Acknowledgment

The content of this document has been reproduced by the Ministry of Health and Long-Term Care with the permission of the Windsor-Essex County Health Unit. The ministry would like to thank the Windsor-Essex County Health Unit for this valuable contribution towards the development of a provincial training program. This document is available, in whole or in part, for the use of public health units in Ontario. The ministry takes no responsibility for any modification of the content of this document.
Table of Contents

4 Introduction
12 Foodborne Illness
26 Microorganisms
43 Time and Temperature
58 Receiving and Storage
69 Microbiological Contamination
78 Personal Hygiene
89 Cleaning and Sanitizing
104 Pest Control
114 Food Safety Management
124 References
125 Appendices
Introduction

5 Introduction to Food Safety
6 Benefits for Food Premises
6 Food Safety Legislation
10 Responsibilities
11 In Review
Introduction to Food Safety

The food service industry is a big part of the Canadian economy. It includes people working in the many different parts of food service, like restaurants and grocery stores, and factories that process, package and ship food to those restaurants and stores.

It’s well known that there’s a need for special standards in the food industry because of:

- The chance for the spread of disease and illness through food
- Customers wanting to be sure the places they buy their food from are safe

The first goal of any food premise must be to produce the safest and highest quality food possible. Unfortunately, many of the people working in food premises don’t fully understand the risks involved in food service or the need to meet food safety requirements, like personal hygiene, avoiding food contamination and keeping foods at safe temperatures.

This course will teach you how to keep food safe.
Benefits for Food Premises

A well designed food safety program is good for both the food premises and their customers. Repeat business from customers and higher job satisfaction for employees can lead to higher profits and better service.

Some ways that food premises can benefit are:
- More repeat business from customers who will want to keep going to a place where the food is safe
- Employees being happier with their jobs knowing that the food they are working with is safe
- Lower insurance costs because no claims have been made against their insurance from unsafe food
- Not having to spend money on lawsuits, medical claims or fines for having unsafe food
- Happier customers because handling food safely helps to keep it fresher and better tasting
- Cleaning and sanitizing costs can be kept down if food premises are kept safe
- Not wasting money by throwing away food that was not kept safe
- Not losing money by having to close because of unsafe conditions
- Not having the bad publicity, and loss of customers, that can happen if food premises are closed by the health unit

Food Safety Legislation

The food service industry is regulated by legislation at all three levels of government (federal, provincial and municipal). Legislation is the set of rules that food premises need to follow to make sure their food is kept safe. Some of it is specific to the food, like cooking temperatures. Other rules cover things like the condition of the building and the types of equipment that need to be used. All of these things together are very important, and have an impact on how safe your food is. It is the responsibility of everyone working in food premises to make sure they know the rules that apply to them and to follow those rules.

Federal

The Canadian Food Inspection Agency (CFIA) was created in April 1997. It’s made up of food inspectors from Health Canada, Agriculture and Agri-Food, and the Department of Fisheries and Oceans. CFIA is responsible for the inspection of food at the federal level.
The main regulating legislation at the federal level is the Food and Drugs Act. The Food and Drugs Act (and accompanying regulations) sets standards for all foods produced and sold in Canada. It looks at things such as the alteration, colouring, bacterial standards, manufacturing conditions and distribution of food to ensure the safety of human health.

There are also other acts and regulations at the federal level that govern specific food types like meats, milk and dairy, fish and seafood, poultry and eggs. These foods need special attention because they’ve been linked to outbreaks of foodborne illnesses. You’ll learn more about this in later chapters.

Provincial - Health Protection and Promotion Act (HPPA)

Each province has its own provincial health acts and regulations. In Ontario, the Health Protection and Promotion Act, 1990 (HPPA) lays out the mandate to make regulations, programs and protocols which govern food premises. All health units/departments are responsible for the conditions and safety under which food is held, prepared and served to the public. This is also the responsibility of the food premises owner/operator and employees.

The HPPA lays out the powers of the medical officer of health and the public health inspector. Some of these are:

Power of Entry - HPPA (S. 41)

The medical officer of health or a public health inspector may enter any place of business, during normal work hours, without a warrant, to carry out the duties under the act. This would include routine inspections or the investigation of complaints of health hazards.

Power of Seizure - HPPA (S. 19)

The medical officer of health or a public health inspector may seize anything suspected of being a health hazard for laboratory testing.

Power of Destruction - HPPA (S. 19)

If a public health inspector determines that food is a health hazard, he/she has the power to destroy or dispose of the food immediately.

Power to Make an Order - HPPA (S. 13)

Orders are issued to eliminate a health hazard, or to lessen the effects of a health hazard. They can be either verbal (spoken) or written. Orders may also require a person or persons to stop doing something specific. In the case of food premises, this includes the power to order the premises to be closed until a health hazard is removed or fixed.
Provincial - PHI

Public health inspectors, or PHIs, enforce both the HPPA and the Food Premises Regulation (O. Reg. 562) under the HPPA by routine compliance inspections of all food premises. The regulation covers food premises, including cleaning and sanitizing, equipment, food temperatures, food handling and employee hygiene in food premises. We’ll cover all of these later in this course.

During inspections, public health inspectors look for:

- Unsafe food handling practices
- Issues of non-compliance with regulations
- Investigation of foodborne illnesses and foodborne outbreaks
- Investigation of consumer complaints
- Action needed on food recalls, fires, floods and emergencies

If any immediate health hazards are seen during an inspection, the PHI could close the food premises and/or issue offence notices (tickets) under the Provincial Offences Act for not meeting the requirements of the Food Premises Regulation.

Another job of public health inspectors is to conduct a risk assessment during the first inspection of each year, and assign each food premises a risk level of high, moderate or low. This will determine if the establishment is inspected a minimum of three times, twice, or once a year, respectfully.

The risk assessment takes into consideration various factors that may increase the risk of foodborne illness, such as the history of compliance, population being served, number of food preparation steps, presence of certified food handlers, and if a food safety management plan is in place.

During the inspection, the public health inspector may also do a Hazard Analysis Critical Control Point (HACCP) audit. We’ll talk more about HACCP in our Food Safety Management chapter.
Municipal
Each municipality will have their own by-laws governing their area. Municipalities create by-laws to deal with issues that are important to them that are not dealt with at the provincial or federal level. By-laws can be different in each municipality as each area has issues that are unique to their own situation.

Municipal by-laws for food premises cover things like:
- Licensing
- Garbage control
- Sewage disposal
- Building standards
- Zoning

Municipal by-laws are enforced by by-law enforcement officers.

Inspections
When PHIs inspect a food premise, they're checking to make sure the regulations are being followed, to keep food safe. Here are some of the things they would be looking for, along with a notation of the section of O. Reg. 562 that governs each one.

Foods are maintained at the required temperatures.
Example: Cooked poultry is stored or held for service at lower than 4°C or higher than 60°C (O. Reg. 562 Subsection 33(2)).

Food is free from contamination and adulteration.
Example: Food displayed for sale or service is protected from contamination and adulteration by enclosed containers, cabinets, shields or shelves. (O. Reg. 562 Section 27).

Food contact surfaces are properly sanitized.
Example: Any article or equipment that comes in direct contact with food is of sound and tight construction, kept in good repair and made of material that can be readily cleaned and sanitized. (O. Reg. 562 Section 18).
Ensuring good personal hygiene is being practised by all employees.
Example: The food handler is clean and wearing clean outer garments while working with food. Food handlers wash their hands after hands are contaminated, before commencing or resuming work and after using the washroom. (O. Reg. 562 Subsection 65 (1)).

Cleaning and sanitizing of multi-service utensils to prevent harmful bacteria from spreading.
Example: Multi-service utensils are manually washed, rinsed and sanitized in a three compartment sink. (O. Reg. 562 Section 71).

Ensuring that owner/operators are maintaining the food premise.
Example: All floors, walls and ceilings are readily cleanable, kept clean, sanitary and in good repair. (O. Reg. 562 Sections 11, 59).

You’ll learn more about each of these as we go through the chapters in this course.

Responsibilities
As you can see, there are many things you need to know to keep food safe. The responsibility for safe food belongs to everyone in your food premises, from the owner to the chef to the server to the dishwasher. Every person in your premises has a job to do, and part of that job is keeping your customers and the food you prepare or sell to them safe. As a food handler, it’s your responsibility to know what the regulations and standards are and to follow them. You have a responsibility to provide safe food. This course will help you learn how to do that.
In Review

In this chapter you’ve been introduced to food safety, and the legislation in place to keep food safe.

The following topics have been covered:

1. Why food safety is so important
2. Where food safety legislation applies
3. Federal, provincial and municipal legislation governing food safety and the different areas each of these cover
4. The responsibilities of food premise owners/operators and of food handlers
5. The benefits of following safe food handling practices

Notes
Foodborne Illness

13 Introduction
13 Symptoms
14 Causes of Foodborne Illness
15 Chemical Hazards
17 Examples of Chemical Foodborne Illness
17 Physical Hazards
18 Allergens
19 Communication
22 Food Allergens and Sensitivity Chart
23 Allergen Contamination
23 Impacts
24 Complaints
25 In Review
Introduction

When something you eat or drink makes you sick, it’s called ‘foodborne illness.’ Foodborne illness used to be called ‘food poisoning,’ but because more foodborne illnesses are caused by infection than poison, this has been changed.

When food is contaminated by bacteria, viruses, parasites or chemicals, it can make you sick. Any of these things in food can be called a ‘contaminant.’

Every year, a total of about 4 million (1 in 8) Canadians are affected by a foodborne illness (Public Health Agency of Canada, 2016). For most people, a foodborne illness won’t be a serious problem. Most will recover in a short time without getting seriously ill. Groups at a higher risk for foodborne illness include: young children, the elderly, pregnant women and people with weakened immune systems. For these groups, foodborne illness can be very dangerous and even fatal.

Many people have had a foodborne illness without knowing what was making them feel sick.

Symptoms

For each reported case of foodborne illness, it’s estimated that hundreds of additional cases occurred in the community. When people say they have a ‘24-hour flu,’ it’s often really a case of foodborne illness. Symptoms could include some or all of the following:

• Stomach cramps
• Diarrhea
• Vomiting
• Nausea
• Fever
Symptoms can start soon after eating contaminated food, or they can occur up to a month or more later. How long it takes for the symptoms to begin will depend on:

- What caused the illness
- How healthy the person was before this illness
- The amount of contaminant the person ate

Causes of Foodborne Illness

There are four causes of foodborne illness:

- Chemical Contamination
- Physical Contamination
- Allergens
- Microbiological Contamination

A foodborne illness from food contaminated by bacteria, viruses or parasites is microbiological. Bacterial illnesses are the most common type of foodborne illness in Ontario (Public Health Ontario, 2015).

This chapter will cover chemical and physical contamination and allergens.
Chemical Hazards
Some chemicals are added to food on purpose. These include things like salt, spices and colouring. Other chemicals can get into food by accident through cross-contamination. If cleanser is spilled on a counter and not cleaned off and food is then prepared on that counter, the food would be contaminated with cleanser.

Foodborne illness caused by chemicals is called food poisoning.

Symptoms usually happen fast, from 20 minutes to a few hours after eating the contaminated food. They usually start suddenly with the most common symptoms being nausea, vomiting, abdominal or stomach pain, and sometimes, diarrhea.

Food poisoning can be caused by:
- Chemicals added to food on purpose, like preservatives or colouring
- Chemicals that aren’t supposed to be added to food, like insecticides, rodenticides or cleaning chemicals

Metal Food Poisoning
Dissolved metal in food can cause chemical food poisoning. If an acidic food, like fruit juice, maple syrup or tomatoes, is stored or cooked in metal containers, the acid can cause the metal to dissolve. Lead, copper, tin, zinc, iron and cadmium are all possible sources of metal food poisoning.

Some ways that food can be contaminated with metal are:
- Copper beverage lines. Water can be safely run through copper lines because it won’t dissolve the copper. Acidic fruit juice or carbonated beverages will cause the copper to dissolve and it will then be in the beverage.
- Cadmium in shelving. If unwrapped meats are stored directly on shelves containing cadmium, the metal can dissolve and be absorbed into the meat.
- Lead in paint. Painted dishes or glassware may contain lead which can be absorbed into acidic food.
- Metal containers. Acidic foods should never be stored in containers made of metal. Use food grade containers.

You will learn more about proper storage containers in the Receiving and Storage chapter.
Intentional Additives
According to Health Canada, “a food additive is any chemical substance that is added to food during preparation or storage and either becomes a part of the food or affects its characteristics for the purpose of achieving a particular technical effect.” In other words, food additives are things added to colour, thicken, firm or preserve food.

If additives are used correctly, they aren’t harmful to most people. They make food look better, taste better and last longer. These are called intentional chemical additives as they’re added to food on purpose. But if not used properly or too much is used, a chemical additive can cause food poisoning.

Any food additive can make a person sick if he/she is allergic to it. Three additives well-known for this are:
- Sulphites (used to maintain colour and give longer shelf life)
- Monosodium Glutamate (MSG) (used to boost flavour)
- Tartrazine, also known as FD&C Yellow #5 (a yellow food colouring)

Food allergies and how to help customers with allergies are covered in the Allergens chapter.

Many food additives are regulated in Canada under the food and drug regulations. You can find a list of all allowed food additives on the Health Canada website: www.hc-sc.gc.ca. Search “food additive dictionary.”

Incidental Additives
Poisonous chemicals like insecticides, rodenticides and cleaning chemicals are sometimes used in food premises. If these chemicals get into food, they can cause food poisoning. This would be called an incidental chemical additive.

For safety, chemicals should be stored in their original containers. If chemicals are put into different, smaller containers or spray bottles, each must go in a clean, dry container labeled with the product name and contents. Proper storage and use instructions must be followed very carefully when dealing with poisonous chemicals to make sure that food is kept safe. As an example, some cleansers have to be rinsed off a counter before the counter can be used to prepare food. If the counter is not rinsed off, there will be cleanser on the counter which can get into the food and cause foodborne illness.

Never store chemicals with food or leave chemical products or cleaning cloths used with chemicals on food preparation surfaces.
Examples of Chemical Foodborne Illness

<table>
<thead>
<tr>
<th>Illness</th>
<th>Usual Source</th>
<th>Start of Symptoms*</th>
<th>Symptoms</th>
<th>Foods Implicated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorinated hydrocarbon poisoning (insecticide, such as chlordane, DDT, lindane)</td>
<td>Insecticides</td>
<td>30 minutes to 6 hours</td>
<td>Nausea, vomiting, numbness, dizziness, muscular weakness, loss of appetite, weight loss, confusion.</td>
<td>Any accidentally contaminated food</td>
</tr>
<tr>
<td>Monosodium glutamate (MSG)</td>
<td>MSG flavouring agent</td>
<td>Few minutes to 1 hour</td>
<td>Burning sensation in back of neck, forearms, chest, feeling of tightness, tingling, flushing, dizziness, headache, nausea.</td>
<td>Asian foods</td>
</tr>
</tbody>
</table>

Factor that contributes to an outbreak: storing insecticides in the same area as food.

Factor that contributes to an outbreak: using excessive amounts of MSG as a flavouring.

*The time from when a person eats the contaminated food to the time when he/she starts to feel sick.

Physical Hazards

Physical hazards are things like dirt, hair, broken glass, nails, staples, bits of metal or any other object that accidentally gets into food. These objects could cause anything from a small cut to possible choking.

To keep this from happening:
- Put and maintain protective shields or covers on lights over food storage and preparation areas.
- Remove staples, nails and other objects from boxes and crates when food is received so they don’t fall into the food.
- Don’t use glasses to scoop ice. Use only commercial, food-grade plastic or metal scoops with handles.
- Don’t chill glasses or any food items in ice that will be used in drinks.
- Don’t store toothpicks or non-edible garnishes on shelves above food storage or preparation areas.
Allergens

Food allergies, or sensitivities to certain food(s), are a problem for many people. Some foods, like peanuts, shellfish or eggs, are very common allergens. Any food can be a hazard for a person who is allergic or sensitive to it. Symptoms of food allergies can appear immediately after the food is eaten or can show up some time later.

It’s estimated that as many as 2.5 million Canadians (7.5 per cent of the population) are affected by food allergy. This means that for every 13 people who come in to your food premises, it’s likely that one of them has a food allergy.

Allergic reactions to food can cause these symptoms:
- Digestive symptoms like vomiting, diarrhea, nausea and swelling
- Respiratory symptoms like coughing, sneezing, tightness in the chest, trouble breathing because of swelling of the throat and tongue, or a runny or stuffy nose
- Skin reactions like swelling or hives.

Individuals may develop one or more of these symptoms very quickly. Breathing difficulties and low blood pressure are the most dangerous symptoms, and if left untreated, can be life-threatening. It is recommended that epinephrine (e.g., EpiPen) be given at the start of a known or suspected anaphylactic shock.

Anaphylaxis

Anaphylaxis can start within minutes of contact with the food to which a person is allergic and must be treated immediately. Because an anaphylactic reaction can be severe, people who may have this type of reaction often carry an epinephrine auto-injector (e.g., EpiPen®) which should be administered at the first sign of a reaction. Epinephrine will help reverse the symptoms of the reaction, such as helping with a person’s breathing. The person must be transported to the hospital immediately.

For people with food allergies, the key to remaining safe is avoidance of the foods they are allergic to. Even a very small amount of an allergen, when ingested, can cause an allergic reaction. Because of this, they need to know exactly what’s in their food. It’s critically important for food service staff to know about food allergies and be aware of how dangerous they can be. Knowing this can save lives.
Risks
People can be allergic to any food, but some food allergies are more common than others. The Canadian Food Inspection Agency (CFIA) has identified the following foods and additives as most frequently causing allergic reactions:

- Eggs
- Peanuts
- Sesame seeds
- Sulphites
- Wheat
- Milk
- Seafood (fish, crustaceans, shellfish)
- Soybeans
- Mustard
- Tree nuts (almonds, Brazil nuts, cashews, hazelnuts, macadamia nuts, pecans, pine nuts, pistachios, walnuts)

For more information on each of these, please see the fact sheets on the CFIA website's Food Allergies and Allergen Labelling at http://www.inspection.gc.ca/food/consumer-centre/food-safety-tips/labelling-food-packaging-and-storage/allergen/eng/1332442914456/1332442980290.

If a customer has an allergic reaction, call 911.

Communication
Knowing the ingredients included in all food options is critical when a person with an allergy dines out. Restaurants, fast food outlets and bakeries are not required by law to list ingredients like you see on pre-packaged foods.

Some things the retail food service industry can do to help people with allergies are:

- Ensure staff know how and where to access ingredient information if requested by a customer
- Make sure the ingredients used in your menu options are documented and are complete, accurate and up to date.
- Make sure your food doesn’t get cross-contaminated by other foods.
- Have an accurate and up-to-date recipe binder or electronic file.
- Avoid introducing new common allergens to recipes, when possible
- Educate serving and kitchen staff on how to manage food allergy requests or questions (e.g. refer to manager or chef on duty)
- If you’re not sure what’s in a product, say so. Do not give incomplete or inaccurate information.
The following guidelines can help you communicate ingredient information to your customers:

Identify Potential Problems

Now that you know the list of foods that are known allergens, you can review the recipes used in your food premises to identify the ones that use these ingredients. Where possible, change an allergenic food for one that is less of a risk. For example, you could use vegetable oil instead of peanut oil.

If you change the ingredients in any of your recipes, be sure to update your allergy charts, binders or menus.

If you can’t find out the ingredients in one of your packaged items, either don’t serve it or let customers know that you don’t know all the ingredients. You can suggest another item that you are sure about.

Education and Training

Management, kitchen and service staff should all be aware of food allergies and understand how important it is that the ingredient information is accurate. Food service staff are sometimes not aware of how dangerous food allergies can be.

Staff need to be trained about the health effects of allergic reactions and that they can be potentially life-threatening. They need to know that it’s very serious and it isn’t just about a person liking or not liking an ingredient. They need to understand the premises’ policy on handling questions about ingredients and food preparation processes (e.g., potential for cross-contamination).

Kitchen staff need to know they must follow written recipes exactly when preparing and cooking food. If a recipe needs to be changed, management must be told and all employees involved in preparing and serving the food need to be told as well.

Have a Policy

Management in food premises need to have a policy about communicating ingredient information to their customers. The policy needs to be based on making sure customers are kept safe and are given the right information. It also needs to work with the way the food premises are run and be something employees can easily follow.
You don’t need to give away your recipes. You can just give the list of ingredients. You can also have the customer tell you what they’re allergic to and check it against the recipe.

Employees need to know that these policies must always be followed.

Inform the Customer
Make sure your customers know they can get information about the ingredients you use and how to get it. This can be as simple as a note on the menu such as “ask about ingredient information.”

However you do it, make sure it’s obvious to customers how to get the information they need and that they get the information without fuss or embarrassment.

Communication Method
There are many ways that you could let your customers and staff know what ingredients are in your food:

Print the ingredient information on your menus
If you have a smaller menu that doesn’t change often, this could work for you. If you have a large menu, or you change it often, this could be too costly.

Use food allergy and sensitivity charts
An allergy chart lets customers and staff quickly see which menu items have known allergens in them. These charts are designed to identify known allergens rather than all ingredients. You’ll see a sample allergy chart on the next page.

Use recipe binders
A recipe binder would list all the menu items, with all ingredients listed for each, like a recipe cookbook. The list would include the ingredients of any prepared food used in the recipe, like a bottled sauce or a blend of spices. The binder could be changed whenever menu items are added, removed or updated. Daily menu items and special items should all be included.

Choose a designated employee
An employee on each shift would be designated to answer customers’ questions. This employee would need direct access to the recipes and kitchen staff, and a clear understanding about the importance of ingredient information. Servers would then have all questions answered by this employee.
Check with guests in advance
The organizer of a catered event should ask if any of their guests have special dietary needs or food allergies. Menus can either have allergens removed, or a special meal can be served to any guests in question. When printing banquet and catering contracts, a section called “special dietary needs” should be added to address this.

Allergy Chart
This is an example of an allergy chart that could be used to point out known allergens in your menu items. The disclaimer at the bottom of the page should be added to let your customers and staff know that this chart only points out common food allergens and not all ingredients in menu items.

Food Allergens and Sensitivity Chart

<table>
<thead>
<tr>
<th>Food Allergens</th>
<th>Menu Item #1</th>
<th>Menu Item #2</th>
<th>Menu Item #3</th>
<th>Menu Item #4</th>
<th>Menu Item #5</th>
<th>Menu Item #6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eggs</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk/Milk products</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Mustard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peanuts</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Seafood (fish, crustaceans and/or shellfish)</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sesame seeds</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Soy</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Sulphites</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree nuts</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This list does not include all allergens. Sensitivities and allergies to other foods may occur among some individuals.
Emergency Procedures
All food service premises should have emergency procedures for handling allergic reactions available. These should be in an area that all staff know about and have access to – like a staff bulletin board.

At the very least, have a phone number for emergency services and a list of the names of employees trained in CPR posted and easily visible by all staff.

Allergen Contamination
Kitchen and service staff also need to be aware of the risks of introducing allergen contamination. Like cross-contamination, allergen contamination happens when food isn’t kept properly separated.

Some of the ways this could happen are:
- Using equipment that hasn’t been thoroughly cleaned and still has other food on it
- Contaminating (adulteration) of food, whether on purpose or by accident
- Using rework materials, like using pastry dough for two different recipes, that may have come into contact with an allergen
- Using the wrong packages or wrong labels
- Not identifying all ingredients in food received from a supplier
- Using misleading names for foods or ingredients
 For example, “Bombay duck” is actually a type of fish
- Carrying too many plates at one time, causing food on separate plates to touch
- Touching different types of food without handwashing in between

Only you can prevent allergen contamination!

Impacts of Foodborne Illness
Foodborne illness doesn’t just affect the person who gets sick. The average cost of foodborne illness outbreaks to Canadian taxpayers is estimated to be between $12 and 14 billion every year. Some of these costs are:
- Medical costs, such as doctor’s visits, hospitalization and medications
- Investigation costs, like the health unit doing tests to confirm the type of foodborne illness
- Loss of productivity, including sick people missing work, and food premises having to close during an investigation
- Legal and higher insurance costs, if a food premise is sued by those who got sick
Complaints
If your food premises receives a complaint of a foodborne illness, you need to call your local health unit to report any foodborne illness outbreak.

Record the details:
• Who got sick
• What food they ate and when
• What symptoms they had and when
• Write down everything you can about what happened

You also need to:
• Talk to your staff
• Ask if any of them have or had the same symptoms
• Ask if any of them were ill when handling food
• Review how the food was prepared
• Save food samples from the meal that was eaten
• Don’t give medical advice. Instead, refer to a health care professional
In Review

In this chapter you’ve been introduced to the different types of foodborne illness and the impact that foodborne illness has.

The following topics have been covered:

1. Common symptoms of foodborne illness
2. When foodborne illness is food poisoning
3. The three types of chemical food poisoning: metal, intentional additives and incidental additives
4. The dangers of physical hazards in food
5. The impact of foodborne illness on people and businesses

Notes

__

__

__

__

__

__
Microorganisms

27 Introduction
27 Types of Microorganisms
28 Viruses
29 Parasites
29 Protozoa
30 Yeasts
30 Mould
30 When in Doubt
31 Bacteria
32 Infection
32 Toxins
32 Toxin Symptoms
33 Spores
34 Examples of Microbiological Illness
35 Carriers
36 Who Gets Sick?
37 Bacteria
38 Bacterial Growth
41 Potentially Hazardous Foods
42 In Review
Introduction

As we saw in the last chapter, foodborne illness can be caused by microbiological hazards, chemical hazards, physical hazards, and allergens. Of these, the most common cause of foodborne illness is microbiological contamination.

To understand how to handle food safely, you need to know a little about microorganisms. Microorganisms are germs that can’t be seen without a microscope, but they’re found everywhere. These microorganisms can come from food, water, animals, objects and in or on the human body.

Because microorganisms are so small, food that’s contaminated with them may look, smell and taste normal, even when it’s not safe. So it’s very important to know about these microorganisms and how to control them.

Microorganisms that make us sick are called ‘pathogens.’

Types of Microorganisms

There are six main types of microorganisms: viruses, protozoa, parasites, yeasts, mould and bacteria. Some microorganisms are good for us and can be helpful. Some examples are:

- Yeast used to make bread and produce alcohol
- Acidophilus and lacto-bacilli bacteria that help us digest food
- Mould that ripens and flavours cheese (e.g., blue cheese)

Other microorganisms can make us sick. Bread mould, viruses like influenza and hepatitis, *Salmonella* bacteria and *E. coli* bacteria are all examples of microorganisms that can be a nuisance, make us sick or even be deadly.
Viruses
Viruses are found in nearly all life forms, including humans, animals, plants and fungi. They are very small, between 20 and 100 times smaller than a bacterium, and often too small to be seen by a standard microscope. Viruses don’t grow in food because they can only grow inside a cell that’s alive. They use living cells in our body or in living animals or plants to increase in number.

Viruses that cause foodborne illness are also called enteric viruses, which means they enter the body through the intestinal tract. Symptoms usually start suddenly and last one to two days, but a person may keep feeling weak for several more days. They’re very contagious and most times can’t be treated, which means a person must wait for the virus to go away on its own. Dehydration is a common problem, especially for people in a high risk group. It’s also possible for a person who’s infected with a virus to have no symptoms, but to pass that virus on to another person who will have symptoms.

Human hands are the most common way that viruses get into food. This is why handwashing is so important. We’ll learn more about this in the Personal Hygiene chapter. Another source is contaminated water that can contaminate food washed in it or seafood and shellfish exposed to it. Viruses can also spread through cross-contamination. Three examples of viruses that can be carried in food are hepatitis A, avian (bird) flu and rotavirus.

The best way to control the spread of viruses is handwashing.
Parasites
Parasites live on or in humans or animals and use them to grow. People can get parasites from:
- Contaminated water or any food washed with contaminated water
- Eating undercooked meat from a contaminated animal
- Cross-contamination

Like viruses, parasites don’t grow in food.

Symptoms of a parasitic infection depend on the type of parasite. Abdominal or stomach pain, diarrhea, muscle pain, coughing, skin lesions, weight loss and many other symptoms are all possible.

Examples include:
- Trichinosis (pork tapeworm), spread through raw or undercooked pork or wild game
- Anisakiasis (parasitic roundworm), spread through uncooked marine fish and raw fish items such as sushi, sashimi, ceviche or salmon

Protozoa
There are many kinds of protozoa. The ones that cause foodborne illness are a type of parasite that live in the digestive tract of people and animals.

Protozoa can get into food from contaminated water. They can survive longer in water than bacteria can and they’re harder to remove from water than bacteria. Protozoa are more likely than most other microorganisms to infect someone who eats or drinks contaminated food or water.

Cross-contamination can spread protozoa to other food. Examples of foodborne illness caused by protozoa:
- Giardiasis (also known as beaver fever or backpacker’s diarrhea) that can spread through contaminated water or food
- Cryptosporidiosis that can spread through contaminated water

The best way to control the spread of parasites is thorough cooking.
Yeasts

Yeast is used to make breads and alcohol, but yeast can also spoil food. Yeast spoils food by slowly eating it. Contamination shows up as bubbles, an alcoholic smell or taste, pink spots or slime.

Yeast can grow at most food storage temperatures. Yeast usually only spoils food without making people sick. It needs sugar and moisture to survive which it finds in foods like jellies and honey.

Mould

Moulds are needed for some things, like making wines and antibiotics. The blue in blue cheese, the flavour and sweetness of some rare white wines, and the power of penicillin to fight disease all come from different kinds of mould. But the moulds we find in our kitchens are the slimy, rotten, fuzzy or unpleasant coloured kind that spoils food.

Single mould cells are usually very tiny, but mould colonies (groups of cells that are growing together) may be seen as fuzzy growths on food.

Some moulds make toxins called mycotoxins that can cause serious illness or infections. You can’t tell by looking whether the mould you see is one of the poison-producing types.

Examples of toxins produced by moulds include:

- Aflatoxin often found in nuts, peanuts and peanut butter
- Ochratoxin A often found in grain, coffee and wine

When in Doubt

Mould can grow on almost any food at any storage temperature and under any conditions. Freezing prevents the growth of mould but won’t kill any mould cells already in the food. The mould that you see on food isn’t the only mould that’s there. If it creates poisons, they’re generally under the surface of the food.

Mould can be thought of like a plant. The part you can see is like the flower. Underneath that are roots inside the food that can make it unsafe. The softer the food, the further into the food the mould is likely to spread.
Microorganisms

Does all mouldy food have to be thrown out?
Some hard cheeses and hard salami can be saved, if you can cut out the mould at least one inch around and under it. However, it is encouraged that all mouldy foods are thrown away.

When in doubt, throw it out!

Bacteria
Bacteria are everywhere in our environment. They can be very helpful to us, but they can also be harmful. Some examples of good bacteria are:
- *Lactobacillus* and *bifidobacterium* which help us to digest food
- Biofilms being used by NASA to clean water aboard the space shuttle

As we discussed in the Foodborne Illness chapter, most foodborne illnesses are caused by non-beneficial, or pathogenic, bacteria.

Some examples of harmful bacteria are:

Campylobacter
Commonly found in poultry and meat. It can be carried by rodents, wild birds, household pets such as cats and dogs and can also be found in untreated water.

Listeria
Found in soil. People can get infected by eating dairy products, vegetables, and fish and meat products that are contaminated with the bacteria.

E. coli
Lives in the intestines of animals and can be spread to the outer surfaces of meat when it is being butchered. *E. coli* can also be spread through contaminated water.

Clostridium perfringens
Can be found in high protein or starch-like foods such as cooked beans or gravies and is likely to be a problem in improperly handled leftovers.

Salmonella
Most commonly found in raw poultry, but also found in other meats, unpasteurized milk and raw eggs.
Infection
When food contaminated with living pathogenic bacteria is eaten, it can cause an infection type of foodborne illness. It may take only a small amount of bacteria to cause an infection, depending on the bacteria type.

Bacteria will pass through the stomach and down to the intestines where it’ll begin to multiply. Symptoms often take one or more days after eating the contaminated food to appear. With most bacteria, symptoms will appear within three days, but some pathogenic bacteria won’t cause symptoms for 10 or more days. Others can take more than two months. Symptoms usually come on slowly and can last for several days. Since this is an infection, one of the symptoms is usually a fever.

The most common examples of this type of food poisoning are Salmonella, Campylobacter, and Shigella. There are many other types as well.

Toxins
Sometimes it’s not the bacteria itself that makes a person sick, but what the bacteria produces. All bacteria produce a waste product, some of which are poisonous or toxic to humans. These waste products are called toxins. A foodborne illness caused by a toxin is also called foodborne intoxication.

These toxins have no smell or taste. Some toxins can’t be destroyed by normal cooking temperatures. This means cooking a food contaminated with a toxin may not make it safe.

Bacterial toxins can come from bacteria that’s growing in food, or from bacteria that’s on a person handling the food. Infections, cuts, burns, boils and pimples all have bacteria and, if those bacteria or their waste products get into food, they can cause foodborne illness.

Toxin Symptoms
Foodborne intoxication symptoms can start the same day or within a day or two of eating contaminated food. They can last up to two weeks. These illnesses can be very dangerous. Remember, a toxin is a poison. One common type is Clostridium botulinum (C. botulinum) that causes botulism.
The symptoms can include:

- Nausea
- Vomiting
- Tiredness
- Dizziness
- Headache
- Double vision
- Dryness in the throat and nose
- Respiratory failure
- Paralysis
- In some cases, death

It’s important to remember that with foodborne intoxication, it’s not the bacteria that’s making the person sick; it’s the toxin made by the bacteria.

Botulism: Poisoning caused by eating food containing a toxin made by a spore-forming bacterium. Its symptoms are nausea, vomiting, trouble seeing, muscle weakness and tiredness. It can be fatal.

Spores

Some kinds of bacteria aren’t killed by extreme heat, dryness or chemicals. When they’re in conditions where they can’t grow, they produce spores. The spore is the resting stage of the live bacteria and it can grow into active bacteria when good conditions to grow are available.

Bacterial spores are NOT destroyed by cooking temperatures or most disinfectants.

C. botulinum, the bacteria that causes botulism, is one type of bacteria known to produce spores. If an infant eats botulinum spores in food, the spores will grow into active bacteria in the intestine and produce toxins. This can also happen in adults with previous medical problems affecting the intestines. Later in this chapter, we’ll learn more about what bacteria and its spores need in order to grow.
Examples of Microbiological Illness

<table>
<thead>
<tr>
<th>Illness</th>
<th>Usual source of microorganism</th>
<th>Start of Symptoms*</th>
<th>Symptoms</th>
<th>Usual foods that get contaminated with this microorganism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonellosis (Salmonella)</td>
<td>Raw poultry, pork, and feces of infected humans</td>
<td>6-72 hours, usually 18-36 hours</td>
<td>Fever, abdominal pain, diarrhea, nausea, vomiting, dehydration</td>
<td>Poultry, meat, meat products, unpasteurized milk, egg products, raw eggs, shellfish, pudding, gravies</td>
</tr>
<tr>
<td>Staphylococcal intoxication (Staphylococcus aureus)</td>
<td>Noses, skin and lesions of infected humans and animals, and from udders of cows</td>
<td>1-8 hours, usually 2-4 hours</td>
<td>Severe nausea, vomiting, cramps, usually diarrhea, and prostration</td>
<td>Foods high in protein, custards, cream filled baked goods, ham, poultry and meat products, and potato and other salads</td>
</tr>
<tr>
<td>Trichinosis (Trichinella spiralis)</td>
<td>Flesh of infested swine and bear</td>
<td>4-23 days, usually 9 days</td>
<td>Vomiting, nausea, eye problems, muscular stiffness spasms and laboured breathing</td>
<td>Undercooked pork and foods in contact with undercooked pork</td>
</tr>
<tr>
<td>Hepatitis A virus</td>
<td>Feces, urine and blood of infected humans</td>
<td>10-50 days, but usually 25 days</td>
<td>Fever, malaise, nausea, abdominal pain and jaundice</td>
<td>Shellfish, raw oysters, clams, milk, sliced meat and water</td>
</tr>
<tr>
<td>Haemorrhagic colitis (E. coli)</td>
<td>Probably raw beef, pork and poultry</td>
<td>2-6 days</td>
<td>Abdominal cramps, and bloody or watery diarrhea; sometime fatal</td>
<td>Hamburger, other meat products and raw milk</td>
</tr>
</tbody>
</table>

Factors that contribute to an outbreak:
- Inadequate refrigeration, holding foods at warm temperatures
- Inadequate cooking and reheating
- Preparing food several hours before serving
- Cross-contamination
- Inadequate cleaning of equipment
- Infected worker touching cooked foods
- Obtaining foods from contaminated sources

This is the time from when a person eats the contaminated food to the time when he/she starts to feel sick.
Carriers

Microorganisms can come from food, water, animals or objects. They can also be found in and on the human body. Microorganisms can be present naturally or they can get into food through a carrier.

Carriers are people or things that are carrying microorganisms which can end up in food that’s not handled safely. Because microorganisms are so small, they can’t be seen with the naked eye and they can be on people and on objects without you knowing it.

Remember, viruses, protozoa and parasites can’t grow in food, but they can be transferred to food by a carrier. Bacteria can also be transferred to food by a carrier.

People can transfer germs they have into the food they’re preparing. It's possible for a person to have an infection without showing any symptoms or signs. In fact, we’re always carrying some germs around. Feeling well doesn’t necessarily mean you don’t have any microorganisms on or in your body.

People can also pick up microorganisms from one type of food and transfer it to another type of food if they don’t handle the food safely. This is called cross-contamination and will be talked about more in a later chapter.
Who Gets Sick?

There are a number of things that can make a person who eats contaminated food more or less likely to get sick. Some of these are:

The person’s health before eating the food.
A person who has a weak immune system is more likely than a healthy person to get sick. Persons with weak immune systems include the very young, the very old, pregnant women, and people immunocompromised by a medical condition.

The amount of pathogen in the food.
Campylobacter will generally cause foodborne illness in a healthy person if more than 500 organisms are in the food eaten. For Salmonella, the number is 100,000. For Shigella, a person can get sick from eating as few as 10 organisms. These numbers are called the ‘infectious dose.’ There has to be enough bacteria to make it through the stomach to the intestines for a person to get sick. Again, if a person’s immune system is compromised, it’ll take even less.

The type of microorganism.
Some microorganisms are more likely to cause foodborne illness than others. Protozoa and parasites are very likely to cause illness if they’re eaten.

As we’ve discussed, bacteria are the most common cause of foodborne illness; let’s look at why.
Bacteria
What makes bacteria so dangerous?
- They can multiply very quickly at room temperature.
- They can live and multiply in food.
- They aren’t killed by refrigeration or by freezing.
- Their spores and toxins may still be dangerous after food is cooked.

Bacteria are carried in water, food and as “hitchhikers” by humans, insects, rodents and objects (such as dishes, towels, clothing). Bacteria can multiply quickly when they’re in conditions that suit them, meaning they have the right temperatures, moisture levels and a food source.

The number of bacteria will double every 10-20 minutes if its surroundings are perfect. The number of bacteria can reach dangerous levels very quickly in a short period of time in this case.

Let’s look at the things that bacteria need to grow.
- Time and Temperature
- The Danger Zone
- Oxygen
- pH
- Moisture
- Protein
Bacterial Growth

Time and Temperature
Temperature control is the most effective way to slow the growth of bacteria in food. It’s so important that it has its own chapter, Time and Temperature, where we’ll talk about it in more detail. There’s a temperature danger zone for food where bacteria will grow the fastest.

The danger zone is between 4°C (40°F) and 60°C (140°F).

It’s important to keep food out of this danger zone as much as possible. The longer food is left in this danger zone, the more bacteria can grow and the more dangerous the food can get. Heating and holding food at or just above 60°C (140°F) will prevent further bacterial growth but, as we saw before, won’t kill bacterial spores and may not get rid of toxins. Chilling food at or below 4°C (40°F) also doesn’t kill bacteria or do anything to spores or toxins, but it does significantly slow bacterial growth.
Oxygen
Some types of bacteria will only grow where there is oxygen and other types will only grow where there is no oxygen. Foodborne illness can be caused by either of these.

Salmonella, bacteria often found in poultry products like chicken, turkey or eggs, needs oxygen to grow.

Clostridium botulinum, bacteria that can be found in badly packaged cans or jars, only grows where there is no oxygen.

Bacteria that need oxygen to grow are called aerobic bacteria. This is like aerobic exercise, which means exercise that brings a lot of oxygen into your body. Bacteria that grow where there is no oxygen are called anaerobic bacteria.

pH
pH is a measure of how acidic or alkaline a substance is. The pH scale ranges from 0-14, with 7 being neutral. Pure water has a pH of 7. Any number below 7 is acidic, and any number above 7 is alkaline.

Pathogenic bacteria need a pH that's slightly acidic or higher on the pH scale.

Most foods that we eat are acidic with a pH between 2 and 7.

<table>
<thead>
<tr>
<th>pH of some common foods</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bananas</td>
<td>4.5 - 5.2</td>
<td>lemons</td>
</tr>
<tr>
<td>bread</td>
<td>5.3 - 5.8</td>
<td>milk</td>
</tr>
<tr>
<td>carrots</td>
<td>4.9 - 5.2</td>
<td>oranges</td>
</tr>
<tr>
<td>cherries</td>
<td>3.2 - 4.1</td>
<td>oysters</td>
</tr>
<tr>
<td>corn</td>
<td>6.0 - 7.5</td>
<td>pork</td>
</tr>
<tr>
<td>eggs</td>
<td>6.4 - 9.0</td>
<td>potatoes</td>
</tr>
<tr>
<td>flour</td>
<td>6.0 - 6.3</td>
<td>squash</td>
</tr>
</tbody>
</table>
Moisture
Bacteria need water to grow. Bacteria will grow faster in moist foods. Moist foods that are good for bacterial growth are things like:

- Meat (steak, hamburger and pork)
- Dairy products (milk and cheese)
- Fish
- Eggs
- Vegetables

Dry foods don’t have enough moisture in them for bacteria to grow, but bacteria can survive in them without growing. They can become hazardous when water is added; bacteria in them would then have the moisture needed for growth.

Food can be made safer if the amount of water available to bacteria is lowered by freezing, dehydrating (removing the water) or by cooking. Adding solutes like salt, sugar and preservatives can also decrease the available water in food and can reduce the microbial growth rates.

Remember, low moisture won’t kill bacteria, but it will keep bacteria from growing.

Protein
Bacteria grow best when there is a good supply of food or nutrients. The main nutrient for bacteria is protein. Foods that are rich in protein are:

- Meat (steak, hamburger and pork)
- Fish
- Poultry (chicken and turkey)
- Eggs
- Dairy products (milk and cheese)

Foods that have a high level of both protein and moisture are very good for bacteria growth.
Potentially Hazardous Foods
Potentially hazardous foods are those that support bacterial growth because they’re rich in protein and have high moisture content. These foods need to have their time and temperature watched very carefully to keep bacteria from growing, producing toxins and producing spores.

Potentially hazardous foods include:
• Moist foods with a pH above 4.5
• Dairy products
• Meat, fish, poultry and eggs
• Some raw vegetables and fruit (e.g., bean sprouts, garlic in oil and cut melon), especially those that won’t be cooked

Remember, any food that contains one of these foods would also be potentially hazardous. So a cream-filled doughnut, salad with sliced chicken, pasta dish with meat sauce, and casserole with cheese would all be potentially hazardous. Some raw and some cooked vegetables and fruit will support the growth of pathogenic microorganisms and are therefore potentially hazardous. Vegetables and fruit may be easily contaminated and have caused a number of outbreaks (e.g., E. coli in spinach - September 2006; Salmonella in uncooked and fresh tomatoes - July 2008).
In Review

In this chapter, you’ve learned about the different types of microorganisms that cause foodborne illness and how they, especially bacteria, can be controlled. The following topics have been covered:

1. Not all microorganisms are bad for us
2. The types of pathogenic microorganisms that cause foodborne illness: viruses, parasites, yeasts, mould and bacteria
3. What is similar and what is different about these pathogens
4. The sources of these microorganisms
5. The foodborne illnesses these pathogenic microorganisms cause and the symptoms of illness
6. Why some kinds of food contamination are more likely than others to make people sick
7. Why some people are more likely to get sick than others when they eat contaminated food
8. How carriers can transfer microorganisms to food
9. What bacteria needs in order to grow: time and temperature, oxygen, pH, moisture and protein
10. What makes a food potentially hazardous

Notes
Time and Temperature

44 Introduction
44 Food Safety Sequence
45 The Probe Thermometer
45 Thermometer Recalibration
47 The Sequence
47 Receiving and Storage
47 Freezing
49 Thawing
50 Refrigeration
51 Food Preparation
52 Cooking
53 Hot and Cold Holding
54 Cooling
56 Reheating
57 In Review
Introduction

In our last chapter we talked about the danger zone, and how important it is that food be in the danger zone range of temperatures (between 4°C/40°F and 60°C/140°F) for as short a time as possible. This is true during all of the different stages of preparing, serving and selling food.

Food goes through many stages before it’s made available to your customers. Steps need to be taken at each of these stages to make sure bacterial growth is kept to a minimum. This is done by controlling the temperatures food is kept at, and the amount of time food is kept at those temperatures.

Food Safety Sequence

The basic sequence of food preparation is:

- Receiving and storage
- Freezing
- Thawing
- Refrigeration
- Food preparation
- Cooking
- Hot and cold holding
- Cooling
- Reheating

Not all foods will go through all of these stages and they may not go through them in this order. Fresh vegetables may not get frozen or thawed. Salad ingredients may not get cooked or reheated. All food will go through some or all of these stages. It’s very important to monitor and control the temperature of food during all of these stages to make sure bacteria has little chance to grow.

You’ll use your probe thermometer to check temperatures through all of these stages.
The Probe Thermometer
To make sure the proper food temperatures are reached and maintained, use a probe thermometer.

Your probe thermometer must be a food service thermometer. It should have a metal probe; an instant-read type is preferred.

- Insert the probe so the sensing area is in the thickest part of the food, or in the centre of the food if there is no part that is thickest.
- Wait at least 15 seconds for the reading to steady and then record the reading.

Probe thermometers must be cleaned and sanitized by using alcohol swabs or a sanitizing solution after each use. This is to make sure you don’t cross-contaminate food.

Don’t let the probe touch the bottom or sides of the food containers because you won’t get an accurate temperature if you do. Never leave the thermometer in food that is being cooked by oven, microwave or stove.

Thermometer Recalibration
Recalibrating your thermometer regularly will help to ensure your temperature readings are accurate. Recalibrating means adjusting the thermometer to make sure it’s reading the right temperature. A thermometer should be recalibrated:
- After an extreme temperature change
- If it has been dropped

Even if these haven’t happened, your thermometer needs to be recalibrated on a regular basis. The recommended way to calibrate your probe thermometer is by using the ice point method.
How to Recalibrate

1. To use the ice point method, mix a 50/50 slush of crushed ice and water. The temperature of the mix will always be 0°C (32°F), so you can use this to make sure your thermometer is giving an accurate reading.

2. Set the probe of the thermometer in the mixture, making certain it's not touching the sides or the bottom. Wait until the needle stops moving to see what temperature it's reading. If it's not 0°C (32°F), it needs to be adjusted.

3. If your thermometer has a calibration nut, use a small wrench to turn it until the temperature reads 0°C (32°F). Keep the probe in the ice water to make sure the temperature is accurate.

4. Other types of thermometers can be adjusted in much the same way, using its its plastic cylinder or pliers.

When You Can’t Recalibrate

Digital thermometers don’t usually have a way to be recalibrated, but still need to be checked for accuracy. Use the same method as described above for a dial type thermometer. The exception is that the digital thermometer may have a reset button that has to be pushed to recalibrate the setting. If the thermometer doesn’t read 0°C (32°F), try a new battery or have a repair service check the unit.

Follow any instructions for maintenance and care of your thermometer that come with it at purchase, including those for recalibration.
If you test your thermometer and it’s off by a few degrees but you’re not able to immediately recalibrate it, be sure to adjust any temperature readings manually. For example, if your thermometer reads -3°C (27°F) using the ice point method, you’ll need to add 3°C (5°F) to any reading you take because you know that it should be reading 0°C (32°F). This would mean that a refrigerator temperature reading of 4°C (40°F) on your thermometer is really 7°C (45°F).

To avoid confusion, be sure to recalibrate your thermometer as soon as possible.

If your thermometer is off by more than a few degrees, you can’t trust it. Recalibrate it, or use a different one.

THE SEQUENCE

Receiving and Storage
We’ll talk more about this in our Receiving and Storage chapter. For now, just keep in mind that it’s important for food to be kept at the right temperatures while it’s being shipped to you and when you are storing it in your food premises.

Freezing
Frozen foods must be kept at a temperature of -18°C (0°F) or lower. All freezers must have a thermometer that can be easily seen and is accurate. The thermometer should be in the warmest part of the freezer, which is near the door and near the top. Temperatures need to be monitored several times a day to make sure they stay at or below -18°C (0°F). Once a week, a probe thermometer should be used to make sure that the temperature showing on the freezer’s thermometer is right.

If food has been thawed, don’t re-freeze it without cooking it first.
Freezers and refrigerators will run better and keep your food safer if you follow these tips:

- Keep the door closed as much as possible.
- Don’t overload the space.
- Use open wire shelves that haven’t been lined (no cardboard, tin foil or other solid material).
- Make sure door seals are tight and in good repair.

O. Reg. 562, Sec. 35.
O. Reg. 562, Sec. 21.
Thawing
NEVER thaw foods at room temperature. As the food thaws, though the inside of the food is still frozen, the outside of the food will be at room temperature (the danger zone) for a long time allowing any bacteria that is present to grow and multiply quickly.

Thaw foods safely using one of the following four methods.

In a refrigerator at 4°C (40°F)
This method is slow, so allow a day or more for large items, such as poultry and roasts, to thaw. It takes about 10 hours/kg or 5 hours/lb. Whenever possible, this is the method you should use as it’s the safest.

In a sink of cold running water
Use a large clean sink and don’t let water splash on other foods or surfaces where food will be, such as counters. Keep the water flowing constantly to keep the outside of the product cold. Remove the food from the sink as soon as it is thawed and sanitize the sink and all utensils used in thawing.

As part of the continuous cooking process
This method works well for small portions of food like seafood, ground beef and similar foods, but not with large items.

In the microwave
Use this method only if the food will be moved immediately to another cooking source, because after thawing with this method, the product is warm. This method isn’t effective for large items.

FRFSC Sec. 3.3.2
Refrigeration
Refrigerated foods must be kept at a temperature of 4°C (40°F) or lower. Refrigerators need to have their temperatures monitored in the same way as freezers. All fridges must have a thermometer that can be easily seen and is accurate. The thermometer should be in the warmest part of the fridge, which is near the door and near the top. Temperatures need to be monitored several times a day to make sure they stay at or below 4°C (40°F). Once a week, a probe thermometer should be used to make sure the temperature showing on the fridge’s thermometer is right.

Freezers and refrigerators will run better and keep your food safer if you follow these tips:
• Keep the door closed as much as possible
• Don’t overload the space
• Use open wire shelves that have not been lined (no cardboard, tin foil, or other solid material)
• Don’t use wood in your refrigerators as it’s likely you’ll get mould growth
• Make sure door seals are tight and in good repair

O. Reg. 562, Sec. 20(1)(d).
O. Reg. 562, Sec. 33(2)(a).

Condiment Fridge
Condiment refrigerators are often used to prepare or assemble food items like sandwiches or pizza.

The top of a condiment refrigerator has a preparation counter with food compartments for holding ingredients like cold cuts, cheese, tomatoes, lettuce and pickles. Proper temperatures in the food compartment are very hard to maintain in these units, so it’s important to keep the lid closed as much as possible and to closely monitor temperatures. The food compartments should be moved to the main part of the refrigerator for overnight storage.
Food Preparation
When you’re working with food at room temperature, getting it ready to be cooked or served, you need to take extra care.

Any food preparation that takes place at room temperature is risky because it takes place in the danger zone. Most bacteria grow fastest in the 20°-50°C (68°-122°F) range, especially at 37°C (98°F) or body temperature. The longer hazardous foods are in this range, the greater the chance that pathogenic bacteria will grow and/or produce toxins which will cause foodborne illness.

Don’t let foods be in the danger zone longer than necessary. If you need to leave your work station for any reason, put food back in the refrigerator until you can start working with it again.

If you’re preparing large amounts of food:
- Use small batches
- Use pre-chilled ingredients
- Pack food on ice
Cooking

Food mixtures that contain hazardous foods need to be cooked to an internal temperature of 74°C (165°F). Verify the temperature with your probe thermometer for at least 15 seconds.

We talked about what kinds of food are considered hazardous in our microorganism chapter; as a reminder, they’re foods like:
- Dairy products (such as milk and cheese)
- Meat
- Poultry
- Fish
- Eggs

Q. Reg. 562, Sec. 33(5).

Cooking Meats

Some types of meats have different minimum internal cooking temperature requirements. As mentioned in the section on thawing, most bacteria are on the surface of food. So when a solid piece of meat like a steak is cooked, the outside gets thoroughly heated and the surface bacteria are killed, even if the centre doesn’t reach 74°C (165°F).

When meat is ground up, any bacteria on the surface are mixed through the meat. To make sure all bacteria are killed, the meat must be cooked all the way through.

<table>
<thead>
<tr>
<th>Cooking food from raw</th>
<th>Temperature Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pork</td>
<td>71°C (160°F)</td>
</tr>
<tr>
<td>Poultry (whole)</td>
<td>82°C (180°F) for at least 15 seconds</td>
</tr>
<tr>
<td>Poultry (pieces or ground)</td>
<td>74°C (165°F) for at least 15 seconds</td>
</tr>
<tr>
<td>Ground meat (other than those containing poultry)</td>
<td>71°C (160°F) for at least 15 seconds</td>
</tr>
<tr>
<td>Fish</td>
<td>70°C (158°F) for at least 15 seconds</td>
</tr>
<tr>
<td>Food mixtures containing poultry, eggs, meat, fish or other potentially hazardous foods</td>
<td>74°C (165°F) for at least 15 seconds</td>
</tr>
</tbody>
</table>

For more information about different cooking temperatures for different kinds of meat, see Food Premises Regulation (O. Reg. 562), Section 33, and the Food Retail and Food Services Code, Appendix B.
Hot and Cold Holding

Holding food means keeping it at the right temperature once it's been prepared and until it's served. Food can be held hot, cold or at room temperature depending on the type of food and how long it's being held.

There are different requirements for each type of holding; we'll look at these next.

Hot Holding

When food is kept hot after being cooked, it’s called “hot holding.”

Some examples of this are:

- Food held in a buffet
- Hot dogs kept hot in a hot dog cart
- Fast food held in a warming tray until it is served

Food being held hot for service or display must be held at 60°C (140°F) or higher at all times. Use a probe thermometer to monitor temperatures regularly during the holding time and record them. This is after the food has been cooked to the right internal temperature.

O. Reg. 562, Sec. 33(2)(b).

Room Temperature Holding

Potentially hazardous foods that are meant to be eaten right away can be displayed or held for service at room temperature (not kept on ice or heated), but for no more than two hours. These foods should be marked with the time they were placed at room temperature, so they can be thrown away at the right time.

NEVER mix old food with new food. If you do, you won’t be able to follow this two hour rule. An old pan of food should be removed completely and replaced with a new, fresh pan of food. Potentially hazardous food can be held at room temperature for up to two hours because that time is too short for bacteria to grow or produce toxins at a level that would likely cause harm.

Food Retail and Food Services Code (FRFSC) Sec 3.3.8
Cold Holding

All foods being held cold for service or display must be held at 4°C (40°F) or lower at all times. This is the same temperature they would be at in a refrigerator. Use a probe thermometer to monitor temperatures regularly during the holding time and record them.

Don’t overfill containers. Use metal containers for all hazardous food since metal conducts cold better than plastic.

Food can be held in the cold zone using a refrigerated unit or on ice. Containers of food should always be moved into a refrigerator if they’ll be stored overnight.

O. Reg. 562, Sec. 33(2)(a).

Cooling

If cooked food needs to be cooled for storage or service, it must be done carefully because the food will pass through the temperature danger zone. The food must be placed on ice or refrigerated before it drops below 60°C/140°F. The faster the food is cooled, the less time it spends in the danger zone, and the less risk there is of bacterial growth.

The time it should take to cool food is:

• Within two hours, the temperature of the food should drop from 60°C (140°F) to 20°C (68°F).
• Within the next four hours, the temperature of the food should drop from 20°C (68°F) to 4°C (40°F) or less.

As with cooked foods, the temperature of the food must be monitored during cooling using your probe thermometer to make sure it’s being cooled fast enough. Cooled food must be stored at 4°C (40°F) or less. Let’s look at some ways that food can be cooled quickly.

FRFSC Sec. 3.3.6
Shallow Pans

The best way to cool food is to transfer the hot, cooked food from large containers to shallow pans (2-3 inches/5-7 cm deep or less).

Partly cover pans to protect from contamination, but allow heat to escape. Place the pans in the refrigerator to bring the temperature down quickly. Store them on the top shelves to reduce the risk of cross-contamination while cooling. Stirring food will also reduce cooling time significantly.

Once the foods are thoroughly cooled, cover tightly to protect from contamination and to keep the food from drying out. Label and date the containers so that you’ll know how long to keep the food.

Large Containers

Cooling cooked food in large containers is much harder and can mean that food will be in the danger zone for a longer time, unless extra care is taken. You can make food cool faster by:

- Placing the large container in a sink of ice water (ice water bath)
- Stirring
- Using an ice wand
- Adding ice directly to the food
- Dividing food into small quantities

The temperature of the food must be monitored during cooling, using your probe thermometer, to make sure it’s being cooled fast enough.

Cooling After Preparation

Food prepared at room temperature must be cooled from 20°C (68°F) to 4°C (40°F) or less within four hours. This applies to food right after it has been cooked. It also applies to food that won’t be cooked at all, such as a salad.

Use your probe thermometer to make sure food is being cooled fast enough.

FRFSC Sec. 3.3.7
Reheating

When hazardous foods are reheated, they need to be brought to their minimum cooking temperature for at least 15 seconds. The food needs to reach that temperature within two hours. As the food will pass through the danger zone, reheating should be done as quickly as possible so use the highest temperature you can.

- Foods like soups, stews or gravies should be brought to a boil. When possible, reheat in small amounts so you can reheat faster. Remember to always use your probe thermometer to check the reheating temperature.
- Food can’t be reheated in a hot-holding unit, like a holding oven, steam table or soup urn, because they’re not designed to heat food quickly or to high enough temperatures.
- Be careful when using leftovers as they pass through the danger zone twice. Throw out any leftovers after reheating (i.e., don’t use the leftovers of a leftover).

O. Reg. 562, Sec. 33(10),(11),(12).
In Review

In this chapter, you learned about using your probe thermometer and keeping food at the right temperatures during the different stages involved in serving food to your customers.

The following topics have been covered:

1. How and when to recalibrate your probe thermometer
2. The correct temperatures to store frozen and refrigerated foods
3. Safe methods for thawing frozen foods
4. How to properly monitor freezer and refrigerator temperatures
5. Which stages put food in the danger zone: preparation, cooking, cooling and reheating
6. How to cool food safely by minimizing time in the danger zone
7. The different safe temperatures for cooking meats and other hazardous foods
8. How to safely hold food at hot, cold and room temperatures

Notes

__

__

__

__

__

__
Receiving and Storage

59 Introduction
59 Shipping and Receiving
65 How to Receive
65 Rejecting a Shipment
66 Storage
66 Storage Guidelines
67 Stock Rotation
68 In Review
Introduction

Food safety is important during all of the different stages of preparation and production. To make sure the food you’re serving to customers is safe, you need to make sure it comes from a safe source and is stored properly.

Shipping and Receiving

Whenever food is received at your premises, it should be inspected. You want all of the food you’re receiving to come from an approved source and be in good condition.

Check delivery trucks. They should be clean and shouldn’t have signs of contamination.

All food products must be checked before they’re accepted to make sure they’re not spoiled or damaged. Look for:

- Proper shipping temperatures
- Dents or rust on cans
- Bulging, leaking or stains on packaging
- Signs that products may be spoiled or infested by pests (e.g., gnawed holes or insect wings)
- Proper labeling and labeling must be intact - not changed, broken or removed from the food to which it’s supposed to be attached.
- Check the manufacturer’s ‘best before’ date. If the date has passed, don’t accept the food.

Different foods need to be inspected for different things; let’s look at some of them.
RECEIVING AND STORAGE

Temperatures
Foods that need to be refrigerated or frozen need to be shipped in vehicles that can keep them at the right temperatures. Refrigerated foods must be shipped at 4°C (40°F) or lower and frozen foods at -18°C (0°F) or lower.

Products that must be kept at refrigerator or freezer temperatures should be double checked for their actual temperatures. Check the temperature of the thermometer in the delivery truck first (all delivery trucks are required to have thermometers in their refrigeration units). Use your probe thermometer to check internal temperatures. If you can’t insert the thermometer directly into the product, open a case and insert the entire sensing area of the thermometer between two packages, being careful not to poke a hole in them. Reject any products that are too warm.

Frozen products should be checked carefully to make sure they haven’t thawed and been refrozen. Look for large ice crystals, solid areas of ice, discoloured or dried-out food. Reject any food product that may have been thawed and refrozen. If a product you receive is thawing, it should not be refrozen. Put it in the refrigerator, date it and continue the thawing process – or reject it.

Water
Any water used in food premises must be from a potable water supply, which means the water must be drinkable. When buying ice, make sure it comes from an approved source and is made under sanitary conditions.

Meat, Poultry and Seafood
Only government inspected meat, poultry and fish/shellfish are allowed in food premises. Wrappers and/or boxes of these foods usually show government approval and where the food was packaged.

You should reject meat and poultry products if they’re discoloured, have a strange smell, or if the food is slimy, sticky or dry. Remember, these products must be delivered frozen or refrigerated.
Fish and shellfish should be delivered either frozen at -18°C (0°F) or live at 4°C (40°F). Inspect the fish itself. Reject fish products if:

- There is a strong ‘fishy’ or ammonia smell.
- The eyes are sunken or cloudy.
- The flesh is soft and gives (i.e., if you poke the flesh with your finger and the fingerprint stays).
- The shipping temperature is above 4°C (40°F).

If clam, mussel or oyster shells are partly open and don’t close when tapped, it means they’re dead. Reject them. If lobster and shrimp are soft and have a strong smell, reject them.

Look for government stamps on beef products or tags on chicken and seafood products.
Eggs must be from an approved supplier and must be graded. Always check inside egg cartons. Look for cracks, feathers and/or feces. If you see any of these, the eggs are Grade C and may carry a risk of *Salmonella* contamination. Cracked eggs and Grade C eggs can’t be used in food premises. Liquid eggs must be pasteurized and packaging can’t be broken or damaged.

Eggs and egg products should be delivered at 4°C (40°F) or lower; reject them if they’re at a higher temperature. If eggs are coming from an egg grading station, they can be shipped at 13°C (55°F). Refrigerate acceptable eggs as soon as you receive them. Store them in their original containers.

O. Reg. 562, Sec. 54. (1).

Dairy Products

Buy only pasteurized milk. All dairy products like ice cream, cheese, sour cream and yogurt must be made using only pasteurized milk. This doesn’t apply to cheese made from unpasteurized milk if the cheese has been stored at 2°-4°C (36°-40°F) for 60 days or longer, after the time of manufacture. Dairy products shouldn’t have a sour or mouldy taste or a strange colour or texture. Make sure you check the expiration or ‘best before’ dates. These products should be delivered at 4°C (40°F) or lower. Reject them if the temperature is higher.

O. Reg. 562, Sec. 42. (1).

O. Reg. 562, Sec. 45.
MAP Foods
Modified Atmosphere Packaging (MAP) reduces or replaces oxygen with other gases to help keep bacteria from growing. Food packaged in MAP can be kept longer without using preservatives. Some of the foods available in MAP are:
- Refrigerated meals
- Fresh pasta
- Prepared salads
- Soups
- Sauces
- Cooked meats and poultry

Check packages for any holes or tears, bubbles, slime or discoloured contents. If you see any of these, reject them. MAP makes food much less likely to spoil as long as the packaging is done right and isn’t mishandled.

Check for the expiration or ‘best before’ date on the package, and make sure the foods are received at the temperature marked on the package by the manufacturer or supplier.

Canned Foods
Food premises can’t use or accept any home-canned foods. The risk for botulism is too high. Commercially prepared foods are made safe by heating to very high temperatures to meet quality control standards which are tested and verified on a regular basis.

Never taste a can’s contents to test them. You can get botulism from even one small taste.

Don’t accept any cans with swollen sides or ends, flaws in the seams, rust, dents, leaks or bad smelling contents. Reject any can without a label. After a tin can is opened, it must not be re-used to store or cook foods.
RECEIVING AND STORAGE

Fresh Produce
Check fresh fruits and vegetables for wilting, mould or any signs of infestation by bugs or other pests. Reject any products that aren’t in good condition.

Remember your cross-contamination rules. Make sure that refrigerated produce is stored below ready-to-eat foods and above any raw meats, poultry or seafood.

Dry Goods
Dry goods are foods like:
- Cereal
- Grains
- Nuts
- Rice
- Crackers
- Pretzels
- Sugar
- Flour

They must be received in dry, unbroken packages. Dampness or mould may be signs of spoiled food or bacterial growth. Check packages for holes or tears which could be evidence of infestation. Make sure these products are well within the ‘best before’ or expiration dates.

Store all grain and bulk foods in closed metal or plastic containers to prevent contamination and keep pests out.
How to Receive

Once you’ve inspected food and decided to accept it, there are a few more things you need to do to keep the food safe.

Remove potential physical contaminants.
Remove staples, nails or other fasteners from packages so they don’t later end up as physical contaminants in food served to customers.

Check your invoices.
Check what you’re getting against invoices to make sure you’re receiving everything you ordered, and only what you ordered.

Remember your temperature control.
Get refrigerated and frozen items into cold storage as quickly as possible. Don’t leave them on the dock or in receiving.

Prevent contamination.
All foods should be moved to their storage areas as soon as possible to keep them from getting contaminated.

Rejecting a Shipment

Employees responsible for receiving goods should know what to do whenever a shipment doesn’t meet the standard of your food safety system. If you are responsible for this, make sure you know your company’s policy on what to do.

If you need to reject all or part of a shipment:

- Keep the food you are rejecting separate from your other food and supplies.
- Tell the delivery person the exact problem with the food.
- Use your purchase agreement and documented standards to back up your case and show that you have reason to reject it.
- Don’t throw the food out or let the delivery person remove it until you get a signed adjustment or credit.
- Record the rejection in a delivery log. Include the date, food involved, the package identification (if there is one), the standards not met, and the type of adjustment made.
Storage
Different kinds of foods have different storage needs. Some foods can be safely stored at room temperature; others need to be refrigerated or frozen to be kept safe. In the appendix you will find a guide that breaks down the storage times or shelf life for foods stored in the refrigerator, freezer and at room temperature.

Always store food in an area that’s used only for food storage.

All foods must be stored on shelves, a minimum of 6 inches or 15 centimeters off the floor. Food should never be stored on the floor. If there isn’t enough space, adjustments have to be made. Consider more frequent, smaller deliveries, or decreases in menu choices.

Never store food in:
- Washrooms
- Staff dressing rooms
- Corridors
- Furnace rooms

Mops, pails, brooms and other such items must be kept separate from food storage areas.

Storage Guidelines
There are some general rules that apply to all kinds of food storage.
- Your storage areas need to be kept clean.
- All food products should be kept at least 15 cm (six inches) off the floor. This makes cleaning and pest control easier.
- Chemicals and food must never be stored together. Keep chemicals in the original containers – labeled with the proper mixing instructions, warnings and first-aid information – and store them away from food.
- All foods should be stored in food grade containers that are of good quality and easy to clean. Commercial food grade containers are made to be durable and will last longer than cheaper containers that can’t take the daily wear and tear. Cardboard as an original container for certain foods (e.g., mushrooms) is allowed, but can’t be reused to store any other foods because it can’t be cleaned and sanitized properly.
• Food should not be crowded. There needs to be enough space for air flow and circulation both in cold storage (refrigerators and freezers) and room temperature storage areas. There should also be enough space to keep foods separate to prevent cross-contamination.
• Keeping moisture low will help food last longer and prevent mould.

Stock Rotation

It’s important to make sure you keep your stored food products, or stock, in a way that will keep them safe and fresh.

• All foods stored in the freezer, refrigeration unit or dry storage should be arranged using the first in, first out (FIFO) rule. Sort foods by their expiration or ‘best before’ dates. Products without these dates should be dated when they’re received. New products should be put behind older products to make sure that older products are used first – the first product you received (in) is the first product you use (out).
• Follow the recommended storage times for refrigerated, frozen and dry good foods. Use the Food Handlers’ Storage Guide in the appendix to help you. Make sure all foods are dated.
• Don’t order more than you can use. If you overstock, you’ll end up wasting food.
• If you’re not going to throw them away immediately, keep foods that are past their ‘best before’ or expiration date away from other foods.
In Review

In this chapter we’ve looked at how to make sure you’re receiving food that meets safety standards and how to keep your food safe when you’re storing it.

The following topics have been covered:

1. The different shipping and storage requirements for different types of foods
2. Checking the temperature and condition of foods you receive to make sure they’ve been shipped using food safety standards
3. What to do when you need to reject a shipment
4. Using the ‘first in, first out’ rule to ensure food is used in the right order

Notes
Introduction
Microbiological contamination is the spread of harmful microorganisms to food that doesn’t naturally contain those microorganisms.

As discussed in the Microorganisms chapter, some foods naturally have microorganisms in them, like *Salmonella* in raw poultry. If *Salmonella* is transferred from raw poultry to another food, this is called cross-contamination. There are also other sources of microbiological contamination. Viruses, like Hepatitis A, can be transferred to food from an infected person who is handling the food.

Other sources of microbiological contamination include poor cleaning, poor personal hygiene (we’ll talk more about this in an upcoming chapter) or dishes that haven’t been cleaned properly. There are simple things you can do as a food handler to make sure food doesn’t get contaminated.

Cross-Contamination
Cross-contamination happens in three ways:

1. **Food to Food**
 - Raw food or juices come in contact with ready-to-eat food.

2. **Equipment to Food**
 - The same equipment is used with raw and ready-to-eat food without cleaning in between.

3. **People to Food**
 - Hands that have touched raw food then touch ready-to-eat food without being washed in between.
Refrigerate Right

When food is stored in a refrigerator, it’s important to place the food in a way that helps to keep it from getting cross-contaminated.

Keep raw meat, poultry and seafood on the bottom shelves. Cooked and ready-to-eat foods go on the upper shelves. Raw fruits and vegetables and foods that will be re-heated belong in the centre. If there’s a lot of refrigeration space, store each food group in a separate area of the refrigerator.

Make sure that all stored foods are covered to keep them from getting cross-contaminated with drippings or juices from other foods, and to keep out other contaminants like dust or objects.

If you think there’s a chance that food has been contaminated, throw it away or let your supervisor know.

What Could Go Wrong?

The image on the left shows food stored in a refrigerator in the wrong order. What could go wrong here?

Some things are:

- Lettuce is stored next to raw chicken. Lettuce won’t be cooked before being served, and could be contaminated with Salmonella or other bacteria from the chicken.
- Raw chicken is stored above loosely covered ready-to-eat foods. The juices from the chicken could drip into the foods below and contaminate them.
- The soup at the bottom of the fridge is uncovered. Physical or microbiological contamination from the food stored above it could happen easily.
Food Display
Old food should never be mixed with new food. Microbiological contamination is another reason not to mix old food with new food. Keeping them separate keeps any contaminants that could have gotten into the old food from getting into the new food.

You should always use new utensils and new food pans when replacing food on display.

Each time a pan of food is replaced, the pan and all utensils used with it should be sent for dishwashing. Clean and sanitized utensils should go out in their place. “Sneeze guards,” which are the protective shields that sit between a person’s face and the food on display, should always be used. The handles of utensils used to serve out the food should never come in contact with the food.

Serving Food
Microbiological contamination can also happen when food is being served to customers. To keep from contaminating food as it’s being served, follow these tips:

• Use single-use disposable plastic bags, wax paper or disposable gloves to give out food.
• Cover cutlery (forks, knives and spoons) and keep glasses upside down if they’re out but not in use.
• Use trays to serve.
• Don’t touch the surfaces of dishes or utensils that come into contact with mouths or food – like insides of glasses, straws or eating ends of cutlery.
• Don’t put your thumb on top of a plate to hold it. Hold plates underneath with your thumb on the rim.
Discarding
Any food that has been served but not eaten must be thrown out.

Even if food looks like it hasn’t been touched, you don’t know for sure that it hasn’t been. It could be contaminated and must be discarded.

Single service items such as disposable plates, plastic cutlery or chopsticks must be discarded. Even if they look like they haven’t been used, you can’t know that for sure, so you must throw them out.

Single service items aren’t made to be used more than once. They can’t be properly cleaned or sanitized; therefore, they can’t be re-used.

Equipment
If a piece of equipment used in your kitchen comes in contact with raw food, it will pick up the microorganisms that are on the food. If it then touches ready-to-eat food, that food will be cross-contaminated.

To keep this from happening, all equipment must be washed, rinsed and sanitized often, especially between being used with different foods.

It’s very important to keep raw food away from cooked or ready-to-eat food. Raw foods - including meat, other animal products like eggs, and raw fruits and vegetables - may contain harmful microorganisms. The best way of avoiding cross-contamination between raw food and ready-to-eat food is to have separate equipment, utensils, cutting boards and preparation areas for each.

Colour coded utensils and cutting boards can help. Use one colour for raw foods, and a different colour for ready-to-eat food. If you can’t, then it’s very important to immediately wash, rinse and sanitize any surface that food (especially raw food) touches each time it’s used.
How Could This Happen?
To show you how easy it can be for food to get cross-contaminated, consider this example.

A food handler slices raw chicken on a cutting board. The raw chicken is contaminated with *Salmonella* bacteria, which is commonly found on raw poultry, but is destroyed by cooking.

The raw chicken contaminates the board, the knife and the food handler’s hands.

The food handler wipes the contaminated knife and board with a cloth, and sets them aside. *Now the board, knife, cloth and food handler’s hands are all contaminated with microorganisms from the raw chicken.*

Sitting out at room temperature, *Salmonella* bacteria multiply very quickly. *The microorganisms can’t be seen, so other food handlers in the kitchen won’t know that all of these objects are contaminated.*

Another food handler picks up the knife and cutting board, and uses them to chop lettuce for a salad. *The lettuce is now contaminated with *Salmonella* bacteria.*

To prevent this, the knife, cutting board and cloth need to be cleaned and sanitized before they come into contact with any food or food contact surfaces. *The food handler’s hands need to be washed before handling any other food or food contact equipment.*
Equipment Care
To help prevent equipment cross-contamination:

- Keep sanitizing solution on hand in a bucket or labeled spray bottle, mixed to the proper strengths.
- Keep wiping cloths in sanitizing solution to keep bacteria from growing on the cloth.
- Replace cutting surfaces if they have cracks, crevices or open seams. Damaged surfaces can’t be cleaned well enough to get rid of harmful microorganisms.
- Remember that meat slicers come into contact with food and must be taken apart and thoroughly cleaned and sanitized after use. If slicers are used several times every day, clean the equipment throughout the day to remove bacteria from cutting surfaces. Take the slicer apart and thoroughly clean it at the end of the day.
- Change utensils (i.e., knives, ladles, tongs, etc.) often throughout the day. If a utensil is dropped, don’t wipe it on your apron or cloth and reuse it. It’s dirty and must be sent to the dish washing area and replaced with a clean one.
- Can opener blades enter the can and touch the food. They must be cleaned regularly.
When you’re tasting food, you need to make sure the microorganisms in your mouth and on your fingers don’t end up in the food.

Tasting Food

Food handlers often need to taste food as they prepare it.

Do:
- Use a disposable spoon and throw it out right after you have tasted the food.
- Use a clean regular spoon and place it with the dirty dishes right after you have tasted the food.
- Ladle food into a cup, tasting bowl or another spoon. Use a second spoon to taste the food – that way, the first utensil goes in the food, the second goes in your mouth, and the two never touch.

Don’t:
- Dip your fingers into the food then into your mouth.
- Put a spoon that has been in your mouth back into the food.
In Review
In this chapter, you learned about how food can be contaminated with microorganisms and what you can do as a food handler to prevent this.

The following topics have been covered:

1. How to keep microorganisms from being transferred into food that is being prepared, served, stored or displayed
2. The importance of keeping kitchen equipment and utensils clean
3. How to prevent cross-contamination by keeping foods separate as they’re prepared and stored

Notes
Personal Hygiene

79 Introduction
79 Uniforms, Clothing and Aprons
80 Hair
80 Hair Control
80 Hands and Nails
81 Handwashing
81 Using the Washroom
82 Nose or Mouth Contact
82 Cough or Sneeze
83 Other Times
84 How to Wash
85 No-Touch Techniques
86 The Work at Hand
87 When You Need Gloves
87 When You’re Sick
87 Returning to Work
88 In Review
Introduction
People are one of the major sources of microorganisms that cause foodborne illness. There are microorganisms on and in the body (e.g., on hands, face, hair) and on clothes. These microorganisms are there all of the time, not just when a person is feeling ill. They could make another person very sick if they’re transferred through food. This could happen even if the microorganisms don’t make the person carrying them feel sick.

As someone who handles and prepares food, it’s important that you follow good personal hygiene practices. This will make it less likely for you to transfer microorganisms from yourself to the food you’re handling. It is something over which you have control. You must take it seriously. Even a small amount of a microorganism could be deadly to some people.

Uniforms, Clothing and Aprons
The Health Protection and Promotion Act requires all employees in food premises to wear clean outer clothing when they’ll be handling food. Light coloured clothing is recommended because it’s very easy to see when the clothing gets dirty.

Remember, dirty clothing may carry pathogens. When a food handler’s clothing or apron looks dirty, get it changed for a clean one immediately.

O. Reg. 562, Sec. 65(1)(c).
Hair

Human hair can be a problem both as physical contamination and microbial contamination. The average person loses about 50-100 hairs per day. Headgear, such as hats or hairnets, will help to keep hair out of food and off of food contact surfaces. Headgear also helps to keep people from touching their hair and contaminating their hands. When it gets warm in the kitchen, people may brush their hair from their forehead and back of neck without even realizing they’re doing it. Wearing headgear would make you more aware of touching your head and hair.

Hair also carries microorganisms, some of which may be pathogens, so hair must be kept out of food to prevent foodborne illness. It’s also important to keep your hands from touching your hair when preparing food or handling food contact surfaces or utensils (such as dishes, forks, spoons and knives).

Hair Control

Food handlers, with some exceptions, are required to wear headgear that confines their hair. Food service workers who don’t prepare food, like persons who wait on tables, may not have to wear headgear. If a server waits on tables and also does some food preparation (e.g., prepares salad or desserts, or ladles soup), then headgear is required.

It’s important to wear headgear properly. It should cover all the hair, keeping hair off the forehead and the back of the neck.

O. Reg. 562, Sec. 65(1)(d).

Avoid wearing hand jewelry. Rings, bracelets and wrist watches can trap dirt, making thorough handwashing harder.

Hands and Nails

Hands can pick up germs very easily. Hands need to be cleaned well to keep dirt and germs from being transferred to food. Pay extra attention to your fingernails. Dirt can get stuck under fingernails and may need more than just regular handwashing to clean.

• Use a personal nylon nail brush to clean under nails.
• Keep nails well trimmed to help them stay clean.
• Avoid nail polish as it could chip and fall into food.
• Protect and care for hangnails to prevent infection.
Handwashing

Handwashing, when done correctly, is the single most effective way to prevent the spread of communicable diseases. That includes foodborne illness. Food handlers need to wash their hands when needed and to wash them well whenever they do.

- Always wash your hands before you start work.
- Wash before handling any food, or cleaning dishes and utensils.
- Any time your hands get dirty or contaminated with germs or with other types of food, you must wash them.

Let's look at some of the things that could contaminate your hands.

Using the Washroom

It’s very important to wash your hands properly after using the toilet or urinal. Very high levels of microorganisms and pathogens can be spread through fecal matter or urine, even when you don’t feel sick. Toilet paper doesn’t keep germs from getting on your hands. Microorganisms are so small they can pass through the toilet paper.

Hepatitis A outbreaks have been caused this way:

“Other people are the only source of the hepatitis virus. The virus is found in feces in high numbers a week or two before symptoms become obvious. Therefore, it is possible to unknowingly spread the virus to other people through lapses in proper personal hygiene (handwashing). Outbreaks have been associated with... food contaminated by infected food handlers, including sandwiches and salads which are not cooked or are handled after cooking” (Alberta Health and Wellness: Common Foodborne Illnesses, 2009).
Nose or Mouth Contact

Touching your nose or mouth will contaminate your fingers and hands. If you touch your nose or mouth, wash your hands at the hand sink immediately.

To make sure you don’t transfer microorganisms to your fingers and hands, you should avoid:

• Biting your fingernails
• Smoking
• Licking your fingers to pick things up, like paper
• Smoothing your hair, beard or moustache
• Touching your nose

If you do any of these things, you must wash your hands properly before handling food or anything that touches food, like counters or utensils.

Cough or Sneeze

Coughs and sneezes send microorganisms, such as Staphylococcus aureus, into the air where they can be breathed in by other people. They also land on nearby surfaces where they can contaminate anything that comes in contact with those surfaces.

You need to contain any sneezes or coughs with tissue paper and to wash your hands at the hand sink immediately afterwards. Remember, microorganisms are so small they can pass through the tissue and onto your hands. If you don’t have a tissue handy, cough or sneeze into your upper sleeve instead of your hands. Don’t use a cloth handkerchief. Each time you touch it, the germs already on it get back onto your hands. Any food contaminated by a sneeze or cough must be thrown away. Any food contact surface contaminated by a sneeze or cough must be cleaned and sanitized.
Other Times
Some other common ways that your hands could get contaminated are:

- Handling raw foods
- Clearing tables
- Handling dirty dishes
- Handling garbage
- Cleaning and mopping
- Handling bottoms of boxes
- Handling money

Now that you know when to wash your hands, let's look at how to do it properly.
How to Wash
To properly wash your hands so that surface microorganisms are removed, you need to use lots of soap and warm water. Use a sink that’s only used for handwashing.

1. **Wet hands**
 - Remove jewelry and watches.
 - Wet hands with warm water first.

2. **Soap**
 - Be sure to use enough liquid soap.

3. **Lather well**
 - Lather for 15-20 seconds. Clean wrists, palms, back of hands and between fingers.

4. **Rinse**
 - Rinse with warm water.
 - Be sure not to touch the side of the sink.

5. **Dry**
 - Dry hands completely with paper towel or with an air dryer.

6. **Keep clean**
 - Use a paper towel to turn off the water to protect hands from getting dirty again.
No-Touch Techniques

Food handlers should avoid directly touching food whenever possible. Utensils like tongs, spoons and scoops act as barriers between your hands and the food. Napkins or sheets of waxed paper can be used to pick up foods like muffins, donuts, cookies, bread, and ice cream cones without directly touching the food with your hands.

Disposable plastic gloves can be used instead of bare hands, but gloves will pick up microorganisms the same way hands do. Make sure you wash your hands before and after using gloves, and always use a new pair of disposable plastic gloves when you change tasks or after any potential contamination. Throw away the used ones.

Remember, glove use doesn’t eliminate the need for handwashing. Be sure to wash hands before and after gloving.

“No-touch” techniques are especially important when handling any food that isn’t going to be heated or cooked after you touch it. If you touch a ready-to-eat food with dirty hands, then whatever is on your hands will get on the food and then in someone’s mouth. Remember, no one wants your fingers in their mouth!
The Work at Hand
Some other tips to keep the food you’re handling safe are:

- Never stack plates to carry several of them at one time, as your hands may touch the food.
- Never blow into bags to open them.
- Never hold place settings or food without washing your hands after clearing tables or bussing dirty dishes.
- Never touch the inside of glasses or the eating surfaces of tableware.

During a single shift, you should avoid combining jobs that are likely to cause contamination:

- Don’t work with both raw and cooked foods.
- Don’t wash dirty dishes and stack clean ones.
- Don’t clear dirty dishes and reset tables with clean dishes.

If you have to do these things together, you need to wash your hands between each task.
When You Need Gloves
If you have a cut or infection on your hand, a bandage must be worn to cover it and a glove must be worn over the bandaged hand until the cut or infection heals. A bandage alone is not enough. Bandages get wet and dirty and can then carry pathogens. This is the only time a food handler must wear gloves, unless it’s required as part of your employer’s policy.

When You’re Sick
If you’re sick, your body is producing more germs and microorganisms than it does when you’re healthy. If you have any of the following symptoms you must not prepare or serve food:
• Diarrhea
• Vomiting
• Fever
• Sore throat
• Persistent coughing or sneezing

If you have any of these symptoms or if you have a communicable disease, you must let your manager or supervisor know.

Returning to Work
If you have diarrhea, the levels of pathogens being shed by your body are so high that even good handwashing may not reduce them to safe levels. After 24 hours without symptoms, pathogens are still being shed by your body, but the numbers are much lower.

You shouldn’t return to work until 24 hours after the symptoms have stopped.

Even if you’re feeling well, you should still be careful and practise proper handwashing. You could be sick and not know it. With some illnesses, your body can shed microorganisms up to two weeks before you start to feel sick.
In Review

In this chapter, you learned about the importance of your own personal hygiene when handling food. You’ve learned what you can do to keep food safe and how to minimize the spread of microorganisms from your body to the food you’re handling.

The following topics have been covered:

1. Why it’s so important to keep your hands clean
2. Some of the ways your hands can get contaminated
3. How to properly wash your hands before handling food
4. Ways to handle food without directly touching it
Cleaning and Sanitizing

90 Introduction
90 How to Clean
91 How to Sanitize
92 Types of Chemical Sanitizers
92 Chemical Sanitizers
93 Making Sure it’s Sanitized
93 Dishwashing
94 Three Compartment Sink
95 Two Compartment Sink
96 Mechanical
97 After Washing
97 General Cleaning
97 Food Contact Surfaces
98 Clearing Tables
99 Equipment
99 Facility
100 Washrooms
100 Handwash Sink
101 Garbage Control
101 Live Animals
102 Kitchen Layout and Plans
103 In Review
Introduction
Keeping your food premises clean isn’t only about it looking good. It’s about cleaning and sanitizing to control microorganisms and keep your food and your customers safe.

Destroying all microorganisms is nearly impossible, but by cleaning and sanitizing it’s possible to reduce them to safe levels. To do this, both steps are needed and both must be done properly.

The difference between clean and dirty food premises will depend on:
- Using proper cleaning materials and using them the right way
- Educating staff on how to clean and sanitize
- Having dedicated management and employees
- Being organized

We’ll look at all of these things in this chapter.

How to Clean
When you clean, use the right chemicals and friction to remove dirt or soil. Examples of this could be washing a floor with floor cleaner or washing dishes with dish soap.

The steps to cleaning are:
- Remove any obvious pieces of food, dirt or other debris.
- Use cleaning chemicals and friction to remove the rest.
- Rinse with hot tap water to remove cleaning chemicals.

When it comes to food contact surfaces like counters, dishes, cutting boards or utensils, cleaning alone isn’t enough. A surface can look clean but still have unsafe levels of microorganisms. Once a food contact item is clean, the next step is to sanitize it.
How to Sanitize

When you sanitize, you reduce the number of microorganisms to safe levels. Examples of this could be soaking cleaned utensils in diluted bleach or using the very high water temperatures in the sanitizing cycle on a dishwasher.

The steps to sanitizing:

- Always clean before sanitizing.
- Use very hot water, at least 77°C (170°F), or chemicals to remove microbiological contaminants.
- Make sure the items you’re sanitizing are in contact with the chemical solution or hot water for at least 45 seconds.
- Use test reagents, test strips or a thermometer to make sure your sanitizer or sanitizing solution is working.

Follow the manufacturer’s directions when using chemicals to sanitize.

O. Reg. 562, Sec. 73-79.

It’s important to mix chemicals properly. Not using enough chemical will mean microorganisms are not being killed; using too much can lead to chemical contamination.
Types of Chemical Sanitizers

When selecting a sanitizer, make sure you also get a test reagent or test strips to measure the solution’s strength. Special test strips are available from your chemical or restaurant supplier. Where hot water is used to sanitize, an accurate thermometer must be used to check the water temperature.

Chlorine-Based Products

Strength - 100 parts per million (ppm)

There are many chlorine-based chemicals. The most common one is household bleach. Ensure the strength used is 100 mg per litre. To make 100ppm chlorine sanitizer, mix 2 ml of (5 per cent strength) bleach per litre of water.

Quaternary Ammonium-Based Products

Strength - 200ppm

Measure according to the manufacturer’s label to make a 200 mg per litre concentration. You may need to rinse any food contact surface after sanitizing with ammonium. Follow the manufacturer’s label instructions. These quarternary ammonium-based cleaning compounds are also referred to as “Quats” or “quat sanitizers”.

Iodine-Based Products

Strength - 25ppm

Mix according to the manufacturer’s label instructions to make a 25 mg per litre concentration.

Chemical Sanitizers

Whichever one you choose to use, it’s important to remember the three things that affect how well they work:

Contact
The solution must be in contact with the items you’re sanitizing for at least 45 seconds for it to kill microorganisms.

Selectivity
Some products are more effective than others in killing certain types of microorganisms. Quats, in particular, may not kill all types of microorganisms.

Concentration
Solutions need to be mixed to the right strength. If the solution is too weak, it may not sanitize. If it’s too strong, it may leave a taste or smell, damage metals, or be a health hazard. It’s best to use a system that automatically dispenses sanitizer.
Making Sure it’s Sanitized

Make sure you use a test reagent or test strips to measure your sanitizing solution’s strength. If you sanitize with hot water, you need to check the water temperature with an accurate thermometer.

All food contact surfaces should be sanitized between uses. This includes:
- Sanitizing dishes after cleaning them
- Sanitizing tables with chemicals between customers
- Sanitizing food preparation areas between preparing different types of food

Dishwashing

There are three dishwashing methods that can be used in a food premise, depending on the type of dishes you have to clean and the equipment you use. These are:
- Manual dishwashing using three sinks
- Manual dishwashing using two sinks
- Mechanical dishwashing

Let’s look at each of these in detail on the next couple of pages.
Three Compartment Sink
If you’re washing multi-service articles (e.g., reusable dishes, knives, forks, spoons, glasses) you need three sinks – one to wash, the second to rinse, and the third to sanitize. If you have items with baked-on grease or heavy food residue, pre-soak and scrape before you wash.

1. **Scrape or Pre-Rinse**
 Remove any leftover food on the dishes by scraping or rinsing it off.

2. **Wash (Sink 1)**
 In the first compartment, wash and scrub the dishes, utensils and pots, making sure all food and grease are removed. Remember, cleaning takes chemicals and friction. Use warm water and detergent.

3. **Rinse (Sink 2)**
 In the second compartment, rinse the dishes, utensils and pots to remove the soap and any remaining food particles. This is important because any detergent left on the dishes will weaken the sanitizer. Use clean water, at least 43°C (110°F). Change the water if it doesn’t look clean.

4. **Sanitize (Sink 3)**
 Sanitize in the third compartment by submerging dishes, utensils and pots in hot water, at least 77°C (170°F), or a chemical solution in water that’s at least 24°C (75°F). Let them soak for at least 45 seconds to give the sanitizer time to kill microorganisms. It’s important to make sure that the sanitizer is strong enough to do the job, so test the sanitizer right after mixing it in the sink.

5. **Air Dry**
 After sanitizing, let items air dry on a non-porous sloped draining board. Never towel dry, as you could cause contamination from a worker’s hand or a damp dish towel.
CLEANING AND SANITIZING

Two Compartment Sink
You can wash and rinse in one sink, and sanitize in the second. This method can be used:
- If you use single-service disposable dishes
- For cleaning and sanitizing any items other than multi-service articles, such as pots and pans too large for a mechanical dishwasher

If you have items with baked-on grease or heavy food residue, scrape and pre-soak before you wash.

1 Scrape or Pre-Rinse
Remove any leftover food on the dishes by scraping or rinsing it off.

2 Wash and Rinse (Sink 1)
In the first compartment, wash and scrub the dishes, utensils and pots, making sure all food and grease are removed. Remember, cleaning takes chemicals and friction. Use warm water and detergent. After washing, rinse under the tap with clean running water. Make sure the soapy water and all soap suds are rinsed off.

3 Sanitize (Sink 2)
Sanitize in the second compartment by submerging dishes, utensils and pots in hot water that is at least 77°C (170°F) or a chemical solution in water that is at least 24°C (75°F). Let them soak for at least 45 seconds to give the sanitizer time to kill microorganisms. It’s important to make sure that the sanitizer is strong enough to do the job, so test the sanitizer right after mixing it in the sink.

4 Air Dry
After sanitizing the items, air dry them on a non-porous sloped draining board. Never towel dry as you could cause contamination from a worker’s hand or a damp dish towel.
Mechanical

All dishwashers must meet minimum standards as outlined in Food Premises Regulation (O. Reg. 562). They must be regularly cleaned and maintained.

The two basic kinds of dishwashers are those that sanitize using hot water and those that sanitize using a chemical solution. Either one can be used as long as it’s checked regularly to make sure it’s sanitizing properly.

High Temperature Machine

High temperature machines use hot water in the rinse cycle to sanitize. The water temperature in this cycle must reach 82°C (180°F) or higher and last for at least 10 seconds. Use a water temperature booster if needed.

Low Temperature Machine

Low temperature machines use chemical sanitizers in the rinse cycle to sanitize. Test strips for measuring the sanitizer in the rinse cycle must be available to make sure the machine is sanitizing properly. Don’t overcrowd the dishes as it will be harder for them to get clean. Bowls, cups and glasses should be put in open side down. Cutlery should be mixed to keep them from “nesting.”
After Washing
Once dishes, utensils and pots have been cleaned, they should be stored on surfaces that are cleaned and sanitized. Keep them away from dust, garbage or splashes and at least 15 cm (six inches) off the floor. Don’t put them away until they are dry and cool. Remember, don’t towel dry them as they could get contaminated from the towel.

Damaged dishes (cracked, chipped or warped) can’t be used because they’re a physical hazard. They should be thrown away.

Always wash your hands before handling clean dishes.

General Cleaning
To be effective, cleaning must be organized. Expecting staff to clean “when they have a free moment” doesn’t work and tasks get forgotten. A food service manager must show dedication to keeping things clean. This shows the importance of cleaning to their staff. All staff members need to take pride in their job. No one person alone can keep the food premises clean. A cleaning schedule is very useful. It should include:

• Each job that needs to be done
• Who will do the job
• The chemicals and/or tools to be used to do the job
• How often the job must be done (hourly, daily, weekly)
• A follow-up check to make sure the job was done

The schedule should be discussed with staff before it’s put in place and regularly afterwards to make sure it’s working.

Food Contact Surfaces
Work surfaces that come in direct contact with food, such as counters, cutting boards, tables and grills, must be durable and easy to clean.

Having many cutting boards small enough to fit into a dishwasher or sink is better than having a few large ones. Small boards can be quickly changed when dirty without slowing down food preparation. It’s a good idea to code cutting boards for specific uses.
to avoid cross-contamination. One good way to do this is to use different coloured boards or boards with coloured handles for different food types: red for raw meat, green for vegetables, orange for bread, etc.

Plastic is a good cutting board material because it’s durable and easy to clean and sanitize. Hardwood can be used as long as it’s free of gaps and cracks that would trap bits of food and make thorough cleaning and sanitizing impossible. Extra care must be taken to sanitize wood cutting boards as they can’t go in a dishwasher. Wooden food contact surfaces must not be varnished or sealed as these finishes will wear and the chemicals will get in the food.

If a cutting board has significant cracks or gouges that can’t be properly cleaned or sanitized, it must be replaced.

Clearing Tables

Tables should be cleaned and sanitized between customers. Use sanitizer and a clean damp cloth or a disposable paper towel to make sure any contaminants on the table are removed. Cloths used for cleaning tables should be clean and shouldn’t be used for any other purpose.

If there are any table linens (tablecloths, cloth napkins, placemats) they should be changed between settings. Any table linens used must be clean and in good repair. They must be laundered between uses.

As we learned in our Microbiological Contamination chapter, any food that remains on the table must be discarded. The same goes for any single-service items like plastic cutlery, paper napkins or disposable cups and plates.

O. Reg. 562, Sec. 62.

O. Reg. 562, Sec. 61.
Equipment

Your equipment needs to be cleaned often enough to keep it from getting a buildup of food residue or any other contaminants like dust or debris.

Equipment that’s used without breaks at room temperature or used with hazardous foods needs to be cleaned and sanitized at least once every four hours and between being used with raw and ready-to-eat foods. Some examples would be a meat slicer or grinder, cheese slicer or food processor. It’s a good idea to have more than one piece of equipment when possible, so that one can be used while the other is being cleaned.

Facility

Food safety depends in part on how your premise is laid out, and its maintenance. Make sure your building:

- Is kept clean
- Has proper lighting
- Is in good repair
- Has proper ventilation
- Is pest free

Microorganisms can be transferred from floors or walls to food contact surfaces by other objects.

- Floors must be tight, smooth and non-absorbent.
- Walls and ceilings must be easy to clean.
- Floors, walls and ceilings must be kept clean. Repair any damaged areas as they can’t be properly cleaned and sanitized.
- Water damaged or broken ceiling tiles need to be replaced.

O. Reg. 562, Sec. 11, 12, 13, 15, 18.
Washrooms
The number of washrooms you need in your food premises for customers and staff and the number of handicap washrooms are determined by your local building code and building department. The Health Protection and Promotion Act requires that there be at least one washroom for each sex. The number of fixtures (sinks, toilets, etc.) needed is also listed in the building code.

Washroom fixtures must be cleaned and sanitized at least once a day and as often as needed to keep them sanitary.

It’s a good idea to post handwashing posters in your washrooms for both staff and customers.

O. Reg. 562, Sec. 68.

Handwash Sink
As discussed in the Personal Hygiene chapter, you need to wash your hands using the six-step method whenever they get contaminated.

Food premises need to have at least one sink that is used only for handwashing. This sink needs to be in an area that is convenient for employees. In food premises a handwashing sink is required in each area where food is prepared or processed or where utensils are washed.

At a minimum, each handwashing sink needs to have:

- Hot and cold water
- Soap or detergent in a dispenser
- Clean, single use towels or a cloth roller towel AND a supply of paper towels.

Handwash sinks can only be used for handwashing.

The handwash sink can’t be used for any food preparation, washing dishes, emptying out water from pots or cleaning buckets. Using the sink for anything other than handwashing increases the risk of contaminating a food handler’s hands.

O. Reg. 562, Sec. 20.
Garbage Control
Garbage containers inside your food premises should be easy for your staff and customers to use. There should be enough available to keep them from getting overfilled, and the containers should be emptied often to prevent overfilling. Any time garbage containers are full, they need to be emptied.

Lids or other kinds of covering, like a garbage container inside a compartment with a swinging door, will help to prevent odours, pests and airborne contamination. Garbage containers need to be cleaned and sanitized after each use, so they need to be made of durable materials.

When garbage is taken to containers outside your premises, those containers need to be made in a way to keep pests out and any odours or health hazards, like contaminated food, in. Any spills or leaks should be cleaned up right away.

O. Reg. 562, Sec. 57.

Live Animals
Live animals are not permitted in food premises. There are exceptions to this rule:

- Service dogs like seeing eye dogs
- Aquatic species that are in sanitary tanks such as fish or lobsters

Also note the unique rule about live birds or animals that are sold as food. Having live chickens in a restaurant is not allowed, but selling live chickens at a market may be allowed.

O. Reg. 562, Sec. 59, 60.
Kitchen Layout and Plans

Premises that are easy to clean and have a good flow for people and food products are less likely to have problems with cross-contamination, temperature abuse or personal hygiene. If the handwashing sink is easy to get to, it’s more likely to get used often. If the fridge is close to the food preparation area, it’s more likely that food will stay in the fridge until it’s needed.

Before building or renovating any part of a food premise, plans or blueprints of the layout should go to the health unit for review. Having the plans reviewed before work starts can save money by keeping you from having to change things after they’re built.

The layout of the kitchen should be designed to:

- Allow people and food to easily move from place to place to avoid crowding and cross-contamination.
- Make sure there is plenty of storage space for cold storage and dry storage, staff clothing, garbage and cleaning supplies.
- Have separate food preparation areas for raw foods and ready-to-eat foods, if possible, to reduce risks of cross-contamination.
- Make access to handwashing sinks easy and convenient.
- Have separate sinks for handwashing and dishwashing.
- Separate the dishwashing area from food preparation areas.
In Review

In this chapter, you’ve learned that keeping your food premises clean does more than make it look good. It helps to keep food safe.

The following topics have been covered:

1. Why it’s important to clean and sanitize food contact surfaces and other areas of your premises
2. How to clean and how often to clean the different areas and equipment
3. The two compartment, three compartment, and mechanical dishwashing methods
4. How the layout of a food premise can facilitate cleaning and sanitizing
Pest Control

105 Introduction
105 Cockroaches
106 Common Types of Cockroaches
107 Flies
107 Other Insects
108 Rodents
109 Prevention and Control
109 Pest Management System
113 In Review
Introduction

Insects and rodents are more than just a nuisance in a food premise. Pests can contaminate your food supplies. They can damage your building by causing electrical or fire hazards and creating holes in the building structure.

Their greatest threat is that they spread diseases by contaminating food.

Knowing a little about the kinds of pests food premises deal with will help you control them.

Cockroaches

Once you have cockroaches, you’ll find it very hard to get rid of them. Live roaches can survive on very little food and water. They can live for up to two years during which the female roach can lay over 500 eggs. Roach eggs are protected by an egg case.

Cockroaches can live and breed almost anywhere that is dark, warm, moist, and hard to clean. Some spots they like are:

- Behind refrigerators, freezers and stoves
- In sink drains and floor drains
- In spaces around hot water pipes
- In the motors of electrical equipment
- Under shelf liner and wallpaper
- In delivery boxes and bags

Cockroaches give off a strong oily odour and their feces looks like large grains of pepper. They will eat almost anything organic and they like to lay their eggs inside the corrugated sections of cardboard.

If you see cockroaches in a lit up area, it usually means you have a serious cockroach infestation. Cockroaches normally look for food and water in the dark.
Common Types of Cockroaches

There are many different types of cockroaches. Here are the ones most commonly found in Ontario:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Pale brown or tan and 10-15 mm (about 1/2 inch) long</td>
</tr>
<tr>
<td></td>
<td>Found in indoor areas – in motors, cracks, crevices, soft drink machines and near water</td>
</tr>
<tr>
<td></td>
<td>Like potatoes, onions and sweet beverages</td>
</tr>
<tr>
<td></td>
<td>Reproduce more rapidly than other roaches</td>
</tr>
<tr>
<td>Oriental</td>
<td>Shiny, black and about 25-32 mm (about 1 to 1-1/4 inches) long</td>
</tr>
<tr>
<td></td>
<td>Found in basements, water pipes and indoor incinerators</td>
</tr>
<tr>
<td>American</td>
<td>Reddish brown and about 34-53 mm (about 1-1/4 to 2 inches) long</td>
</tr>
<tr>
<td></td>
<td>Drawn to wallpaper, water, and starch in food</td>
</tr>
<tr>
<td></td>
<td>Found in drainage and sewer areas, rest rooms, heating pipes and damp oven areas</td>
</tr>
<tr>
<td>Brown-banded</td>
<td>Look like the German roaches</td>
</tr>
<tr>
<td></td>
<td>Found in kitchens, dry storage, and under dining area tables and chairs</td>
</tr>
<tr>
<td>Asian</td>
<td>Look like the German cockroach, but they can fly</td>
</tr>
<tr>
<td></td>
<td>Drawn to light and tend to hide in tropical plants</td>
</tr>
</tbody>
</table>
Flies
Flies are so common in our day-to-day lives that sometimes they’re not really seen as a problem. In food premises, they’re a big problem.

Flies are attracted by smells. They breed in garbage and feces. A female housefly can lay between 375 to 750 eggs over its life span and eggs laid will hatch in as little as seven days. A small fly problem can turn into a big one very quickly.

Flies easily spread filth because their bodies are covered in hair and their feet have suction cups. Any contaminants they touch get stuck to them. Flies don’t have teeth so they can’t chew food. If they want to eat something that is solid, they vomit on it. The acid from their stomach dissolves the solid, and then they suck it back up. If the fly is scared away, the vomit stays behind and so do the germs. Flies usually defecate while feeding as well.

Flies:
• Can enter a building through an opening the size of a pin head
• Are drawn to smells of rot, garbage, and human feces and animal waste. This is where they lay their eggs and find food.
• Are drawn to places out of the wind and to the edges of objects, such as garbage can rims
• Need moist, warm, rotting material out of sunlight for their eggs to hatch into maggots

Other Insects
Beetles, moths and ants can survive on very small amounts of food. Flour moths, beetles and insects like them are often found in dry storage areas. Look for:
• Insect bodies
• Wings or webs
• Food that’s clumped together
• Holes in folds and packaging

Ants often nest in walls and floors, especially near stoves and hot water pipes. They’re drawn to warmth and to greasy and sweet foods.
Rodents

Rodents, like rats and mice, eat and ruin food and damage property. Both rats and mice can damage buildings. They can make walls weak by chewing holes, and even cause fires by chewing through electrical wires.

These pests are a serious health hazard. They can spread disease through their waste and by touching food or food contact surfaces. Rodents have a simple digestive system and weak bladder control. They urinate and defecate as they move around your premises. Their waste can fall, be blown or carried into food. Like other pests, rats and mice will breed often and quickly.

Rats are smart enough to avoid poorly set traps and other control measures. Rat bites can be very dangerous to humans and dead rats must be carefully handled to avoid spreading disease.

Like cockroaches, rodents are active in the dark and at night. If you see them in daylight or well lit areas, it’s a sign of heavy infestation.
Prevention and Control
The best way to control a pest infestation is to prevent it from happening in the first place. In this section we’ll look at what you can do to keep pests out of your food premises.

If, despite your best efforts, your prevention methods haven’t kept pests out, you need to know how to get rid of them. Some of these methods can be dangerous to you, your staff and your customers if proper care isn’t taken. We’ll also look at how to safely control and eliminate existing pests.

Preventing pests from infesting your premises is much easier and less expensive than getting rid of pests that are already there.

Pest Management System
“Food premises operators should rely on certified pest control services and emphasize integrated pest management practices that minimize the reliance on chemical controls in order to minimize the risk of contamination of food products by pesticides.”
(Food Retail and Food Services Code Sec. 4.3.2, 2004).

An integrated pest management (IPM) program is a system designed to keep pests from getting into your food premises, and get rid of any pests that are already there.

Three common sense rules for developing an IPM program are:
- Deny pests food, water and shelter by following good sanitation and housekeeping practices.
- Keep pests out of the food premises by pest-proofing the building.
- Work with a licensed pest control company.

Pest Control Company
Pest control companies can be used for emergencies where pests have already infested your food premises. They should also be used for prevention.
Hire a licensed pest control company with a good reputation. They should combine sanitation, non-chemical controls, building maintenance and chemical treatment. It’s not enough for them to just come in and apply chemical treatments, especially if you already have an infestation. Work with your pest control company to arrange the best possible contract, inspection system, treatment procedures and follow-up. Know which chemical(s) and procedure(s) will be used in specific areas.

Pest control methods, especially the use of chemicals, can be very dangerous for your employees and customers if they’re not used properly.

A good working relationship between the operator and the pest control company is important to keep a pest free environment.

Control Methods

Before using chemicals

Cover all food and dishes in areas where chemicals will be sprayed before spraying starts.

After using chemicals

All food contact surfaces and equipment must be thoroughly cleaned and sanitized before being used for food preparation.

NEVER spray while food preparation is going on.

Some chemicals and treatments can’t be used when employees are in the area or on the premises. Again, you should hire a professional to do this.

Other methods that a pest control operator can use are traps, glue boards and poison baits. They can also destroy nests and breeding places.

Follow up is important to make sure the methods are successfully eliminating the infestation. If not, other methods should be tried.
Pest Proofing

DO
- Seal gaps, cracks and openings in floors, walls and equipment.
- Repair any leaky plumbing.
- Keep the outside of the building in good repair.
- Use screens to cover windows, doors and vents.
- Install heavy plastic strips or air curtains on any receiving doors that need to be open often.

DON’T
- Don’t have a water source for pests. Drain sinks and repair leaky pipes.
- Don’t leave doors open when you’re not using them. Use a door sweep if there’s a gap between the door and floor (mice can squeeze through a quarter inch opening and rats can squeeze through a half inch opening).

Keeping pests from infesting your premises is much easier and less expensive than getting rid of pests already there.
Sanitation and Housekeeping

Pest control doesn’t take the place of good sanitation. The cleaner your premise is, the easier it will be for you to control pests.

DO
- Store all food and supplies at least 15 cm (six inches) off the floor so you can watch for signs of pests.
- Keep grains and open bulk food products in sealed metal or heavy plastic containers.
- Keep break rooms, washrooms and locker rooms clean and dry.

DON’T
- Don’t accept any shipment that shows signs of pests, like gnawing or feces.
- Don’t keep cardboard packaging around. It can carry cockroach eggs.
- Don’t let spilled food attract pests. Clean up any spills right away.
- Don’t leave garbage where it will attract pests. Store it properly.
In Review
In this chapter, you’ve learned about the dangers that pests in food premises pose to food safety.

The following topics have been covered:

1. The different kinds of pests to look out for in food premises
2. What you can do to keep pests from being attracted to your food premises
3. Why it’s more effective and less expensive to prevent a pest infestation, rather than get rid of them once they’re in

Notes
Introduction

HACCP stands for Hazard Analysis Critical Control Point. It’s a self inspection system designed to control physical, chemical, biological and allergen contamination at all points in food processing.

The HACCP system of monitoring food was originally developed for NASA. Food prepared for astronauts in space had to be as risk free as possible. The program was so successful it was introduced to food production companies and is now used around the world.

The goal of the HACCP system is to eliminate or reduce the incidence of foodborne illness and prevent food adulteration.

In this chapter, we’ll review the principles of HACCP. You can read more about implementing a HACCP system on the Canadian Food Inspection Agency (CFIA) website.

Before You Start

Before you begin with any food safety management system, you need to make sure you’re following basic food safety practices. We’ve gone over all of these in previous chapters.

- Make sure your food premise is clean and sanitary. This includes cleaning, sanitizing, pest control and proper maintenance of your equipment.
- Your food stores must be safe. This includes both receiving and storage as well as transportation methods.
- You must use safe food handling and packaging methods.
- Every member of your staff who is handling food must practise good personal hygiene.

Now that you know how to do all of these things, let’s look at how a HACCP system works.
HACCP Principles

The seven principles of HACCP are:

1. Conduct a hazard analysis.
2. Determine the Critical Control Points (CCPs).
3. Establish critical limit(s).
4. Establish a system to monitor control of the CCPs.
5. Establish the corrective action to be taken when monitoring indicates that a particular CCP isn’t under control.
6. Establish procedures for verification to confirm that the HACCP system is working effectively.
7. Establish documentation concerning all procedures and records appropriate to these principles and their application.

Adapted from Canadian Food Inspection Agency, QMP Reference Standard and Compliance Guidelines, Ch. 3, Subject 4, Section 5
STEP 1

Hazard Analysis

The first step in HACCP is a hazard analysis. This involves:

- Identifying any potential hazards in your food processing or preparation
- Determining how critical each hazard is
- Determining how likely each hazard could happen

These hazards need to be identified at every stage of food processing and preparation. As you’ve learned, these stages are:

- Receiving and storage
- Freezing
- Thawing
- Refrigeration
- Food Preparation
- Cooking
- Hot and cold holding
- Cooling
- Reheating

Hazard Examples

Throughout these chapters, you’ve been learning about the different types of food safety hazards. Some of these are:

- Microorganisms that can grow during preparation, storage and/or holding
- Microorganisms or toxins that can survive heating
- Chemicals that can contaminate food or food contact surfaces
- Physical objects that accidentally enter food

Some examples of potential hazards are:

- Adding a known allergen to a recipe. *Potential hazard: Allergen.*
- Moving foods received from original packaging to storage containers. *Potential hazard: Physical contamination.*
- Reheating food from cold to hot temperatures. *Potential hazard: Microbiological contamination.*
- Cleaning food contact surfaces with chemicals. *Potential hazard: Chemical contamination.*

Remember, each of these is a potential hazard. Each should be examined to determine whether it’s a critical hazard based on how high the food safety risk is and how likely it would lead to foodborne illness.
Processing Risks
Some of the ways food is prepared or processed can increase the risk of a potential hazard. Some examples are:
- Large volumes of food being prepared at one time, which increases time in the temperature danger zone
- Processes involving multiple step preparation, especially if they occur over more than one day or involve more than one food handler
- Processes with significant temperature changes that enter the danger zone or pass through the danger zone from hot to cold or cold to hot

STEP 2

Critical Control Points
A Critical Control Point (CCP) is any point during food preparation or production where food safety could be at risk. Once hazards are identified and analyzed, CCPs must be established. For each critical hazard identified in step one, a way to lessen, prevent or eliminate the risk needs to be documented.

A standard Hazard Analysis/Critical Control Point worksheet should be used for record keeping. Refer to the appendix for a printable worksheet.

Critical Control Point Examples
You learned to control the CCPs related to temperature and time in the Time and Temperature chapter. As a reminder, some of these are:
- Making sure hazardous foods are cooked to the minimum temperature needed to kill bacteria
- Storing foods at temperatures that keep bacteria from growing
- Limiting the amount of time food spends in the danger zone

In the Foodborne Illness chapter you learned how to put allergen controls in place by:
- Making sure food ingredients are clearly communicated to the customer
- Using safe food handling methods to make sure allergens aren’t added to foods they aren’t supposed to be in
- Replacing known allergens with foods less likely to cause a reaction
STEP 3

Critical Limits
For each Critical Control Point (CCP) identified, a critical limit needs to be set. You’ve learned about critical limits in other chapters. Some examples are in the following table.

<table>
<thead>
<tr>
<th>Critical Control Point</th>
<th>Critical Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw chicken parts may contain Salmonella bacteria.</td>
<td>Chicken must be cooked to a minimum internal temperature of 74°C (165°F) to kill the Salmonella bacteria.</td>
</tr>
<tr>
<td>Bacterial growth is most likely to occur between 4°C (40°F) and 60°C (140°F).</td>
<td>Cool cooked foods from 60°C (140°F) to 20°C (68°F) within two hours, and from 20°C (68°F) to 4°C (40°F) or less within the next four hours.</td>
</tr>
<tr>
<td>Handling raw foods contaminates a food handler’s hands.</td>
<td>Hands must be washed between handling raw foods and ready-to-eat foods.</td>
</tr>
</tbody>
</table>

STEP 4

Monitoring
At each Critical Control Point (CCP), the system needs to be monitored to make sure the critical limits are in effect.

Monitoring procedures need to be documented. They should be measurable and recordable, and it needs to be clear who’s responsible for doing them and how often.

Some examples of monitoring include checking:
• Temperatures during cooking
• Refrigerator and freezer temperatures
• Cooling times to make sure temperatures of foods drop quickly enough
• For government inspection stamps or labels on received food
• For signs of infestation or contamination
• For correct shipping temperatures for received food
STEP 5

Corrective Action
Corrective actions explain what to do if monitoring shows the critical limits aren’t being met. The steps for a corrective action need to cover:

- Correcting the problem
- Identifying product(s) affected by the problem
- Dealing with the affected products
- Preventing the problem from happening again

When corrective action needs to be taken, records should be kept showing what was done, when and why.

Corrective Action Examples
Corrective actions may be different in different food premises. These are some examples that could be in place.

<table>
<thead>
<tr>
<th>Critical Limit</th>
<th>Corrective Action (if control measure is not met)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole chicken must be cooked to a minimum internal temperature of 82°C (180°F) to kill Salmonella bacteria.</td>
<td>Continue to cook chicken until minimum internal temperature is reached.</td>
</tr>
<tr>
<td>Cool cooked foods from 60°C (140°F) to 20°C (68°F) within two hours, and from 20°C (68°F) to 4°C (40°F) or less within the next four hours.</td>
<td>If food has not been cooled to 20°C (68°F) within two hours, food must be discarded.</td>
</tr>
<tr>
<td>Hands must be washed between handling raw foods and ready-to-eat foods.</td>
<td>Any food handled with contaminated hands must be discarded.</td>
</tr>
<tr>
<td>Hold baked chicken at 60°C (140°F) or higher until served.</td>
<td>If held over two hours, discard. If held less than two hours and temperature falls below 60°C (140°F), reheat to 74°C (165°F) or higher for at least 15 seconds — one time only.</td>
</tr>
</tbody>
</table>

Make sure your corrective actions meet food safety standards.
Verification
Verification is a double check to make sure the HACCP system is working. Verification is done in addition to monitoring. Unless there’s a problem, verification would be done less often than monitoring.

As with the other HACCP principles, procedures for verification should be written down. They should include:
- Who will do the verification
- How to do it
- When to do it
- What needs to be verified

Verification is usually done by someone who isn’t involved with monitoring.
STEP 7

Documentation
There are two types of records needed for HACCP: documentation and records. HACCP documentation refers to the policies, procedures and other documents that are written as the HACCP system is created.

Records are created when the HACCP procedures are followed. Records include recorded temperatures, logs of corrective actions and any other information kept.

Records should be simple and easy for employees to use:
• Keep blank forms and a clipboard near work areas to check several items at the same time.
• Have notebooks or extra pages available to write down what actions have been taken.
• Post or store documentation near work areas so employees can refer to them quickly.
• Attach logs to the equipment they’re used for, like posting temperature logs on the front of a refrigerator.

For more information on implementing a HACCP system and the types of records kept, see the HACCP section of the Canadian Food Inspection Agency (CFIA) website.

Employees are more likely to use records correctly if they are easy to use. Hard to use or inconvenient record keeping areas can tempt staff to put in numbers without actually measuring.
In Review

In this chapter, you’ve learned the principles of the HACCP food safety management system.

The following topics have been covered:

1. The seven principles of HACCP
2. How to identify Critical Control Points (CCPs) and how to set limits for them
3. What you need to monitor and verify your HACCP system
4. The documentation and records you’ll need to create and keep
References

Appendices

126 Links
127 Safe Cooking & Reheating Temperatures of Hazardous Food
128 Critical Temperatures
129 Dishwashing in a Three Compartment Sink
130 Food Handlers’ Storage Guide
131 Hazard Analysis Critical Control Point (HACCP) Worksheet
132 Glossary
139 Health Protection and Promotion Act (HPPA)
140 Food Premises Regulation (O. Reg. 562)
Links

Food Safety Links
For more information about food safety, visit these websites:

Canadian Food Additive Dictionary

Canada Food and Drug Regulations

Canadian Food Inspection Agency
http://www.inspection.gc.ca

Canadian Partnership for Consumer Food Safety Education
www.canfightbac.org/en

Food Retail and Food Services Code

Food Science Network
http://www.uoguelph.ca/foodsafetynetwork/

Health Canada
www hc-sc gc.ca

Ministry of Agriculture, Food and Rural Affairs
www.omafra.gov.on.ca

Ministry of Health and Long-Term Care
www.health.gov.on.ca

Public Health Agency of Canada
http://www.phac-aspc.gc.ca

World Health Organization
www.who.int/en
Cook food to the minimum internal temperature and hold for 15 seconds. Use a cleaned and sanitized probe thermometer to verify food temperatures.

<table>
<thead>
<tr>
<th>Food Type</th>
<th>Minimum Internal Cooking</th>
<th>Minimum Reheating</th>
</tr>
</thead>
<tbody>
<tr>
<td>whole poultry</td>
<td>82°C (180°F)</td>
<td>74°C (165°F)</td>
</tr>
<tr>
<td>ground poultry, poultry products, poultry pieces</td>
<td>74°C (165°F)</td>
<td>74°C (165°F)</td>
</tr>
<tr>
<td>food mixtures containing poultry, eggs, meat, fish or other hazardous food</td>
<td>74°C (165°F)</td>
<td>74°C (165°F)</td>
</tr>
<tr>
<td>pork, pork product, ground meat other than ground poultry</td>
<td>71°C (160°F)</td>
<td>71°C (160°F)</td>
</tr>
<tr>
<td>fish</td>
<td>70°C (158°F)</td>
<td>70°C (158°F)</td>
</tr>
<tr>
<td>seafood</td>
<td>70°C (158°F)</td>
<td>70°C (158°F)</td>
</tr>
</tbody>
</table>
Critical Temperatures

The leading cause of foodborne illness is time and temperature abuse. Temperature abuse of food occurs when food is left at temperatures that are above 4°C (40°F) or below 60°C (140°F). This temperature range is commonly called The Danger Zone. Below are the temperatures you should know.

- **100°C (212°F)** Temperatures destroy bacteria but not all toxins and spores (e.g., Staphylococcus toxin is not destroyed).
- **60°C (140°F)** Most bacteria won’t survive. Minimum hot holding temperature.
- **49°C (120°F)** Rapid growth of bacteria and production of toxins by some bacteria.
- **37°C (98°F)** Optimal bacterial growth.
- **16°C (60°F)** Some growth of foodborne bacteria may occur.
- **4°C (40°F)** Slow growth of some bacteria that cause spoilage may occur. Maximum temperature for refrigerated food and cold holding.
- **-18°C (0°F)** Freezer temperatures.

Cool food from **60°C (140°F)** within two hours to **20°C (68°F)**.

50°C (122°F) - 20°C (68°F) This is the worst range for bacteria growth.

20°C (68°F) within four hours to **4°C (40°F)**.
Dishwashing in a Three Compartment Sink

1. **Scrape**
 Scrape, sort, and pre-rinse before washing.

2. **Wash**
 Wash with warm water and detergent solution capable of removing grease.

3. **Rinse**
 Rinse with clean water that is at least 43°C (110°F).

4. **Sanitize**
 Sanitize with clean warm water.
 Soak for at least 45 seconds in one of the following:
 - 24°C (75°F) water with 100ppm chlorine.
 - 24°C (75°F) water with 200ppm quaternary ammonium.
 - 77°C (170°F) water only.

5. **Air Dry**
 Do not towel dry.
General guidelines for the shelf life of common foods. Read the label and check ‘best before’ dates if applicable.

Most foods are safe to eat if stored longer, but flavour and nutritional value will deteriorate. Discard if there is evidence of spoilage.

Cupboard

(room temperature)

Unless otherwise specified, times apply to unopened packages.

<table>
<thead>
<tr>
<th>Cereal Grains</th>
<th>(once opened, store in airtight containers, away from light and heat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bread crumbs (dry)</td>
<td>3 mo.</td>
</tr>
<tr>
<td>Cereals (ready-to-eat)</td>
<td>8 mo.</td>
</tr>
<tr>
<td>Cornmeal</td>
<td>6-8 mo.</td>
</tr>
<tr>
<td>Crackers</td>
<td>6 mo.</td>
</tr>
<tr>
<td>Pasta</td>
<td>several yr.</td>
</tr>
<tr>
<td>Rice</td>
<td>several yr.</td>
</tr>
<tr>
<td>Rolled oats</td>
<td>6-10 mo.</td>
</tr>
<tr>
<td>White flour</td>
<td>1 yr.</td>
</tr>
<tr>
<td>Whole wheat flour</td>
<td>3 mo.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Canned Foods</th>
<th>(once opened, store in airtight container in refrigerator)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other canned foods</td>
<td>1 yr.</td>
</tr>
</tbody>
</table>

Refrigerator

(4°C, 40°F)

Unless otherwise specified, cover all foods.

<table>
<thead>
<tr>
<th>Dairy Products & Eggs</th>
<th>(check ‘best before’ dates)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butter</td>
<td>unopened - 8 wk.</td>
</tr>
<tr>
<td>Cheese</td>
<td>- cottage (opened) - 3 days</td>
</tr>
<tr>
<td>Eggs</td>
<td>unopened - 8 mo.</td>
</tr>
<tr>
<td>Fish & Shellfish</td>
<td>- 12-24 hr.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous Foods</th>
<th>Honey</th>
<th>18 mo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous Foods</td>
<td>Sugar (all types)</td>
<td>several yr.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Tea bags</td>
<td>1 yr.</td>
</tr>
</tbody>
</table>

Freezer

(-18°C, 0°F)

Use freezer wrapping or airtight containers. Freeze fresh food at its peak condition.

<table>
<thead>
<tr>
<th>Dairy Products & Fats</th>
<th>Butter</th>
<th>- salted - 1 yr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheese</td>
<td>- firm, processed - 3 mo.</td>
<td></td>
</tr>
<tr>
<td>Cream - table, whipping</td>
<td>(separates when thawed) - 1 mo.</td>
<td></td>
</tr>
<tr>
<td>Ice cream</td>
<td>1 mo.</td>
<td></td>
</tr>
<tr>
<td>Margarine</td>
<td>6 mo.</td>
<td></td>
</tr>
<tr>
<td>Milk</td>
<td>6 wk.</td>
<td></td>
</tr>
</tbody>
</table>

| Fish & Shellfish | Fish (flat species: lake trout, mackerel, salmon) | 2 mo. |

<table>
<thead>
<tr>
<th>Miscellaneous Foods</th>
<th>Pectin - liquid</th>
<th>1 yr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous Foods</td>
<td>Sandwich spread</td>
<td>(once opened, covered in fridge) - 8 mo.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Syrups - corn, maple, table</td>
<td>1 yr.</td>
</tr>
<tr>
<td>Vegetables</td>
<td>Potatoes, rutabaga, squash</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Vegetables</td>
<td>Tomatoes</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Vegetables</td>
<td>Cool room (7-10°C, 45-50°F)</td>
<td>1 yr.</td>
</tr>
<tr>
<td>Vegetables</td>
<td>Onions (dry, yellow skin)</td>
<td>6 wk.</td>
</tr>
<tr>
<td>Vegetables</td>
<td>Potatoes (mature)</td>
<td>6 mo.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous Foods</th>
<th>Beans (green, wax)</th>
<th>5 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous Foods</td>
<td>Beets</td>
<td>3-4 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Broccoli</td>
<td>3 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Brussels sprouts</td>
<td>1-2 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Cabbage</td>
<td>2 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Carrots</td>
<td>several wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Cauliflower</td>
<td>10 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Celery</td>
<td>2 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Corn</td>
<td>several days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Cucumbers</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Lettuce</td>
<td>5 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Mushrooms</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Onions (green)</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Oysters (live)</td>
<td>24 hr.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Scallops, shrimp (raw)</td>
<td>1-2 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Shellfish (cooked)</td>
<td>1-2 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Fresh Fruit (Ripe)</td>
<td>Apples</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>- purchased February to July</td>
<td>2 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Apricots (store unopened)</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Blueberries (store unopened)</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Cherries</td>
<td>3 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Cranberries (store unopened)</td>
<td>2 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Grapes</td>
<td>5 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Peaches (store unopened)</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Pears (store unopened)</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Plums</td>
<td>5 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Raspberries</td>
<td>2 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Rhubarb</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Strawberries</td>
<td>2 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Fresh Vegetables</td>
<td>Asparagus</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Beans (green, wax)</td>
<td>5 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Beets</td>
<td>3-4 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Broccoli</td>
<td>3 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Brussels sprouts</td>
<td>1-2 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Cabbage</td>
<td>2 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Carrots</td>
<td>several wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Cauliflower</td>
<td>10 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Celery</td>
<td>2 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Corn</td>
<td>several days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Cucumbers</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Lettuce</td>
<td>5 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Mushrooms</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Onions (green)</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Oysters (live)</td>
<td>24 hr.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Scallops, shrimp (raw)</td>
<td>1-2 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Shellfish (cooked)</td>
<td>1-2 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Fresh Fruit (Ripe)</td>
<td>Apples</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>- purchased February to July</td>
<td>2 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Apricots (store unopened)</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Blueberries (store unopened)</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Cherries</td>
<td>3 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Cranberries (store unopened)</td>
<td>2 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Grapes</td>
<td>5 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Peaches (store unopened)</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Pears (store unopened)</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Plums</td>
<td>5 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Raspberries</td>
<td>2 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Rhubarb</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Strawberries</td>
<td>2 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Fresh Vegetables</td>
<td>Asparagus</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Beans (green, wax)</td>
<td>5 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Beets</td>
<td>3-4 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Broccoli</td>
<td>3 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Brussels sprouts</td>
<td>1-2 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Cabbage</td>
<td>2 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Carrots</td>
<td>several wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Cauliflower</td>
<td>10 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Celery</td>
<td>2 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Corn</td>
<td>several days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Cucumbers</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Lettuce</td>
<td>5 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Mushrooms</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Onions (green)</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Oysters (live)</td>
<td>24 hr.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Scallops, shrimp (raw)</td>
<td>1-2 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Shellfish (cooked)</td>
<td>1-2 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Fresh Fruit (Ripe)</td>
<td>Apples</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>- purchased February to July</td>
<td>2 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Apricots (store unopened)</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Blueberries (store unopened)</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Cherries</td>
<td>3 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Cranberries (store unopened)</td>
<td>2 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Grapes</td>
<td>5 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Peaches (store unopened)</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Pears (store unopened)</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Plums</td>
<td>5 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Raspberries</td>
<td>2 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Rhubarb</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Strawberries</td>
<td>2 days</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Fish (lean species: cod, haddock, pike, smelt)</td>
<td>6 mo.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Fish (cured or smoked meat)</td>
<td>1-2 mo.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Duck, goose</td>
<td>3 mo.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Eggs (white, yolks)</td>
<td>4 mo.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Ground meat</td>
<td>2-3 mo.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Lamb (chops, roasts)</td>
<td>8-12 mo.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Pork (chops, roasts)</td>
<td>8-12 mo.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Sausages, wiener</td>
<td>2-3 mo.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Variety meats, giblets</td>
<td>3-4 mo.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Veal (chops, roasts)</td>
<td>8-12 mo.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Cooked</td>
<td>2-3 mo.</td>
</tr>
<tr>
<td>Miscellaneous Foods</td>
<td>Casseroles, meat pies</td>
<td>3 mo.</td>
</tr>
</tbody>
</table>
HACCP Worksheet

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingredient/Processing Step</td>
<td>Identify potential hazards introduced, controlled, or enhanced at this step (1).</td>
<td>Are any potential food safety hazards significant? (Yes/No)</td>
<td>Justify your decision for column 3.</td>
<td>What preventive measure(s) can be applied for the significant hazards?</td>
<td>Is this step a critical control point? (Yes/No)</td>
</tr>
<tr>
<td>Biological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allergen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Glossary

Additive (Food)
A substance added in small amounts to something else to improve, strengthen or otherwise alter it.

Adulteration
To make something impure or inferior by adding something else to it. An example is adding less expensive apple juice to other fruit juices to reduce costs. Adulteration can also happen when an ingredient is accidentally or unknowingly added to food.

Aerobic Bacteria
Bacteria that need oxygen to live and grow.

Allergen
A substance, such as a pollen or a food, that causes an allergy.

Allergy
An abnormally high sensitivity to certain substances, such as pollens, foods or microorganisms. Common symptoms of allergy may include sneezing, itching and skin rashes.

Anaerobic Bacteria
Bacteria that can only live and grow where there is no oxygen.

Anaphylaxis
A sudden, severe allergic reaction that includes a sharp drop in blood pressure, rash or hives and breathing difficulties. The reaction may be fatal if emergency treatment, including epinephrine injections, is not given immediately.

Anisakiasis
Also called parasitic roundworm, a parasite spread through uncooked marine fish and raw fish items such as sushi, sashimi, ceviche or salmon.

Bacteria
Plural for bacterium. Any of a group of single-celled microorganisms that live in soil, water, the bodies of plants and animals, or matter obtained from living things. They are important because of their chemical effects and disease-causing abilities.

Botulism
Poisoning caused by eating food containing a toxin made by a spore-forming anaerobic bacterium. Its symptoms are nausea, vomiting, trouble seeing, muscle weakness and tiredness. It can be fatal.

By-Laws
Laws created by municipal or regional governments to deal with important issues that fall under their control and aren’t dealt with at the provincial or federal level.

Campylobacter
A foodborne pathogenic bacterium, commonly found in poultry and meat. It can be carried by rodents, wild birds and household pets like cats and dogs. It can also be found in untreated water.
Canadian Food Inspection Agency (CFIA)
CFIA is made up of food inspectors from Health Canada, Agriculture and Agri-Food, and the Department of Fisheries and Oceans. It is responsible for the inspection of food at the federal level.

Carrier
Carriers are people or things that carry microorganisms. When food is not handled safely, microorganisms can get into food through carriers.

Chlorine
A nonmetallic element, found alone as a greenish yellow, irritating gas. It is used as a bleach, disinfectant or sanitizer. It is often used in liquid form to sanitize food contact surfaces. It is also used in the sanitizing sink in two and three sink dishwashing systems.

Clean
To remove oil, grease, dirt and debris using soap, water and friction.

Clostridium Perfringens
Foodborne pathogenic bacteria that can be found in high protein or starch-like foods such as cooked beans or gravies. It is especially likely to be a problem in improperly handled leftovers.

Communicable
Capable of being transferred or carried from one person or thing to another. Also called contagious.

Compliance Inspection
A thorough and complete inspection of a food premise to determine the overall level of food safety compliance with Food Premises Regulation (O. Reg. 562) at the time of the inspection. Compliance inspections are conducted by a public health inspector.

Contaminant
Something in food – like bacteria, viruses, parasites, chemicals or allergens -- that can cause a foodborne illness.

Contamination (of Food)
Adding microorganisms or other things to food that can cause foodborne illness. See also cross-contamination.

Critical Control Points (CCP)
In a Hazard Analysis Critical Control Point System, the point in a recipe where a hazard exists and a control measure is used to eliminate, prevent or minimize that hazard.

Cross-Contamination
Transferring microorganisms or disease agents from raw food to safe or ready-to-eat food, making the ready-to-eat food unsafe. Cross-contamination can happen when raw food or its juices come in contact with cooked or ready-to-eat food. Cross-contamination can also happen when contaminated hands touch food. Another way food can be cross-contaminated is through using the same equipment or utensils to handle raw and cooked food. Please see the Microbiological Contamination chapter (page 70) for more information.
Critical Infraction
An infraction that poses a high and immediate food safety risk.

Cryptosporidiosis
A foodborne illness caused by the protozoan parasite Cryptosporidium. Cryptosporidium can spread through contaminated water.

Danger Zone
The temperature range from 4°C to 60°C in which bacteria grow and multiply extremely well.

Dehydration
An abnormal loss of water from the body, especially from illness or physical exertion.

Diarrhea
Abnormally frequent and watery bowel movements.

Disinfection Solution
A mixture of a disinfection chemical and water that will be used to disinfect or sanitize food contact surfaces, equipment and multi-service articles. Also called a sanitizing solution.

E. coli
Foodborne pathogenic bacteria that live in the intestines of animals. E. coli can be spread to the outer surfaces of meat when meat is being butchered. E. coli can also be spread through contaminated water.

Eczema
A skin condition marked by redness, itching and scaly or crusty lesions.

Enterotoxin
A toxin that is produced by microorganisms and causes gastrointestinal symptoms (as in some forms of foodborne illness or cholera).

Epinephrine
A hormone of the adrenal gland. It causes narrowing of blood vessels and raising of blood pressure. Also called adrenaline. Used to treat anaphylaxis.

Food and Drugs Act
The main regulating legislation at the federal level. It looks at things such as the alteration, colouring, bacterial standards, manufacturing conditions and distribution of food to ensure the safety of human health.

Food Grade
Made of corrosion-resistant, non-toxic materials that will not break down during normal use. A food grade product can be readily cleaned, sanitized and kept in good repair. If a product is not manufactured or designated to have repeated contact with food, it is not to be used. Some examples of non-food grade materials are plastic garbage containers and plastic storage bins that are not designed for storing food.

Food Premises
Premises where food or milk is manufactured, processed, prepared, stored, handled, displayed, distributed, transported, sold or offered for sale but doesn’t include a private residence (HPPA 1990).
Friction
The rubbing of one object or surface against another.

Giardiasis
A foodborne illness caused by the protozoan parasite Giardia lamblia. It’s also known as beaver fever or backpacker’s diarrhea. It can spread through contaminated water or food.

Handwashing
The physical action of removing dirt and microorganisms from the hands using soap and water by scrubbing for at least 15 seconds then rinsing and drying with paper towels. The six-step method is to be used in food premises. (See page 84.)

Hazard Analysis Critical Control Point (HACCP)
A system used throughout the food industry to enhance food safety. The system looks at hazardous food, identifies the greatest risk factors and makes the necessary changes to reduce or eliminate the risk. HACCP also monitors overall food handling.

Hazardous Food
Food in which pathogenic microorganisms can grow or produce toxins.

Health Hazard
Any condition of food premises, or substance, thing, plant or animal other than man, or a solid, liquid, gas or combination of any of them that has or is likely to have an adverse effect on the health of any person.

Hives
A skin condition of intensely itching welts. Hives can be caused by an allergic reaction to internal or external agents, an infection or a nervous condition.

Host
A living animal or plant on or in which a microorganism lives.

Ice Wand
A plastic stirring instrument that is filled with a freezable liquid. Stirring hot food with the frozen wand causes food to cool more quickly. It is also called a cooling wand.

Immune System
The bodily system that protects the body from foreign substances, cells and tissues by producing the immune response. A person’s immune system includes the thymus, spleen, lymph nodes, lymphocytes and antibodies.

Immuno-Compromised
Unable to develop a normal immune response, usually because of disease, malnutrition or immunosuppressive therapy.

Infection
A condition caused by the presence, growth and increase in numbers of germs in the body.

Intoxication
An adverse reaction by the body to a foreign (toxic) substance, whether the substance was produced within or outside the body.
Iodine
A chemical used as a disinfectant or sanitizer. Very expensive and can stain multi-service articles.

Legislation
A law or a body of laws enacted. Food safety legislation means all of the laws and by-laws that are in place to govern safe handling of food.

Listeria
Foodborne pathogenic bacteria found in soil. People can get infected by eating dairy products, vegetables, fish and meat products that are contaminated with the bacteria.

Microorganisms
Living single cell organisms too small to be seen with the naked eye.

Monosodium Glutamate
A chemical used to flavor food, especially in China and Japan. It occurs naturally in tomatoes, parmesan cheese and seaweed.

Mould
An often fuzzy surface growth of fungus especially on damp or decaying matter.

Multi-Service Articles
Utensils (forks, knives, spoons) and dishes (plates, bowls, cups) meant to be used more than once. Multi-service articles must be cleaned and sanitized after each use.

Mycotoxin
A toxic substance produced by a fungus, especially a mould.

Outbreak
As related to foodborne illness: The occurrence of two or more cases of a similar illness resulting from the same food.

Parasites
Organisms that cause illness by living and feeding off a host organism. Parasites don’t necessarily cause disease.

Pasteurized
To expose (a food such as milk, cheese, yogurt, beer or wine) to a high temperature for a period of time long enough to destroy certain microorganisms without radically altering the taste or quality of the food. Pasteurization is done to destroy microorganisms that can produce disease or cause spoilage or undesirable fermentation of food.

Pathogen
Harmful microorganisms that can cause disease in humans.

Pathogenic Bacteria
Colourless and odourless bacteria that cause disease in humans.

pH
A number used to express acidity or alkalinity on a scale whose values run from 0 to 14. Seven represents a neutral pH. Numbers less than seven show increasing acidity, and numbers greater than seven show increasing alkalinity. High or low pH won’t kill pathogenic bacteria but won’t allow them to grow.

Potable
Fit or suitable for drinking.
Preparation (of Food)
The final stage(s) of readying a food to be eaten, whether commercially or in the home. Preparation is usually done in a kitchen.

Processing (of Food)
The treatment of food, usually on a commercial scale, to increase its usefulness, stability or acceptability.

Production (of Food)
The growing, usually under human supervision, of the basic animal or vegetable material of a food.

Protein
Any of numerous substances that consist of chains of amino acids and contain the elements carbon, hydrogen, nitrogen, oxygen and often sulfur. Proteins include many compounds like enzymes and hormones that are essential for life. Proteins are supplied by various foods like meat, milk, eggs, nuts and beans. Proteins are used as a food source by living organisms.

Protozoa
Any of a large group of single-celled and usually microscopic organisms, such as amoebas, ciliates, flagellates and sporozoans. Some protozoa are parasites and may be pathogenic.

Provincial Legislation
Acts and regulations passed by the provincial government. The legislation must be followed throughout the province.

Quaternary Ammonium
A chemical used as a disinfectant or sanitizer. Commonly used in the sanitizing rinse cycle of mechanical dishwashers.

Reagents
Substances used in a chemical reaction to detect, measure, examine or produce other substances. When a sanitizer is mixed with a reagent, the colour the solution turns is used to tell whether the solution is the right strength.

Retail (of Food)
The selling of food to the end-user or consumer.

Rework Materials
Leftover ingredients or food products kept for subsequent use or reprocessing. Examples include re-forming meat patties from others that were broken or too small, or reusing cooked sausage as pizza topping.

Salmonella
Foodborne pathogenic bacteria most commonly found in raw poultry. Salmonella can also be found in other meats, unpasteurized milk and raw eggs.

Sanitize
To kill 999 out of 1,000 pathogenic microorganisms.

Service (of Food)
The final preparation and sale or giving of food to be eaten on the premises (in a restaurant or cafeteria) or elsewhere (take-out). Service can also include outdoor group feeding at picnics.
Shigella
Foodborne rod-shaped bacteria that cause dysenteries in animals and especially humans.

Source (of a Contaminant)
Where a microorganism originates or comes from (often human or animal intestines).

Solute
A substance dissolved in another substance. The solute is usually the component there is less of. If salt is dissolved in water, salt would be a solute.

Spores
A resistant body formed by certain bacteria when exposed to environments where the bacteria can’t grow.

Sterilize
To kill all microorganisms.

Sulphites
Regulated food additives that are used as preservatives to maintain food colour and prolong shelf life, prevent the growth of microorganisms, and maintain the potency of certain medications. Sulphites are used to bleach food starches (e.g., potato) and are also used in the production of some food packaging materials (e.g., cellophane).

Tartrazine
A water soluble synthetic yellow dye used as food colouring. Also called FD&C Yellow 5.

Trichinosis
Also known as pork tapeworm. A parasite spread through raw or undercooked pork or wild game.

Viruses
Microorganisms that multiply inside living cells and cause illness.

Wash in Place
A system to clean, rinse and sanitize large equipment that can’t be cleaned in a dishwasher or sink. The equipment must be washed with soap and water and rinsed with clean water. The sanitizing rinse can consist of hot water or steam sprayed on the treated surface to a minimum temperature of 82°C (178°F) or a chemical solution sprayed on the treated surface at double the strength used for manual dishwashing.

Yeast
Single celled fungi that may occur on the surface of sweet foods, especially liquids. Also a commercial leavening agent containing yeast cells; used to raise the dough in making bread and to ferment beer or whiskey.
Health Protection and Promotion Act (HPPA)
Food Premises Regulation (O. Reg. 562)
For the latest version of the

Ontario Food Premise Regulation Health Protection and Promotion Act
R.R.O. 1990, Regulation 562

Visit the following link: www.e-laws.gov.on.ca
Click on the button: Search or Browse Current Consolidated Law
In the search box type: Food Premise
Food Premises Regulation
Health Protection and Promotion Act
Loi sur la protection et la promotion de la santé
R.R.O. 1990, REGULATION 562

FOOD PREMISES
Consolidation Period: From May 1, 2008 to the e-Laws currency date.
Last amendment: O. Reg. 99/08. This regulation is currently available in English only.

CONTENTS

PART I INTERPRETATION

1. (1) In this Regulation,
 "catering vehicle" means an itinerant food service premise in which no food is prepared other than hot beverages and french fried potatoes;
 "corrosion-resistant material" means any material that maintains its original surface characteristics after,
 (a) repeated exposure to food, soil, moisture or heat, or
 (b) exposure to any substance used in cleansing and sanitizing;
 "egg grading station" means an egg grading station registered under the Canada Agricultural Products Act;
 "egg processing station" means an egg product processing station registered under the Canada Agricultural Products Act; "eggs" means raw eggs in the shell;
“employee” means any person who,
 (a) is employed in a food premise, and
 (b) handles or comes in contact with any utensil or with food during its preparation, processing,
 packaging, service, storage or transportation;

“farmers’ market” means a central location at which a group of persons who operate stalls or other food
 premises meet to sell or offer for sale to consumers products that include, without being restricted to, farm
 products, baked goods and preserved foods, and at which the majority of the persons operating the stalls or
 other food premises are producers of farm products who are primarily selling or offering for sale their own
 products;

“farmers’ market food vendor” means the operator of a stall or other food premise that is located at a
 farmers’ market;

“farm products” means products that are grown, raised or produced on a farm and intended for use as food
 and include, without being restricted to, fruits and vegetables, mushrooms, meat and meat products, dairy
 products, honey products, maple products, fish, grains and seeds and grain and seed products;

“food contact surface” means any surface that food comes in contact with in a food premise;

“food service premise” means any food premise where meals or meal portions are prepared for immediate
 consumption or sold or served in a form that will permit immediate consumption on the premises or
 elsewhere;

“Grade ‘C’ eggs” means eggs that are graded “Canada C” as defined in the regulation under the Canada
 Agricultural Products Act;

“hazardous food” means any food that is capable of supporting the growth of pathogenic organisms or the
 production of the toxins of such organisms;

“locker plant” means any food premise in which individual lockers are rented or offered for rent to the
 public for the storage of frozen foods;

“manufactured meat product” means food that is the product of a process and that contains meat as an
 ingredient and includes meat that is processed by salting, pickling, fermenting, canning, drying or smoking
 or otherwise applying heat or to which edible fats, cereals, seasonings or sugar have been added;

“mobile preparation premises” means a vehicle or other itinerant food premise from which food prepared
 therein is offered for sale to the public;

“multi-service article” means any container or eating utensil that is intended for repeated use in the service
 or sale of food; “official method” means a method used by a laboratory established under section 79 of the
 Act for the laboratory examination of food;

“pre-packaged foods” means food that is packaged at a premise other than the premises at which it is offered
 for sale; “public space” means a space, whether indoors or outdoors, to which the public is ordinarily invited
 or permitted access, either expressly or by implication, whether or not a fee is charged for entry;

“sanitizing” means antimicrobial treatment, and “sanitize” has a corresponding meaning; “selling” includes
 automatic vending;

“serving” includes self-service;

“single-service article” means any container or eating utensil that is to be used only once in the service or
 sale of food; “single-service towel” means a towel that is to be used only once before being discarded or
 laundered for reuse;
“street food vending cart” means a food premise,
(a) that is a cart set up on a temporary basis in a public space, and
(b) from which food is sold or offered for sale for immediate consumption;

“utensil” means any article or equipment used in the manufacture, processing, preparation, storage, handling, display, distribution, sale or offer for sale of food except a single-service article;

“vending machine” means any self-service device that upon insertion of a coin, coins or tokens, automatically dispenses unit servings of food either in bulk or in package form. R.R.O. 1990, Reg. 562, s. 1 (1); O. Reg. 308/06, s. 1; O. Reg. 338/07, s. 1.

(2) A reference in this Regulation to the medical officer of health or the public health inspector means the medical officer of health or the public health inspector, as the case may be, of the board of health in the health unit in which the food premise referred to is situate. R.R.O. 1990, Reg. 562, s. 1 (2).

PART II ESTABLISHMENT EXEMPTIONS

2. (1) This Regulation applies to all food premises except,
(a) boarding houses that provide meals for fewer than ten boarders;
(b) a food premise to which Regulation 554 or 568 of the Revised Regulations of Ontario, 1990 applies;
(c) food premises owned, operated or leased by religious organizations, service clubs and fraternal organizations where the religious organization, service club or fraternal organization,
(i) prepares and serves meals for special events, and
(ii) conducts bake sales; and
(d) farmers’ market food vendors. R.R.O. 1990, Reg. 562, s. 2 (1); O. Reg. 308/06, s. 2 (1).

(2) No person shall operate or maintain a food premise to which this Regulation applies except in accordance with this Regulation. R.R.O. 1990, Reg. 562, s. 2 (2); O. Reg. 586/99, s. 1.

(3) The exemption provided for in clause (1) (c) is subject to the conditions set out in paragraphs 1 and 2 if a religious organization, service club or fraternal organization mentioned in that clause prepares and serves meals for a special event to which the general public is invited, and hazardous food that originates from a food premise that is not inspected under this Regulation is included in such a meal:

1. Patrons attending the special event shall be notified in writing as to whether or not the food premise has been inspected in accordance with this Regulation. The notice shall be posted in a conspicuous place at the entrance to the food premise at which the special event meal is held.

2. The operator must keep a list of all persons who donate hazardous food for the special event meal and must provide a copy of that list to a public health inspector on request. The list must contain each donor’s name, address and telephone number in full. O. Reg. 308/06, s. 2 (2).

3. (1) The following retail food premises are exempt from the provisions of clauses 20 (1) (b) and (c) and sections 68 to 81 where they meet the requirements of subsection (2):
1. Premises where only cold drinks are sold in or from the original container.
2. Premises where only frozen confections are sold in the original package or wrapper.
3. Premises where only hot beverages are prepared and sold.
4. Farms selling only their own farm products in the form of honey, maple syrup, or unprocessed fruits, vegetables and grains.
5. Premises preparing and selling only popped corn, roasted nuts or french fried potatoes.
6. Premises selling only pre-packaged food that is not a hazardous food.
7. Catering trucks. R.R.O. 1990, Reg. 562, s. 3 (1).

(2) A food premise referred to in subsection (1) shall,
(a) use only single-service articles;
(b) provide a supply of single-use commercially packaged moist hand towelettes for the personal hygiene of its employees; and
(c) where it has an eating or drinking area, have an eating or drinking area that does not exceed fifty-six square metres. R.R.O. 1990, Reg. 562, s. 3 (2).
CATERING VEHICLES

4. (1) All food offered for sale from a catering vehicle shall be pre-packaged except for hot beverages and french fried potatoes. R.R.O. 1990, Reg. 562, s. 4 (1).

(2) Every catering vehicle shall be equipped with mechanically refrigerated storage and display facilities that shall be used for holding hazardous foods. R.R.O. 1990, Reg. 562, s. 4 (2).

(3) Subsection (2) does not apply to vehicles from which only frozen confections in the original package or wrapper are sold. R.R.O. 1990, Reg. 562, s. 4 (3).

MOBILE PREPARATION PREMISES

5. (1) Mobile preparation premises are exempt from the provisions of sections 68 and 69, but where a mobile preparation premises provides sanitary facilities for its employees the sanitary facilities shall be in compliance with sections 68 and 69. R.R.O. 1990, Reg. 562, s. 5 (1).

(2) In every mobile preparation premises,

(a) food shall be prepared within the premises and served to the public by persons working within the premises;
(b) only single-service articles shall be used;
(c) service doors and windows to the preparation area shall be screened and, when the premise is in motion, tightly closed with a solid material to prevent the entrance of dust and fumes into the food preparation area;
(d) the driver's compartment shall be completely partitioned from the food preparation area and, where the partition has an access door, the door shall be solid and self-closing;
(e) separate holding tanks shall be provided for toilet and sink wastes; and
(f) every waste tank and water supply tank shall be equipped with an easily readable gauge for determining the waste or water level in the tank. R.R.O. 1990, Reg. 562, s. 5 (2).

(3) Revoked: O. Reg. 338/07, s. 2.

STREET FOOD VENDING CARTS

5.1 (1) The only foods permitted to be sold or offered for sale from a street food vending cart are,

(a) foods including, without being limited to, soda, pre-packaged salads and fruits and baked goods, that are

(i) that are pre-packaged in another food premise to which this Regulation applies or another premise that is similar to a food premise to which this Regulation applies and that is regulated under the laws of another jurisdiction for purposes similar to this Regulation, and that are transported from that other premise in a ready-to-eat state, and

(ii) that are sold in the street food vending cart in the packaging in which they are delivered;
(b) foods including, without being limited to, wieners or similar sausage products, pizza, samosas, burritos, beef patties and hamburgers, that are

(i) that are pre-cooked in another food premise to which this Regulation applies or another premise that is similar to a food premise to which this Regulation applies and that is regulated under the laws of another jurisdiction for purposes similar to this Regulation, and

(ii) that are reheated on the street food vending cart prior to being sold or offered for sale;
(c) non-hazardous foods including, without being limited to, french fried potatoes, fruit juices, non-dairy smoothies, corn on the cob and whole fruit, that are either,

(i) prepared on the street food vending cart in a manner permitted under subsection (2), or

(ii) brought to the street food vending cart in a prepared state after being prepared in another food premise to which this Regulation applies or another premise that is similar to a food premise to which this Regulation applies and that is regulated under the laws of another jurisdiction for purposes similar to this Regulation; and
(d) other foods that are permitted to be sold or offered for sale under subsection (3). O. Reg. 338/07, s. 3.

(2) Food preparation for the purposes of clause 1 (c) is limited to preparation, including handling, that is conducted in a safe and sanitary manner that will prevent contamination of the non-hazardous foods, and that complies with all other applicable requirements of this Regulation respecting the safe preparation of foods. O. Reg. 338/07, s. 3.

(3) The operator of a street food vending cart may sell or offer to sell foods from the cart that are not listed in clauses (1) (a), (b) and (c) if,

(a) the medical officer of health has received a request from the operator to sell the items;
(b) the medical officer of health is satisfied that, with appropriate safeguards, the sale of the additional foods poses no greater risk to the health of the patrons of the street food vending cart than the sale of the foods listed in clauses (1) (a), (b) and (c);
(c) the medical officer of health has issued a letter of permission to the operator to permit the sale that sets out any requirements regarding the maintenance of the premise, equipment, food handling, cooking, preparation or storage that are necessary to ensure that the safeguards required under clause (b) are in place; and
(d) the operator complies with the requirements set out in the letter of permission, and posts the letter of permission in a prominent place. O. Reg. 338/07, s. 3.

(4) Street food vending carts are exempt from the provisions of sections 68 and 69, but where such a premise provides sanitary facilities for its employees the sanitary facilities shall be in compliance with sections 68 and 69. O. Reg. 338/07, s. 3.

(5) At every street food vending cart,
(a) only single-service articles shall be used;
(b) during all times when the premise is in operation the food preparation, food holding and food service areas of the street food vending cart shall be completely covered by an overhead canopy of corrosion-resistant, non-absorbent and readily cleanable material to prevent the adulteration of foods;
(c) separate holding tanks shall be provided for toilet and sink wastes; and
(d) every waste tank and water supply tank shall be equipped with an easily readable gauge for determining the waste or water level in the tank. O. Reg. 338/07, s. 3.

VENDING MACHINES
6. Every vending machine shall be so constructed that,
(a) it is sealed to the floor or is mounted on legs not less than 15 centimetres in height or on casters or rollers that permit ease of movement for cleaning purposes;
(b) service connections through the exterior of the machine are sealed and are such as to prevent or discourage unauthorized disconnection;
(c) door and panel access openings to product and container storage spaces are tight-fitting to prevent the entrance of any contaminating substance or thing;
(d) ventilation louvers and openings are screened against insects by means of screening material of not less than 16 mesh to each 2.54 square centimetres;
(e) any condenser unit forming part of the machine is sealed from product and container storage spaces;
(f) openings by which food is delivered are protected by means of self-closing and tight-fitting doors or covers;
(g) food storage compartments in which spillage may occur are self-draining;
(h) openings into all containers used for the storage of food are provided with covers suitable to prevent contamination from reaching the interior of the container; and
(i) containers and fittings may be disassembled to permit cleaning and sanitizing or so arranged that cleaning and sanitizing solutions can be circulated throughout the fixed system. R.R.O. 1990, Reg. 562, s. 6.

7. Every vending machine shall be provided with,
(a) a potable water supply piped into the machine under pressure where water is an automatically admixed ingredient;
(b) a device that will protect against the entrance of carbon dioxide or carbonated liquid into the water supply system;
(c) automatic controls that will prevent the vending of hazardous foods where,
 (i) the temperature of a refrigerated compartment exceeds 7° Celsius, or
 (ii) the temperature of a heated compartment falls below 60° Celsius; and
(d) an automatic shut-off control that will prevent the overflow of liquid waste where such wastes are collected inside the vending machine. R.R.O. 1990, Reg. 562, s. 7.

8. The components of a vending machine that come into contact with food shall be cleaned and sanitized in the manner prescribed for utensils under section 71, 72, 73, 74, 75 or 76, as the case may be, and for this purpose mobile or remote cleaning and sanitizing facilities may be used. R.R.O. 1990, Reg. 562, s. 8.

9. The name and telephone number of the operator of the vending machine shall be prominently displayed at vending sites where an employee is not in full-time attendance. R.R.O. 1990, Reg. 562, s. 9.

LOCKER PLANTS
10. (1) Every locker plant shall be equipped with,
(a) a facility for the freezing of food prior to storage; and
(b) a locker room for the storage of frozen foods. R.R.O. 1990, Reg. 562, s. 10 (1).
(2) The following temperatures shall be maintained in each of the following rooms or compartments:

1. Room or compartment used only for freezing, minus 18° Celsius or lower with a tolerance up to minus 12° Celsius during the initial stage of freezing food.

2. Locker room, not above minus 18° Celsius with a tolerance up to minus 15° Celsius during periods of public access. R.R.O. 1990, Reg. 562, s. 10 (2).

(3) The temperatures prescribed in subsection (2) shall not prohibit such variations as are necessary during the time required for defrosting operations. R.R.O. 1990, Reg. 562, s. 10 (3).

(4) Every locker room in a locker plant shall be provided with an accurate self-recording thermometer and temperature records shall,

(a) not be used for a period that will exceed one complete rotation of the graph; and
(b) be properly dated and signed by the operator and preserved at the plant for a period of at least one year. R.R.O. 1990, Reg. 562, s. 10 (4).

(5) The locker room or freezing facility of a locker plant shall be used only for the processing or storage of food. R.R.O.1990, Reg. 562, s. 10 (5).

(6) Every locker plant operator shall keep an accurate record of the name and address of each person renting a locker in a locker plant operated by the operator. R.R.O. 1990, Reg. 562, s. 10 (6).

(7) Every locker room in a locker plant shall be equipped with a conveniently located properly functioning noise alarm for operation by patrons from within the locker room. R.R.O. 1990, Reg. 562, s. 10 (7).

(8) The access door of every locker room shall be fitted with a properly functioning safety lock release so that it can be operated from inside the locker room. R.R.O. 1990, Reg. 562, s. 10 (8).

(9) The records referred to in subsections (4) and (6) shall be made available upon request to the medical officer of health or a public health inspector. R.R.O. 1990, Reg. 562, s. 10 (9).

PART III GENERAL
BUILDING MAINTENANCE

11. Every food premise shall be operated and maintained such that,

(a) the premises are free from every condition that may,
 (i) be a health hazard,
 (ii) adversely affect the sanitary operation of the premises, or
 (iii) adversely affect the wholesomeness of food therein;
(b) no room where food is manufactured, handled, displayed, distributed, sold or offered for sale, prepared, processed, served, transported or stored is used for sleeping purposes;
(c) a separate room, compartment, locker or cupboard is provided for keeping wearing apparel of employees;
(d) the floor or floor coverings are tight, smooth and non-absorbent in rooms where,
 (i) food is manufactured, handled, displayed, distributed, sold or offered for sale, prepared, processed, served, transported or stored,
 (ii) utensils are washed, or
 (iii) washing fixtures and toilet fixtures are located; and
(e) the walls and ceilings of rooms and passageways may be readily cleaned and may be maintained in a sanitary condition.

(f), (g) Revoked: O. Reg. 586/99, s. 3 (3). R.R.O. 1990, Reg. 562, s. 11; O. Reg. 586/99, s. 3.

12. Despite clause 11 (d), carpeting may be used in areas where food is served where the carpeting is maintained in a clean and sanitary condition. R.R.O. 1990, Reg. 562, s. 12.

LIGHTING

13. The levels of illumination required under the Ontario Building Code shall be maintained during all hours of operation of a food premise. O. Reg. 586/99, s. 4.

VENTILATION

15. The ventilation system in every food premise shall be maintained so that the premise does not become a health hazard. O. Reg. 586/99, s. 4.

EQUIPMENT
18. Any article or piece of equipment that is used for the manufacture, distributing, sale or offering for sale, preparation, processing, handling, transportation, storage or display of food shall be,
(a) of sound and tight construction;
(b) kept in good repair; and
(c) of such form and material that it can be readily cleaned and sanitized. R.R.O. 1990, Reg. 562, s. 18.
19.(1) Equipment and utensils with which food comes in direct contact shall be,
(a) corrosion-resistant and non-toxic; and
(b) free from cracks, crevices and open seams. R.R.O. 1990, Reg. 562, s. 19 (1).
(2) Despite subsection (1), cutting boards, blocks, tables, bowls, platters and churns of hardwood or other materials may be used where,
(a) such equipment is maintained in a clean and sanitary condition; and
(b) the manner and conditions of their use are not a health hazard. R.R.O. 1990, Reg. 562, s. 19 (2).
20.(1) Every food premise shall be provided with,
(a) a supply of potable water adequate for the operation of the premises;
(b) hot and cold running water under pressure in areas where food is processed, prepared or manufactured or utensils are washed;
(c) a separate handwashing basin in a location convenient for employees in each processing, preparation and manufacturing area, together with supplies of hot and cold water, soap or detergent in a dispenser, and,
(i) clean single-service towels, or
(ii) a continuous cloth roller towel in a mechanical device and a supply of paper towels;
(d) refrigerated space adequate for the safe storage of perishable and hazardous food; and
(e) containers of durable, leakproof and non-absorbent material with tight-fitting or self-closing lids sufficient for storing all garbage and waste in a sanitary manner. R.R.O. 1990, Reg. 562, s. 20 (1).
(2) The basin referred to in clause (1) (c) shall be used only for the handwashing of employees. R.R.O. 1990, Reg. 562, s. 20 (2).
21. Temperature controlled rooms and compartments used for the storage of hazardous foods shall be provided with accurate indicating thermometers that may be easily read. R.R.O. 1990, Reg. 562, s. 21.
22. Racks, shelves or pallets shall be provided for the storage of food and no rack or shelf shall be placed less than fifteen centimetres above the floor. R.R.O. 1990, Reg. 562, s. 22.
23. All food shall be stored on the racks, shelves or pallets referred to in section 22. R.R.O. 1990, Reg. 562, s. 23.
24. Tongs, spoons and scoops of corrosion-resistant and non-toxic material shall be used, wherever possible, to avoid direct hand contact with food. R.R.O. 1990, Reg. 562, s. 24.

FOOD HANDLING
27. All hazardous food displayed for sale or service shall be protected against contamination by means of enclosed containers, cabinets, shields or shelves. R.R.O. 1990, Reg. 562, s. 27.
28. Food transported by an operator shall be enclosed in containers or in such other manner as to prevent contamination of the food and to maintain the food at the temperature prescribed in section 32, 33, 34 or 35, as the case may be. R.R.O. 1990, Reg. 562, s. 28.
29. Food containers that are multi-service articles shall,
(a) be constructed of such materials and in such a manner as to be readily cleaned and sanitized; and
(b) not be used for any purpose other than the packaging of food. R.R.O. 1990, Reg. 562, s. 29.
30. (1) Milk served as a beverage shall be offered for sale or served in or from the original container as filled by the processor. R.R.O. 1990, Reg. 562, s. 30 (1).
(2) Subject to subsection (3), milk, cream and edible oil substitutes that are to be used with beverages and cereals shall be added to the beverages and cereals from the original container as filled by the processor. R.R.O. 1990, Reg. 562, s. 30 (2).

(3) A container other than the original may be used when milk, cream or an edible oil substitute accompanies a beverage or cereal in the service of a seated patron, provided that,
 (a) the container is filled from the original container immediately prior to serving;
 (b) portions remaining at the end of each service are discarded; and
 (c) the container is cleaned and sanitized in accordance with section 73, 74, 75, 76 or 77, as the case may be, after each service. R.R.O. 1990, Reg. 562, s. 30 (3).

31. (1) Ice used in the preparation and processing of food or drink shall be made from potable water and shall be stored and handled in a sanitary manner. R.R.O. 1990, Reg. 562, s. 31 (1).

(2) Steam that contacts food during processing or preparation shall be from a potable supply and free of toxic substances. R.R.O. 1990, Reg. 562, s. 31 (2).

32. Hazardous foods in hermetically sealed containers that have not been subjected to a process sufficient to prevent the production of bacterial toxins or the survival of spore-forming pathogenic bacteria shall,
 (a) have "Keep Refrigerated" prominently marked on the container; and
 (b) be maintained, transported, displayed, stored or offered for sale at an internal temperature not higher than 4 degrees Celsius. R.R.O. 1990, Reg. 562, s. 32; O. Reg. 101/06, s. 1.

33. (1) The cooking, reheating, freezing and holding temperatures of food shall be in accordance with the requirements of this section. O. Reg. 74/04, s. 1.

(2) Except as otherwise provided in subsection (3), a hazardous food shall be distributed, maintained, stored, transported, displayed, sold and offered for sale only under conditions in which the internal temperature of the food is,
 (a) 4 degrees Celsius, or lower; or
 (b) 60 degrees Celsius, or higher. O. Reg. 74/04, s. 1.

(3) Subsection (2) does not apply,
 (a) to a hazardous food during those periods of time that are necessary for the preparation, processing and manufacturing of the food; or
 (b) to a hermetically sealed food that has been subjected to a process sufficient to prevent the production of bacterial toxins or the survival of spore-forming pathogenic bacteria. O. Reg. 74/04, s. 1.

(4) Whole poultry shall be cooked to reach an internal temperature of at least 82 degrees Celsius for at least 15 seconds. O. Reg. 74/04, s. 1.

(5) A food mixture containing poultry, egg, meat, fish or another hazardous food shall be cooked to reach a temperature of at least 74 degrees Celsius for at least 15 seconds in all parts of the mixture. O. Reg. 74/04, s. 1.

(6) The following shall be cooked to reach an internal temperature of at least 74 degrees Celsius for at least 15 seconds:
 1. Poultry, other than whole poultry.
 2. All parts of ground poultry.
 3. All parts of ground meat that contains poultry. O. Reg. 74/04, s. 1.

(7) The following shall be cooked to reach an internal temperature of at least 71 degrees Celsius for at least 15 seconds:
 1. Pork.
 2. Pork products.
 3. All parts of ground meat, other than ground meat that contains poultry. O. Reg. 74/04, s. 1.

(8) Fish shall be cooked to reach an internal temperature of at least 70 degrees Celsius for at least 15 seconds. O. Reg.74/04, s. 1.

(9) Subsection (8) does not apply to fish that is intended to be consumed raw, including raw-marinated and partially cooked fish. O. Reg. 173/05, s. 1.

(10) Except as otherwise provided in subsection (11), a hazardous food that is cooked, cooled and reheated for hot holding must reach an internal temperature for at least 15 seconds during the reheating process that is at least as high as the minimum internal temperature the food must reach under this section during cooking. O. Reg. 74/04, s. 1.

(11) Whole poultry that is cooked, cooled and reheated for hot holding must reach an internal temperature for at least 15 seconds during the reheating process that is at least 74 degrees Celsius. O. Reg. 74/04, s. 1.
(12) The process of reheating a hazardous food in accordance with subsection (10) or (11) shall not take more than two hours. O. Reg. 74/04, s. 1.

(13) The operator of a food premise is exempt from the requirements of subsection (4), (5), (6), (7), (8), (9), (10) or (11) in respect of a hazardous food if,

(a) the medical officer of health is satisfied that cooking or reheating the hazardous food, as the case may be, to a different temperature or for a different length of time, or both, is sufficient to prevent the growth of pathogenic organisms, to prevent the production of toxins from pathogenic organisms and to destroy parasites; and

(b) the operator of the food premise ensures that the hazardous food is cooked or reheated, as the case may be, to the temperature and for the length of time required by the medical officer of health. O. Reg. 74/04, s. 1.

(14) An accurate thermometer that can be easily read shall be used to measure the internal temperature of hazardous foods. O. Reg. 74/04, s. 1.

34. Despite clause 33 (2) (a), eggs may be transported at an internal temperature of 13° Celsius or lower where the eggs are being transported from an egg grading station to,

(a) a wholesaler of eggs;

(b) a retailer of eggs; or

(c) an egg product processing station. R.R.O. 1990, Reg. 562, s. 34; O. Reg. 74/04, s. 2.

35. Food that is intended to be transported, displayed, stored, sold or offered for sale in a frozen state shall be frozen to a temperature of minus 18° Celsius or lower and maintained thereafter at a temperature of minus 18° Celsius or lower until sold or prepared for use. R.R.O. 1990, Reg. 562, s. 35.

36. (1) Cans, containers or wrappings of hazardous food shall bear,

(a) a permanent code marking of the manufacturer or processor designating the plant where the food was manufactured or processed; and

(b) the date on which the food was manufactured or an expiry date. R.R.O. 1990, Reg. 562, s. 36 (1).

(2) Subsection (1) does not apply where hazardous food is packaged and sold at retail on the same food premise. R.R.O.1990, Reg. 562, s. 36 (2).

MEAT AND MEAT PRODUCTS

37. Manufactured meat products that are customarily eaten without further cooking shall be subjected to a process sufficient to destroy pathogenic bacteria, parasites and the cystic forms of parasites. R.R.O. 1990, Reg. 562, s. 37.

38. (1) Every operator of a premise in which meat products are manufactured shall maintain records of meats received for processing in the premise and the records shall include the kinds of meats, the names and addresses of suppliers, weights and the dates of receipt. R.R.O. 1990, Reg. 562, s. 38 (1).

(2) A record referred to in subsection (1) shall be maintained at the premise for not less than one year from the date of entry of the record. R.R.O. 1990, Reg. 562, s. 38 (2).

39. (1) Except as provided in subsections (2) and (3), every manufactured meat product that is transported, handled, distributed, displayed, stored, sold or offered for sale at a food premise shall be identified as to the meat processing plant of origin by a tag, stamp or label affixed to the product. R.R.O. 1990, Reg. 562, s. 39 (1).

(2) A bulk packed manufactured meat product that cannot be individually identified under subsection (1) because of its size, shape or consistency may be removed from its container for the purpose of display or sale where the container bears the plant identification referred to in subsection (1). R.R.O. 1990, Reg. 562, s. 39 (2).

(3) Subsection (1) does not apply to a manufactured meat product stored, sold or offered for sale in a retail outlet at the plant of origin. R.R.O. 1990, Reg. 562, s. 39 (3).

39.1 In sections 40 and 41, “uninspected meat” means meat obtained from an animal that has not been inspected in accordance with Ontario Regulation 31/05 (Meat) made under the Food Safety and Quality Act, 2001 or the Meat Inspection Act (Canada). O. Reg. 99/08, s. 1.
40. (1) The only meat permitted at a food premise is meat that has been obtained from an animal inspected in accordance with either Ontario Regulation 31/05 (Meat) made under the Food Safety and Quality Act, 2001 or the Meat Inspection Act (Canada) and that has been stamped and labelled or otherwise identified in accordance with that regulation or that Act. O. Reg. 101/06, s. 2 (1).

(2) Despite subsection (1), a food premise where meat is sold, other than a food service premise, may have uninspected meat obtained through hunting that is at the food premise for the purposes of custom-cutting, wrapping and freezing it for its owner if,

(a) the uninspected meat is custom-cut, wrapped, frozen and stored in such a manner that it does not come into contact with inspected meat;
(b) each quarter or larger section of the carcass bears a tag showing the name and address of the owner of the uninspected meat; and
(c) each quarter or larger section of the carcass is legibly stamped “Consumer Owned, Not for Sale” on each of the primal cut areas, using ink made from non-toxic edible ingredients and in letters at least 1.25 centimetres in height. O. Reg. 74/04, s. 3.

(2.1) Despite subsection (1), a food premise that falls within the definition of “meat plant” in Ontario Regulation 31/05 (Meat) made under the Food Safety and Quality Act, 2001 may have uninspected meat at the food premise if,

(a) an approval has been issued under Part VIII.2 of that regulation for the uninspected meat to enter a meat plant as defined in that regulation;
(b) a regional veterinarian has approved the food premise under Part VIII.3 of that regulation for the purposes of receiving the meat for the period of time that the meat is present on the premise; and
(c) the uninspected meat is kept out of any part of the food premise where food is sold, served or offered for sale. O. Reg. 99/08, s. 2.

(2.2) Despite subsection (1), a food premise that falls within the definition of “meat plant” in Ontario Regulation 31/05 (Meat) made under the Food Safety and Quality Act, 2001 may have uninspected meat that is a hunted game carcass as defined in that regulation on the premise for the purposes of dressing, cutting, wrapping or freezing the carcass or processing hunted game products as defined in that regulation from it for the owner of the carcass if,

(a) the premise has been approved under Part VIII.4 of that regulation for the purposes of receiving and processing hunted game carcasses; and
(b) the uninspected meat is kept out of any part of the food premise where food is sold, served or offered for sale. O. Reg. 99/08, s. 2.

(3) Despite subsection (1), a food premise located at the Sioux Lookout Meno-Ya-Win Health Centre may have on the premises uninspected meat from wild moose, wild duck, wild goose, wild caribou, wild muskrat, wild rabbit, wild deer, wild beaver, wild elk and wild muskox if the animal or bird was killed in the course of hunting and if the following conditions are met:

1. The uninspected meat is handled, prepared, processed and stored for the sole purpose of serving it to patients, visitors and staff at the Health Centre.
2. The uninspected meat is handled, prepared, processed and stored so that it does not come into contact with other food before the other food is served.
3. Patients, visitors and staff at the Health Centre are informed in writing each time before they are served uninspected meat that the meat has not been inspected in accordance with either Ontario Regulation 31/05 (Meat) made under the Food Safety and Quality Act, 2001 or the Meat Inspection Act (Canada) and that meat that has been inspected is available for consumption.
4. Patients, visitors and staff at the Health Centre are informed in writing that meat that has been inspected in accordance with either Ontario Regulation 31/05 (Meat) made under the Food Safety and Quality Act, 2001 or the Meat Inspection Act (Canada) is always available to be served on the premises. O. Reg. 502/01, s. 1; O. Reg. 101/06, s. 2 (2).

(4) Despite subsection (1), a food premise may have on the premises uninspected meat obtained through hunting that is handled, prepared and stored for the sole purpose of serving it at a wild game dinner held under the authority of an authorization granted under subsection 52 (1) of the Fish and Wildlife Conservation Act, 1997, if the following conditions are met:

1. The uninspected meat is handled, prepared and stored so that it does not come into contact with other food before the other food is served.
2. Patrons and staff are notified in writing each time before they are served uninspected meat that the meat has not been inspected in accordance with either Ontario Regulation 31/05 (Meat) made under
the Food Safety and Quality Act, 2001 or the Meat Inspection Act (Canada). The notice shall be clearly printed on each ticket issued to a patron of a wild game dinner and also be posted in a conspicuous place at the entrance to the venue at which the wild game dinner is held.

3. The operator must keep a list of all patrons that attend the wild game dinner and must provide a copy of the list to a public health inspector upon request. The list must contain each patron's name, address and telephone number in full.

4. The operator must keep a list of all persons who donate uninspected meat for a wild game dinner and must provide a copy of the list to a public health inspector upon request. The list must contain,
 i. each donor's name, address and telephone number in full, and
 ii. with respect to each donor, the name of the species from which the donated meat was obtained. O. Reg. 101/06, s. 2 (3).

41. In a food premise, utensils, equipment and food contact surfaces used in connection with uninspected meat shall be washed and sanitized in accordance with sections 73, 74, 75, 76, 77 and 81, whichever apply in the circumstances, before being used in connection with any other food, including inspected meat. O. Reg. 502/01, s. 1.

MILK AND MILK PRODUCTS

42. (1) Milk products shall be pasteurized or made from milk that has been pasteurized by heating the milk product to a temperature of at least,
 (a) 63° Celsius and holding it at that temperature for not less than thirty minutes;
 (b) 72° Celsius and holding it at that temperature for not less than sixteen seconds; or
 (c) such temperature other than a temperature referred to in clause (a) or (b) for such period of time that will result in the equivalent destruction of pathogenic organisms and phosphatase. R.R.O. 1990, Reg. 562, s. 42 (1).

(2) A milk product shall be sterilized by heating the milk product to a temperature of 135° Celsius and holding it at that temperature for not less than two seconds, or to such other temperature for such period of time that will result in sterilization. R.R.O. 1990, Reg. 562, s. 42 (2).

43. (1) Milk products other than butter and goat milk shall be deemed to have been pasteurized if the product is negative when tested for the presence of alkaline phosphatase as determined by the official method. R.R.O. 1990, Reg. 562, s. 43 (1).

(2) A milk product shall be deemed to have been sterilized if a sample of the product is free of living organisms as determined by an official method. R.R.O. 1990, Reg. 562, s. 43 (2).

44. Despite subsection 43 (1),
 (a) butter shall be deemed to have been made from pasteurized milk or cream if it is negative when tested for the presence of peroxidase as determined by an official method; and
 (b) goat milk shall be deemed to have been pasteurized if the recording thermometer chart indicates the milk was heated as required in section 42. R.R.O. 1990, Reg. 562, s. 44.

45. Subsection 18 (2) of the Act does not apply to cheese made from unpasteurized milk if the cheese has been stored at a temperature not lower than 2° Celsius for a period of not less than sixty days following the time of manufacture. R.R.O.1990, Reg. 562, s. 45.

46. (1) Milk products shall be cooled immediately after pasteurization to a temperature of at least 5° Celsius or less. R.R.O.1990, Reg. 562, s. 46 (1).

(2) Subsection (1) does not apply to a milk product that,
 (a) is to be further processed prior to packaging, then cooled to 5° Celsius, or less;
 (b) has been sterilized and is to be or is aseptically packaged; or
 (c) is processed by drying. R.R.O. 1990, Reg. 562, s. 46 (2).

47. (1) Every pasteurizer used for milk products shall be equipped with indicating and recording thermometers that are accurate and may be easily read. R.R.O. 1990, Reg. 562, s. 47 (1).

(2) Every high temperature short time pasteurizer used for milk products shall be equipped with a properly functioning flow diversion valve. R.R.O. 1990, Reg. 562, s. 47 (2).

(3) Recording thermometers shall be moisture proof and easily read. R.R.O. 1990, Reg. 562, s. 47 (3).
48. The temperature of a milk product in a pasteurizer at any time shall be taken as the temperature shown on
the indicating thermometer and not the temperature shown by the recording thermometer. R.R.O. 1990, Reg.
562, s. 48.

49. The temperature shown by the recording thermometer shall be checked daily by the operator against
the temperature shown by the indicating thermometer and shall be adjusted to read no higher than the
temperature shown by the indicating thermometer. R.R.O. 1990, Reg. 562, s. 49.

50. (1) A recording thermometer chart shall not be used for a period that will exceed one complete rotation of
the graph. R.R.O. 1990, Reg. 562, s. 50 (1).
(2) A recording thermometer chart shall have the following information noted thereon:
 1. The date of operation.
 2. The number of the pasteurizer, if more than one is in use, to which the recorder was attached.
 3. The temperature of the indicating thermometer at some time corresponding with a marked point in the
 holding period.
 4. The name of product being pasteurized.
 5. The signature of the operator. R.R.O. 1990, Reg. 562, s. 50 (2).
(3) Where more than one recording thermometer is in use, each chart shall be numbered in such a manner
as to indicate the recording thermometer that was used for the chart. R.R.O. 1990, Reg. 562, s. 50 (3).
(4) A recording thermometer chart shall be kept by an operator for at least three months after it is used.
R.R.O. 1990, Reg.562, s. 50 (4).

51. Sterilized fluid milk products shall be sold in or from containers that bear the words “STERILIZED” or
“STERILE” and “REFRIGERATE AFTER OPENING”. R.R.O. 1990, Reg. 562, s. 51.

52. (1) A food premise that repackages milk products not produced in that food premise, shall identify the
original processor, packing date and batch number on the containers of repackaged milk products. R.R.O.
1990, Reg. 562, s. 52 (1).
(2) Despite subsection (1), the operator of the food premise may show on the containers of repackaged milk products,
 (a) the operator’s name and address or code marking; and
 (b) the operator’s ‘Best Before’ or repackaging date, provided that records are maintained by the
 operator that identify the original processor, packing date and batch number of the milk products. R.R.O.
 1990, Reg. 562, s. 52 (2).
(3) Subsections (1) and (2) do not authorize the repackaging of fluid milk products. R.R.O. 1990, Reg. 562, s. 52 (3).

53. Despite section 23, cases of fluid milk products may be stored directly on the floor of refrigerated rooms
provided that such cases are designed for re-use and do not permit direct contact between the floor and the
fluid milk container. R.R.O. 1990, Reg. 562, s. 53.

EGGS

54. (1) No operator of a food premise shall store, handle, serve, process, prepare, display, distribute, transport,
offer for sale or sell ungraded or Grade “C” eggs. R.R.O. 1990, Reg. 562, s. 54 (1).
(2) Despite subsection (1), the operator of an egg grading station may store and handle ungraded eggs for the purpose
of grading and may sell and transport Grade “C” eggs to an egg processing station. O. Reg. 518/03, s. 1.
(3) Revoked: O. Reg. 518/03, s. 1.

55. Revoked: O. Reg. 518/03, s. 2.

MAINTENANCE

56. Furniture, equipment and appliances in any room or place where food is manufactured, stored, handled,
displayed, distributed, sold or offered for sale, prepared, processed or served shall be so constructed and
arranged as to permit thorough cleaning and the maintaining of the room or place in a clean and sanitary
condition. R.R.O. 1990, Reg. 562, s. 56.

57. (1) Garbage and wastes shall be removed from a food premise at least twice weekly or as often as is
necessary to maintain the premise in a sanitary condition. R.R.O. 1990, Reg. 562, s. 57 (1).
Garbage receptacles in a room or place where food is manufactured, prepared, handled, processed, displayed, sold or offered for sale, served or stored shall be,

(a) cleaned and sanitized after each use;
(b) removed from the room when full; and
(c) except where a daily collection service is provided, placed in a separate room or place, compartment or bin so constructed and maintained as to exclude insects and vermin and prevent odours and health hazards on the premises. R.R.O. 1990, Reg. 562, s. 57 (2).

All liquid waste from the operation of a food premise shall be disposed of in a sanitary manner. R.R.O. 1990, Reg. 562, s. 57 (3).

Cooking equipment shall be,

(a) provided with a shield, canopy or other device of corrosion-resistant, non-absorbent and readily cleanable material;
or
(b) placed so as to protect walls, ceilings and equipment from grease and food particles. R.R.O. 1990, Reg. 562, s. 58.

Every operator of a food premise shall ensure that in respect of the food premise,

(a) the food premise is swept and cleaned in such a manner as to prevent contamination of food;
(b) no cup, glass, dish or utensil that is chipped or cracked is used in the preparation, service or storage of food;
(c) containers, caps, covers and wrapping materials used in the packaging of food shall be made from materials that,
 (i) are non-toxic, and
 (ii) will prevent contamination or adulteration of the food or milk;
(d) single-service containers and single-service articles are kept in such a manner and place as to prevent contamination of the containers or articles;
(e) every room where food is manufactured, prepared, processed, handled, served, displayed, stored, sold or offered for sale is kept free from,
 (i) materials and equipment not regularly used in the room, and
 (ii) subject to section 60, live birds and animals;
(f) dispensing scoops and dippers for ice cream, frozen confections or desserts are kept in a dipper-well with running water between servings, or in any other manner that will prevent bacterial growth;
(g) the surface of equipment and facilities other than utensils that come in contact with food are washed and sanitized as often as is necessary to maintain such surfaces in a sanitary condition; and
(h) the floors, walls and ceilings of every room where food is manufactured, handled, displayed, prepared, processed, served or stored, sold or offered for sale are kept clean and in good repair. R.R.O. 1990, Reg. 562, s. 59.

Subclause 59 (e) (ii) does not apply to,

(a) a service dog serving as a guide for a blind person or for a person with another medical disability who requires the use of a service dog, if the service dog is in an area of the food premise where food is served, sold or offered for sale;
(b) live birds or animals offered for sale on food premises other than food service premises where the medical officer of health has given approval in writing for the keeping of the birds or animals on the premises; or
(c) live aquatic species displayed or stored in sanitary tanks on food premises. R.R.O. 1990, Reg. 562, s. 60; O. Reg. 74/04, s. 4 (1).

A dog other than a guide dog for the blind is a service dog for the purposes of clause (1) (a) if,

(a) it is readily apparent to an average person that the dog functions as a service dog for a person with a medical disability; or
(b) the person who requires the dog can provide on request a letter from a physician or nurse confirming that the person requires a service dog. O. Reg. 74/04, s. 4 (2).

Table covers, napkins or serviettes used in the service of food shall be clean and in good repair and multi-service napkins and serviettes shall be laundered before each use. R.R.O. 1990, Reg. 562, s. 61.

Cloths and towels used for washing, drying or polishing utensils or cleaning tables shall be,
APPENDICES

(a) in good repair;
(b) clean; and
(c) used for no other purpose. R.R.O. 1990, Reg. 562, s. 62.

63. Toxic and poisonous substances required for maintenance of sanitary conditions shall be,
(a) kept in a compartment separate from food so as to preclude contamination of any food, working
surface or utensil;
(b) kept in a container that bears a label on which the contents of the container are clearly identified;
and
(c) used only in such manner and under such conditions that the substances do not contaminate food or
cause a health hazard. R.R.O. 1990, Reg. 562, s. 63.

PERSONNEL
64. Revoked: O. Reg. 586/99, s. 5.

65. (1) Every operator or employee who handles or comes in contact with food or with any utensil used in the
manufacture, storage, display, sale or offering for sale, preparation, processing or service of food shall,
(a) not use tobacco while so engaged; (b) be clean;
(c) wear clean outer garments;
(d) subject to subsection (2), wear headgear that confines the hair;
(e) wash his or her hands before commencing or resuming work and after each use of a toilet, urinal or privy;
(f) be free from any infectious agent of a disease that may be spread through the medium of food; and
(g) submit to such medical examinations and tests as are required by the medical officer of health to
confirm the absence of an infectious agent mentioned in clause (f). R.R.O. 1990, Reg. 562, s. 65 (1).
(2) Clause (1) (d) does not apply to servers, hosts, server's assistants, bartenders or other employees whose
activities are usually confined to the serving of food to customers. R.R.O. 1990, Reg. 562, s. 65 (2).

66. A person who has a skin disease shall not perform any work that brings him or her into contact with food
unless he or she has obtained the approval of the medical officer of health in writing before handling food.
R.R.O. 1990, Reg. 562, s. 66.

67. Every operator of a food premise shall, in respect of the food premise, ensure the availability of the clean
outer garments and headgear prescribed in subsection 65 (1) and shall ensure compliance with sections 65

PART IV
SANITARY FACILITIES

GENERAL
68. (1) Every food premise shall provide at least one sanitary facility for each sex in accordance with this
section but nothing in this section applies with respect to a vehicle that is used for the transporting of food
or a catering vehicle. O. Reg.586/99, s. 6.
(2) Every sanitary facility in a food premise shall,
(a) have a sign clearly indicating the sex for which it is intended;
(b) be kept clean, sanitary and in good repair at all times. O. Reg. 586/99, s. 6.
(3) Every sanitary facility in a food premise shall be equipped with,
(a) a supply of toilet paper;
(b) a constant supply of hot and cold running water; (c) a supply of soap or detergent in a dispenser;
(d) a durable, easy-to-clean receptacle for used towels and other waste material; and
(e) a continuous cloth roller towel in a mechanical device, a supply of paper towels, a supply of clean
single service towels or a hot air dryer. O. Reg. 586/99, s. 6.
(4) Washbasins, urinals and toilets shall be cleaned and sanitized at least once every work day and as often
as is necessary to maintain them in a sanitary condition. O. Reg. 586/99, s. 6.
(5) Washbasins may be equipped with a tepid water supply from a single tap. O. Reg. 586/99, s. 6.
(6) Access doors to sanitary facilities and toilet cubicles shall not be locked or equipped with coin or token
operated unlocking devices except that cubicles with toilets in excess of the minimum number of toilets required by the Ontario Building Code may be equipped with such locking devices. O. Reg. 586/99, s. 6.

(7) A food premise where water-flush toilets could not be installed is exempt from the requirements of clauses (3) (b), (c) and (e) if, pursuant to a permit issued under the Building Code Act, 1992, non-flush toilets or privies completely separate from the food premise were constructed, and such facilities are lighted and provided with commercially-packaged single-use moist towelettes. O. Reg. 586/99, s. 6.

EMPLOYEES

69. No operator of a food premise shall alter the floor space, number of toilets or washbasins in a sanitary facility without first receiving approval in writing from a Public Health Inspector having jurisdiction in the municipality in which the food premise is located. O. Reg. 586/99, s. 6.

PATRONS OF FOOD SERVICE PREMISES

70. If a food service premise is operated in conjunction with an exhibition, fair, carnival, sports meeting or amusement park located in the same building or on the same grounds, public sanitary facilities may be used as an alternative to facilities that are part of a food service premise as long as the facilities are open when the premise is open. O. Reg. 586/99, s. 6.

CLEANING AND SANITIZING OF UTENSILS

71. (1) Multi-service articles shall be cleaned and sanitized after each use. R.R.O. 1990, Reg. 562, s. 71 (1).

(2) Utensils other than multi-service articles shall be cleaned and sanitized as often as is necessary to maintain them in a clean and sanitary condition. R.R.O. 1990, Reg. 562, s. 71 (2).

(3) Equipment for pasteurization, sterilization and subsequent handling of milk and milk products shall be sanitized immediately prior to use. R.R.O. 1990, Reg. 562, s. 71 (3).

72. (1) Equipment and facilities for the cleaning and sanitizing of utensils shall consist of,

(a) mechanical equipment; or

(b) equipment for washing by hand consisting of,

(i) a three compartment sink or three sinks, of corrosion-resistant material of sufficient size to ensure thorough cleaning and sanitizing of utensils, or

(ii) a two-compartment sink or two sinks, of corrosion-resistant material for the cleaning and sanitizing of utensils where washing and rinsing can be done effectively in the first sink and the second sink is used for sanitizing as described in subsection 75 (1), and

(iii) drainage racks of corrosion-resistant material. R.R.O. 1990, Reg. 562, s. 72 (1); O. Reg. 586/99, s. 7 (1).

(2) Revoked: O. Reg. 586/99, s. 7 (2).

(3) Subclause (1) (b) (ii) does not apply to the cleaning and sanitizing of multi-service articles. R.R.O. 1990, Reg. 562, s. 72 (3).

73. Utensils shall be,

(a) scraped or rinsed;

(b) cleaned;

(c) rinsed; and

(d) sanitized. R.R.O. 1990, Reg. 562, s. 73.

74. Where equipment for washing by hand is used, utensils shall be,

(a) cleaned in a sink in a detergent solution capable of removing soil;

(b) rinsed in a second sink in clean water at a temperature not lower than 43° Celsius; and

(c) sanitized in a third sink. R.R.O. 1990, Reg. 562, s. 74.

75. (1) Utensils shall be sanitized by,

(a) immersion in clean water at a temperature of at least 77° Celsius, or more, for at least forty-five seconds;

(b) immersion in a clean chlorine solution of not less than 100 parts per million of available chlorine at a temperature not lower than 24° Celsius for at least forty-five seconds;

(c) immersion in a clean quaternary ammonium compound solution of not less than 200 parts per million at a temperature not lower than 24° Celsius for at least forty-five seconds;

(d) immersion in a clean solution containing not less than twenty-five parts per million of available
iodine at a temperature not lower than 24° Celsius for at least forty-five seconds; or (c) immersion in any solution containing a sanitizing agent that is non-toxic and that provides a bactericidal result not less than the result provided by clause (a), (b) or (c) and for which a convenient test reagent is available. R.R.O. 1990, Reg. 562, s. 75 (1).

(2) A test reagent for determining the concentration of sanitizer and an accurate thermometer to determine the temperature of the sanitizing solution shall be readily available where the sanitizing takes place. R.R.O. 1990, Reg. 562, s. 75 (2).

76. Despite sections 74 and 75, utensils, other than utensils that come into direct contact with a milk product or ready to eat food, may be cleaned and sanitized in one operation provided that,
(a) the chemical product used is designed for that purpose;
(b) the product container bears directions for use indicating optimum temperature and exposure times;
(c) the product is used in accordance with the directions for use;
(d) a test reagent is readily available on the premises to determine the concentration of the sanitizing agent; and
(e) the utensils so treated are completely rinsed with clean water. R.R.O. 1990, Reg. 562, s. 76.

77. Mechanical equipment shall be,
(a) so constructed, designed and maintained that,
 (i) the wash water is sufficiently clean at all times to clean the dishes and is maintained at a temperature not lower than 60° Celsius or higher than 71° Celsius, and
 (ii) the sanitizing rinse is,
 (A) water that is maintained at a temperature not lower than 82° Celsius and is applied for a minimum of ten seconds in each sanitizing cycle, or
 (B) a chemical solution described in clause 75 (1) (b), (c), (d) or (e); and
(b) provided with thermometers that show wash and rinse temperatures and that are so located as to be easily read. R.R.O. 1990, Reg. 562, s. 77.

78. A food premise is exempt from the provisions of section 77 where the medical officer of health is satisfied that the use of any other machine or device will effectively clean and sanitize utensils and result in a bacterial count on the utensils within the limit prescribed by section 80. R.R.O. 1990, Reg. 562, s. 78.

79. Where food processing equipment is cleaned and sanitized in place without disassembling the equipment, the operator shall ensure that instructions respecting,
(a) the chemicals used for cleaning and sanitizing;
(b) the strength of the chemical solutions used;
(c) the length of time the equipment was exposed to the chemicals; and
(d) the procedures used for cleaning and sanitizing the equipment,
are posted in a place accessible to the person carrying out the cleaning and sanitizing. R.R.O. 1990, Reg. 562, s. 79.

80. The standard plate count from a multi-service article shall not exceed 100 bacterial colonies after cleaning and sanitizing and prior to re-use when tested by an official method in accordance with the standard plate test, utilizing the swab technique. R.R.O. 1990, Reg. 562, s. 80.

81. Utensils that have been cleaned and sanitized shall be transported and stored in such a manner as to prevent contamination. R.R.O. 1990, Reg. 562, s. 81.

82. Where a utensil is so large as to preclude washing and sanitizing by means of sinks or other machines, it shall be washed or scrubbed with a detergent solution, rinsed with clean water and,
(a) sprayed or rinsed with hot water or steam in a manner that creates a temperature of not less than 82° Celsius on the treated surface; or
(b) sprayed or rinsed with a chemical solution of a type described in subsection 75 (1) at double the strength that is set out in the product directions. R.R.O. 1990, Reg. 562, s. 82; O. Reg. 74/04, s. 5.