

Structural Pavement Design Guidelines

City of Toronto
December 14, 2006

\$1\$D ADA0127-1

Project Scope

- To review existing City of Toronto pavement design procedures
- Evaluate the existing standards using mechanistic empirical methodologies
- Consolidate the design standards and procedures of the former municipalities
- Develop new pavement structural design guidelines

ARA

Seminar Goals

- Why is this study important?
- How was the study completed?
- What is the outcome of the study?
- How will this study affect you?

xpanding the Realm of Possibility

Agenda

- Study background
- Brief introduction to pavement design
- Introduction to the M-E PDG
- Use of the new pavement design guidelines

Background

- 5,200 centreline kilometres of roadways
- 250 centreline kilometres of laneways
- Network is over 100 years old

ARA

Functional Classification

- Arterial Roads
 - Primary, Secondary, Local, Major, Minor, etc
- Collector Roads
 - Industrial, Residential
- Local
 - Industrial, Residential
- Lanes

xpanding the Realm of Possibility

Existing Pavement Types

- Two primary pavement types throughout the City:
 - Asphalt Concrete over Aggregate Base
 - Asphalt Concrete over Concrete Base

Existing Pavement Standards

- The City of Toronto comprises 7 former cities and municipalities
 - East York
 - Etobicoke
 - Metro
 - North York
 - Scarborough
 - Toronto
 - York

RTMS Road	EXI	stir	ng F	av		ent		sigi	าร		
lassification	Ftoh	icoke	Fact	York		mer Cities & Municip etro		York	Scarborough	Toronto	York
1	Flexible	Rigid	Flexible	Rigid	Flexible	Rigid		Flexible - Granular	Flexible	Rigid	Flexible
Arterial Roads	Primary 40 mm HL (H5) 40 mm HL (H5) 40 mm Granular B T = 365 mm EGT = 350 mm Secondary 40 mm HL (H5) 40 mm Granular A 200 mm HL (H5) 40 mm Granular A 500 mm Granular A T = 340 mm EGT = 350 mm	Primary 40 mm HL 104 40 mm HL 2045 225 mm 25 MPB PCC 150 mm Granular A T = 455 mm EGT = 985 mm Secondary 40 mm HL 104 40 mm HL 105 mm 25 MPB PCC 150 mm 25 MPB PCC 150 mm 72 MPB PCC 150 mm 72 monaler A T = 430 mm EGT = 910 mm	Local Arterial 50 mm HL3 100 mm HL8 150 mm Geauslar A 300 mm Geauslar A 300 mm Geauslar B T = 600 mm EGT = 750 mm	Local Arterial 50 mm HL3 100 mm HL3 200 mm Concrete T = 350 mm EGT = 900 mm	Deep Strength (Flex.) 35 mm HLI. 240 mm HLS(HS) 150 mm Graunder A T = 425 mm EGT = 700 mm Selection of hot-mix suphalt type is dependent on each project. Others: SMA, DFC, LSBC	Composite* 30 mm H.1 40 mm H.1. 200 mm 25 MPa PCC 150 mm Granular A T = 420 mm EGT = 590 mm Concrete base thickness to taper from 200 at CL to 250 mm at EP by adjusting grade from 3% on subbase to 2% on base.	Heaty-Duty 35 mm HL1 250 mm HL8 30 mm Granuler A* 100 mm Granuler B* T = 435 mm EGT = 720 mm	Heavy-Duty 25 mm HL3 100 mm HL8 30 mm Grenular A* 250 mm Grenular B* 150 mm Granular B* 150 mm Granular B 150 mm Granular A T = 575 mm EGT = 650 mm	Major Arterial & Minor Arterial 40 mm HL1 125 mm HL3 50 mm Granular A 400 mm Granular A 400 mm Granular B T = 615 mm EGT = 780 mm	Composite (Heavy)* 50 mm H.1. 200 mm 25 MFb PCC 150 mm Granular A T = 400 mm EGT = \$50 mm Cor Other* 40 mm H1.1 40 mm H1.6 200 mm 25 MFb PCC 150 mm Granular A T = 430 mm EGT = 910 mm	Standard "C" 40 mm HL1 85 mm HL6 200 mm Concret 150 mm Granda T = 475 mm EGT = 1000 mm
Collector Roads	EGI = 780 mm Endustrial 40 mm HL3 175 mm HL3 40 mm Granular A* 260 mm Granular B T = 515 mm EGT = 730 mm Residential 40 mm HL3 150 mm HL3 40 mm Granular A* 260 mm Granular A* 260 mm Granular B T = 450 mm	EGT = 910 mm Industrial 40 mm HL3 40 mm HL3 200 mm 25 Mps PCC 150 mm 6 grandar A T = 430 mm EGT = 430 mm Residential 40 mm HL3 40 mm HL3 40 mm HL3 200 mm 25 Mps PCC 150 mm 6 grandar A T = 430 mm EGT = 910 mm Franciar A T = 430 mm EGT = 910 mm Franciar A T = 430 mm	Collector 50 mm HL3 50 mm HL3 150 mm Grasular A 225 mm Grasular B T = 475 mm EGT = 575 mm	Collector 50 mm HL3 50 mm HL8 200 mm Concrete T = 300 mm EGT = 800 mm	NA	on one.	Medium-Duty 35 mm HL1 175 mm HL8 50 mm Granular A* 100 mm Granular B* T = 360 mm EGT = 570 mm	Medium-Duty 25 mm HLJ 75 mm HLS 50 mm Granular A* 175 mm Granular B* 150 mm Granular B* 150 mm Granular A T = 475 mm EGT = 525 mm	Collector 40 mm HL3 (mod) 125 mm HL3 50 mm Granular A 250 mm Granular B T = 515 mm EGT = 630 mm	Composite (Heavy)* 50 mm HL1 200 mm Concrete 150 mm Granular A T = 400 mm EGT = 850 mm	Standard'A' 40 mm HL3 85 mm HL8 200 mm Grantlar 300 mm Grantlar T= 615 mm EGT = 750 mm
Local Roads	Industrial 40 mm HL3 150 mm HL3 40 mm Granular A* 260 mm Granular B T = 490 mm Residential 40 mm HL3 100 mm HL3 100 mm HL3 260 mm Granular A* 260 mm Granular B T = 440 mm BGT = 500 mm	Industrial 40 mm HL3 40 mm HL3 200 mm 25 MPa PCC 150 mm Grazudar A T = 430 mm EGT = 910 mm Residential 40 mm HL3 40 mm HL3 40 mm EL8 150 mm 25 MPa PCC 150 mm Grazudar A T = 380 mm EGT = 700 mm	Local 50 mm HL3 50 mm HL3 150 mm Grassilar A 225 mm Grassilar B* T = 475 mm EGT = 575 mm	Local 50 mm HL3 50 mm HL8 150 mm Concrete T = 250 mm EGT = 650 mm	NA .	NA	Light Duty 25 mm HL3 125 mm HL3 120 mm HL3 100 mm Granular A* 100 mm Granular B* T = 300 mm EGT = 450 mm	Light Duty 25 mm HL2 30 mm HL2 30 mm Granular A* 100 mm Granular B* 100 mm Granular B* 150 mm Granular B* 150 mm Granular A T = 375 mm EGT = 400 mm	Local Commo/Ind Same as Collector Local Residential 25 mm HL3 (mod) 75 mm HL8 50 mm Granular A 250 mm Granular B T = 400 mm EGT = 500 mm	Composite (Light)* 50 mm HL1 150 mm Concrete 150 mm Granular A T = 350 mm EGT = 700 mm	Standard B' 40 mm HL3 50 mm HL8 200 mm Granula 250 mm Granula T = 540 mm EGT = 630 mm
Comments	All granulars are crushed. * This layer placed for constructability		All granulars are crushed. * This layer only required if subgrade is in poor condition. Concrete strength not specified.		All hot-mix asphalt is high stability. Thickness of surface course asphalt should be 35 mm.		* Crushed grander.		All granulars are crushed	** As shown in plans.	All granders are crushed
pecification nformation	Structures also specified for bus bays. City of Etobicoke table for "Pavement Thickness for Different Road Types"		Borough of East York Engineering Department Drawings		Recent Practices	* MT Dwg 288 Jan. 14, 1983	STD: - 605 94/01/06	STD 606 94/01/07	Dwg S-250, S-252, S- 253, S-254, S-259, dated time 1981	* Dwg. RE-1567M Nov. 1, 1991	Pavement Rehab Contract 00D1-10 May 2000

- Etobicoke Arterial
 - 40 mm HL1
 - 225 mm HL8(HS)
 - 40 mm Granular A
 - 260 mm Granular B

- Scarborough Arterial
 - 40 mm HL1
 - 125 mm HL8
 - 50 mm Granular A
 - 400 mm Granular B

Pavement Design Methods

- There are many different design procedures in use around the world
- The theory behind the design procedures varies immensely between agencies

A variety of different techniques exist and they are generally categorized as:

- Empirical
- Mechanistic
- Mechanistic-Empirical

ARA

Empirical Design

- Empirical design is based on correlations with existing experience
- Most widely used design method because people have developed confidence in the existing methods
- You need a lot of existing data to have confidence in the results
- Results are limited to the scope of the testing

Expanding the Realm of Possibility

Empirical – Basic Methods

- Early trial and error methods
- Successful designs are copied and repeated
- Designs often related to pavement thickness and compared using equivalent granular thickness (EGT) or granular base equivalency (GBE)
- Typical GBE or EGT factors
 - 1 mm HMA ~ 2 mm base ~ 3 mm subbase

ARA

16

Empirical – More Advanced

- Most common empirical design procedure in North America is the 1993 AASHTO Guide for Design of Pavement Structures
- Been validated for Ontario and widely used across Canada
- Based on in-service pavements therefore empirically based
- No procedure for innovative/improved technologies

Expanding the Realm of Possibilit

Brief History of the AASHTO Design Guide

- AASHO Road Test (1958-60)
- 1961 AASHO Interim Guide for the Design of Rigid and Flexible Pavements
- 1972 Revised Interim Guide
- 1981 Revised Interim Guide for PCC
- 1986 AASHTO Guide for the Design of Pavement Structures
- 1993 AASHTO Guide for the Design of Pavement Structures
- 1998 Supplement to the AASHTO Guide (PCC)
- 2002 Guide to utilize mechanistic principles

18

Expanding the Realm of Possibility

Experience

Evaluation of Road Condition

- Road was evaluated in terms of the Pavement Serviceability Rating (PSR)
 - "The judgment of an observer as to the current ability of a pavement to serve the traffic it is meant to serve"

Expanding the Realm of Possibility

Results of the AASHO Road Test

- A better understanding of the difference in damage caused by different types and weights of trucks (ESALs)
- A better understanding of what users consider to be a good performing roadway (PSI)
- Design equations to relate the traffic with the damage seen on the roads

$$\log_{10}(W_{12}) = Z_s * S_0 + 7.35 * \log_{10}(D+1) - 0.06 + \frac{\log_{10}\left[\frac{\Delta PSI}{4.511.5}\right]}{1.0 + \frac{1.624 * 10^2}{(D+1)^2.46}} + (4.22 - 0.32p_r) * \log_{10}\left[\frac{S_r * C_d \left[D^{0.75} - 1.132\right]}{215.63 * J \left[D^{0.75} - \frac{18.42}{\left(E_r I k\right)^{0.75}}\right]}\right]$$

22

Using the AASHTO Data Today

- What has changed since the AASHO Road Test?
 - Significant changes to the types of materials used in pavement construction
 - Increase in traffic volume and vehicle weight
 - Large advancements in the construction practices
 - Other design factors (ie. drainage, friction, etc...)
- Our understanding of the materials and the mechanisms of the deterioration is greatly advanced

Expanding the Realm of Possibility

Mechanistic Design

- Relates stress/strain states to failures
- If modeled correctly can be very accurate

Long history of existing mechanistic models

- Boussinesq
- Burmister
- Linear Elastic Analysis
- Finite Element Analysis

Why Not Use Mechanistic Design?

- Pavement systems are VERY complicated to try and model
 - Asphalt concrete is a non-homogenous thermalviscoelastic material and has properties that change with age
 - Variability in materials along a project
 - A pavement is only as good as it is constructed
 - A pavement is designed for predicted traffic
- Early attempts to predict service life were very poor
- Relationships between stress/strain and failure modes are still being developed (ride quality, structural failure, rutting, etc...)

26

Mechanistic-Empirical Design

- Mechanistic Design uses models to predict the effect of materials, traffic, and environment on the expected performance
- Empirical calibration ensures that it matches what is seen in the field
- A large data set is used to calibrate pavement models used to predict various methods of pavement deterioration
- The larger amount of data and mechanistic component allows for a more accurate reliability component

27

Expanding the Realm of Possibilit

Mechanistic-Empirical Pavement Design Guide APPLIED REFERRCH, Inc.

Mechanistic-Empirical Pavement Design Guide (M-E PDG)

- Uses advanced inputs to predict the mechanisms of failure (structural and functional).
- Correlated with field results to ensure the models are accurate.

ARA

ARA

xpanding the Realm of Possibility

M-E PDG Design Inputs

- Climate Conditions
- Traffic Conditions
- Layer Materials and Thickness

Truck Traffic Inputs

- Moving away from Equivalent Single Axle Loads (ESALs)
- M-E PDG models the damage caused be individual axle loads for each pavement section
- Traffic is also distributed by time of the year and by time of the day to better account for the relationship between climate and load.

ARA

32

M-E PDG Material Inputs

- No longer based on standard co-efficients for each material class (SN coefficients, GBE coefficients)
- Detailed material properties and performance characteristics are needed
 - Layer moduli
 - Gradation
 - Mix Volumetrics
 - Drainage

Expanding the Realm of Possibili

Mechanistic Models

- All inputs are combined to predict stress-strain relationships for all load combinations at different times of the day and year
- Models used for predicting distresses include:
 - Finite element analysis for flexible pavements
 - Neural network for rigid pavements
- Results in a prediction of performance for a potential cross-section

ARA

National Calibration of Models

- The models were calculated based on research sites all over the U.S.A. and Canada.
- Advanced testing and routine monitoring was completed as a part of the Long Term Pavement Performance (LTPP) project.
- Test sites were located on states built and monitored by State and Provincial Agencies
- It was recommended that local calibration be considered to ensure that models matched local conditions, materials, loads, and construction practices.

Flexible Distress Prediction

- The following distresses are predicted for flexible pavements:
 - Thermal (transverse) cracking
 - Bottom-Up fatigue (alligator) cracking
 - Top-Down fatigue (longitudinal) cracking
 - Rutting
 - IRI

3

Rigid Distress Prediction

- The following distresses are predicted for rigid pavements:
 - Faulting
 - Slab cracking
 - Joint load transfer
 - IRI

39

Traffic Inputs

FHWA Class	Truck Type	Local (Residential)	Local (Commercial / Industrial.)	Local (Residential Throughway)	Collector (Residential)	Collector (Commercial / Industrial.)
4	•	15 %	25 %	20 %	20 %	25 %
5	•	30 %	25 %	30 %	30 %	25 %
6		45 %	40 %	40 %	40 %	40 %
7		5 %	5 %	5 %	5 %	5 %
8	•	5 %	5 %	5 %	5 %	5 %
Total		100 %	100 %	100 %	100 %	100 %

Expanding the Realm of Possibility

Traffic Inputs

FHWA Class	Configuration	Minor Arterial (Non-Truck Route)	Minor Arterial (Truck Route)	Major Arterial (Non-Truck Route)	Major Arterial (Truck Route)
4	•••	20 %	25 %	35 %	35%
5	•	30 %	25 %	30 %	15%
6	000	40 %	40 %	30 %	14%
7		5 %	5 %	0 %	2%
8		5 %	5 %	5 %	14%
9	w	0 %	0 %	0 %	20%
	Total	100 %	100 %	100 %	100 %

ARA

44

Construction Material Inputs

- Standard pavement mixtures are used through out the city
- Typical mix design reports were available for volumetric and mix properties

% A.C / Slev	e Sires	mmt	% A.C	26.5	19.0	16.0	13.2	9.5	4.75	2.36	1.18	0.600	0.300	0.150	0.0
	MF		4.9	100	97.8	91.2	82.5	66.2	50.0	46.6	28.3	16.5	9.4	5.6	4.
					_			_						_	_
MARSHALL			SELECTED		1		A F1		5.5		PAP	-	_		
% VOIDS		(min.)		42		2			A #2		5.0		RAP	-	-
		mex.)		1.5			100		A St	43	7.6		PEN	_	
LOW (min) [t				8			Time		A #2	<u> </u>	_		BRD.		423
STAB	LITY (mi	n) (N)		.000		717	La A		A #3				RD_		529
%	V.M.A (m)	in)	1	3.5	A 16	.5	200		ib	2.6	396	MRD	(SD)	2.5	529
-	ASP	HALT	CEMENT	-	20.00	1	200		- No. 100		phitiv	TE .	_		-
	PLIER	T	PENET		N	ENA		SUP	PLIER	50		TYPE		AS %	OF A
86.	ımar		PG	58-28	2 (9.9)	100			 1/5° 	12.7		-	_		- "
AGGREG. TYPE			AGGREGA'				AGGREGATE TYPE			AGGREGATE SOURCE / INVENTORY NO.					
COARSE		19 me	m Stone			FINE			-						
		ge/Brechin	0			AGG.#2		2				-			
COARSE		HI-3	Stone			FINE									
AGG # 2 Lafaro		e/Brechin .	0			AGG #3			-			-			
FINE			Manufact	ctured Sand			RAP		15 1	-					
AGG. #	1	Lafaro	e/Oundas	100	Q	Starios.	20	(mail	Section		-			-	_
AGG.	BULK	REL.	ARSORPTION	-		- AC	GREGI	TEGR	ADATID	N PE	RCENT	PASSO	NG	_	_
TYPE	DENS		*	26.5	19.0	16.0	13.2	9.5	4.75	2.36	1.18			0.150	0.07
CA #1	2.68		0.57		91.7	66.7	35.3	10.1	3.8	3.2	3.0	2.9	2.8	2.7	2.4
CA #2	2.67		0.68		100.0				3.0	2.1	1.9	1.8	1.6	1.3	1.1
FA 81	2.71	3	1.32	100.0	100.0	100.0	100.0	100.0	99.9	93.5	54.5	29.4	14,4	6.6	3.5
FA #2	_	\rightarrow	CO CO YOU	200	4	1000	Con an	-							_
RAP CA	-	-		200	-	in in	1		-		-	-	_	-	-
RAP FA	_	-		-	-	15	-	15 10				-	_		-
	RETURN	ED TO	MIX (1.5%)		A SEC		100	4.3.3							_
EMARKS:			4.75mm por		he blend	predet	ion Nas	been a	diusted	for fines	ceture	ad to mi	·		_
			ettes were o									o m	-		
			eir vold corre								was con	noleted	In Augus	ret. 2004	
	4 R	ecompa	ection temper	ature is	135° C.	Briguet	ie weig	ht le 125	50 a			.,			-

Expanding the Realm of Possibility

Subgrade Material Inputs

 The subsoils within the City limits comprise predominately till and delta sands

ARA

Empirical Model Calibration

- A calibration of the M-E PDG was performed as a part of this project.
- Testing was completed on 117 sections composed of:
 - 67 Flexible
 - 41 Composite
 - 6 JPCP
- Visual surveys and laser profiler testing were completed on all sections

Expanding the Realm of Possibility

Calibration Results

- The distresses were predicted and then compared to the measured distresses
- Not all of the performance models were designed for municipal pavements.
- The traditional distresses used for a structural analysis (ie. alligator cracking) were centered around the national calibration models.

ARA

Calibration Highlights

- Thermal (transverse) cracking
 - Dependent on binder type
 - PGAC has helped mitigate
 - Reflection cracking is not easily modeled
- Bottom-Up fatigue (alligator) cracking
 - Most reliable model
 - Basis of previous design methodologies
- Top-Down fatigue (longitudinal) cracking
 - Difficult distress mechanism to accurately predict

Expanding the Realm of Possibility

Calibration Highlights

- Rutting
 - The rutting predicted was significantly worse than that measured in the City of Toronto
 - Rutting issues encountered are related to the asphalt mix volumetrics
- Roughness (IRI)
 - Roughness measured tended to be significantly higher than predicted
 - IRI models were calibrated based on highway conditions and do not include municipal road hardware effects

50

Roughness Calibration... Pavement roughness is used to ensure that the road is safe to drive at reasonable speeds. IRI model didn't predict street hardware and traffic calming devices.

Pavement Design with the M-E PDG

- The designs were based on:
 - Common City of Toronto materials
 - Experience of design and construction staff
 - Functional classifications
 - Limiting fatigue cracking

Expanding the Realm of Possibilit

Evaluation of Existing Sections

- The M-E PDG was used to evaluate the existing crosssections used by the former municipalities
- The Toronto specific design inputs were used
- The results of the analysis were the expected truck traffic

ARA

Development of New Guidelines

- New designs were based on the existing designs and experience with them
- Some things were reduced:
 - Fewer materials
 - Less variability in material thickness
- Some things added:
 - More flexibility in traffic levels
 - Some consideration of subgrade type

ARA

60

Granular Material

- Existing guidelines use:
 - Granular A 40-150 mm
 - Granular B 100-400 mm
- The granular material is used to:
 - Provide frost protection
 - Allow adequate drainage
 - Provide suitable construction platform

61

Expanding the Realm of Possibility

Recommended Granular Material

- Granular A is recommended at 50 mm
- Granular B Type II is recommended to provide adequate angularity and support

Functional Class	Granular A	Granular B Type II
Major Arterial (Truck Route)	50 mm	350 mm
Major Arterial (Non-Truck Route)	50 mm	300 mm
Minor Arterial	50 mm	250 mm
Collector	50 mm	250 mm
Local	50 mm	250 mm

ARA

62

Asphalt Material

- The designs focus on four common mixes:
 - HL-1
 - HL-3
 - HL-8
 - HL-8 (HS)
- Thickness was provided for different traffic levels within functional classifications

Determine Functional Classification Refer to the City Road Classification System

http://insideto.toronto.ca/wes/transportation/rc/index.htm

- If classification is unknown or undetermined contact
 - Operational Planning and Policy Unit Transportation Infrastructure **Management Transportation Services**

General Functional Classifications

Characteristic	Locals	Collectors	Minor Arterials	Major Arterials	Expressways
Traffic movement versus property access	Property access primary function	Traffic movement and property access of equal importance	Traffic movement primary consideration; some property access control	Traffic movement primary consideration; subject to property access control	Traffic movement primary consideration; no property access
Typical daily motor vehicle traffic volume (both directions)	# 2,500	2,500 - 8000	8,000 - 20,000	> 20,000	> 40,000
Minimum number of peak period lanes (excluding bicycle lanes)	One (one-way streets) or two	One (one-way streets) or two	Two	Four	Four
Desirable connections	Locals, collectors	Locals, collectors, arterials	Collectors, arterials	Collectors, arterials, expressways	Major arterials, expressways
Flow characteristics	Interrupted flow	Interrupted flow	Uninterrupted except at signals and crosswalks	Uninterrupted except at signals and crosswalks	Free-flow (grade separated)
Legal speed limit, km/h	40 - 50	40 - 50	40 - 60	50 - 60¹	80 – 100
Accommodation of pedestrians	Sidewalks on one or both sides	Sidewalks on both sides	Sidewalks on both sides	Sidewalks on both sides	Pedestrians prohibited
Accommodation of cyclists	Special facil	ities as required	Wide curb lane or spec	cial facilities desirable	Cyclists prohibited
Surface transit	Generally not provided	Permitted	Preferred	Preferred	Express buses only
Surface transit daily passengers	Not applicable	# 1,500	1,500 - 5,000	> 5,000	Not applicable
Heavy truck restrictions (e.g. seasonal or night time)	Restrictions preferred	Restrictions permitted	Generally no restrictions	Generally no restrictions	No restrictions
Typical spacing between traffic control devices ² , m	0 - 150	215 - 400	215 - 400	215 - 400	Not applicable
Typical right-of-way width, m	15 - 22	20 - 27	$20^3 - 30^4$	$20^3 - 45^4$	> 454

Determine the Traffic

- The type of vehicles greatly affect the service life of a vehicle.
- The traffic data needed for the design guidelines includes:
 - AADT
 - Commercial Vehicles

Expanding the Realm of Possibility

Traffic Data

■ Refer to the City's Traffic Management Centre (TMC), Volume Maps, or Turning Movement Summaries

http://insideto.toronto.ca/wes/transportation/tmc/tdcsb/volumes/index.htm

- If there is no traffic data, a traffic count request can be made through
 - Traffic Data & Safety Bureau Traffic Management Centre Transportation Services

Subgrade Support

- The subgrade soil is the native material that the roadway is built on.
- The purpose of the pavement structure is to adequately protect the subgrade from the traffic loads
- The subgrade support is defined in terms of the Resilient Modulus (M_r)

Expanding the Realm of Possibility

Subgrade Support Classes

- Cohesive soils
 - Tills, clays, silts, etc
 - Low to high frost susceptibility depending on the actual soil matrix
 - Fair subgrade support with an M_r of 30 MPa

- Sandy Alluvium Soils
 - Sand bars, beaches, and boulder fields of the lower lying Iroquois Plain
 - Low frost susceptibility
 - Good subgrade support with an M_r of 50 MPa

76

- J						-				
		:61 /	400	rop	Hal	e c	105	5 3	ecu	on
		0.000		.000		0.000		0.000		.000
	30 MPa	50 MPa	30 MPa	,000 50 MPa						
	40 mm HL-1									
Non-Truck Routes (5% Commercial	110 mm HL8 (HS)	90 mm HL-8 (HS)	125 mm HL8 (HS)	100 mm HL-8 (HS)	135 mm HL8 (HS)	110 mm HL-8 (HS)	145 mm HL8 (HS)	120 mm HL-8 (HS)	155 mm HL8 (HS)	125 mm HL-8 (HS)
(5% Commercial Vehicles)	50 mm Granular A 300 mm Granular B *	50 mm Granular A 300 mm Granular B *	50 mm Granular A 300 mm Granular B *	50 mm Granular A	50 mm Granular A	50 mm Granular A 300 mm Granular B *	50 mm Granular A 300 mm Granular B *	50 mm Granular A 300 mm Granular B *	50 mm Granular A 300 mm Granular B *	50 mm Granular A
venicies)	500 mm Granular B *	480 mm Granular B *	515 mm Total	490 mm Granular B *	525 mm Total	500 mm Granular B *	535 mm Total	510 mm Granular B *	545 mm Total	515 mm Total
	40 mm HL1									
Truck Routes	130 mm HL8 (HS)	110 mm HL8 (HS)	150 mm HL8 (HS)	130 mm HL8 (HS)	155 mm HL8 (HS)	135 mm HL8 (HS)	160 mm HL8 (HS)	145 mm HL8 (HS)	170 mm HL8 (HS)	150 mm HL8 (HS)
(7.5% Commercial Vehicles)	50 mm Granular A 350 mm Granular B *	50 mm Granular A 350 mm Granular B *	50 mm Granular A 350 mm Granular B *	50 mm Granular A	50 mm Granular A	50 mm Granular A 350 mm Granular B *	50 mm Granular A 350 mm Granular B *	50 mm Granular A	50 mm Granular A 350 mm Granular B *	50 mm Granular A 350 mm Granular B *
venicies)	550 mm Granular B *	550 mm Granular B *	590 mm Granular B *	570 mm Granular B *	595 mm Granular B *	575 mm Total	600 mm Granular B *	585 mm Total	610 mm Total	590 mm Granular B *
	40 mm HL-1									
Truck Routes	150 mm HL-8 (HS)	125 mm HL-8 (HS)	160 mm HL-8 (HS)	135 mm HL-8 (HS)	170 mm HL-8 (HS)	145 mm HL-8 (HS)	175 mm HL-8 (HS)	155 mm HL-8 (HS)	185 mm HL-8 (HS)	165 mm HL-8 (HS)
(10% Commercial Vehicles)	50 mm Granular A 350 mm Granular B *	50 mm Granular A 350 mm Granular B *	50 mm Granular A 350 mm Granular B *	50 mm Granular A	50 mm Granular A 350 mm Granular B *	50 mm Granular A 350 mm Granular B *	50 mm Granular A 350 mm Granular B *	50 mm Granular A 350 mm Granular B *	50 mm Granular A 350 mm Granular B *	50 mm Granular A 350 mm Granular B.*
Vehicles)	590 mm Granular B *	565 mm Granular B *	600 mm Granular B *	575 mm Total	610 mm Granular B *	585 mm Total	615 mm Total	595 mm Granular B *	625 mm Granular B *	605 mm Granular B *
	Jao IIIII Total	DOD HILL TOTAL	DOO IIIII TOUB	D/D IIIII TOM	DIO IIIII TOM	DOD HILL TOTAL	O13 IIIII TOIAI	Dao illii Total		DOCUMENT TO SE
	20	0,000	25	,000						All Traffic &
	30 MPa	50 MPa	30 MPa	50 MPa	1					Subgrade 40 mm HL-1
	40 mm HL-1	40 mm HL-1	40 mm HL-1	40 mm HL-1	•				Major	50 mm HL-8 (HS)
Non-Truck Routes	95 mm HL-8 (HS)	80 mm HL-8 (HS)	105 mm HL-8 (HS)	85 mm HL-8 (HS)					Arterial	250 mm PCC Concret
	50 mm Granular A						150 mm Granular 'A'			
Vehicles)	250 mm Granular B *						490 mm Total			
	435 mm Total 40 mm HL-1	420 mm Total 40 mm HL-1	445 mm Total 40 mm HL-1	425 mm Total 40 mm HL-1	4				Minor	40 mm HL-1 50 mm HL-8 (HS)
Truck Routes	135 mm HL-8 (HS)	110 mm HL-8 (HS)	140 mm HL-8 (HS)	120 mm HL-8 (HS)					Arterial - Rus/Truck	250 mm PCC Concret
(7.5% Commercial	50 mm Granular A					Route	150 mm Granular 'A'			
Vehicles)	250 mm Granular B * 475 mm Total	250 mm Granular B * 450 mm Total	250 mm Granular B * 480 mm Total	250 mm Granular B * 460 mm Total					- Acouste	490 mm Total 50 mm HI -1 of HI -3
	475 mm Total	450 mm Total	480 mm Total	460 mm I otal	1				ë	200 mm PCC Concret
	5,	,000	7.500		10.000		15,000		Collector -	150 mm Granular 'A'
	30 MPa	50 MPa	Bus/Truck Route	400 mm Total						
		-	40 mm HL3	40 mm HL-3	<u> </u>					
Comm./Ind. (5%			105 mm HL-8	75 mm HL-8	115 mm HL-8	85 mm HL-8	125 mm HL-8	95 mm HL-8	Collector -	50 mm HL-1 or HL-3
Vehicles)			50 mm Granular A 250 mm Granular B *	50 mm Granular A 250 mm Granular B *	50 mm Granular A 250 mm Granular B *	50 mm Granular A 250 mm Granular B *	50 mm Granular A 250 mm Granular B *	50 mm Granular A 250 mm Granular B *	Non	150 mm PCC Concret
venicies)			AAE mm Total	415 mm Total	ASS mm Total	435 mm Total	465 mm Total	435 mm Total	Bus/Truck	350 mm Total
	40 mm HL-3			Route						
Residential (3%	70 mm HL-8	60 mm HL-8	85 mm HL-8	60 mm HL-8	95 mm HL-8	60 mm HL-8				
Commercial Vehicles	50 mm Granular A 250 mm Granular B *	50 mm Granular A 250 mm Granular B *	50 mm Granular A 250 mm Granular B *	50 mm Granular A 250 mm Granular B *	50 mm Granular A 250 mm Granular B *	50 mm Granular A 250 mm Granular B *				
remitted)	410 mm Total	400 mm Total	425 mm Total	400 mm Total	435 mm Total	400 mm Total				
									_	
i	_	,500		.000	_	,500	Note	S: AADT		
	30 MPa	50 MPa	30 MPa	50 MPa	30 MPa	50 MPa		Subgrade		
	Local Residential (3	% Commercial Vehicles)	Local Industrial (10	% Commercial Vehicles)		vay (3% Commercial hicles)		* Subbase is Granul	ar B - Type II as specif	ied in OPSS 1010
-	40 mm HL-3 60 mm HL-8	40 mm HL-3 60 mm HI 8	40 mm HL-3 80 mm HL-8	40 mm HL-3 60 mm HL-8	40 mm HL-3 60 mm HL-8	40 mm HL-3 60 mm HL-8	1	A		
5	60 mm HL-8 60 mm Granular A	60 mm HL8 60 mm Granular A	80 mm HL-8 50 mm Granular A	60 mm HL-8 60 mm Granular A	60 mm HL-8 60 mm Granular A	60 mm HL-8 60 mm Granular A		A BPPUED.	. Ihiil Ton	ORTO
2	250 mm Granular B *		NE PHACE	coc III IIK	HIVIII					
	400 mm Total	400 mm Total	420 mm Total	400 mm Total	400 mm Total	400 mm Total		T A MUCCINII	D, IIIC. IIZII IVII	

Using the Design Matrix

- The design matrix is setup in groups of functional classes
- For each functional classification, find the specific design by using the expected traffic and subgrade support value.

	20,	000	25,000		
	30 MPa	50 MPa	30 MPa	50 MPa	
Non-Truck Routes (4% Commercial Vehicles)	95 mm HL-8 (HS) 50 mm Granular A 250 mm Granular B *	80 mm HL-8 (HS) 50 mm Granular A 250 mm Granular B *	105 mm HL-8 (HS) 50 mm Granular A 250 mm Granular B *	40 mm HL-1 85 mm HL-8 (HS) 50 mm Granular A 250 mm Granular B * 425 mm Total	
Truck Routes (7.5% Commercial Vehicles)	135 mm HL-8 (HS) 50 mm Granular A 250 mm Granular B *	110 mm HL-8 (HS) 50 mm Granular A 250 mm Granular B *	140 mm HL-8 (HS) 50 mm Granular A 250 mm Granular B *	40 mm HL-1 120 mm HL-8 (HS) 50 mm Granular A 250 mm Granular B * 460 mm Total	

ARA

Composite Pavements

- Selected only by Functional Classification
- Pavement structure isn't as sensitive to traffic volume.

_		All Traffic & Subgrade			
	Major Arterial	40 mm HL-1 50 mm HL-8 (HS) 250 mm PCC Concrete 150 mm Granular 'A' 490 mm Total			
avements	Minor Arterial - Bus/Truck Route	40 mm HL-1 50 mm HL-8 (HS) 250 mm PCC Concrete 150 mm Granular 'A' 490 mm Total			
Composite P	Local Collector - Bus/Truck Route	50 mm HL-1 of HL-3 200 mm PCC Concrete 150 mm Granular 'A' 400 mm Total			
	Local Collector - Non Bus/Truck Route	50 mm HL-1 or HL-3 150 mm PCC Concrete 150 mm Granular 'A' 350 mm Total			

Expanding the Poalm of Possibility

Pavement Type Selection

- City of Toronto uses two pavement types:
 - Flexible (Asphalt) pavement
 - Composite (Asphalt and Concrete) pavement
- Many factors to consider
 - Long term performance
 - Short term performance
 - Serviceability
 - Life Cycle Cost

80

Life Cycle Cost

- A procedure to account for all costs over the whole life of a pavement
- Costs for both alternative pavement types are calculated and compared
- Recommended whole life
 - Arterial Roads 100 years
 - Collector Roads 75 years
- Recommended rehabilitation analysis period
 - 50 years (30 years minimum)

8

Expanding the Realm of Possibility

Life Cycle Cost Considerations

- Select appropriate whole life maintenance plan
- Calculate costs of all maintenance and rehabilitation activities for each alternative
- Calculate life cycle costs for each alternative
- Summarize and compare the Net Present Value for all alternatives
- If the life cycle cost is within 10 percent, they are considered equivalent (other factors must then be considered)

82

Pavement Unit	Co	osts				
Pavement Material	Unit Pr	ices for 20	005 and :	2006		
Item Description	Unit		Unit	Price		Percent
		200	05	20	06	Change
		Average	Std Dev	Average	Std Dev	,
Hat Mily Applied HI 1 DOAC 50 00	Ma	\$64.68	\$3.76	\$97.86	\$20.60	51%
Hot-Mix Asphalt HL1 PGAC 58-28 Hot-Mix Asphalt HL3 and HL3 MOD PGAC 58-28	Mg Ma	\$58.96	\$9.77	\$87.54	\$20.60	48%
Hot-Mix Asphalt HL8 PGAC 58-28	Mg	\$50.34	\$5.63	\$63.79	\$10.50	27%
Hot-Mix Asphalt HL8(HS) PGAC 58-28	Mg	\$62.14	\$8.00	\$78.69	\$23.78	27%
Granular A Crushed Limestone	Mq			\$27.11	\$ 13.16	
Granular A Recycled Concrete	Mg			\$26.71	\$10.96	
Granular A (All Ítems)	Mg	\$19.58	\$8.49	\$26.98	\$12.30	38%
Granular B Crushed Limestone (Type II)	Mg			\$29.29	\$14.07	
Granular B Recycled Concrete	Mg			\$21.03	\$7.78	
Granular B	Mg			\$18.73	\$1.96	
Granular B (All Items)	Mg	\$18.58	\$3.46	\$24.00	\$10.69	29%
Concrete Base 150 mm Thick	m ²	\$32.00		\$35.40	\$4.51	11%
Concrete Base 200 mm Thick	m ²	\$42.67		\$53.88	\$0.76	26%
Concrete Base 250 mm Thick (Estimated)	m ²	\$53.33		\$75.70	na	42%
Source: Transportation Infrast				-		

Typical LCCA Format

DETAILED LIFE-CYCLE COST ANALYSIS
Composite Major and Minor Arterial Road per 1 km LCCA Maintenance Plan

	MAJOR ACTI	VITY	MINOR ACT	TVITY	TOTAL	DISCOUNT	PRESENT
YEAR	DESCRIPTION	INITIAL	DESCRIPTION	INITIAL COST	INITIAL COST	FACTOR	WORTH
0	Intitial Construction	\$1,534,250			\$1,534,250	1.000	\$1,534,250
3			Crack Seal	\$8,000	\$8,000	0.844	\$6,750
8			Crack Seal	\$6,400	\$6,400	0.636	\$4,069
26	Resurfacing	\$611,052			\$611,052	0.229	\$140,203
29			Crack Seal	\$8,000	\$8,000	0.194	\$1,549
34			Crack Seal	\$6,400	\$6,400	0.146	\$934
46	Resurfacing	\$611,052			\$611,052	0.074	\$45,183
49			Crack Seal	\$8,000	\$8,000	0.062	\$499
54			Crack Seal	\$6,400	\$6,400	0.047	\$301
69	Reconstruction	\$1,534,250			\$1,534,250	0.020	\$30,849
72			Crack Seal	\$8,000	\$8,000	0.017	\$136
77			Crack Seal	\$6,400	\$6,400	0.013	\$82
95	Resurfacing	\$611,052			\$611,052	0.005	\$2,819
98			Crack Seal	\$8,000	\$8,000	0.004	\$31

Salvage Value (5% of Construction Cost) -\$30,553

\$1,767,653 -\$106

Life-Cycle Cost for 68 Year Road Life

\$1,733,631

100 Year Life-Cycle Residual Value (15/20 of last Rehabilitation) ^F-\$1,150,688 Total Life-Cycle Cost - 100 Years

-\$4,000 **\$1,763,547**

CALCULATION OF DISCOUNT RATE Annual Interest Rate = Annual Inflation Rate =

9 % 3 % 5.83 %

Discount Rate =

Expanding the Realm of Possibility

Preferred Alternative

- The pavement structural design should be based on
 - Life Cycle Cost Analysis
 - Operating Costs
 - Impact to the Public
 - Risk Analysis

ARA

General Considerations

- Flexible Pavements
 - Typically lower initial cost
 - Shorter service life
- Composite Pavements
 - Longer service life
 - More resistant to heavy loads
 - Typically less expensive to maintain

87

Expanding the Poalm of Possibility

Design Example - 1

- Local Road Rehabilitation of Existing Flexible Pavement
 - Princess Anne Crescent and surrounding streets (Oldham Rd, Cheviot Pl, Orkney Cr, Byland Rd, Grimsby Ct)
- Road Classification: Local Residential Roads
- Traffic Level: AADT <2,500;<3% Commercial Vehicles
- Assumed sandy silt till subgrade; support 30 MPa

88

But We're Not Reconstructing!

- Must consider appropriate rehabilitation strategies
 - Partial reconstruction (pulverize, regrade, new HMA)
 - Cold Recycling and Overlay
 - Full Reconstruction Flexible

ARA

- Full reconstruction Composite
- Treatment selection should be based on LCCA

Design Example - 2

- Reconstruction of McNicoll Avenue (Program Year 2006/07)
 - From Pharmacy Ave to Warden Ave
- Road Classification: Minor Arterial Road
- Traffic Level: AADT ~ 16337 (2004); Non-Truck Route, Bus Route
- Assumed silty clay subgrade; support 30 MPa

Design Example 2 Summary

- Flexible Cross-section
 40mm HL-1
 95mm HL-8 (HS)
 50mm Granular A
 250mm Granular B Type II
- Composite Cross-section
 40mm HL-1
 50mm HL-8 (HS)
 250mm PCC Concrete
 150mm Granular A
- Complete LCCA
- Other Considerations:
 - Urban cross-section with four lanes

9

Expanding the Realm of Possibility

Design Example 3

- New Development
 - Rouge Hills (single family -detached, semi and -row housing)
- Road Classification: Local Residential Roads
- Traffic Level: 2,500 AADT
- Assumed silty clay subgrade; support 30 MPa

Design Example 3 Summary

- Flexible Cross-section
 40mm HL-1
 60mm HL-8
 50mm Granular A
 250mm Granular B Type II
- Composite Cross-section
 50mm HL-1 of HL-3
 150mm PCC Concrete
 150mm Granular A
- Complete LCCA
- Other Considerations:
 - Primarily residential use

ARA

Design Example - 4

- New Development
 - East Bayfront (condominium)
- Road Classification:

Local Throughway

- Traffic Level: 4,500 AADT
- Assumed sand subgrade; support 50 MPa

Design Example 4 Summary

- Flexible Cross-section
 40mm HL-1
 60mm HL-8
 50mm Granular A
 250mm Granular B Type II
- Composite Cross-section
 50mm HL-1 of HL-3
 150mm PCC Concrete
 150mm Granular A
- Complete LCCA
- Other Considerations:
 - Primarily residential use (access to condominiums)

Expanding the Realm of Possibility

Design Example - 5

- Reconstruction of Carlaw Avenue (Program Year 2007)
 - From Commissioners Street to Lake Shore Blvd East

South Branch

- Road Classification: Collector Road
- Traffic Level:
 AADT 6050 (2004);
 24% Commercial
 (Major truck route)
- Assumed sand subgrade; support 50 MPa

ARA

Vehicles)	300 mm Granular B * 500 mm Total 40 mm HL1 130 mm HL8 (HS)	300 mm Granular B * 480 mm Total 40 mm HL1 110 mm HL8 (HS)	300 mm Granular B * 515 mm Total 40 mm HL1 150 mm HL8 (HS)	300 mm Granular B * 490 mm Total 40 mm HL1 130 mm HL8 (HS)	300 mm Granular B * 525 mm Total 40 mm HL1 155 mm HL8 (HS)	300 mm Granular B * 500 mm Total 40 mm HL1 135 mm HI 8 (HS)	300 mm Granular B * 535 mm Total 40 mm HL1 160 mm HL8 (HS)	300 mm Granular B * 510 mm Total 40 mm HL1 145 mm HL8 (HS)	300 mm Granular B * 545 mm Total 40 mm HL1 170 mm HL8 (HS)	300 mm Granular B * 515 mm Total 40 mm HL1 150 mm HI 8 (HS)
Truck Routes (7.5% Commercial Vehicles)	50 mm Granular A 350 mm Granular B * 570 mm Total	50 mm Granular A 350 mm Granular B * 550 mm Total	50 mm Granular A 350 mm Granular B * 590 mm Total	50 mm Granular A 350 mm Granular B * 570 mm Total	50 mm Granular A 350 mm Granular B * 595 mm Total	50 mm Granular A 350 mm Granular B * 575 mm Total	50 mm Granular A 350 mm Granular B * 600 mm Total	50 mm Granular A 350 mm Granular B * 585 mm Total	50 mm Granular A 350 mm Granular B * 610 mm Total	50 mm Granular A 350 mm Granular B * 590 mm Total
Truck Routes (10% Commercial Vehicles)	40 mm HL-1 150 mm HL-8 (HS) 50 mm Granular A 350 mm Granular B * 590 mm Total	40 mm HL-1 125 mm HL-8 (HS) 50 mm Granular A 350 mm Granular B * 565 mm Total	40 mm HL-1 160 mm HL-8 (HS) 50 mm Granular A 350 mm Granular B * 600 mm Total	40 mm HL-1 135 mm HL-8 (HS) 50 mm Granular A 350 mm Granular B * 575 mm Total	40 mm HL-1 170 mm HL-8 (HS) 50 mm Granular A 350 mm Granular B * 610 mm Total	40 mm HL-1 145 mm HL-8 (HS) 50 mm Granular A 350 mm Granular B * 585 mm Total	40 mm HL-1 175 mm HL-8 (HS) 50 mm Granular A 350 mm Granular B * 615 mm Total	40 mm HL-1 155 mm HL-8 (HS) 50 mm Granular A 350 mm Granular B * 595 mm Total	40 mm HL-1 185 mm HL-8 (HS) 50 mm Granular A 350 mm Granular B * 625 mm Total	40 mm HL-1 165 mm HL-8 (HS) 50 mm Granular A 350 mm Granular B * 605 mm Total
	20	20,000		25,000						All Traffic & Subgrade
	30 MPa	50 MPa	30 MPa	50 MPa						40 mm HL-1
Non-Truck Routes (4% Commercial Vehicles)	40 mm HL-1 95 mm HL-8 (HS) 50 mm Granular A 250 mm Granular B *	40 mm HL-1 80 mm HL-8 (HS) 50 mm Granular A 250 mm Granular B *	40 mm HL-1 105 mm HL-8 (HS) 50 mm Granular A 250 mm Granular B *	40 mm HL-1 85 mm HL-8 (HS) 50 mm Granular A 250 mm Granular B					Major Arterial	50 mm HL-8 (HS) 250 mm PCC Concrete 150 mm Granular 'A' 490 mm Total
Truck Routes (7.5% Commercial	435 mm Total 40 mm HL-1 135 mm HL-8 (HS) 50 mm Granular A	420 mm Total 40 mm HL-1 110 mm HL-8 (HS) 50 mm Granular A	445 mm Total 40 mm HL-1 140 mm HL-8 (HS) 50 mm Granular A	425 mm Total 40 mm HL-1 120 mm HL-8 (HS) 50 mm Granular A					Minor Arterial - Bus/Truck	40 mm HL-1 50 mm HL-8 (HS) 250 mm PCC Concrete 150 mm Granular 'A'
Vehicles)	250 mm Granular B * 475 mm Total	250 mm Granular B * 450 mm Total	250 mm Granular B * 480 mm Total	250 mm Granular B * 460 mm Total]				Local	490 mm Total 50 mm HL-1 of HL-3 200 mm PCC Concrete
		,000		500		,000		5,000	Collector - Bus/Truck Route	150 mm Granular 'A'
	30 MPa	50 MPa	30 MPa 40 mm HL3	50 MPa 40 mm HL-3	30 MPa 40 mm HL-3	50 MPa 40 mm HL-3	30 MPa 40 mm HL-3	50 MPa 40 mm HL-3	3 Route	400 mm Total
Comm./Ind. (5% Commercial Vehicles)			105 mm HL-8 50 mm Granular A 250 mm Granular B * 445 mm Total	75 mm HL-8 50 mm Granular A 250 mm Granular B * 415 mm Total	115 mm HL-8 50 mm Granular A 250 mm Granular B * 455 mm Total	85 mm HL-8 50 mm Granular A 250 mm Granular B * 425 mm Total	125 mm HL-8 50 mm Granular A 250 mm Granular B * 465 mm Total	95 mm HL-8 50 mm Granular A 250 mm Granular B * 435 mm Total	Collector - Non Bus/Truck	50 mm HL-1 or HL-3 150 mm PCC Concreti 150 mm Granular 'A' 350 mm Total
Residential (3% Commercial Vehicles)	40 mm HL-3 70 mm HL-8 50 mm Granular A 250 mm Granular B *	40 mm HL-3 60 mm HL-8 50 mm Granular A 250 mm Granular B *	40 mm HL-3 85 mm HL-8 50 mm Granular A 250 mm Granular B *	40 mm HL-3 60 mm HL-8 50 mm Granular A 250 mm Granular B *	40 mm HL-3 95 mm HL-8 50 mm Granular A 250 mm Granular B *	40 mm HL-3 60 mm HL-8 50 mm Granular A 250 mm Granular B *			Route	
		2.500		000		.500	None	S: AADT		
	30 MPa	50 MPa	30 MPa	50 MPa	30 MPa	50 MPa	Note	Subgrade		
	r I Dtdtt-1 (2	% Commercial Vehicles	Y Y- dt- - (10)	6 Commercial Vehicles)	Local Throughw	ay (3% Commercial		oubgrade		

Design Example – 5 issues

- There is no option for a Collector Road with 6050 AADT and 24% commercial vehicles
- Consider Annual Average Daily Truck Traffic (AADTT)
 - Truck & Buses 1450
- Similar truck traffic loading as minor arterial
 - 1500 AADTT (20,000 AADT with 7.5% commercial)

ARA

102

Design Example 5 Summary

- Flexible Cross-section
 40mm HL-1
 135mm HL-8 (HS)
 50mm Granular A
 250mm Granular B Type II
- Composite Cross-section
 40mm HL-1
 50mm HL-8 (HS)
 250mm PCC Concrete
 150mm Granular A
- Complete LCCA
- Other Considerations:
 - Heavy truck route
 - Existing section shows significant rutting

ARA

Design Considerations

- There is more to pavement design than just the thickness of the layers
 - Asphalt Mix Design
 - Concrete Base Design
 - Recycled Crushed Concrete Base
 - Drainage
 - Sensitive Soils
 - Geotextiles
 - Perpetual Pavements

ARA

106

Asphalt Mix Design

- Asphalt mix design can have a very large impact on the performance of a pavement
- Common mixes used in Toronto
 - HL-1
 - HL-3
 - HL-8
 - HL-8 (HS)
- Premium Mixes
 - Superpave
 - SMA

107

Expanding the Realm of Possibility

Performance Graded Asphalt Cement (PGAC)

- Evolution of grading asphalt binder:
 - Penetration grades
 - Viscosity grades
 - PGAC
- For the City of Toronto temperatures:
 - Typical Surface Course PG 64-28
 - Typical Binder Course PG 58-28
 - Premium PG 70-28

ARA

108

Superpave Mix Design

- Superpave vs. Marshall Mix Design
 - Same ingredients
 - Same construction
 - Just different mix design criteria

HL Designation	Comparable Superpave Designation
SMA	SMA
DFC	Superpave 12.5FC2
HL-1	Superpave 12.5FC1
HL-3	Superpave 12.5
HL-8/HL-8(HS)	Superpave 19.0
LSBC	Superpave 37.5

ARA

Expanding the Realm of Possibility

Tack Coat

- A tack coat is used to ensure that overlays properly adhere to underlying layers.
- Should be used for all tie-ins, and vertical surfaces
- Horizontal surfaces should be tack coated if construction is staged.

ARA

110

Concrete Base Construction

- Concrete Base
- When asphalt is removed during rehabilitation:
 - Inspect the exposed concrete slabs
 - Repair shattered slabs
 - Repair joints for poor load transfer

Expanding the Realm of Possibility

Recycled Crushed Concrete

- Recycled crushed concrete is a cost effective material that can be used as a base for roadways
- Typically graded to meet OPSS Granular A
- Can be substituted for Granular A on a 1:1 basis
- Proper quality control is necessary to ensure there are no excess fines

Pavement Drainage

- Poor drainage can greatly reduce the service life of a pavement
- In urban situations, continuous drains should be used whenever possible
- Stub drains my be considered in cases where permeable soils are present

ARA

Expanding the Realm of Possibility

Sensitive Subsoils

- Portions of the City have fine grained subgrade soils that are moisture sensitive and susceptible to frost heave
- Requires subgrade replacement or additional granular material for frost protection

ARA

114

Geotextiles

- Geotextiles are synthetic sheets (woven and nonwoven) that are used typically to separate granular layers
- Adds tensile strength to layer
- Supports layers and improves drainage
- Tend to be expensive and should be considered on a project specific basis

Expanding the Pealm of Possibility

Perpetual Pavements

- Perpetual pavements are designed to limit the stress and strains at the bottom of the asphalt layer
- Designed to withstand fatigue cracking
- Only requires occasional resurfacing for a long service life
- Pavements have been placed at an HMA thickness of 500mm
- Typically limited to freeway applications

116

Maintenance and Rehabilitation

- Not many new streets are being constructed anymore
- Most work done is either a reconstruction or a repair of an existing road
 - Preventative maintenance
 - Repair of utility cuts
 - Localized repairs
 - Resurfacing

117

Expanding the Realm of Possibility

Crack Treatments

 Prevents water and debris from entering individual cracks in the HMA pavement surface

ARA

118

Patching

- Address localized areas of distress
- Correct surface discontinuities
- Seal the pavement from moisture infiltration

