Heating). The total annual electricity savings are estimated to be approximately \$133,580.

These 9 buildings can save an average of 40% of their total gas use (20% Gas Baseload and 35% Gas Heating). The total annual gas savings are estimated to be approximately \$83,900.

These 9 buildings will undergo an Energy Assessment with highest potential buildings focused on first (see the Implementation Plan for further details).

See Appendix B for a list of these 9 buildings and their associated energy savings potential by energy use component.

The highest percentage reductions for this group of 9 buildings can be found in Electric Cooling and Gas Heating. For each individual building, the energy components with highest percentage savings potential will be the focus of the Energy Assessment in order to maximize energy savings. For a complete description of the Energy Assessment, refer to Appendix A.

After the implementation of the proposed measures, these buildings are eligible to receive over \$108,600 in incentives based on current incentives available from the Ontario Power Authority.

# 3.3.3 Energy Savings Checklist

There are 3 buildings with less than \$5,000 in savings potential.

These 3 buildings can save an average of 3% of their total energy use. The total annual energy savings are estimated to be approximately \$600 and the annual GHG savings are approximately 4,300 kg.



These 3 buildings can save an average of 0% of their total electricity use and an average of 6% of their total gas use. The total annual gas savings are estimated to be approximately \$600.

These 3 buildings will undergo a checklist approach with highest potential buildings focused on first (see the Implementation Plan for further details).

See Appendix B for a list of these 3 buildings and their associated energy savings potential by energy use component.

The energy savings checklist will be used by the Division Champion for the facilities management buildings in conjunction with the building operator and/or service contractor for each building. They will focus on measures related to energy components with high potential savings (colour-coded red) in order to maximize savings.

# 3.3.4 Implementation Budget

Table 12 below shows the total budget to implement the energy management and retrofit plan, including costs for identifying measures and the implementation costs for all 13 facilities. The total costs to implement the energy management and retrofit plan for buildings are estimated to be

| BUDGET               | Г  |           |
|----------------------|----|-----------|
|                      |    |           |
| Building Performance |    |           |
| Audit (BPA)          | \$ | 7,500     |
| Energy Assessment    | \$ | 6,750     |
| Checklist            | \$ | 450       |
| Implementation       | \$ | 2,157,053 |
| Total                | \$ | 2,171,753 |

\$2,171,753.Note the Implementation costs are not adjusted for inflation.

Table 251: Total Budget - Energy Management and Retrofit Plan for Facilities Management

#### 3.3.5 10-Year Implementation Plan

The 10-year implementation plan is summarized in Table 13 and Figure 5 below.

The plan will roll-out over 10 years, and the buildings with the highest savings potential will be focused on first.

Identification of measures from the Building Performance Audits will occur in Year 1. The implementation of these measures will occur in Year 2. Identification of measures from Energy Assessments will begin in Year 1, with all 9 Energy Assessments completed by the end of Year 5. The implementation of these measures will begin in Year 2, and will be completed by the end of Year 6. Identification of measures from the Checklists will begin in Year 2, with all 3 Checklists completed by the end of Year 4. The implementation of these measures will begin in Year 3.



Annual Costs refer to the assessment and implementation costs, training, measurement and verification (M&V), and maintenance costs.

Over a 10 year period, the cumulative net cash flow for this plan is estimated to be \$317,496. The cumulative net cash flow becomes positive in Year 9.

The implementation plan includes the following assumptions:

- Approximately 77% of the project budget will be spent in the first 5 years, and the other 23% in the following 5 years.
- The percentage of facilities to be retrofitted in each year is proportional to the percentage of the budget spent in that year. 77% of facilities will be retrofitted in the first 5 years and 23% in the following 5 years.
- 25% of energy savings potential of retrofitted facilities is achieved in the first year, 75% in the second year, and 100% in each of the following years.
- Project costs are adjusted for inflation (2% annually) and energy savings are adjusted for utility price escalation (5% annually).
- 100% of incentives are achieved in the year when facilities are retrofitted, and incentives are NOT adjusted for utility price escalation.

|                                    | 1   | fear 1 |     | Year 2  |     | Year 3    |     | Year 4    |     | Year 5    |     | Year 6    |     | Year 7  |     | Year 8  |     | Year 9  |     | Year 10 |     | Totals    |
|------------------------------------|-----|--------|-----|---------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|---------|-----|---------|-----|---------|-----|---------|-----|-----------|
|                                    |     |        |     |         |     |           |     |           |     |           |     |           |     |         |     |         |     |         |     |         |     |           |
| High Potential - Building          |     |        |     |         |     |           |     |           |     |           |     |           |     |         |     |         |     |         |     |         |     |           |
| Performance Audit                  |     | 1      |     | 0       |     | 0         |     | 0         |     | 0         |     | 0         |     | 0       |     | 0       |     | 0       |     | 0       |     | 1         |
| Mid Potential - Energy Assessment  |     | 2      |     | 2       |     | 2         |     | 2         |     | 1         |     | 0         |     | 0       |     | 0       |     | 0       |     | 0       |     | 9         |
| Low Potential - Checklist          |     | 0      |     | 1       |     | 1         |     | 1         |     | 0         |     | 0         |     | 0       |     | 0       |     | 0       |     | 0       |     | 3         |
| Assessment Costs                   | \$  | 9,000  | \$  | 1,656   | \$  | 1,659     | \$  | 1,662     | \$  | 750       | \$  |           | \$  | -       | \$  | -       | \$  | -       | \$  | -       | \$  | 14,728    |
| Implementation Costs               | \$  | -      | \$  | 801,960 | \$  | 429,532   | \$  | 438,122   | \$  | 446,885   | \$  | 193,658   | \$  | -       | \$  | -       | \$  | -       | \$  | -       | \$  | 2,310,157 |
| Training and M&V costs (10.0% of   |     |        |     |         |     |           |     |           |     |           |     |           |     |         |     |         |     |         |     |         |     |           |
| Assessment and Implementation      |     |        |     |         |     |           |     |           |     |           |     |           |     |         |     |         |     |         |     |         |     |           |
| Costs)                             | \$  | 900    | \$  | 80,362  | \$  | 43,119    | \$  | 43,978    | \$  | 44,763    | \$  | 19,366    | \$  | -       | \$  | -       | \$  | -       | \$  | -       | \$  | 232,488   |
| Maintenance costs (5.0% of         |     |        |     |         |     |           |     |           |     |           |     |           |     |         |     |         |     |         |     |         |     |           |
| Implementation Costs, cumulative)  | \$  | -      | \$  | 40,098  | \$  | 61,575    | \$  | 83,481    | \$  | 105,825   | \$  | 115,508   | \$  | 115,508 | \$  | 115,508 | Ş   | 115,508 | \$  | 115,508 |     |           |
| Annual Costs                       | Ş   | 9,900  | Ş   | 924,075 | Ş   | 535,885   | \$  | 567,244   | Ş   | 598,223   | \$  | 328,531   | \$  | 115,508 | \$  | 115,508 | \$  | 115,508 | \$  | 115,508 | \$  | 3,425,890 |
|                                    |     |        |     |         |     |           |     |           |     |           |     |           |     |         |     |         |     |         |     |         |     |           |
| Estimated Achieved Annual Savings  |     |        | \$  | 65,774  | \$  | 213,460   | \$  | 349,725   | \$  | 408,425   | \$  | 450,721   | \$  | 482,597 | \$  | 508,801 | \$  | 534,241 | \$  | 560,953 | \$  | 3,574,699 |
| Estimated Incentives               | \$  | -      | \$  | 119,094 | \$  | 25,180    | \$  | 14,613    | \$  | 7,140     | \$  | 2,660     | \$  | -       | \$  | -       | \$  | -       | \$  | -       | \$  | 168,688   |
| Annual Savings and Incentives      | \$  | -      | \$  | 184,868 | \$  | 238,640   | \$  | 364,338   | \$  | 415,565   | \$  | 453,382   | \$  | 482,597 | \$  | 508,801 | \$  | 534,241 | \$  | 560,953 | \$  | 3,743,386 |
| Borrowing costs based on           |     |        |     |         |     |           |     |           |     |           |     |           |     |         |     |         |     |         |     |         |     |           |
| cumulative cash flows (4.0% per    |     |        |     |         |     |           |     |           |     |           |     |           |     |         |     |         |     |         |     |         |     |           |
| annum)                             |     |        | -\$ | 396     | -\$ | 29,964    | -\$ | 41,854    | -\$ | 49,970    | -\$ | 57,277    | -\$ | 52,283  | -\$ | 37,599  | -\$ | 21,867  | -\$ | 5,118   | -\$ | 296,328   |
| Net Cash Flow incl borrowing costs | -\$ | 9,900  | -\$ | 739,603 | -\$ | 327,209   | -\$ | 244,760   | -\$ | 232,628   | \$  | 67,574    | \$  | 314,806 | \$  | 355,694 | \$  | 396,866 | \$  | 440,328 | \$  | 21,168    |
| Cumulative Net Cash Flow           | -\$ | 9,900  | -\$ | 749,107 | -\$ | 1,046,352 | -\$ | 1,249,258 | -\$ | 1,431,916 | -\$ | 1,307,065 | -\$ | 939,976 | -\$ | 546,683 | -\$ | 127,950 | \$  | 317,496 |     |           |

Table 252: Cash Flow for 10-Year Implementation Plan for Facilities Management



Figure 146: Cash Flow for 10-Year Implementation Plan for Facilities Management

# 3.4 Parks, Forestry & Recreation Plan

The total implementation costs, payback and cash flows for Parks, Forestry & Recreation facilities are summarized in Table 14 below.

| Annual Savings<br>Potential | Number of<br>facilities | Average Area<br>(ft²) | Estimated<br>Implementation<br>Cost \$/ft <sup>2</sup> | D 12 | stimated<br>lementation<br>Cost \$ | stimated<br>Savings<br>otential Ş | % of total savings | Payback |
|-----------------------------|-------------------------|-----------------------|--------------------------------------------------------|------|------------------------------------|-----------------------------------|--------------------|---------|
| > \$100,000                 | 0                       | ·······               | 5.04                                                   | \$   | 4.                                 | \$                                | 0.0%               | 0.00    |
| \$5,000 - \$100,000         | 6                       | 19,617                | 4.20                                                   | \$   | 494,350                            | \$<br>156,384                     | 88.7%              | 3,16    |
| < \$5,000                   | 9                       | 17,595                | 1.68                                                   | \$   | 266,033                            | \$<br>19,933                      | 11.3%              | 13.35   |
|                             | 15                      |                       |                                                        | \$   | 760,384                            | \$<br>176,317                     | 11                 | 4.31    |

#### Table 253: Estimated Implementation Costs and Modeled Savings for Parks, Forestry & Recreation

Paybacks are determined by actual current implementation costs divided by first year savings (so costs are not adjusted for inflation and utility prices are not adjusted for escalation).

The three implementation tools, budgeted analysis cost and numbers of Parks, Forestry & Recreation facilities to which they apply are summarized in Table 15 below.



| Annual Savings<br>Potential | Number of<br>facilities | Average Area<br>(ft <sup>2</sup> ) Estimated<br>Implementation<br>Cost \$/ft <sup>2</sup> |      | Estimated<br>lementation<br>Cost \$ | stimated<br>Savings<br>otential \$ | % of total<br>savings | Payback |
|-----------------------------|-------------------------|-------------------------------------------------------------------------------------------|------|-------------------------------------|------------------------------------|-----------------------|---------|
| >\$100,000                  | 0                       | -                                                                                         | 5.04 | \$<br>-                             | \$<br>-                            | 0.0%                  | 0.00    |
| \$5,000 - \$100,000         | 6                       | 19,617                                                                                    | 4.20 | \$<br>494,350                       | \$<br>156,384                      | 88.7%                 | 3.16    |
| < \$5,000                   | 9                       | 17,595                                                                                    | 1.68 | \$<br>266,033                       | \$<br>19,933                       | 11.3%                 | 13.35   |
|                             | 15                      |                                                                                           |      | \$<br>760,384                       | \$<br>176,317                      |                       | 4.31    |

# Table 254: Assessment Tools Used to Determine Specific Energy-saving Measures for Parks, Forestry & Recreation

### 3.4.1 Building Performance Audit

There are no parks, forestry & recreation buildings with over \$100,000 in annual energy saving potential so none will undergo a Building Performance Audit.

### 3.4.2 Energy Assessment

There are 6 buildings with between \$5,000 and \$100,000 in annual energy saving potential.

These 6 buildings can save an average of 55% of their total energy use. The total annual energy savings are estimated to be over \$156,380 and the annual GHG savings are approximately 316,260 kg.

These 6 buildings can save an average of 53% of their total electricity use (49% Electric Baseload, 79% Electric Cooling and 14% Electric Heating). The total annual electricity savings are estimated to be approximately \$126,360.

These 6 buildings can save an average of 56% of their total gas use (33% Gas Baseload and 57% Gas Heating). The total annual gas savings are estimated to be approximately \$30,000.

These 6 buildings will undergo an Energy Assessment with highest potential buildings focused on first (see the Implementation Plan for further details).

See Appendix B for a list of these 6 buildings and their associated energy savings potential by energy use component.

The highest percentage reductions for this group of 6 buildings can be found in Electric Cooling and Gas Heating. For each individual building, the energy components with highest percentage savings potential will be the focus of the Energy Assessment in order to maximize energy savings. For a complete description of the Energy Assessment, refer to Appendix A.

After the implementation of the proposed measures, these buildings are eligible to receive over \$83,750 in incentives based on current incentives available from the Ontario Power Authority.

### 3.4.3 Energy Savings Checklist

There are 9 buildings with less than \$5,000 in savings potential.



These 9 buildings can save an average of 20% of their total energy use. The total annual energy savings are estimated to be approximately \$19,900 and the annual GHG savings are approximately 110,160 kg.

These 9 buildings can save an average of 4% of their total electricity use (4% Electric Baseload, 26% Electric Cooling and 0% Electric Heating). The total annual electricity savings are estimated to be approximately \$5,260.

These 9 buildings can save an average of 27% of their total gas use (30% Gas Baseload and 27% Gas Heating). The total annual gas savings are estimated to be approximately \$14,670.

These 9 buildings will undergo a checklist approach with highest potential buildings focused on first (see the Implementation Plan for further details).

See Appendix B for a list of these 9 buildings and their associated energy savings potential by energy use component.

The highest percentage reductions for this group of 9 buildings can be found in Electric Cooling and Gas Baseload.

The energy savings checklist will be used by the Division Champion for the parks, forestry and recreation buildings in conjunction with the building operator and/or service contractor for each building. They will focus on measures related to energy components with high potential savings (colour-coded red) in order to maximize savings.

### 3.4.4 Implementation Budget

Table 16 below shows the total budget to implement the energy management and retrofit plan, including costs for identifying measures and the implementation costs for all 15 facilities. The total costs to implement the energy management and retrofit plan for buildings are estimated to be \$766,234. Note the Implementation costs are not adjusted for inflation.

| BUDGET                              |               |
|-------------------------------------|---------------|
| Building Performance Audit<br>(BPA) | \$<br>-       |
| Energy Assessment                   | \$<br>4,500   |
| Checklist                           | \$<br>1,350   |
| Implementation                      | \$<br>760,384 |
| Total                               | \$<br>766,234 |

Table 255: Total Budget - Energy Management and Retrofit Plan for Parks, Forestry & Recreation

### 3.4.5 10-Year Implementation Plan

The 10-year implementation plan is summarized in Table 17 and Figure 6 below.



The plan will roll-out over 10 years, and the buildings with the highest savings potential will be focused on first.

Identification of measures from Energy Assessments will begin in Year 1, with all 6 Energy Assessments completed by the end of Year 5. The implementation of these measures will begin in Year 2, and will be completed by the end of Year 6. Identification of measures from the Checklists will begin in Year 2, with all 9 Checklists completed by the end of Year 4. The implementation of these measures will begin in Year 3.

Annual Costs refer to the assessment and implementation costs, training, measurement and verification (M&V), and maintenance costs.

Over a 10 year period, the cumulative net cash flow for this plan is estimated to be \$652,936. The cumulative net cash flow becomes positive in Year 8.

The implementation plan includes the following assumptions:

- Approximately 74% of the project budget will be spent in the first 5 years, and the other 26% in the following 5 years.
- The percentage of facilities to be retrofitted in each year is proportional to the percentage of the budget spent in that year. 74% of facilities will be retrofitted in the first 5 years and 26% in the following 5 years.
- 25% of energy savings potential of retrofitted facilities is achieved in the first year, 75% in the second year, and 100% in each of the following years.
- Project costs are adjusted for inflation (2% annually) and energy savings are adjusted for utility price escalation (5% annually).
- 100% of incentives are achieved in the year when facilities are retrofitted, and incentives are NOT adjusted for utility price escalation.



|                                    | Y   | 'ear 1 |     | Year 2  | Ye  | ear 3   |     | Year 4  |     | Year 5  |     | Year 6  |     | Year 7  |     | Year 8  | Year 9        |    | Year 10 |     | Totals    |
|------------------------------------|-----|--------|-----|---------|-----|---------|-----|---------|-----|---------|-----|---------|-----|---------|-----|---------|---------------|----|---------|-----|-----------|
|                                    |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |               |    |         |     |           |
| High Potential - Building          |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |               |    |         |     |           |
| Performance Audit                  |     | 0      |     | 0       |     | 0       |     | 0       |     | 0       |     | 0       |     | 0       |     | 0       | 0             |    | 0       |     | 0         |
| Mid Potential - Energy Assessment  |     | 2      |     | 1       |     | 1       |     | 1       |     | 1       |     | 0       |     | 0       |     | 0       | 0             |    | 0       |     | 6         |
| Low Potential - Checklist          |     | 0      |     | 3       |     | 3       |     | 3       |     | 0       |     | 0       |     | 0       |     | 0       | 0             |    | 0       |     | 9         |
| Assessment Costs                   | \$  | 1,500  | \$  | 1,218   | \$  | 1,228   | \$  | 1,237   | \$  | 750     | \$  | -       | \$  | -       | Ş   | -       | \$<br>-       | \$ | -       | \$  | 5,933     |
| Implementation Costs               | \$  |        | \$  | 171,441 | \$  | 181,540 | \$  | 185,171 | Ş   | 188,874 | \$  | 92,786  | \$  |         | \$  | -       | \$<br>-       | \$ | -       | \$  | 819,813   |
| Training and M&V costs (10.0% of   |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |               |    |         |     |           |
| Assessment and Implementation      |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |               |    |         |     |           |
| Costs)                             | \$  | 150    | \$  | 17,266  | \$  | 18,277  | \$  | 18,641  | \$  | 18,962  | \$  | 9,279   | \$  | -       | \$  | -       | \$<br>-       | \$ | -       | \$  | 82,575    |
| Maintenance costs (5.0% of         |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |               |    |         |     |           |
| Implementation Costs, cumulative)  | \$  | -      | \$  | 8,572   | ş   | 17,649  | Ş   | 26,908  | \$  | 36,351  | \$  | 40,991  | \$  | 40,991  | \$  | 40,991  | \$<br>40,991  | Ş  | 40,991  |     |           |
| Annual Costs                       | Ş   | 1,650  | Ş   | 198,497 | Ş   | 218,694 | Ş   | 231,957 | Ş   | 244,938 | \$  | 143,056 | \$  | 40,991  | \$  | 40,991  | \$<br>40,991  | \$ | 40,991  | \$  | 1,202,754 |
|                                    |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |               |    |         |     |           |
| Estimated Achieved Annual Savings  |     |        | \$  | 26,933  | \$  | 91,531  | \$  | 158,827 | \$  | 195,790 | \$  | 223,766 | \$  | 245,212 | \$  | 260,500 | \$<br>273,525 | \$ | 287,202 | \$  | 1,763,286 |
| Estimated Incentives               | \$  | -      | \$  | 53,901  | \$  | 19,334  | \$  | 9,178   | \$  | 6,193   | \$  | 3,798   | \$  | -       | \$  | -       | \$<br>-       | \$ | -       | \$  | 92,403    |
| Annual Savings and Incentives      | \$  | -      | \$  | 80,833  | \$  | 110,865 | \$  | 168,004 | \$  | 201,983 | \$  | 227,564 | \$  | 245,212 | \$  | 260,500 | \$<br>273,525 | \$ | 287,202 | \$  | 1,855,689 |
| Borrowing costs based on           |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |               |    |         |     |           |
| cumulative cash flows (4.0% per    |     |        |     |         |     |         |     |         |     |         |     |         |     |         |     |         |               |    |         |     |           |
| annum)                             |     |        | -\$ | 66      | -\$ | 4,773   | -\$ | 9,086   | -\$ | 11,644  | -\$ | 13,362  | -\$ | 9,982   | -\$ | 1,813   | \$<br>-       | \$ | -       | -\$ | 50,725    |
| Net Cash Flow incl borrowing costs | -\$ | 1,650  | -\$ | 117,729 | -\$ | 112,601 | -\$ | 73,038  | -\$ | 54,600  | \$  | 71,146  | \$  | 194,240 | \$  | 217,697 | \$<br>232,535 | \$ | 246,211 | \$  | 602,211   |
| Cumulative Net Cash Flow           | -\$ | 1,650  | -\$ | 119,313 | -\$ | 227,142 | -\$ | 291,095 | -\$ | 334,050 | -\$ | 249,542 | -\$ | 45,320  | \$  | 174,190 | \$<br>406,724 | \$ | 652,936 |     |           |

Table 256: Cash Flow for 10-Year Implementation Plan for Parks, Forestry & Recreation





#### 3.5 Transportation Services Plan

The total implementation costs, payback and cash flows for Transportation Services facilities are summarized in Table 18 below.



| Annual Savings<br>Potential | Number of<br>facilities | Average Area (ft <sup>2</sup> ) | Estimated<br>Implement<br>ation Cost<br>\$/ft <sup>2</sup> | Estimated<br>Dementation<br>Cost \$ | stimated<br>Savings<br>otential \$ | % of total<br>savings | Payback |
|-----------------------------|-------------------------|---------------------------------|------------------------------------------------------------|-------------------------------------|------------------------------------|-----------------------|---------|
| >\$100,000                  | 1                       | 236,644                         | 5.04                                                       | \$<br>1,192,687                     | \$<br>162,707                      | 41.8%                 | 7.33    |
| \$5,000 - \$100,000         | 11                      | 23,013                          | 4.20                                                       | \$<br>1,063,186                     | \$<br>221,784                      | 57.0%                 | 4.79    |
| < \$5,000                   | 6                       | 27,801                          | 1.68                                                       | \$<br>280,239                       | \$<br>4,460                        | 1.1%                  | 62.84   |
|                             | 18                      |                                 |                                                            | \$<br>2,536,112                     | \$<br>388,951                      |                       | 6.52    |

#### Table 257: Estimated Implementation Costs and Modeled Savings for Transportation Services

Paybacks are determined by actual current implementation costs divided by first year savings (so costs are not adjusted for inflation and utility prices are not adjusted for escalation).

The three implementation tools, budgeted analysis cost and numbers of Transportation Services facilities to which they apply are summarized in Table 19 below.

|                |                                        | #  | Cost     | Savings Potential   | Resources                      |
|----------------|----------------------------------------|----|----------|---------------------|--------------------------------|
| High Potential | Building<br>Performance<br>Audit (BPA) | 1  | \$ 7,500 | > \$100,000         | engineer; energy<br>analyst    |
| Mid Potential  | Energy<br>Assessments                  | 11 | \$ 750   | \$5,000 - \$100,000 | energy analyst                 |
| Low Potential  | Checklists                             | 6  | \$ 150   | < \$5,000           | Division Champion and<br>staff |
|                |                                        | 18 |          |                     |                                |

Table 258: Assessment Tools Used to Determine Specific Energy-saving Measures for Transportation Services

#### 3.5.1 Building Performance Audit

There is 1 Transportation Services building with over \$100,000 in annual energy saving potential.

This building can save an average of 35% of its total energy use. The total annual energy savings are estimated to be over \$162,700 and the annual GHG savings are estimated to be approximately 401,230 kg.

This building can save an average of 35% of its total electricity use (34% Electric Baseload, 0% Electric Cooling and 0% Electric Heating). The total annual electricity savings are estimated to be approximately \$120,260.

This building can save an average of 42% of its total gas use (100% Gas Baseload and 41% Gas Heating). The total annual gas savings are estimated to be approximately \$42,444.

This building will undergo a Building Performance Audit (see the Implementation Plan for further details). For a complete description of the Building Performance Audit, refer to Appendix A.

See Appendix B for the associated energy savings potential by energy use component.



The highest percentage reductions for this building can be found in Gas Baseload and Gas Heating. After the implementation of the proposed measures, these facilities are eligible to receive over \$85,000 in incentives based on current incentives available from the Ontario Power Authority.

## 3.5.2 Energy Assessment

There are 11 transportation services buildings with between \$5,000 and \$100,000 in annual energy saving potential.

These 11 buildings can save an average of 42% of their total energy use. The total annual energy savings are estimated to be over \$221,780. The annual GHG savings are approximately 496,780 kg.

These 11 buildings can save an average of 35% of their total electricity use (35% Electric Baseload, 54% Electric Cooling and 31% Electric Heating). The total annual electricity savings are estimated to be approximately \$171,700.

These 11 buildings can save an average of 47% of their total gas use (80% Gas Baseload and 45% Gas Heating). The total annual gas savings are estimated to be approximately \$50,000.

These 11 buildings will undergo an Energy Assessment with highest potential buildings focused on first (see the Implementation Plan for further details).

See Appendix B for a list of these buildings and their associated energy savings potential by energy use component.

The highest percentage reductions for this group of 11 buildings can be found in Electric Cooling and Gas Baseload. For each individual building, the energy components with highest percentage savings potential will be the focus of the Energy Assessment in order to maximize energy savings. For a complete description of the Energy Assessment, refer to Appendix A.

After the implementation of the proposed measures, these transportation services are eligible to receive over \$117,380 in incentives based on current incentives available from the Ontario Power Authority.

### 3.5.3 Energy Savings Checklist

There are 6 transportation services buildings with less than \$5,000 in savings potential.

These 6 buildings can save an average of 3% of their total energy use. The total annual energy savings are estimated to be approximately \$4,460 and the annual GHG savings are approximately 20,170 kg.

These 6 buildings can save an average of 2% of their total electricity use (1% Electric Baseload, 37% Electric Cooling and 0% Electric Heating). The total annual electricity savings are estimated to be approximately \$1,870.

These 6 buildings can save an average of 3% of their total gas use (all in Gas Baseload). The total annual gas savings are estimated to be approximately \$2,590.



These 6 buildings will undergo a checklist approach with highest potential transportation services buildings focused on first (see the Implementation Plan for further details).

See Appendix B for a list of these 6 transportation services buildings and their associated energy savings potential by energy use component.

The highest percentage reductions for this group of 6 buildings can be found in Electric Cooling and Gas Baseload.

The energy savings checklist will be used by the Division Champion for the transportation services buildings in conjunction with the building operator and/or service contractor for each building. They will focus on measures related to energy components with high potential savings (colour-coded red) in order to maximize savings.

# 3.5.4 Implementation Budget

Table 20 below shows the total budget to implement the energy management and retrofit plan, including costs for identifying measures and the implementation costs for all 18 facilities. The total costs to implement the energy management and retrofit plan for transportation services are estimated to be \$2,552,762. Note the Implementation costs are not adjusted for inflation.

| BUDGE                | Г  |           |
|----------------------|----|-----------|
|                      |    |           |
| Building Performance |    |           |
| Audit (BPA)          | \$ | 7,500     |
| Energy Assessment    | \$ | 8,250     |
| Checklist            | \$ | 900       |
| Implementation       | \$ | 2,536,112 |
| Total                | \$ | 2,552,762 |

Table 259: Total Budget - Energy Management and Retrofit Plan for Transportation Services

### 3.5.5 10-Year Implementation Plan

The 10-year implementation plan is summarized in Table 21 and Figure 7 below.

The plan will roll-out over 10 years, and the buildings with the highest savings potential will be focused on first.

Identification of measures from the Building Performance Audits will occur in Year 1 and the implementation of these measures will occur in Year 2. Identification of measures from Energy Assessments will begin in Year 1, with all 11 Energy Assessments completed by the end of Year 6. The implementation of these measures will begin in Year 2, and will be completed by the end of Year 7. Identification of measures from the Checklists will begin in Year 2, with all 6 Checklists completed by the end of Year 4. The implementation of these measures will begin of these measures will begin in Year 3.



Annual Costs refer to the assessment and implementation costs, training, measurement and verification (M&V), and maintenance costs.

Over a 10 year period, the cumulative net cash flow for this plan is estimated to be \$72,637. The cumulative net cash flow becomes positive in Year 10.

The implementation plan includes the following assumptions:

- Approximately 74% of the project budget will be spent in the first 5 years, and the other 26% in the following 5 years.
- The percentage of facilities to be retrofitted in each year is proportional to the percentage of the budget spent in that year. 74% of facilities will be retrofitted in the first 5 years and 26% in the following 5 years.
- 25% of energy savings potential of retrofitted facilities is achieved in the first year, 75% in the second year, and 100% in each of the following years.
- Project costs are adjusted for inflation (2% annually) and energy savings are adjusted for utility price escalation (5% annually).
- 100% of incentives are achieved in the year when facilities are retrofitted, and incentives are NOT adjusted for utility price escalation.

|                                    | Y   | Year 1 Year 2 |     | Year 3 Y  |     | Year 4    |     | Year 5    |     | Year 6    |     | Year 7    |     | Year 8    |     | Year 9  |     | Year 10 |     | Totals  |     |           |
|------------------------------------|-----|---------------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|---------|-----|---------|-----|---------|-----|-----------|
|                                    |     |               |     |           |     |           |     |           |     |           |     |           |     |           |     |         |     |         |     |         |     |           |
| High Potential - Building          |     |               |     |           |     |           |     |           |     |           |     |           |     |           |     |         |     |         |     |         |     |           |
| Performance Audit                  |     | 1             |     | 0         |     | 0         |     | 0         |     | 0         |     | 0         |     | 0         |     | 0       |     | 0       |     | 0       |     | 1         |
| Mid Potential - Energy Assessment  |     | 2             |     | 2         |     | 2         |     | 2         |     | 2         |     | 1         |     | 0         |     | 0       |     | 0       |     | 0       |     | 11        |
| Low Potential - Checklist          |     | 0             |     | 2         |     | 2         |     | 2         |     | 0         |     | 0         |     | 0         |     | 0       |     | 0       |     | 0       |     | 6         |
| Assessment Costs                   | \$  | 9,000         | \$  | 1,812     | \$  | 1,818     | \$  | 1,825     | \$  | 1,500     | \$  | 750       | \$  | -         | \$  | -       | \$  | -       | \$  | -       | \$  | 16,705    |
| Implementation Costs               | \$  |               | \$  | 1,441,988 | \$  | 304,269   | \$  | 310,354   | \$  | 316,561   | \$  | 217,695   | \$  | 111,024   | \$  |         | \$  | -       | \$  |         | \$  | 2,701,891 |
| Training and M&V costs (10.0% of   |     |               |     |           |     |           |     |           |     |           |     |           |     |           |     |         |     |         |     |         |     |           |
| Assessment and Implementation      |     |               |     |           |     |           |     |           |     |           |     |           |     |           |     |         |     |         |     |         |     |           |
| Costs)                             | \$  | 900           | \$  | 144,380   | \$  | 30,609    | \$  | 31,218    | \$  | 31,806    | \$  | 21,844    | \$  | 11,102    | \$  | -       | \$  | -       | \$  | -       | \$  | 271,860   |
| Maintenance costs (5.0% of         |     |               |     |           |     |           |     |           |     |           |     |           |     |           |     |         |     |         |     |         |     |           |
| Implementation Costs, cumulative)  | \$  | -             | \$  | 72,099    | \$  | 87,313    | \$  | 102,831   | \$  | 118,659   | \$  | 129,543   | \$  | 135,095   | \$  | 135,095 | \$  | 135,095 | \$  | 135,095 |     |           |
| Annual Costs                       | \$  | 9,900         | \$  | 1,660,280 | \$  | 424,009   | \$  | 446,227   | \$  | 468,526   | \$  | 369,832   | \$  | 257,221   | \$  | 135,095 | \$  | 135,095 | \$  | 135,095 | \$  | 4,041,279 |
|                                    |     |               |     |           |     |           |     |           |     |           |     |           |     |           |     |         |     |         |     |         |     |           |
| Estimated Achieved Annual Savings  |     |               | \$  | 70,626    | \$  | 224,855   | \$  | 362,453   | \$  | 425,420   | \$  | 483,569   | \$  | 533,459   | \$  | 572,093 | \$  | 603,390 | \$  | 633,560 | \$  | 3,909,425 |
| Estimated Incentives               | \$  |               | \$  | 136,940   | \$  | 23,610    | \$  | 15,811    | \$  | 15,067    | \$  | 9,097     | \$  | 3,967     | \$  | -       | \$  | -       | \$  | -       | \$  | 204,491   |
| Annual Savings and Incentives      | \$  | -             | \$  | 207,565   | \$  | 248,465   | \$  | 378,264   | \$  | 440,487   | \$  | 492,666   | \$  | 537,426   | \$  | 572,093 | \$  | 603,390 | \$  | 633,560 | \$  | 4,113,916 |
| Borrowing costs based on           |     |               |     |           |     |           |     |           |     |           |     |           |     |           |     |         |     |         |     |         |     |           |
| cumulative cash flows (4.0% per    |     |               |     |           |     |           |     |           |     |           |     |           |     |           |     |         |     |         |     |         |     |           |
| annum)                             |     |               | -\$ | 396       | -\$ | 58,505    | -\$ | 65,526    | -\$ | 68,245    | -\$ | 69,366    | -\$ | 64,453    | -\$ | 53,245  | -\$ | 35,765  | -\$ | 17,033  | -\$ | 432,534   |
| Net Cash Flow incl borrowing costs | -\$ | 9,900         | -\$ | 1,453,111 | -\$ | 234,048   | -\$ | 133,490   | -\$ | 96,284    | \$  | 53,467    | \$  | 215,752   | \$  | 383,754 | \$  | 432,531 | \$  | 481,432 | -\$ | 359,898   |
| Cumulative Net Cash Flow           | -\$ | 9,900         | -\$ | 1,462,615 | -\$ | 1,638,158 | -\$ | 1,706,122 | -\$ | 1,734,161 | -\$ | 1,611,327 | -\$ | 1,331,122 | -\$ | 894,124 | -\$ | 425,828 | \$  | 72,637  |     |           |

Table 260: Cash Flow for 10-Year Implementation Plan for Transportation Services



Figure 148: Cash Flow for 10-Year Implementation Plan for Transportation Services

# 3.6 Solid Waste Management Plan

The total implementation costs, payback and cash flows for Solid Waste Management facilities are summarized in Table 261Table 261 below.

| Annual Savings<br>Potential | Number of<br>facilities | Average Area<br>(ft <sup>2</sup> ) | Estimated<br>Implement<br>ation Cost | Imp | Estimated<br>lementation<br>Cost \$ | S  | timated<br>avings<br>tential \$ | % of total<br>savings | Payback |
|-----------------------------|-------------------------|------------------------------------|--------------------------------------|-----|-------------------------------------|----|---------------------------------|-----------------------|---------|
| > \$100,000                 | 0                       | -                                  | 5.04                                 | \$  | -                                   | \$ | -                               | 0.0%                  | 0.00    |
| \$5,000 - \$100,000         | 1                       | 54,681                             | 1.68                                 | \$  | 91,864                              | \$ | 15,818                          | 89.9%                 | 5.81    |
| < \$5,000                   | 1                       | 31,667                             | 0.75                                 | \$  | 23,751                              | \$ | 1,772                           | 10.1%                 | 13.40   |
|                             | 2                       |                                    |                                      | \$  | 115,615                             | \$ | 17,590                          |                       | 6.57    |

#### Table 261: Estimated Implementation Costs and Modeled Savings for Solid Waste Management

Paybacks are determined by actual current implementation costs divided by first year savings (so costs are not adjusted for inflation and utility prices are not adjusted for escalation).

The three implementation tools, budgeted analysis cost and numbers of Solid Waste Management facilities to which they apply are summarized in Table 23 below.



|                |                                        | # | Cost     | Savings Potential   | Resources                      |
|----------------|----------------------------------------|---|----------|---------------------|--------------------------------|
| High Potential | Building<br>Performance<br>Audit (BPA) | 0 | \$ 7,500 | > \$100,000         | engineer; energy<br>analyst    |
| Mid Potential  | Energy<br>Assessments                  | 1 | \$ 750   | \$5,000 - \$100,000 | energy analyst                 |
| Low Potential  | Checklists                             | 1 | \$ 150   | < \$5,000           | Division Champion and<br>staff |
|                |                                        | 2 |          |                     |                                |

#### Table 262: Assessment Tools Used to Determine Specific Energy-saving Measures for Solid Waste Management

#### 3.6.1 Building Performance Audit

There are no Solid Waste Management buildings with over \$100,000 in annual energy saving potential so none will undergo a Building Performance Audit.

#### 3.6.2 Energy Assessment

There is 1 Solid Waste Management building with between \$5,000 and \$100,000 in annual energy saving potential.

This building can save an average of 10% of its total energy use. The total annual energy savings are estimated to be over \$15,800 and the annual GHG savings are approximately 13,200 kg.

This building can save an average of 23% of its total electricity use (19% Electric Baseload, 100% Electric Cooling and 0% Electric Heating). The total annual electricity savings are estimated to be approximately \$15,700.

This building can save an average of 1% of its total gas use (all in Gas Baseload). The total annual gas savings are estimated to be approximately \$120.

This building will undergo an Energy Assessment (see the Implementation Plan for further details).

See Appendix B for the associated energy savings potential by energy use component.

The highest percentage reductions for this Solid Waste Management facility can be found in Electric Baseload and Electric Cooling. <u>The energy components with highest percentage savings potential will be the focus of the Energy Assessment in order to maximize energy savings</u>. For a complete description of the Energy Assessment, refer to Appendix A.

After the implementation of the proposed measures, this building is eligible to receive over \$9,000 in incentives based on current incentives available from the Ontario Power Authority.

#### 3.6.3 Energy Savings Checklist

There is 1 Solid Waste Management building with less than \$5,000 in savings potential.



This building can save an average of 12% of its total energy use. The total annual energy savings are estimated to be approximately \$1,770 and the annual GHG savings are approximately 12,800 kg.

This building can save 0% of their total electricity use and an average of 28% of their total gas use (all in Gas Heating). The total annual gas savings are estimated to be approximately \$1,770.

This building will undergo a checklist approach (see the Implementation Plan for further details).

See Appendix B for the associated energy savings potential by energy use component.

The highest percentage reductions for this building can be found in Gas Heating.

The energy savings checklist will be used by the Division Champion for Solid Waste Management in conjunction with the building operator and/or service contractor for this building. They will focus on measures related to energy components with high potential savings (colour-coded red) in order to maximize savings.

### 3.6.4 Implementation Budget

Table 24 below shows the total budget to implement the energy management and retrofit plan, including costs for identifying measures and the implementation costs for both facilities. The total costs to implement the energy management and retrofit plan for Solid Waste Management are estimated to be \$116,515. Note the Implementation costs are not adjusted for inflation.

| BUDGET               | Γ  |         |
|----------------------|----|---------|
| Building Performance |    |         |
| Audit (BPA)          | \$ | -       |
| Energy Assessment    | \$ | 750     |
| Checklist            | \$ | 150     |
| Implementation       | \$ | 115,615 |
| Total                | \$ | 116,515 |

Table 263: Total Budget - Energy Management and Retrofit Plan for Solid Waste Management

#### 3.6.5 10-Year Implementation Plan

The 10-year implementation plan is summarized in Table 25 and Figure 8 below.

The plan will roll-out over 10 years, and the buildings with the highest savings potential will be focused on first.

Identification of measures from Energy Assessments will occur in Year 1 and the implementation of these measures will occur in Year 2. Identification of measures from the Checklist will occur in Year 2, and the implementation of these measures will begin in Year 3.



Annual Costs refer to the assessment and implementation costs, training, measurement and verification (M&V), and maintenance costs.

Over a 10 year period, the cumulative net cash flow for this plan is estimated to be \$16,298. The cumulative net cash flow becomes positive in Year 10.

The implementation plan includes the following assumptions:

- Approximately 84% of the project budget will be spent in the first 5 years, and the other 16% in the following 5 years.
- The percentage of facilities to be retrofitted in each year is proportional to the percentage of the budget spent in that year. 84% of facilities will be retrofitted in the first 5 years and 16% in the following 5 years.
- 25% of energy savings potential of retrofitted facilities is achieved in the first year, 75% in the second year, and 100% in each of the following years.
- Project costs are adjusted for inflation (2% annually) and energy savings are adjusted for utility price escalation (5% annually).
- 100% of incentives are achieved in the year when facilities are retrofitted, and incentives are NOT adjusted for utility price escalation.

|                                    | v   | ear 1 |     | Year 2  | Year 3 Year 4 |         | Year 4 Year 5 |         | Year 6 Year 7 |        |     | Year 8 |     |        | Year 9 |        | Year 10 |        | Totals |         |     |                |
|------------------------------------|-----|-------|-----|---------|---------------|---------|---------------|---------|---------------|--------|-----|--------|-----|--------|--------|--------|---------|--------|--------|---------|-----|----------------|
|                                    |     |       |     | TCUT 2  |               | Tears   |               | TCul 4  | ⊢             | Tear 5 | -   | Tear o | -   | Tear 7 | -      | Tearo  | -       | rear 5 |        | rear 10 |     | Totals         |
| High Potential - Building          |     |       |     |         |               |         |               |         |               |        |     |        |     |        |        |        |         |        |        |         |     |                |
| Performance Audit                  |     | 0     |     | 0       |               | 0       |               | 0       |               | 0      |     | 0      |     | 0      |        | 0      |         | 0      |        | 0       |     | 0              |
| Mid Potential - Energy Assessment  |     | 1     |     | 0       |               | 0       |               | 0       |               | 0      |     | 0      |     | 0      |        | 0      |         | 0      |        | 0       |     | 1              |
| Low Potential - Checklist          |     | 0     |     | 1       |               | 0       |               | 0       |               | 0      |     | 0      |     | 0      |        | 0      |         | 0      |        | 0       |     | 1              |
| Assessment Costs                   | \$  | 750   | \$  | 156     | \$            | -       | \$            |         | \$            | -      | \$  | 1.1    | \$  |        | \$     | -      | \$      | -      | \$     |         | \$  | 906            |
| Implementation Costs               | Ş   | -     | Ş   | 95,576  | Ş             | 25,204  | \$            | -       | Ş             | -      | Ş   | -      | Ş   | -      | Ş      |        | Ş       | -      | Ş      | -       | \$  | 120,780        |
| Training and M&V costs (10.0% of   |     |       |     |         |               |         |               |         |               |        |     |        |     |        |        |        |         |        |        |         |     |                |
| Assessment and Implementation      |     |       |     |         |               |         |               |         |               |        |     |        |     |        |        |        |         |        |        |         |     |                |
| Costs)                             | \$  | 75    | \$  | 9,573   | \$            | 2,520   | \$            | -       | \$            | -      | \$  | -      | \$  | -      | \$     | -      | \$      | -      | \$     | -       | \$  | 12,169         |
| Maintenance costs (5.0% of         |     |       |     |         |               |         |               |         |               |        |     |        |     |        |        |        |         |        |        |         |     |                |
| Implementation Costs, cumulative)  | \$  | -     | \$  | 4,779   | \$            | 6,039   | \$            | 6,039   | \$            | 6,039  | Ş   | 6,039  | \$  | 6,039  | \$     | 6,039  | Ş       | 6,039  | \$     | 6,039   |     |                |
| Annual Costs                       | \$  | 825   | \$  | 110,084 | Ş             | 33,764  | Ş             | 6,039   | Ş             | 6,039  | \$  | 6,039  | \$  | 6,039  | \$     | 6,039  | \$      | 6,039  | \$     | 6,039   | \$  | 186,945        |
|                                    |     |       |     |         |               |         |               |         |               |        |     |        |     |        |        |        |         |        |        |         |     |                |
| Estimated Achieved Annual Savings  |     |       | \$  | 4,848   | \$            | 14,618  | \$            | 21,380  | \$            | 22,449 | \$  | 23,572 | \$  | 24,751 | \$     | 25,988 | \$      | 27,287 | \$     | 28,652  | \$  | <b>193,546</b> |
| Estimated Incentives               | \$  | -     | \$  | 9,697   | \$            | -       | \$            | -       | \$            | -      | \$  | -      | \$  | -      | \$     | -      | \$      | -      | \$     | -       | \$  | 9,697          |
| Annual Savings and Incentives      | \$  | -     | \$  | 14,546  | \$            | 14,618  | \$            | 21,380  | \$            | 22,449 | \$  | 23,572 | \$  | 24,751 | \$     | 25,988 | \$      | 27,287 | \$     | 28,652  | \$  | 203,243        |
| Borrowing costs based on           |     |       |     |         |               |         |               |         |               |        |     |        |     |        |        |        |         |        |        |         |     |                |
| cumulative cash flows (4.0% per    |     |       |     |         |               |         |               |         |               |        |     |        |     |        |        |        |         |        |        |         |     |                |
| annum)                             |     |       | -\$ | 33      | -\$           | 3,855   | -\$           | 4,620   | -\$           | 4,007  | -\$ | 3,350  | -\$ | 2,649  | -\$    | 1,900  | -\$     | 1,103  | -\$    | 253     | -\$ | 21,769         |
| Net Cash Flow incl borrowing costs | -\$ | 825   | -\$ | 95,571  | -\$           | 23,000  | \$            | 10,721  | \$            | 12,404 | \$  | 14,183 | \$  | 16,063 | \$     | 18,049 | \$      | 20,146 | \$     | 22,360  | -\$ | 5,471          |
| Cumulative Net Cash Flow           | -\$ | 825   | -\$ | 96,363  | -\$           | 115,509 | -\$           | 100,167 | -\$           | 83,757 | -\$ | 66,224 | -\$ | 47,512 | -\$    | 27,563 | -\$     | 6,315  | \$     | 16,298  |     |                |

Table 264: Cash Flow for 10-Year Implementation Plan for Solid Waste Management



Figure 149: Cash Flow for 10-Year Implementation Plan for Solid Waste Management

# 3.7 Toronto Water Plan

The total implementation costs, payback and cash flows for Toronto Water facilities are summarized in Table 26 below.

| Annual Savings<br>Potential | Number of<br>facilities | Average Area<br>(ft <sup>2</sup> ) | Estimated<br>Implementation<br>Cost \$/ft <sup>2</sup> | Estimated<br>lementation<br>Cost \$ | stimated<br>Savings<br>otential \$ | % of total<br>savings | Payback |
|-----------------------------|-------------------------|------------------------------------|--------------------------------------------------------|-------------------------------------|------------------------------------|-----------------------|---------|
| >\$100,000                  | 0                       | -                                  | 5.04                                                   | \$<br>-                             | \$<br>-                            | 0.0%                  | 0.00    |
| \$5,000 - \$100,000         | 2                       | 79,599                             | 4.20                                                   | \$<br>668,632                       | \$<br>132,712                      | 100.0%                | 5.04    |
| < \$5,000                   | 0                       | -                                  | 1.68                                                   | \$<br>-                             | \$<br>-                            | 0.0%                  | 0.00    |
|                             | 2                       |                                    |                                                        | \$<br>668,632                       | \$<br>132,712                      |                       | 5.04    |

#### Table 265: Estimated Implementation Costs and Modeled Savings for Toronto Water

Paybacks are determined by actual current implementation costs divided by first year savings (so costs are not adjusted for inflation and utility prices are not adjusted for escalation).

The three implementation tools, budgeted analysis cost and numbers of Toronto Water facilities to which they apply are summarized in Table 27 below.

|                |                                        | # | Cost     | Savings Potential   | Resources                      |
|----------------|----------------------------------------|---|----------|---------------------|--------------------------------|
| High Potential | Building<br>Performance<br>Audit (BPA) | 0 | \$ 7,500 | > \$100,000         | engineer; energy<br>analyst    |
| Mid Potential  | Energy<br>Assessments                  | 2 | \$ 750   | \$5,000 - \$100,000 | energy analyst                 |
| Low Potential  | Checklists                             | 0 | \$ 150   | < \$5,000           | Division Champion and<br>staff |
|                |                                        | 2 |          |                     |                                |

Table 266: Assessment Tools Used to Determine Specific Energy-saving Measures for Toronto Water



# 3.7.1 Building Performance Audit

There are no buildings with over \$100,000 in annual energy saving potential, so no buildings will receive a Building Performance Audit.

### 3.7.2 Energy Assessment

There are 2 Toronto Water buildings with between \$5,000 and \$100,000 in annual energy saving potential.

These 2 buildings can save an average of 37% of their total energy use. The total annual energy savings are estimated to be over \$132,700 and the annual GHG savings are approximately 293,800 kg.

These 2 buildings can save an average of 40% of their total electricity use (40% Electric Baseload, 100% Electric Cooling and 34% Electric Heating). The total annual electricity savings are estimated to be approximately \$103,280.

These 2 buildings can save an average of 35% of their total gas use (4% Gas Baseload and 36% Gas Heating). The total annual gas savings are estimated to be approximately \$29,400.

These 2 buildings will undergo an Energy Assessment with highest potential buildings focused on first (see the Implementation Plan for further details).

See Appendix B for a list of these 2 buildings and their associated energy savings potential by energy use component.

The highest percentage reductions for these 2 buildings can be found in Electric Baseload and Electric Cooling. For each individual building, the energy components with highest percentage savings potential will be the focus of the Energy Assessment in order to maximize energy savings. For a complete description of the Energy Assessment, refer to Appendix A.

After the implementation of the proposed measures, these 2 buildings are eligible to receive over \$70,300 in incentives based on current incentives available from the Ontario Power Authority.

### 3.7.3 Energy Savings Checklist

There are no Toronto Water buildings with less than \$5,000 in savings potential, so no buildings will undergo a checklist approach.

### 3.7.4 Implementation Budget

Table 28 below shows the total budget to implement the energy management and retrofit plan, including costs for identifying measures and the implementation costs for the 2 buildings. The total costs to implement the energy management and retrofit plan for Toronto Water buildings are estimated to be \$670,132. Note the Implementation costs are not adjusted for inflation.


| BUDGE                | Г  |         |
|----------------------|----|---------|
|                      |    |         |
| Building Performance |    |         |
| Audit (BPA)          | \$ | -       |
| Energy Assessment    | \$ | 1,500   |
| Checklist            | \$ | -       |
| Implementation       | \$ | 668,632 |
| Total                | \$ | 670,132 |

 Table 267: Total Budget - Energy Management and Retrofit Plan for Toronto Water

#### 3.7.5 10-Year Implementation Plan

The 10-year implementation plan is summarized in Table 29 and Figure 9 below.

The plan will roll-out over 10 years, and the buildings with the highest savings potential will be focused on first.

Identification of measures from Energy Assessments will begin in Year 1, with both Energy Assessments completed by the end of Year 2. The implementation of these measures will begin in Year 2, and will be completed by the end of Year 3.

Annual Costs refer to the assessment and implementation costs, training, measurement and verification (M&V), and maintenance costs.

Over a 10 year period, the cumulative net cash flow for this plan is estimated to be \$385,578. The cumulative net cash flow becomes positive in Year 8.

The implementation plan includes the following assumptions:

- Approximately 76% of the project budget will be spent in the first 5 years, and the other 24% in the following 5 years.
- The percentage of facilities to be retrofitted in each year is proportional to the percentage of the budget spent in that year. 76% of facilities will be retrofitted in the first 5 years and 24% in the following 5 years.
- 25% of energy savings potential of retrofitted facilities is achieved in the first year, 75% in the second year, and 100% in each of the following years.
- Project costs are adjusted for inflation (2% annually) and energy savings are adjusted for utility price escalation (5% annually).
- 100% of incentives are achieved in the year when facilities are retrofitted, and incentives are NOT adjusted for utility price escalation.



|                                    | Y   | ear 1 |     | Year 2  |     | Year 3  | Year 4 |         |     | Year 5  |     | Year 6  |     | Year 7  |     | Year 8  |    | Year 9  | Year 10       |     | Totals    |
|------------------------------------|-----|-------|-----|---------|-----|---------|--------|---------|-----|---------|-----|---------|-----|---------|-----|---------|----|---------|---------------|-----|-----------|
|                                    |     |       |     |         |     |         |        |         |     |         |     |         |     |         |     |         |    |         |               |     |           |
| High Potential - Building          |     |       |     |         |     |         |        |         |     |         |     |         |     |         |     |         |    |         |               |     |           |
| Performance Audit                  |     | 0     |     | 0       |     | 0       |        | 0       |     | 0       |     | 0       |     | 0       |     | 0       |    | 0       | 0             |     | 0         |
| Mid Potential - Energy Assessment  |     | 1     |     | 1       |     | 0       |        | 0       |     | 0       |     | 0       |     | 0       |     | 0       |    | 0       | 0             |     | 2         |
| Low Potential - Checklist          |     | 0     |     | 0       |     | 0       |        | 0       |     | 0       |     | 0       |     | 0       |     | 0       |    | 0       | 0             |     | 0         |
| Assessment Costs                   | \$  | 750   | \$  | 750     | \$  | -       | \$     | -       | \$  | -       | \$  |         | \$  | -       | \$  | -       | \$ | -       | \$<br>        | \$  | 1,500     |
| Implementation Costs               | Ş   | -     | Ş   | 347,822 | Ş   | 354,779 | \$     | -       | \$  | -       | \$  | -       | Ş   | -       | Ş   | -       | Ş  | -       | \$<br>-       | \$  | 702,601   |
| Training and M&V costs (10.0% of   |     |       |     |         |     |         |        |         |     |         |     |         |     |         |     |         |    |         |               |     |           |
| Assessment and Implementation      |     |       |     |         |     |         |        |         |     |         |     |         |     |         |     |         |    |         |               |     |           |
| Costs)                             | \$  | 75    | Ş   | 34,857  | \$  | 35,478  | \$     | -       | \$  | -       | \$  | -       | \$  | -       | \$  | -       | \$ | -       | \$<br>-       | \$  | 70,410    |
| Maintenance costs (5.0% of         |     |       |     |         |     |         |        |         |     |         |     |         |     |         |     |         |    |         |               |     |           |
| Implementation Costs, cumulative)  | \$  |       | \$  | 17,391  | \$  | 35,130  | \$     | 35,130  | \$  | 35,130  | \$  | 35,130  | \$  | 35,130  | \$  | 35,130  | \$ | 35,130  | \$<br>35,130  |     |           |
| Annual Costs                       | Ş   | 825   | Ş   | 400,821 | Ş   | 425,387 | Ş      | 35,130  | Ş   | 35,130  | Ş   | 35,130  | Ş   | 35,130  | Ş   | 35,130  | \$ | 35,130  | \$<br>35,130  | \$  | 1,072,943 |
|                                    |     |       |     |         |     |         |        |         |     |         |     |         |     |         |     |         |    |         |               |     |           |
| Estimated Achieved Annual Savings  |     |       | \$  | 18,927  | \$  | 75,315  | \$     | 141,851 | \$  | 169,377 | \$  | 177,846 | \$  | 186,738 | \$  | 196,075 | \$ | 205,879 | \$<br>216,173 | \$  | 1,388,182 |
| Estimated Incentives               | \$  | -     | \$  | 33,799  | \$  | 36,539  | \$     |         | \$  | -       | \$  | -       | \$  | -       | \$  | -       | \$ | -       | \$<br>-       | \$  | 70,338    |
| Annual Savings and Incentives      | \$  | -     | \$  | 52,726  | \$  | 111,854 | \$     | 141,851 | \$  | 169,377 | \$  | 177,846 | \$  | 186,738 | \$  | 196,075 | \$ | 205,879 | \$<br>216,173 | \$  | 1,458,521 |
| Borrowing costs based on           |     |       |     |         |     |         |        |         |     |         |     |         |     |         |     |         |    |         |               |     |           |
| cumulative cash flows (4.0% per    |     |       |     |         |     |         |        |         |     |         |     |         |     |         |     |         |    |         |               |     |           |
| annum)                             |     |       | -\$ | 33      | -\$ | 13,957  | -\$    | 26,498  | -\$ | 22,229  | -\$ | 16,859  | -\$ | 11,151  | -\$ | 5,086   | \$ | -       | \$<br>-       | -\$ | 95,814    |
| Net Cash Flow incl borrowing costs | -\$ | 825   | -\$ | 348,128 | -\$ | 327,489 | \$     | 80,223  | \$  | 112,018 | \$  | 125,857 | \$  | 140,458 | \$  | 155,859 | Ş  | 170,749 | \$<br>181,043 | \$  | 289,764   |
| Cumulative Net Cash Flow           | -\$ | 825   | -\$ | 348,920 | -\$ | 662,452 | -\$    | 555,732 | -\$ | 421,484 | -\$ | 278,768 | -\$ | 127,160 | \$  | 33,786  | \$ | 204,535 | \$<br>385,578 |     |           |





Figure 150: Cash Flow for 10-Year Implementation Plan for Toronto Water



# 4 Appendix A

## 4.1 Selection of 2012 Utility Bills for Calculation of Actual Energy Use Intensities

Utility bills were used covering the period from January to December 2012.

If the total number of days in the combined bills was greater than 385 or less than 345 (because of adjustment bills spanning a few months), the facility was excluded from the dataset used to determine energy use components and targets.

To calculate 2012 actual energy use, the combined usage was normalized for the number of days in the calendar year 2012 (366).

## 4.2 Determining Energy Use Components

The energy use components and targets were calculated using data available for eligible facilities at the City of Toronto (see above). Energy use components were determined as follows:

**Electric Baseload**: Relates to systems which run year-round such as lighting, fans and equipment. Electric Baseload for storage facilities is determined as the average kWh/day for April, May, September and October multiplied by 366 days.

**Electric Cooling**: Was determined as the additional electricity use above the year-round base from June to August, and relates to air conditioning.

**Electric Heating**: Was determined as the additional use in January, February, March, November and December, and relates to electric heat or electricity use for heating systems (pumps, blowers etc.).

**Gas Baseload**: Relates to systems which run year-round (domestic hot water) and is determined as the average  $m^3$ /day for June, July and August multiplied by 366 days.

**Gas Heating**: Was determined as the additional gas use to heat the building from January to May, and September to December.

## 4.3 Determining Targets

Component energy targets were set based on the top quartile intensity of the eligible data set. Thus achievement of the targets anticipates all buildings with component energy intensities greater than the top quartile will reach that level already attained by one quarter of the buildings.

All values less than 5% of the average of the top 3 facilities were removed for the calculation of the component energy targets.

Before the calculation of potential savings for each building, component targets were adjusted taking into account factors specific to the facility type. Individual targets are adjusted for energy types, non-standard space types or equipment, and high energy intensity spaces or equipment. The target adjustments are listed below.



## **Target Adjustments**

**Electric Heating:** Add Gas Heating multiplied by % of area served and 75% efficiency to Electric Heating AND Multiply Gas Heating by (100% - % of area served)

**GSHP:** Add Gas Heating \* 0.19 \* % of area served to Electric Heating AND Subtract Gas Heating \* 0.13 \* % of area served from Gas Heating

**WSHP:** Add Gas Heating \* 0.19 \* % of area served to Electric Heating Electricity AND Subtract Gas Heating \* 0.75 \* % of area served from Gas Heating

**Electric DHW:** Add Gas Baseload \* % of area served \* 75% efficiency to Electric Baseload AND Multiply Gas Baseload by (100% - % of area served)

**Air-Conditioning:** Divide Electric Cooling by Average % of building served by A/C for all facilities of the type and multiply by % of the facility area served by A/C

Data Centre: Add 50 kWh/ft<sup>2</sup> \* % of building occupied by Data Centre to Electric Baseload

**Food Services**: Add 30 kWh/ft<sup>2</sup> \* % of facility area occupied by Food Services (including seating area) to Electric Baseload

**Outdoor Rink:** If rink has associated ice plant, add (1.04 kWh/ft<sup>2</sup> of ice/week \* ft<sup>2</sup> of ice surface area \* 16 weeks/year) divided by  $ft^2$  of the total building area to Electric Baseload

**Solar Hot Water:** Subtract the product of System Power Rating (kW thermal) and (Average Actual) Annual Performance (kWh (t)/kW) divided by the facility area (ft<sup>2</sup>) from Gas Baseload (ekWh/ft<sup>2</sup>)

**Solar Photovoltaic**: Subtract the product of System Power Rating (kW thermal) and (Average Actual) Annual Performance (kWh(t)/kW) divided by the facility area (ft<sup>2</sup>) from Electric Baseload (kWh/ft<sup>2</sup>)

**Garage:** Add 20 ekWh/ft<sup>2</sup> to Gas Heating

High-intensity electric equipment: Add 30 kWh/ft<sup>2</sup> to Electric Baseload

Indoor Rink(s) and/or Indoor Pool(s) within Buildings and Buildings:

<u>Adjustment for Electric Baseload</u> – Electric Baseload adjusted for Indoor Rink and/or Indoor Pool, kWh/ft<sup>2</sup> of total area = (Electric Baseload for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>))+ Assumed Electricity Requirement of Ice Plant (ekWh/ft<sup>2</sup> of ice/week) \* Months ice-in \* 52 weeks a year /12 months a year \* Rink area, ft<sup>2</sup> + Electric Baseload for Pool (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>) / Total Area, ft<sup>2</sup>

<u>Adjustment for Gas Baseload</u> – Gas Baseload adjusted for Indoor Rink and/or Indoor Pool, ekWh/ft<sup>2</sup> of total area = Gas Baseload for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>)) + Gas Baseload for Indoor Sports Arenas (ekWh/ft<sup>2</sup> of rink) \* Rink area, ft<sup>2</sup> + Gas Baseload for Indoor Swimming Pools (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>



<u>Adjustment for Gas Heating</u> – Gas Heating adjusted for Indoor Rink and/or Indoor Pool, ekWh/ft<sup>2</sup> of total area = Gas Heating for Composite Recreational Facility (ekWh/ft<sup>2</sup> of total facility) \* (Total area, ft<sup>2</sup> - (Rink area, ft<sup>2</sup> + Pool area, ft<sup>2</sup>)) + Gas Heating for Indoor Sports Arenas (ekWh/ft<sup>2</sup> of rink) \* Rink area, ft<sup>2</sup> + Gas Heating for Indoor Swimming Pools (ekWh/ft<sup>2</sup> of pool) \* Pool area, ft<sup>2</sup>

## 4.4 Calculating Potential Savings

The difference between the actual energy use component intensity and adjusted target represents potential annual savings for the component after multiplication by the facility area (and conversion from ekWh to m<sup>3</sup> in the case of gas).

For the facilities that were previously excluded from the dataset for setting targets, potential savings were calculated based on total electricity and gas use (normalized to 366 days) compared with total adjusted electricity and natural gas targets.

## 4.5 Implementation Costs by Measure Type and Modeled Savings

The following table summarizes the implementation costs and savings estimates for measures under each type of operational system. Note that the costs are based on previous experience with similar projects.

These apply to the following building types:

- Fire Stations
- Shelter, Support and Housing Administration
- Ambulance stations and associated offices and facilities
- Storage facilities where equipment or vehicles are maintained, repaired or stored
- Public libraries
- Long-Term Care Homes and Services
- Police stations and associated offices and facilities
- Children's Services
- Administrative offices and related facilities, including municipal council chambers

|            | Cost \$/ft <sup>2</sup> | % electric | Payback (yrs) | kWh/ft²/yr | m³/ft²/yr |
|------------|-------------------------|------------|---------------|------------|-----------|
| Lighting   | 1.80                    | 100%       | 6.5           | 2.3        |           |
| 21811118   | 1.00                    | 100/0      | 0.0           | 2.5        |           |
| Mechanical | 1.50                    | 30%        | 6             | 0.6        | 0.7       |
|            |                         | 100%       |               |            |           |
| Electrical | 0.25                    | 100%       | 8             | 0.3        |           |
| Envelope   | 0.50                    | 0%         | 10            |            | 0.2       |
| Process    | 0.15                    | 0%         | 5             |            | 0.1       |
| Total      | 4.20                    |            | 6.8           | 3.19       | 1.02      |

 Table 269: Implementation Costs by Measure Type



Implementation costs for lighting include measures such as re-lamping and re-ballasting with about 20% fixture retrofits, replacement or relocation, along with selective, local occupancy and photo-controls.

Costs for mechanical system measures include mechanical system testing and minor retrofits such as VFDs, re-balancing, right-sizing, tuning and repairs, along with upgraded controls.

Costs for electrical measures include appliance and equipment replacements and upgraded controls.

Costs for envelope measures include thermographic testing along with draft-proofing, re-insulation and roof/wall air sealing.

Costs for process (domestic hot water) measures include low flow shower heads and aerators, controls on hot water use for vehicle washing and minor retrofits such as pipe insulation.

## 4.6 Assessment Tools

#### **Building Performance Audit**

The Building Performance Audit determines how well a building's existing systems and operational practices compare to other similar buildings, including top performers. The audit identifies problem areas in building systems, examines building operations, and determines improvements that will deliver the greatest energy savings and maximize return on investment. The outcome will be a clear, evidence-based picture of how much can be saved and what areas to focus on to optimize performance.

The Building Performance Audit includes:

- Benchmarking against comparable buildings including top-performers
- Performance based target setting customized for your building
- Interval meter analysis and examination of prior years' energy trends pinpointing specific system and operational inefficiencies
- Motor testing and equipment data-logging analysis
- Deeper understanding of operating practices through energy use profiles
- Power density and plant capacity analysis to identify retrofit opportunities
- Power factor analysis to uncover over-sized equipment
- Inventory and efficiency analysis of main energy-using equipment
- Verification and documentation of the proper operation of the building systems
- Payback and business case analysis

#### **Initial Energy Targets**

Initial energy targets are created by a mass screening tool which uses a standardized logic to produce a preliminary estimate of savings potential for every building, and thereby identify high-, medium- and low-potential buildings. This initial target-setting process creates the overall economic envelope for the program.



#### **Energy Assessment**

Medium-potential buildings are subjected to more in-depth analysis through an Energy Assessment which drills deeper into utility consumption data to refine the savings target and uncover more specific conservation measures. Regression analysis of monthly billing data against heating and cooling degree-days highlights billing anomalies such as estimated bills, and provides a more accurate breakdown of energy components, and hence component energy savings. Where multiple years of billing data are available, the Energy Assessment produces weather-normalized performance trends which can uncover changes in energy use and seasonal anomalies which point to specific energy saving opportunities. The Energy Assessment also analyzes electrical interval meter (or data-logger test results) to help identify operational improvements such as equipment running when the building is unoccupied.



# 5 Appendix B – Service Yards & Storage Facilities

## 5.1 Buildings and Building Characteristics

Below are the names, addresses and building areas for the 50 storage facilities included in this report and Plan.

| Building                                    | Address                             | Building Area<br>(ft <sup>2</sup> ) |
|---------------------------------------------|-------------------------------------|-------------------------------------|
| Alness Service Yard                         | 21 Alness St                        | 25,715                              |
| Arrow Bus Garage                            | 700 Arrow Road                      | 223,861                             |
| Bentworth Park Yard                         | 140 Bentworth Ave                   | 12,981                              |
| Bering Yard                                 | 320 Bering Ave                      | 53,798                              |
| Birchmount Bus Garage                       | 400 Danforth Road                   | 112,004                             |
| Birchmount Parks Yard                       | 1901 Birchmount Rd /101<br>Ridgetop | 15,317                              |
| Brimley Parks Yard                          | 451 Brimley Rd                      | 2,809                               |
| Castlefield Yard                            | 1401 Castlefield Ave                | 36,447                              |
| Centennial Pk Svc Bldg                      | 149 Elmcrest Rd                     | 33,470                              |
| Central Equipment Yard                      | 1026 Finch Ave W                    | 148,197                             |
| Davenport Building, Harvey and Duncan Shops | 1138 Bathurst Street                | 648,757                             |
| Davisville Carhouse                         | 29 Lascalles Boulevard              | 75,024                              |
| Disco Yard                                  | 150 Disco Rd                        | 98,446                              |
| Dohme Ave 3                                 | 3 Dohme Ave                         | 25,898                              |
| Dufferin Maintenance Yard                   | 75 Vanley Cres                      | 31,667                              |
| Eastern & Booth Blocks                      | 433 Eastern Ave                     | 236,644                             |
| Eastern Ave Yard / Office                   | 843 Eastern Ave                     | 84,701                              |
| Eastern Ave Yard / Shop                     | 875 Eastern Ave                     | 9,698                               |
| Eglinton Bus Garage                         | 38 Comstock Road                    | 116,605                             |
| Eglinton Flats Service Bldg                 | 101 Emmett Ave                      | 5,705                               |
| Ellesmere Yard                              | 1050 Ellesmere Rd                   | 138,069                             |
| Emery Parks Yard                            | 27 Toryork Dr                       | 18,998                              |
| Emery Works Yard                            | 61 Toryork Dr                       | 26,404                              |
| Fire Dept Repair Shop                       | 35 Strachan Ave                     | 71,978                              |
| Greenwood Complex                           | 400 Greenwood Avenue                | 363,430                             |
| Hamilton Street Yard                        | 138 Hamilton St                     | 818                                 |
| Ingram Works Yard                           | 86 Ingram Dr                        | 23,907                              |
| King St Garage                              | 1116 King St W                      | 83,485                              |
| Kipling Maintenance Yard                    | 441 Kipling Ave                     | 27,373                              |
| Kipling Yard                                | 435 Kipling Ave                     | 11,001                              |
| Lakeshore Bus Garage                        | 580 Commissioners Street            | 131,320                             |
| Maintenance Yard #1&2                       | 170 Plewes Road                     | 38,760                              |



|                                               | P                       |         |
|-----------------------------------------------|-------------------------|---------|
| Maintenance Yard #3                           | 195 Berdmondsy Rd       | 4,618   |
| Maintenance Yard #6                           | 7 Leslie St             | 6,135   |
| Maintenance Yard #7                           | 100 Turnberry Rd        | 11,862  |
| Malvern Bus Garage                            | 5050 Sheppard Avenue E. | 231,796 |
| McCowan Carhouse                              | 1720 Ellesmere Road     | 23,605  |
| Mt. Dennis Bus Garage                         | 121 Industry Street     | 258,186 |
| Nashdene Yard                                 | 70 Nashdene Rd          | 24,176  |
| North District Serv Yard                      | 140 Merton St           | 32,044  |
| Northline Garage and Offices                  | 30 Northline Road       | 54,529  |
| Old Eglinton Bus Garage                       | 2200 Yonge Street       | 112,523 |
| Old Danforth Bus Garage                       | 1627 Danforth Road      | 71,611  |
| Oriole Yd- Signs and Markings                 | 2755 Old Leslie Street  | 16,264  |
| Oriole Yd- Works                              | 2751 Old Leslie St      | 39,805  |
| Pharmacy Yard                                 | 135 Pharmacy Ave        | 1,851   |
| Property Operation Workshop                   | 133 River St            | 12,034  |
| Queensway Bus Garage                          | 400 Evans Avenue        | 124,537 |
| Ramsden Yard                                  | 1008 Yonge St           | 20,247  |
| Rockcliffe Yard                               | 301 Rockcliffe Blvd     | 14,047  |
| Roncesvalles Carhouse                         | 20 The Queensway        | 41,387  |
| Russell Carhouse                              | 1411 Queen Street E.    | 48,734  |
| Sixth St Garage                               | 297 Sixth St            | 6,997   |
| Western Services Yard                         | 235 Edenbridge Dr       | 4,133   |
| Wilson Complex                                | 160 Transit Road        | 414,990 |
| Bartonville Park                              | 5 Bartonville Ave E     | 3,606   |
| Old Eglinton Yard (former<br>Bermondsey Yard) | 25 Old Eglinton Ave     | 54,681  |
| Central Garage                                | 35 Strachan Ave         | 39,375  |
| Health Materials Warehouse                    | 160 Rivalda Rd          | 22,604  |
| Morningside Yard                              | 891 Morningside Ave     | 14,655  |
| Northern Services Building                    | 4801 Dufferin St.       | 4,101   |
| Purchasing WH and Yard                        | 423 Old Weston Rd       | 14,047  |
| Train Storage Building                        | 20 Centre Road          | 30,850  |
| Wellington Yard & Office                      | 677 Wellington St W     | 10,570  |
| Wellington Yard & Storage                     | 677 Wellington St W     | 22,346  |
| Winter Maintenance Depot                      | 8270 Sheppard Ave E     | 12,153  |
| white mantenance bepot                        |                         | 12,100  |

Table 270: Storage Facility Building Information

## 5.2 Energy Use Intensities

Below are the energy use intensities (total electricity, total gas and total energy) for the 50 storage facilities included in this report and Plan. They are sorted by total energy use intensity, from lowest to highest energy use intensity. They are also sorted by Division.



| Building                    | 2012<br>Total<br>Electricity<br>Intensity<br>(kWh/ft <sup>2</sup> ) | 2012 Total<br>Gas<br>Intensity<br>(ekWh/ft <sup>2</sup> ) | 2012 Total<br>Energy<br>Intensity<br>(ekWh/ft <sup>2</sup> ) |
|-----------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|
| Fire Dept Repair Shop       | 3.5                                                                 | 0.0                                                       | 3.5                                                          |
| Health Materials Warehouse  | 0.3                                                                 | 8.8                                                       | 9.1                                                          |
| Purchasing WH and Yard      | 1.5                                                                 | 15.9                                                      | 17.5                                                         |
| Dohme Ave 3                 | 4.8                                                                 | 13.2                                                      | 18.0                                                         |
| Disco Yard                  | 8.8                                                                 | 18.5                                                      | 27.3                                                         |
| Central Garage              | 5.0                                                                 | 25.0                                                      | 30.0                                                         |
| Ellesmere Yard              | 11.2                                                                | 19.0                                                      | 30.3                                                         |
| Eastern Ave Yard / Shop     | 10.0                                                                | 25.5                                                      | 35.5                                                         |
| Ingram Works Yard           | 16.4                                                                | 21.5                                                      | 37.9                                                         |
| Property Operation Workshop | 3.5                                                                 | 39.7                                                      | 43.2                                                         |
| Eastern Ave Yard / Office   | 11.9                                                                | 44.2                                                      | 56.1                                                         |
| Ramsden Yard                | 9.2                                                                 | 59.3                                                      | 68.5                                                         |
| Hamilton Street Yard        | 91.3                                                                | 0.0                                                       | 91.3                                                         |

Table 271: 2012 Energy Intensities for Facilities Management Buildings

| Building                     | 2012<br>Total<br>Electricity<br>Intensity<br>(kWh/ft <sup>2</sup> ) | 2012 Total<br>Gas<br>Intensity<br>(ekWh/ft <sup>2</sup> ) | 2012 Total<br>Energy<br>Intensity<br>(ekWh/ft <sup>2</sup> ) |
|------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|
| Centennial Pk Svc Bldg       | 1.0                                                                 | 2.5                                                       | 3.4                                                          |
| Bentworth Park Yard          | 1.8                                                                 | 8.3                                                       | 10.0                                                         |
| Northline Garage and Offices | 13.9                                                                | 3.2                                                       | 17.1                                                         |
| Alness Service Yard          | 6.8                                                                 | 14.5                                                      | 21.3                                                         |
| Kipling Maintenance Yard     | 8.1                                                                 | 15.1                                                      | 23.2                                                         |
| Train Storage Building       | 6.2                                                                 | 19.0                                                      | 25.3                                                         |
| Brimley Parks Yard           | 10.3                                                                | 15.4                                                      | 25.6                                                         |
| Nashdene Yard                | 10.2                                                                | 19.9                                                      | 30.0                                                         |
| Birchmount Parks Yard        | 8.5                                                                 | 21.7                                                      | 30.2                                                         |
| Western Services Yard        | 6.1                                                                 | 25.0                                                      | 31.1                                                         |
| Rockcliffe Yard              | 5.3                                                                 | 25.8                                                      | 31.1                                                         |
| Eglinton Flats Service Bldg  | 10.0                                                                | 24.8                                                      | 34.9                                                         |
| Emery Parks Yard             | 9.8                                                                 | 30.5                                                      | 40.3                                                         |
| Pharmacy Yard                | 102.0                                                               | 24.9                                                      | 126.9                                                        |
| Northern Services Building   | 49.0                                                                | 115.3                                                     | 164.4                                                        |

Table 272: 2012 Energy Intensities for Parks, Forestry & Recreation Buildings



| Building                      | 2012<br>Total<br>Electricity<br>Intensity<br>(kWh/ft <sup>2</sup> ) | 2012 Total<br>Gas<br>Intensity<br>(ekWh/ft <sup>2</sup> ) | 2012 Total<br>Energy<br>Intensity<br>(ekWh/ft <sup>2</sup> ) |
|-------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|
| Wellington Yard & Storage     | 1.5                                                                 | 0.0                                                       | 1.5                                                          |
| Wellington Yard & Office      | 9.0                                                                 | 0.0                                                       | 9.0                                                          |
| Sixth St Garage               | 1.4                                                                 | 10.4                                                      | 11.8                                                         |
| Maintenance Yard #3           | 18.5                                                                | 0.0                                                       | 18.5                                                         |
| Oriole Yd- Works              | 7.3                                                                 | 11.3                                                      | 18.6                                                         |
| Maintenance Yard #1&2         | 20.1                                                                | 2.4                                                       | 22.4                                                         |
| Castlefield Yard              | 12.7                                                                | 9.8                                                       | 22.4                                                         |
| North District Serv Yard      | 9.2                                                                 | 13.3                                                      | 22.5                                                         |
| Winter Maintenance Depot      | 27.2                                                                | 0.0                                                       | 27.2                                                         |
| Emery Works Yard              | 11.8                                                                | 17.7                                                      | 29.5                                                         |
| Oriole Yd- Signs and Markings | 0.7                                                                 | 29.2                                                      | 29.8                                                         |
| Eastern & Booth Blocks        | 13.1                                                                | 17.3                                                      | 30.5                                                         |
| Bering Yard                   | 7.6                                                                 | 24.8                                                      | 32.4                                                         |
| King St Garage                | 3.8                                                                 | 28.9                                                      | 32.7                                                         |
| Bartonville Park              | 9.1                                                                 | 31.9                                                      | 41.0                                                         |
| Maintenance Yard #7           | 18.9                                                                | 31.0                                                      | 49.9                                                         |
| Maintenance Yard #6           | 22.2                                                                | 30.9                                                      | 53.1                                                         |
| Morningside Yard              | 23.8                                                                | 33.6                                                      | 57.4                                                         |

Table 273: 2012 Energy Intensities for Transportation Services Buildings

| Building                  | 2012<br>Total<br>Electricity<br>Intensity<br>(kWh/ft <sup>2</sup> ) | 2012 Total<br>Gas<br>Intensity<br>(ekWh/ft <sup>2</sup> ) | 2012 Total<br>Energy<br>Intensity<br>(ekWh/ft <sup>2</sup> ) |
|---------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|
| Dufferin Maintenance Yard | 10.3                                                                | 7.9                                                       | 18.2                                                         |
| Old Eglinton Yard         | 8.8                                                                 | 12.4                                                      | 21.2                                                         |

Table 274: 2012 Energy Intensities for Solid Waste Management Buildings

| Building               | 2012 Total<br>Electricity<br>Intensity<br>(kWh/ft <sup>2</sup> ) | 2012 Total<br>Gas<br>Intensity<br>(ekWh/ft²) | 2012 Total<br>Energy<br>Intensity<br>(ekWh/ft²) |
|------------------------|------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|
| Central Equipment Yard | 8.7                                                              | 21.8                                         | 30.5                                            |
| Kipling Yard           | 47.6                                                             | 15.3                                         | 62.9                                            |

 Table 275: 2012 Energy Intensities for Toronto Water Buildings



## 5.3 Target-setting Method and Metrics

5 facilities were determined to be ineligible for determination of energy components or target-setting. See Appendix A. The excluded facilities are listed below.

| Facility               | Days in 2012                    | Energy type |
|------------------------|---------------------------------|-------------|
| Fire Dept Repair Shop  | 451                             | Electricity |
|                        | Huge adjustment bill in October |             |
|                        | 2012, followed by negative      |             |
| Ramsden Yard           | consumption in Nov 2012 bill    | Electricity |
| Health Materials       |                                 |             |
| Warehouse              | 579                             | Electricity |
| Purchasing WH and Yard | No 2012 data                    | Electricity |
| Pharmacy Yard          | 330                             | Electricity |

#### **Table 276: Excluded Facilities**

After excluding these 5 facilities, 45 storage facilities were used to calculate the energy use components.

The following benchmark charts show the resulting electricity and gas use by component. Electricity use was broken down into baseload, cooling and heating electricity as described in Appendix A, and gas use was broken down into baseload and heating.

The red line on each chart indicates the top quartile for each component which is the target for that component.



Figure 151: 2012 Electric Baseload Intensity Benchmark

Electric Baseload refers to year-round electricity use for lighting, fans, equipment and other systems that are not weather dependent. Electric Baseload for storage facilities ranges from 3.4 to 96.3 kWh/ft<sup>2</sup> and the top-quartile is 6.44 ekWh/ft<sup>2</sup>.





Figure 152: 2012 Electric Cooling Intensity Benchmark

Electric Cooling refers to additional electricity use in summer for cooling purposes. Electric Cooling for storage facilities ranges from 0.1 to 3.0 ekWh/ft<sup>2</sup> and the top-quartile is 0.24 ekWh/ft<sup>2</sup>.



Figure 153: 2012 Electric Heating Intensity Benchmark

Electric Heating refers to additional electricity use in winter months for heating purposes. Electric Heating for storage facilities ranges from 0.6 to 13.9 ekWh/ft<sup>2</sup> and the top-quartile is 1.21 ekWh/ft<sup>2</sup>.





Figure 154: 2012 Gas Baseload Intensity Benchmark

Gas Baseload refers to natural gas used for domestic hot water and other equipment that runs year round. Gas Baseload for storage facilities ranges from 0.6 to 18.7 ekWh/ft<sup>2</sup> and the top-quartile is 0.91 ekWh/ft<sup>2</sup>.



Figure 155: 2012 Gas Heating Intensity Benchmark

Gas Heating refers to the additional energy used in winter for heating and humidification. Gas Heating for storage facilities ranges from 3.3 to 108.4 ekWh/ft<sup>2</sup> and the top-quartile is 13.32 ekWh/ft<sup>2</sup>.

As explained in Appendix A, all values less than 5% of the average of the top 3 facilities were removed for the calculation of the energy use components.

The top quartile values for each energy use component were adopted as targets.

Before calculation of potential savings for each building, component targets were adjusted taking into account factors specific to the facility type (see Appendix A). In the case of storage buildings, the factors are % of the facility area served by electric heat, % of DHW heated by electricity, use of ground-source or water-source heat pumps and % of the area served by electric air conditioning.



For the facilities that were previously excluded from the dataset for setting targets, potential savings were calculated by subtraction of the sum of individual energy use component targets adjusted to specific characteristics of the facility from Total Electricity use (or Total Gas use).

## 5.4 Savings Potential by Energy Use Component

#### 5.4.1 Facilities Management

Buildings are sorted by total annual savings potential, starting with the highest savings potential buildings.

There is 1 facilities management building with over \$100,000 in annual savings potential, 9 with between \$5,000 and \$100,000 in annual savings potential and 3 with less than \$5,000 in savings potential.

High savings Moderate savings Low savings Total Energy Indoor GHG **Electricity Savings Potential** Gas Savings Potential Incentives Operation name Savings Potential Emission Area Average % Average % Avg \$/yr Electricity Gas ft2 \$/yr \$/yr kg/yr Base Base-% Tota Total load leating ating oolina load 32% 40% 4% 28% 48% 48% 42% 110,836 TOTAL: 13 facilities 193,964 18% 150,413 \$ 344,377 57,851 561,821 1,239,424 44% 0% 0% 70% 69% 64% \$ 34,505 25,346 84,701 High potential savings facilities (1) 0% 42% 60,384 65,900 126,285 523.702 83,916 217,495 Mid-potential savings facilities (9) 28% 43% 4% 26% 133,579 20% 35% 40% 36% 76,331 368,491 711,407 32,275 Low potential savings facilities (3) 0% 0% 0% 6% 597 230 108,629 4.315 0% 0% 0% 597 3% Eastern Ave Yard / Office 44% 43% 60.384 70% 70% 65.900 64% 26.285 34.505 \$ 25.346 84.701 523.702 34% 31,421 8,511 138,069 Ellesmere Yard 319 54,987 35% 22,128 30% 77,115 203,123 34% 44% 17,614 Ingram Works Yard 58% 100% 56% 30,825 4,411 35,236 1,697 23,907 56,099 36% 15,677 8,959 27.937 4.715 98,446 100,916 Disco Yard 34% 12,259 22% 2,458 \$ 27,230 17,434 Ramsden Yard 4,301 76% 22,928 68% 8.819 20,247 169,081 6,814 % 43% 39,375 Central Garage 10,620 40% 3,893 4,085 82,103 Hamilton Street Yard 93% 1119 11,611 111% 11,611 6,635 818 9,123 3,135 Property Operation Workshop 8,152 62% 8,152 7,164 12,034 58,913 3,821 \$ Dohme Ave 3 73% 38% 6.688 100% 19 6% 477 14% 183 25.898 8.699 Eastern Ave Yard / Shop 2,677 100% 43% 47% 2,940 40% 5,617 1,131 9,698 23,349 1,530 \$ Purchasing WH and Yard 0% 597 10% 230 14,047 4,315 Fire Dept Repair Shop 0% 0% 71,978 0 Health Materials Warehous

The highest potential buildings will be focused on first.

Table 277: Savings Potential by Energy Use Component for Facilities Management Buildings

Savings potential is considered high if 30% or more, moderate if between 11 and 29%, and low if 10% or less.

Average % savings for each energy component are calculated as (Actual Energy Use – Target Energy Use)/Actual Energy Use and \$/year savings for each component are calculated as (Actual Energy Use - Target Energy Use) \* utility company rates \$0.14 per kWh of electricity and \$0.26 per m<sup>3</sup> of gas.

GHG emissions reduction is based on 110g GHG/kWh of electricity and 1879g GHG/m<sup>3</sup> of natural gas. Utility company CDM Incentives are calculated based on \$0.08/kWh of electricity and \$0.10/m<sup>3</sup> of natural gas saved.



## 5.4.2 Parks, Forestry and Recreation

Buildings are sorted by total annual savings potential, starting with the highest savings potential buildings.

There are no parks, forestry and recreation buildings with over \$100,000 in annual savings potential, 6 with between \$5,000 and \$100,000 in annual savings potential and 9 with less than \$5,000 in savings potential.

The highest potential buildings will be focused on first.

|                                       |                               |         |          | TIGI129AVII18         | ,3 | WICG    | erale sa      | viligo                            |       | LOW | Savilias   |     |    |         |                |                  |     |        |         |         |  |
|---------------------------------------|-------------------------------|---------|----------|-----------------------|----|---------|---------------|-----------------------------------|-------|-----|------------|-----|----|---------|----------------|------------------|-----|--------|---------|---------|--|
| Operation name                        | Electricity Savings Potential |         |          | Gas Savings Potential |    |         |               | Total Energy<br>Savings Potential |       |     | Incentives |     |    |         | Indoor<br>Area | GHG<br>Emissions |     |        |         |         |  |
|                                       | Average %                     |         |          |                       | A  | verage  | %             |                                   |       | Avg |            |     |    |         |                |                  |     |        |         |         |  |
|                                       | Base-<br>load                 | Cooling | Heating  | Total                 |    | \$/yr   | Base-<br>load | Heating                           | Total |     | \$/yr      | %   |    | \$/yr   | EI             | ectricity        | Gas |        | ft²     | kg/yr   |  |
| TOTAL: 15 facilities                  | 33%                           | 59%     | 6%       | 36%                   | \$ | 131,623 | 31%           | 42%                               | 41%   | \$  | 44,694     | 39% | \$ | 176,317 | \$             | 75,213           | \$  | 17,190 | 276,056 | 426,421 |  |
| High potential savings facilities (0) | 0%                            | 0%      | 0%       | 0%                    | \$ | -       | 0%            | 0%                                | 0%    | \$  | -          | 0%  | \$ | -       | \$             | -                | \$  | -      | 0       | 0       |  |
| Mid-potential savings facilities (6)  | 49%                           | 79%     | 14%      | 53%                   | \$ | 126,361 | 33%           | 57%                               | 56%   | \$  | 30,023     | 55% | \$ | 156,384 | \$             | 72,206           | \$  | 11,547 | 117,702 | 316,257 |  |
| Low potential savings facilities (9)  | 4%                            | 26%     | 0%       | 4%                    | \$ | 5,261   | 30%           | 27%                               | 27%   | \$  | 14,671     | 20% | \$ | 19,933  | \$             | 3,007            | \$  | 5,643  | 158,353 | 110,164 |  |
| Northline Garage and Offices          | 56%                           |         |          | 60%                   | \$ | 63,163  |               |                                   | 0%    | \$  | -          | 48% | \$ | 63,163  | \$             | 36,093           | \$  | -      | 54,529  | 49,628  |  |
| Northern Services Building            | 85%                           | 100%    | 73%      | 86%                   | \$ | 24,186  | 86%           | 88%                               | 87%   | \$  | 10,365     | 87% | \$ | 34,552  | \$             | 13,821           | \$  | 3,987  | 4,101   | 93,914  |  |
| Pharmacy Yard                         |                               |         |          | 92%                   | \$ | 24,404  |               |                                   | 51%   | \$  | 589        | 84% | \$ | 24,993  | \$             | 13,945           | \$  | 227    | 1,851   | 23,434  |  |
| Emery Parks Yard                      | 23%                           |         |          | 19%                   | \$ | 5,061   | 1%            | 62%                               | 61%   | \$  | 8,900      | 51% | \$ | 13,960  | \$             | 2,892            | \$  | 3,423  | 18,998  | 68,293  |  |
| Nashdene Yard                         | 22%                           |         |          | 18%                   | \$ | 6,091   |               | 47%                               | 45%   | \$  | 5,429      | 36% | \$ | 11,520  | \$             | 3,480            | \$  | 2,088  | 24,176  | 44,019  |  |
| Rockcliffe Yard                       |                               | 84%     |          | 33%                   | \$ | 3,456   | 30%           | 54%                               | 52%   |     | 4,740      | 49% | \$ | 8,196   | \$             | 1,975            | \$  | 1,823  | 14,047  | 36,969  |  |
| Birchmount Parks Yard                 | 2%                            | 44%     | <b>,</b> | 4%                    | \$ | 809     |               | 46%                               | 45%   | \$  | 3,764      | 34% | \$ | 4,573   | \$             | 463              | \$  | 1,448  | 15,317  | 27,838  |  |
| Eglinton Flats Service Bldg           | 25%                           |         |          | 24%                   | \$ | 1,927   | 100%          | 54%                               | 53%   | \$  | 1,902      | 45% | \$ | 3,829   | \$             | 1,101            | \$  | 732    | 5,705   | 15,261  |  |
| Train Storage Building                |                               |         |          | 0%                    | \$ |         | 41%           | 24%                               | 25%   | \$  | 3,690      | 19% | \$ | 3,690   | \$             | -                | \$  | 1,419  | 30,850  | 26,669  |  |
| Kipling Maintenance Yard              | 6%                            |         |          | 5%                    | \$ | 1,445   |               | 20%                               | 19%   | \$  | 2,004      | 14% | \$ | 3,449   | \$             | 826              | \$  | 771    | 27,373  | 15,621  |  |
| Alness Service Yard                   |                               |         |          | 0%                    | \$ |         |               | 19%                               | 18%   | \$  | 1,720      | 12% | \$ | 1,720   | \$             | -                | \$  | 661    | 25,715  | 12,429  |  |
| Western Services Yard                 |                               | 84%     |          | 9%                    | \$ | 311     | 48%           | 43%                               | 43%   | \$  | 1,111      | 36% |    | 1,422   | \$             | 178              | \$  | 427    | 4,133   | 8,275   |  |
| Brimley Parks Yard                    | 23%                           |         |          | 19%                   | \$ | 770     | 1%            | 22%                               | 21%   | \$  | 232        | 20% |    | 1,001   | \$             | 440              | \$  | 89     | 2,809   | 2,279   |  |
| Centennial Pk Svc Bldg                |                               |         |          | 0%                    | \$ | -       | 100%          |                                   | 11%   | \$  | 222        | 8%  |    | 222     | \$             | -                | \$  | 85     | 33,470  | 1,605   |  |
| Bentworth Park Yard                   |                               |         |          | 0%                    | \$ | -       | 100%          |                                   | 1%    | \$  | 26         | 1%  | \$ | 26      | \$             | -                | \$  | 10     | 12,981  | 187     |  |

High savings Moderate savings Low savings

#### Table 278: Savings Potential by Energy Use Component for Parks, Forestry and Recreation Buildings

Savings potential is considered high if 30% or more, moderate if between 11 and 29%, and low if 10% or less.

Average % savings for each energy component are calculated as (Actual Energy Use – Target Energy Use)/Actual Energy Use and \$/year savings for each component are calculated as (Actual Energy Use - Target Energy Use) \* utility company rates \$0.14 per kWh of electricity and \$0.26 per m<sup>3</sup> of gas.

GHG emissions reduction is based on 110g GHG/kWh of electricity and 1879g GHG/m<sup>3</sup> of natural gas. Utility company CDM Incentives are calculated based on \$0.08/kWh of electricity and \$0.10/m<sup>3</sup> of natural gas saved.

## 5.4.3 Transportation Services

Buildings are sorted by total annual savings potential, starting with the highest savings potential buildings.



There is 1 transportation services building with over \$100,000 in annual savings potential, 11 with between \$5,000 and \$100,000 in annual savings potential and 6 with less than \$5,000 in savings potential.

The highest potential buildings will be focused on first.

|                                       |                          |         |         | High savin | gs    | Mod     | derate sa             | avings  | I     | Low | savings |                           |            |         |      |    |                |                  |         |
|---------------------------------------|--------------------------|---------|---------|------------|-------|---------|-----------------------|---------|-------|-----|---------|---------------------------|------------|---------|------|----|----------------|------------------|---------|
| Operation name                        | Electricity Savings Pote |         |         | ter        | ntial | G       | Gas Savings Potential |         |       |     |         | al Energy<br>gs Potential | Incentives |         |      | s  | Indoor<br>Area | GHG<br>Emissions |         |
|                                       |                          | Aver    | age %   |            |       |         | A                     | verage  | %     |     |         | Avg                       |            |         |      |    |                |                  |         |
|                                       | Base-<br>load            | Cooling | Heating | Total      |       | \$/yr   | Base-<br>load         | Heating | Total |     | \$/yr   | 7.vg<br>%                 | \$/yr      | Electri | city |    | Gas            | ft²              | kg/yr   |
| TOTAL: 18 facilities                  | 31%                      | 40%     | 18%     | 28%        | \$    | 293,847 | 86%                   | 32%     | 33%   | \$  | 95,103  | 31%                       | \$ 388,951 | \$ 167, | 913  | \$ | 36,578         | 656,592          | 918,185 |
| High potential savings facilities (1) | 34%                      | 0%      | 0%      | 27%        | \$    | 120,263 | 100%                  | 41%     | 42%   | \$  | 42,444  | 35%                       | \$ 162,707 | \$ 68,  | 722  | \$ | 16,325         | 236,644          | 401,231 |
| Mid-potential savings facilities (11) | 35%                      | 54%     | 31%     | 35%        | \$    | 171,712 | 80%                   | 45%     | 47%   | \$  | 50,072  | 42%                       | \$ 221,784 | \$ 98,  | 121  | \$ | 19,258         | 253,139          | 496,782 |
| Low potential savings facilities (6)  | 1%                       | 37%     | 0%      | 2%         | \$    | 1,012   | 97%                   | 0%      | 3%    |     | 2,588   | 3%                        | \$ 4,460   |         | 070  | \$ | 995            | 166,809          | 20,172  |
| Eastern & Booth Blocks                | 34%                      |         |         | 27%        | \$    | 120,263 | 100%                  | 41%     | 42%   | \$  | 42,444  | 35%                       | \$ 162,707 | \$ 68,  | 722  | \$ | 16,325         | 236,644          | 401,231 |
| Maintenance Yard #1&2                 | 46%                      | 68%     | 58%     | 51%        | \$    | 56,824  |                       |         | 0%    | \$  | -       | 47%                       | \$ 56,824  | \$ 32,4 | 471  | \$ | -              | 38,760           | 44,648  |
| Morningside Yard                      | 59%                      | 61%     | 55%     | 57%        | \$    | 28,394  | 90%                   | 59%     | 67%   |     | 8,312   | 63%                       | \$ 36,706  |         | 225  | \$ | 3,197          | 14,655           | 82,383  |
| Maintenance Yard #7                   | 58%                      | 73%     |         | 53%        | \$    | 16,830  | 100%                  | 67%     | 68%   | \$  | 6,390   | 63%                       | \$ 23,220  | \$ 9,0  | 617  | \$ | 2,458          | 11,862           | 59,402  |
| Castlefield Yard                      | 27%                      | 70%     |         | 24%        | \$    | 15,453  | 100%                  | 30%     | 31%   | \$  | 2,795   | 27%                       | \$ 18,248  | \$ 8,   | 831  | \$ | 1,075          | 36,447           | 32,341  |
| Bering Yard                           |                          |         |         | 0%         | \$    | -       |                       | 49%     | 47%   | \$  | 16,185  | 37%                       | \$ 16,185  | \$      | -    | \$ | 6,225          | 53,798           | 116,965 |
| Winter Maintenance Depot              | 50%                      |         | 18%     | 34%        | \$    | 16,131  |                       |         |       | \$  | -       | 35%                       | \$ 16,131  | \$ 9,5  | 218  | \$ | -              | 12,153           | 12,674  |
| Maintenance Yard #6                   | 63%                      | 92%     |         | 59%        | \$    | 11,645  | 100%                  | 67%     | 68%   | \$  | 3,262   | 65%                       | \$ 14,908  | \$ 6,0  | 655  | \$ | 1,255          | 6,135            | 32,726  |
| Emery Works Yard                      | 25%                      |         |         | 20%        | \$    | 8,881   | 100%                  | 43%     | 44%   | \$  | 5,242   | 35%                       | \$ 14,123  | \$ 5,0  | 075  | \$ | 2,016          | 26,404           | 44,860  |
| North District Serv Yard              | 17%                      | 53%     |         | 23%        | \$    | 10,612  | 100%                  |         | 8%    | \$  | 901     | 15%                       | \$ 11,513  | \$ 6,0  | 064  | \$ | 347            | 32,044           | 14,852  |
| Oriole Yd- Signs and Markings         |                          |         |         | 0%         | \$    |         | 100%                  | 58%     | 59%   | \$  | 6,985   | 57%                       | \$ 6,985   | \$      | -    | \$ | 2,686          | 16,264           | 50,477  |
| Maintenance Yard #3                   | 52%                      | 95%     |         | 54%        | \$    | 6,942   |                       |         |       | \$  | -       | 58%                       | \$ 6,942   | \$ 3,9  | 967  | \$ | -              | 4,618            | 5,454   |
| Bartonville Park                      | 25%                      | 100%    |         | 26%        | \$    | 1,223   | 95%                   |         | 56%   | \$  | 1,610   | 49%                       | \$ 2,834   | \$      | 699  | \$ | 619            | 3,606            | 12,598  |
| Wellington Yard & Storage             |                          | 53%     |         | 10%        | \$    | 545     |                       |         |       | \$  | -       | 11%                       | \$ 545     | \$      | 311  | \$ | -              | 22,346           | 428     |
| King St Garage                        |                          |         |         | 0%         | \$    |         | 100%                  |         | 1%    |     | 500     | 1%                        |            | \$      | -    | \$ | 192            | 83,485           | 3,610   |
| Oriole Yd- Works                      |                          |         |         | 0%         | \$    | -       | 100%                  |         | 4%    | \$  | 458     | 2%                        | \$ 458     | \$      | -    | \$ | 176            | 39,805           | 3,310   |
| Sixth St Garage                       |                          | 58%     |         | 7%         | \$    | 103     | 100%                  |         | 1%    | \$  | 20      | 2%                        | \$ 123     | \$      | 59   | \$ | 8              | 6,997            | 225     |
| Wellington Yard & Office              |                          |         |         | 0%         | \$    | -       |                       |         |       | \$  | -       | 0%                        | \$ -       | \$      | -    | \$ | -              | 10,570           | 0       |

Table 279: Savings Potential by Energy Use Component for Transportation Services Buildings

Savings potential is considered high if 30% or more, moderate if between 11 and 29%, and low if 10% or less.

Average % savings for each energy component are calculated as (Actual Energy Use – Target Energy Use)/Actual Energy Use and \$/year savings for each component are calculated as (Actual Energy Use -Target Energy Use) \* utility company rates 0.14 per kWh of electricity and 0.26 per m<sup>3</sup> of gas.

GHG emissions reduction is based on 110g GHG/kWh of electricity and 1879g GHG/m<sup>3</sup> of natural gas. Utility company CDM Incentives are calculated based on \$0.08/kWh of electricity and \$0.10/m<sup>3</sup> of natural gas saved.

## 5.4.4 Solid Waste Management

Buildings are sorted by total annual savings potential, starting with the highest savings potential buildings.

There are no solid waste management buildings with over \$100,000 in annual savings potential, 1 with between \$5,000 and \$100,000 in annual savings potential and 1 with less than \$5,000 in savings potential.

The highest potential buildings will be focused on first.



#### High savings Moderate savings Low savings

| Operation name                             | Electricity Savings Poter |         |         | ential | itial Gas Savings Pote |               |         |       | tial Total Energy<br>Savings<br>Potential |       | vings   | Incentives |             |       | Indoor<br>Area | GHG<br>Emissions |        |
|--------------------------------------------|---------------------------|---------|---------|--------|------------------------|---------------|---------|-------|-------------------------------------------|-------|---------|------------|-------------|-------|----------------|------------------|--------|
|                                            |                           | Ave     | rage %  |        | •                      | A             | verage  | %     |                                           | •     | Avg     |            |             |       | -              |                  |        |
|                                            | Base-<br>load             | Cooling | Heating | Total  | \$/yr                  | Base-<br>load | Heating | Total |                                           | \$/yr | % \$/yr |            | Electricity |       | Gas            | ft²              | kg/yr  |
| TOTAL: 2 facilities                        | 14%                       | 100%    | 0%      | 13%    | \$ 15,695              | 8%            | 8%      | 8%    | \$                                        | 1,894 | 11%     | \$ 17,590  | \$          | 8,969 | \$ 729         | 86,349           | 26,023 |
| High potential savings facilities (0)      | 0%                        | 0%      | 0%      | 0%     | \$                     | 0%            | 0%      | 0%    | \$                                        | -     | 0%      | \$         | \$          | -     | \$             | . 0              | 0      |
| Mid-potential savings facilities (1)       | 19%                       | 100%    | 0%      | 23%    | \$ 15,695              | 9%            | 0%      | 1%    | \$                                        | 122   | 10%     | \$ 15,818  | \$          | 8,969 | \$ 47          | 54,681           | 13,217 |
| Low potential savings facilities (1)       | 0%                        | 0%      | 0%      | 0%     | \$                     | 0%            | 29%     | 28%   | \$                                        | 1,772 | 12%     | \$ 1,772   | \$          | -     | \$ 682         | 31,667           | 12,806 |
| Old Eglinton Yard (former Bermondsey Yard) | 19%                       | 100%    |         | 23%    | \$ 15,695              | 9%            |         | 1%    | \$                                        | 122   | 10%     | \$ 15,818  | \$          | 8,969 | \$ 47          | 54,681           | 13,217 |
| Dufferin Maintenance Yard                  |                           |         |         | 0%     | \$-                    |               | 29%     | 28%   | \$                                        | 1,772 | 12%     | \$ 1,772   | \$          | -     | \$ 682         | 31,667           | 12,806 |

#### Table 280: Savings Potential by Energy Use Component for Solid Waste Management Buildings

Savings potential is considered high if 30% or more, moderate if between 11 and 29%, and low if 10% or less.

Average % savings for each energy component are calculated as (Actual Energy Use – Target Energy Use)/Actual Energy Use and \$/year savings for each component are calculated as (Actual Energy Use - Target Energy Use) \* utility company rates \$0.14 per kWh of electricity and \$0.26 per m<sup>3</sup> of gas.

GHG emissions reduction is based on 110g GHG/kWh of electricity and 1879g GHG/m<sup>3</sup> of natural gas. Utility company CDM Incentives are calculated based on \$0.08/kWh of electricity and \$0.10/m<sup>3</sup> of natural gas saved.

## 5.4.5 Toronto Water

Buildings are sorted by total annual savings potential, starting with the highest savings potential buildings.

There are no Toronto Water buildings with over \$100,000 in annual savings potential, 2 with between \$5,000 and \$100,000 in annual savings potential and none with less than \$5,000 in savings potential.

|                                       |                          |         |         | High saving           | s Mo       | derate s      | avings  | L                       | .ow   | savings |                |                  |             |          |           |         |
|---------------------------------------|--------------------------|---------|---------|-----------------------|------------|---------------|---------|-------------------------|-------|---------|----------------|------------------|-------------|----------|-----------|---------|
| Operation name                        | Electricity Savings Pote |         | ential  | Gas Savings Potential |            |               |         | l Energy<br>s Potential | Incer | ntives  | Indoor<br>Area | GHG<br>Emissions |             |          |           |         |
|                                       |                          | Ave     | rage %  |                       | \$/yr      | A             | verage  | %                       |       | \$/yr   | Avg %          | \$/yr            | Electricity | Gas      | ft²       | kg/yr   |
|                                       | Base-<br>load            | Cooling | Heating | Total                 |            | Base-<br>load | Heating | Total                   |       |         |                |                  |             |          |           |         |
| TOTAL: 2 facilities                   | 40%                      | 100%    | 34%     | 40%                   | \$ 103,287 | 4%            | 36%     | 35%                     | \$    | 29,425  | 37%            | \$132,712        | \$ 59,021   | \$ 11,31 | 7 159,198 | 293,804 |
| High potential savings facilities (0) | 0%                       | 0%      | 0%      | 0%                    | \$-        | 0%            | 0%      | 0%                      | \$    | -       | 0%             | \$ -             | \$ -        | \$       | - 0       | 0       |
| Mid-potential savings facilities (2)  | 40%                      | 100%    | 34%     | 40%                   | \$ 103,287 | 4%            | 36%     | 35%                     | \$    | 29,425  | 37%            | \$132,712        | \$ 59,021   | \$ 11,31 | 7 159,198 | 293,804 |
| Low potential savings facilities (0)  | 0%                       | 0%      | 0%      | 0%                    | \$-        | 0%            | 0%      | 0%                      | \$    | -       | 0%             | \$-              | \$-         | \$       | - 0       | 0       |
| Central Equipment Yard                | 23%                      | 100%    |         | 22%                   | \$ 39,548  |               | 37%     | 36%                     | \$    | 29,121  | 32%            | \$ 68,669        | \$ 22,599   | \$ 11,20 | 1 148,197 | 241,531 |
| Kipling Yard                          | 86%                      |         | 74%     | 84%                   | \$ 63,739  | 30%           | 5%      | 7%                      | \$    | 303     | 67%            | \$ 64,042        | \$ 36,422   | \$ 11    | 7 11,001  | 52,273  |

The highest potential buildings will be focused on first.

#### Table 281: Savings Potential by Energy Use Component for Toronto Water Buildings

Savings potential is considered high if 30% or more, moderate if between 11 and 29%, and low if 10% or less.



Average % savings for each energy component are calculated as (Actual Energy Use – Target Energy Use)/Actual Energy Use and \$/year savings for each component are calculated as (Actual Energy Use - Target Energy Use) \* utility company rates \$0.14 per kWh of electricity and \$0.26 per m<sup>3</sup> of gas.

GHG emissions reduction is based on 110g GHG/kWh of electricity and 1879g GHG/m<sup>3</sup> of natural gas. Utility company CDM Incentives are calculated based on \$0.08/kWh of electricity and \$0.10/m<sup>3</sup> of natural gas saved.

**Toronto Water** 

# **DI TORONTO**

#### **Table of Contents**

| 1.1  | Background                                                       | 536 |  |  |  |  |  |  |
|------|------------------------------------------------------------------|-----|--|--|--|--|--|--|
| 1.2  | Major Current Energy Management Initiatives                      | 536 |  |  |  |  |  |  |
| 1.3  | Major Proposed Energy Management Initiatives530                  |     |  |  |  |  |  |  |
| 1.4  | Current Energy Management Initiatives Results536                 |     |  |  |  |  |  |  |
| 1.5  | Proposed Energy Management Initiatives Descriptions ( 2014-2019) | 538 |  |  |  |  |  |  |
| 1.5. | .1 Transmission Operation Optimizer                              | 538 |  |  |  |  |  |  |
| 1.5. | .2 Cogeneration- Ashbridges Bay Wastewater Treatment Plant       | 538 |  |  |  |  |  |  |
| 1.5. | .3 Cogeneration- Humber WWTP                                     | 538 |  |  |  |  |  |  |
| 1.5. | .4 System Sustainability Project                                 | 539 |  |  |  |  |  |  |
| 1.5. | .5 Energy Optimization Plan                                      | 539 |  |  |  |  |  |  |



## **1.1 Background**

Toronto Water owns and is responsible for the operation and maintenance of the City's water and wastewater treatment plants and pumping stations. Toronto Water has set significant standards to achieve energy efficiency through these facilities. This includes an internal energy management program which consists of annually updated facility specific energy management plans, an intranet energy management website and energy use and cost databases. Energy audits were completed at various facilities and recommendations are in different stages of completion and implementation. An Energy Team has also been formed to facilitate the development of a long term energy communication strategy and to help build a sustainable energy saving culture. Three Ministry of Environment director approved Energy Management Training courses were developed and training has been delivered to our management and frontline staff.

This report was prepared in accordance to Ontario Regulation 397/11 and it is structured to provide descriptions as well as a forecast of the expected results of current and proposed energy management measures that are given in section 1, 2, 3 and 4 respectively. Annual energy consumption and green house gas emissions are submitted as part of City overall template under another submission.

## 1.2 Major Current Energy Management Initiatives

- Optimizing pump operation and natural gas use
- Demand Response (DR3)
- Submetering at wastewater treatment plants
- On-going lighting upgrades at various facilities

## **1.3 Major Proposed Energy Management Initiatives**

- Transmission Operation Optimizer
- Cogeneration studies at Ashbridges Bay and Humber Wastewater Treatment Plant
- System Sustainability Project During a City and Region Wide Area Power Failure
- Long Term Energy Optimization Plan

## **1.4 Current Energy Management Initiatives Results**

The current and proposed projects listed above are expected to reduce or optimize energy use. However, one of the challenges of managing energy savings at multiple treatment facilities emanates from balancing between energy optimization and compliance with more stringent codes and regulations (such as NFPA 820 and wastewater system effluent regulations) and the applications of more energy intensive advanced treatment methods (such as disinfection and ozonation) as well as other operation constraints (such as aging infrastructures which lead to ongoing capital projects to improve the treatment processes).

Toronto Water has an on-going pump optimization initiative. This includes regular pump monitoring, testing, pump retrofit and upgrades. Variable speed drives are applied whenever



applicable at raw water pumps, treated water pumps or raw sewage and return activated sludge pumps.

Natural gas use has also been optimized and reduced by maximizing digester gas use at wastewater treatment plants. For example, boilers have been retrofitted with dual fuel burners and digester gas trains are being upgraded to improve gas delivery. Toronto Water has also been taking advantage of a number of incentive programs offered by Toronto Hydro and Enbridge Gas as we implement various energy retrofit projects.

Some examples of current measures savings and incentives generated are provided below:

| Facility                            | Demand  | Energy    | Annual Electricity | Incentive |
|-------------------------------------|---------|-----------|--------------------|-----------|
|                                     | Savings | Savings   | Savings            | Payment   |
|                                     | (kW)    | (kWh)     |                    |           |
| F J Horgan WTP                      | 1,838   | 8,907,775 | \$891,000          | \$516,489 |
| Parkdale<br>Pumping Station         | 1,183   | 3,744,402 | \$374,000          | \$681,164 |
| William Johnston<br>Pumping Station | 95      | 953,320   | \$95,000           | \$93,280  |

| Facility               | Gas Savings                 | Incentive<br>Payment |
|------------------------|-----------------------------|----------------------|
| Highland Creek<br>WWTP | 1.8 million<br>cubic meters | \$100,000            |
| Humber WWTP            | 1.1 million<br>cubic meters | \$100,000            |

Toronto Water is currently enrolled in two DR3 agreements. The first agreement for pumping stations has a contracted curtailment of 1500 kW. The second agreement for the F.J. Horgan Water Treatment Plant has a contracted curtailment of 2000 kW. Toronto Water is one of the first water utilities which has participated in the OPA DR3 program and has been contributing 3.5 MW to the province's demand response program when the grid is under constraint.



Submetering is currently being rolled out at various wastewater treatment plants while lighting upgrades are taking place as part of various capital projects. Some examples of renewable energy applications at Toronto Water include an 86 kW photovoltaic system at the F.J. Horgan water treatment plant, green-roofs at John St. and Milliken pumping stations as well as a solar air heating application at Ashbridges Bay WWTP.

## **1.5** Proposed Energy Management Initiatives Descriptions (2014-2019)

Toronto Water's Energy Conservation and Demand Management Plan consists of the current on-going energy initiatives given in Section 1 as well as the proposed initiatives provided in Section 2. Detailed descriptions of proposed energy management initiatives are given below.

## **1.5.1** Transmission Operation Optimizer

Toronto Water and the Region of York have been working together to investigate the development of an 'Optimizer' that will automatically determine control strategies for the Water Transmission System. The proposed system would preserve water quality while providing adequate pressure and flow at the lowest energy cost. Plans for the optimizer include a 'Simulator' that will allow system performance prediction under various "what-if" situations. The Optimizer would work "on-line" alongside City of Toronto and Region of York's SCADA (Supervisory Control and Data Acquisition) Systems, while the simulator would be an "off-line" tool.

## **1.5.2** Cogeneration- Ashbridges Bay Wastewater Treatment Plant

In 2008, Toronto Hydro proposed a cogeneration facility to utilize the digester gas (biogas) produced at the Ashbridges Bay Treatment Plant (ABTP) to generate 10 MW of electrical power and return the recovered thermal energy to ABTP in the form of hot water. The cogeneration facility will physically be located on a small portion of City owned land (adjacent to ABTP) currently occupied by the Transportation Division. Other project proposal features include:

- Electrical connection to 15 kV bus at the North Substation within ABTP
- 10 MW of emergency power (with natural gas supply)
- 20 year term plus 10 year extension option
- Lease payment by Toronto Hydro to the City (Transportation Division)
- Toronto Hydro to cover all capital and operating costs of the project
- Toronto Hydro to pay Toronto Water for biogas while Toronto Water pays Toronto Hydro for returned thermal energy (details under negotiation)

The design of the facility is approximately 10% complete. Toronto Hydro had previously applied for the approval of the project under the FIT Program, but recently submitted an application for a separate OPA incentive program.

## 1.5.3 Cogeneration- Humber WWTP

The Humber Treatment Plant has two co-gen engines installed in the late 1990s and initially commissioned in 2000. The engines are capable of delivering 2.35 MW of electricity and 2.9 MW of heat each when running at rated capacity. Since the commissioning, numerous issues



related to fuel availability, unreliable fuel preparation system (compression and drying), questionable natural gas and digester gas blending, and repetitive backfires due to exhaust system configuration, rendered this facility non-operable for the last several years.

A recent City initiative has resulted in an upgrade project aimed to address the above mentioned issues and resume routine operation of the facility. It is envisioned that following the improvements that are currently under construction, one of the co-generation engines will be operated solely on digester gas. The second engine will be operated on natural gas if and when the City chooses to do so. Most of the waste heat from the co-gen engines will be utilized by the plant year round with the requirement to supplement winter space heating needs by the natural gas-fired boilers.

## 1.5.4 System Sustainability Project

The purpose of this assignment is to update the analysis previously completed in 2008, up to the planning horizon of 2041 and evaluate the optimum solution for continuing to reliably supply drinking water to the City of Toronto service area and the integrated York Region water system by recommending and updating emergency power back-up requirements. This study will also recommend the cost benefits and feasibility of using new back-up generator systems to expand demand response participation.

## 1.5.5 Energy Optimization Plan

Toronto Water Energy Optimization Plan - review the status of the current energy management plans and initiatives, identify and develop short and long term (5-10 years and 10–20 years) goals and objectives as well as provide cost-benefit analysis for the recommended strategies to address all energy aspects of the water and wastewater operations.