DRAFT TECHNICAL MEMO

то:	Lorna Zappone
FROM:	Sarah Murray, B.Sc. (Env.)
cc:	Heather Templeton, P.Eng., Carolyn Adams, P.Eng.
SUBJECT:	Contaminant Investigation
	Glen Road Pedestrian Bridge Environmental Assessment
DATE:	July 17, 2017

BACKGROUND

A Contaminant Investigation was carried out by WSP Canada Group Limited (WSP) as per the scope of work included in the Request for Proposal No. 9117-15-7302 for the Glen Road Pedestrian Bridge Environmental Assessment Study. The work included in this memo was completed in support of the evaluation of alternatives for the proposed improvements to the Glen Road Pedestrian Bridge, spanning in a north-south direction, between Bloor Street East and Glen Road in the City of Toronto, Ontario ("Site"). **Figure 1** shows the Site location.

PAST INVESTIGATIONS

A Phase One Environmental Site Assessment (ESA) entitled: "*Phase One Environmental Site Assessment, Glen Road Pedestrian Bridge, Toronto, Ontario*" was completed in August, 2016 and submitted under separate cover. The Phase One ESA identified the following high and moderate areas of potential environmental concern (APECs) located adjacent to or near the Site:

APECs with High Potential for Contamination

- 1 441 Bloor Street East, adjacent to the southwest boundary of the Site. The background information review completed for the Phase One ESA identified records of historical private underground storage tanks (USTs) used for fuel storage on the property installed in 1990 and remaining in use as of 2008. The property was also identified as a generator of wastes including oil skimmings, sludges and light fuels in the 1990s until 2013 (most recent record). The property currently operates as a City of Toronto fire station.
- 2 40 Glen Road, adjacent to the northwest boundary of the Site. The background information review completed for the Phase One ESA identified a Technical Standards and Safety Authority (TSSA) variance indicating that a UST was abandoned at this property. The property was also identified as a registered generator of light fuels in 2009.

610 Chartwell Road Suite 300 Oakville, ON, Canada L6J 4A5

Tel.: +1 905-823-8500 Fax: +1 905-823-8503 www.wsp.com

APECs with Moderate Potential for Contamination

1. 1A Dale Avenue, adjacent to the northeast boundary of the Site. The background information review completed for the Phase One ESA identified the property as a registered waste generator of light fuels from 2006 to 2008.

The sampling locations investigated for this study were based on the location of the identified APECs with high and moderate potential for contamination, as reported in the Phase One ESA.

SCOPE OF THE INVESTIGATION

The scope of the investigation was carried out in accordance with the current best practices, as outlined in the Canadian Standards Association (CSA) Z769-00 (R2013) Phase II Environmental Site Assessment, and in general accordance with the requirements of Ontario Regulation (O.Reg.) 153/04, and the Ministry of the Environmental Climate Change (MOECC) Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario ("MOECC Guidance Document").

This investigation is a component of the larger geotechnical investigation which included the advancement of six boreholes (BH16-01 to BH16-06) in areas of proposed bridge foundations. Of the six borehole locations, five were included in this sampling program; BH16-05 was completed as a geotechnical borehole only as it was not located near an APEC.

The scope of work for the investigation including the following:

- 1 Collection of soil samples from five boreholes (BH16-01 to BH16-04 and BH16-06) located within APECs identified in the Phase One ESA report. Soil samples selected for analysis were based on soil stratigraphy and field conditions described in the borehole logs;
- 2 Submission of soil samples to an accredited laboratory for the analysis of metals and inorganics, petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene and total xylenes (BTEX), and polychlorinated biphenols (PCBs);
- 3 Collection of groundwater samples from monitoring wells installed in four of the boreholes (BH16-01, BH16-02, BH16-03, BH16-06);
- 4 Submission of collected groundwater samples to an accredited laboratory for the analysis of metals and inorganics, PHCs, BTEX and PCBs;
- 5 Submission of one soil sample (representative of worst-case conditions) from each of the proposed areas of future bridge foundations for the O.Reg 558 toxicity characteristic leaching procedure (TCLP) analysis to determine suitability of soil for off-site disposal (i.e. hazardous versus non-hazardous);
- **6** Submission of duplicate soil and groundwater samples for quality control and quality assurance (QA/QC) protocols;
- 7 Submission of asphalt aggregate samples for the analysis of asbestos; and

8 Preparation of a technical memo outlining the findings of the field program and soil and groundwater analytical results.

INVESTIGATION METHOD

DRILLING

The drilling program included the advancement of six boreholes (BH16-1 to BH16-6) to maximum depths of 20 mbgs. Borehole drilling was conducted by Geo-Environmental Drilling Inc., under the immediate direction of WSP Geotechnical Department, between May 3 and 11, 2017.

Boreholes BH16-1, BH16-2, BH16-3 and BH16-6 were advanced using a CM55 drill with hollow stem auger and split spoon sample collection methods. BH16-4 and BH16-5 were completed using a Pionjar drill as the boreholes were located on uneven ground conditions. The borehole locations are shown on **Figure 2**. Details of the subsurface conditions are included in the borehole logs included as **Attachment A**.

SOIL: SAMPLING

Soil samples were collected during the drilling program using 0.6 metre long split spoons. The split spoons were washed between samples to prevent cross contamination of soil samples. Soil samples were collected and handled in accordance with best practices used in the environmental consulting industry and WSP's standard operating procedures. Soil samples were recovered with dedicated nitrile gloves to prevent cross contamination between sampling locations and were placed directly into labeled polyethylene bags for screening. The vapour readings were measured and selected samples were jarred in laboratory prepared bottles for submission for chemical analysis. For samples considered for PHC fraction F1 analysis, a core was recovered in the field from the undisturbed portion of the bag and placed in a laboratory prepared vial containing a measured amount of methanol.

Site geological conditions were observed in the soil samples and recorded into a field log by a WSP field technician indicating the colour, odour, texture, soil type and moisture.

FIELD SCREENING MEASUREMENTS

Total organic vapours (TOVs) were measured to determine if combustible compounds may be present in the collected soil samples, and to assist with the selection of soil samples for laboratory analysis.

TOV readings were measured by inserting a photoionization detector (PID) into soil sample bags to detect vapours that may have accumulated inside the sample bags following sample collection. The PID detects TOVs that emit below an ionization potential of 10.6 eV, which includes a wide range of chemicals such as solvents and fuels. The PID provides an indication of organic contamination in soil but does not measure concentrations of individual contaminants.

The accuracy and precision of the PID depends on soil characteristics, site conditions and weather, which can be difficult to quantify. The instruments are considered to be an accurate and precise indicator of gross contamination in soil vapour.

GROUNDWATER: MONITORING WELL INSTALLATION

Four boreholes (BH16-01, BH16-02, BH16-03, and BH16-06) were completed as monitoring wells. The monitoring wells were constructed in accordance with O.Reg.903, as amended, under the *Ontario Water Resources Act*, with the following construction details:

- Each monitoring well was constructed using 51 mm diameter well screens and polyvinyl chloride (PVC) riser pipe;
- The screened interval was a maximum length of 3.05 metres with a No. 10 slot size screen;
- It should be noted that the monitoring well installed in BH16-1 was constructed using a screen 1.5 metres in length.
- Sand pack, consisting of No. 3 silica sand, was placed around the well screen and the sand pack was extended between 0.3 m above the top of the screen;
- A bentonite seal (hole plug) was then placed around the PVC riser pipe up to within 0.3 m of the ground surface; and
- The monitoring wells were completed with flush mount casing protective covers which were cemented or sealed into place.

The locations of the monitoring wells are shown on Figure 2.

GROUNDWATER: FIELD MEASUREMENT OF WATER QUALITY PARAMETERS

Water levels were measured in each of the monitoring wells on May 19, 2017. The water levels in the wells were measured using a Solinst interface probe with water level measurements recorded from the top of the monitoring well riser. No free-phase hydrocarbon products were observed or measured in any of the monitoring wells. The monitoring wells installed in BH16-1 and BH16-2 were found to be dry during the sampling event.

Water quality parameters were monitored during the purging of groundwater in BH16-3 and BH16-6 using a YSI 556 water quality meter, until the consecutive readings of water quality parameters varied by less than 10%. The YSI unit is able to detect water quality parameters such as temperature, pH and conductivity. The water quality parameters recorded area included in **Table 1** below.

Table 1 - Water Quality Parameter Results

MONITORING WELL ID	TEMPERATURE (^o C)	CONDUCTIVITY (M/S)	PH
BH16-1	Dry	Dry	Dry
BH16-2	Dry	Dry	Dry
BH16-3	16.2	6.97	6.95
BH16-6	12.9	1.17	7.87

GROUNDWATER: SAMPLING

On May 19, 2017, a WSP field technician purged three well volumes from the monitoring wells installed in BH16-3 and BH16-6. As noted, the monitoring wells installed in BH16-1 and BH16-2 were dry. The collected groundwater samples were collected and conveyed directly into laboratory supplied sample containers. Samples submitted for metals analysis were filtered in the field. All groundwater samples were placed in a cooler with ice prior to submission to AGAT Laboratories.

ASPHALT: SAMPLING

A total of twelve asphalt samples collected from the boreholes located on paved roadway surfaces (BH16-01, BH16-02 and BH16-06) were analyzed for asbestos. The collection of asphalt samples was completed in accordance with O.Reg.278/05.

Three samples were collected from the asphalt at BH16-01 (from the top, middle and bottom of the core). The asphalt at BH16-01 Was noted to be consistent layering and colouring throughout.

The asphalt at BH16-02 and BH16-06 was noted to be similar in layering (both boreholes located on Bloor Street East). The asphalt core collected from both boreholes was noted to consist of a blue/dark grey aggregate in the top layer and a light grey aggregate in the middle (second) layer. The bottom of the asphalt core at BH16-02 contained large aggregates, however there was no bottom layer identified in the asphalt core from BH16-06. A combined three samples between BH16-02 and BH16-6 were analyzed from each of the three layers: two samples collected from the top layer at BH16-02 and one sample collected from the top layer at BH16-06; one sample collected from the second (middle) layer at BH16-06; and all three samples collected from the bottom of BH16-02 as no bottom layer was observed at BH16-06.

ANALYTICAL TESTING

SOIL AND GROUNDWATER SAMPLES

Soil and groundwater samples were analyzed by AGAT Laboratories (AGAT) in Mississauga, Ontario, a laboratory accredited with the Canadian Association for Laboratory Accreditation (CALA). Soil samples were collected for laboratory analysis of metals and inorganics, PHCs, BTEX and PCBs. Groundwater samples were collected for laboratory analysis of metals and inorganics, PHCs, BTEX and PCBs.

During the drilling of BH16-3, sewage-like odours were identified between 2.3 and 3.7 mbgs. As such, soil samples within this interval were analyzed for organic nitrogen, total kjeldahl nitrogen (TKN), ammonia, nitrate, nitrite and phenols.

Table 2 below is a summary of the soil samples submitted for laboratory analysis, includingthe corresponding sample depths intervals.

Table 2 - Summary of Sample Analyses in Soil

SAMPLE ID	SAMPLING DEPTHS	METALS AND INORGANICS	PHCS AND BTEX	PCBS	PHENOLS, TKN, ORGANIC NITROGEN, AMMONIA, NITRATE AND NITRITE	TCLP - METALS AND INORGANICS
BH16-1 SS2	0.76-1.37	Х				X
BH16-1 SS3	1.52-2.13			Х		
BH16-1 SS4	2.29-2.90		Х			
BH16-2 SS1	0.30-0.76	Х				
BH16-2 SS4	2.29-2.90		Х			
BH16-3 SS3	1.52-2.13	Х			Х	X (combined
BH16-3 SS4	2.29-2.90				Х	sample)
BH16-3 SS7	4.57-5.18		Х			
BH16-4 SS1	0-0.61	Х				X (combined
BH16-4 SS5	2.44-3.05		Х			sample)
BH16-6 SS2	0.76-1.37	Х				
BH16-6 SS3	1.52-2.13			х		
BH16-6 SS7	4.57-5.18		Х			

A total of 55 soil samples were collected in bags for screening. The TOV readings recorded during the screening of the soil samples were all below 13 ppm and were not indicative of gross PHC impacts. In general, the soil samples with the highest vapour readings were submitted for PHC and BTEX analysis.

The analytical results were compared to the MOECC Table 3, Full Depth Generic Site Condition Standards (SCS) in a Non-Potable Ground Water Condition for Industrial/ Commercial/ Community Property Use in medium to fine texture soils as stated in the "Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the *Environmental Protection Act*", April 15, 2011.

ASPHALT SAMPLES

Asphalt aggregate samples were collected by a WSP field technician during the drilling program and submitted to EMC Scientific Incorporated for analysis of asbestos content using polarized light microscopy – EPA 600.

RESIDUE MANAGEMENT PROCEDURES

Excess soil cuttings from drilling operations were collected and contained in drums for removal off-site pending the laboratory results. Three soil samples representing worst-case soil conditions were submitted to AGAT for TCLP analysis of metals and inorganics. The results of the TCLP analyses were compared against O.Reg.347 and classified as non-hazardous. The

wsp

TCLP analytical results are provided in the Laboratory Certificates of Analysis in **Attachment A**.

The removal of the drums was conducted by Ontario Mini Bin Disposal Services and disposed of at a licensed receiving facility.

QUALITY ASSURANCE AND QUALITY CONTROL MEASURES

Quality assurance and quality control of the soil samples was monitored and maintained in a number of ways:

- **1** The field investigation was completed under operation of WSP standard operating procedures for soil and groundwater sampling;
- 2 Samples were given unique identifications as they were collected, typically identifying the sample location and depth. The sample numbers were recorded in field notes for each location;
- 3 All non-dedicated sampling and monitoring equipment (e.g. interface probe) was cleaned using Alconox and distilled water following each use;
- 4 The split spoon samplers were washed between samples;
- 5 A chain-of-custody form was filled out prior to submitting the samples to the laboratory. The chain-of-custody documented sample movement from collection to receipt at the laboratory and provided sample identification, requested analysis and conditions of samples upon arrival at the laboratory (e.g., temperature, container status, etc.);
- 6 Soil samples were randomly selected by the WSP field staff for duplicate testing;
- 7 Samples were randomly selected by the laboratory for Quality Assurance checks. Generally, one sample for every ten samples submitted is checked. For each parameter, there is an acceptable upper and lower limit for the measured concentration of the parameter. Measured concentrations of analyzed samples must fall within the upper and lower acceptable limits in order for the sample to be valid. If a result exceeds the upper or lower acceptable limits, the sample must be re-analyzed.

REVIEW AND EVALUATION

GEOLOGY

The Site is covered with vegetation on the slopes of the valley and asphalted surfaces on roadways. The materials encountered during the drilling program consist of fill materials (silty clay to clayey, and silty sand) underlain by silt to sandy silt native materials, followed by a silty clay till. A silty clay/shale complex was identified at the base of BH16-3, approximately 10.7 mbgs.

Based on field observations and sieve results, the subsurface soil conditions are classified as fine textured. The grain size analytical results are provided in the Laboratory Certificates of Analysis in **Attachment B**.

SOIL: FIELD SCREENING

The measured TOV readings ranged from 0.1ppm (soil sample collected from BH16-4 between 2.29 and 2.90 mbgs) to 13.0ppm (soil sample collected from BH16-6 between 4.57 and 5.18 mbgs). The recorded TOV readings suggest an insignificant level of combustible compounds present in the subsurface, at the locations sampled.

SOIL QUALITY

A summary of the soil samples exceeding the applicable MOECC Table 3 SCS is included in **Table** 3 below and presented in **Figure 3**:

SAMPLE ID	SAMPLING DEPTH (MBGS)	PARAMETER	MOECC TABLE 3 SCS (FINE) (UG/G)	RESULT (UG/G)
		Cadmium	1.9	3.2
BH16-01 SS2	DI SS2 0.76-1.37	Electrical Conductivity	1.4	1.79
		Sodium Adsorption Ratio	12 (no units)	24.1 (no units)
BH16-02 SS1	0.30-0.76	Electrical Conductivity	1.4	2.98
BH10-02 331	0.50-0.76	Sodium Adsorption Ratio	12 (no units)	58.3 (no units)
BH16-04 SS1	0-0.61	Lead	120	231
5110-04 331	BHI0-04 551 0-0.01 -	Zinc	340	349

Table 3 - Soil Exceedance Summary Table

Based on the results of the soil investigation, it is concluded that the surficial soils at BH16-01, BH16-02 and BH16-04 are in exceedance of the MOECC Table 3 SCS due to the elevated chemical concentrations of metals, electrical conductivity (EC) and sodium adsorption ratio (SAR).

The MOECC O.Reg 153/04 does not specify a criteria for the concentration of organic nitrogen and TKN in soil. However, in 1989 the MOECC, then referred to as the Ontario Ministry of the Environment, produced a document entitled "Guidelines for the Decommissioning and Cleanup of Sites in Ontario" which included a total nitrogen standard of 0.6%, which corresponds to 6,000 ug/g. Because the organic nitrogen and TKN concentrations detected in the soil at BH16-03 between 1.5 and 2.9 mbgs are much lower than the previous 1989 standard, they are not considered to present at contaminant concentrations.

No PCBs, PHCs or BTEX were reported to have concentrations exceeding the applicable MOECC Table 3 SCS in soil.

The analytical soil results are provided in **Table 4** (Metals and Inorganics and Phenols) and **Table 5** (PHCs, BTEX and PCBs) following the text. AGAT's Certificates of Analyses are included in **Attachment B**.

One composite soil sample representing worst-case soil conditions was submitted from BH16-1, BH16-3 and BH16-4 (one per borehole location) for the TCLP analysis of metals and inorganics. The results of the TCLP analysis indicate that the soil would be classified as a solid, non-hazardous waste. The TCLP analytical results are summarized in **Table 6** (TCLP metals and inorganics) and Certificates of Analyses are included in **Attachment B**.

GROUNDWATER QUALITY

Groundwater samples were collected from monitoring wells at BH16-3 and BH16-6 on May 19, 2017 and submitted for the analyses of metals and inorganics, PHCs, BTEX and PCBs. During the groundwater sampling event on May 19, 2017, monitoring well at BH16-01 and BH16-02 were observed to be dry and as such groundwater samples were not submitted from these two dry monitoring well locations. Groundwater samples submitted for metals analysis were filtered in the field. A summary of the groundwater samples exceeding the applicable MOECC Table 3 SCS is included in **Table 7** below and presented in **Figure 4**:

Table 7 - Groundwater Exceedance Summary Table

BOREHOLE ID	PARAMETER	MOECC TABLE 3 SCS (FINE) (UG/L)	RESULT (UG/L)
BH16-3	PHC F2	150	1200
BH16-6	CHLORIDE	2,300,000	2,490,000

No metals, BTEX or PCBs were reported to have concentrations exceeding the applicable MOECC Table 3 SCS in groundwater. The analytical groundwater results are provided in **Table 8** (Metals and Inorganics), **Table 9** (PHCs, PCBs and BTEX) following the text. AGAT's Certificates of Analyses are included in **Attachment B**.

ASBESTOS ANALYSIS

The twelve asphalt samples analyzed for asbestos were identified as non-detect, meaning that no asbestos fibres were observed in any of the samples submitted for analysis. The laboratory Certificates of Analysis are included in **Attachment B**.

QUALITY ASSURANCE AND QUALITY CONTROL RESULTS

AGAT completed a variety of quality assurance/quality control (QA/QC) measures on the soil and groundwater samples submitted as part of the sampling program. These QA/QC measures included: sample replicates, matrix spiked laboratory blanks, and process blanks.

In addition, WSP submitted one duplicate soil sample for analysis of PCBs, PHCs and BTEX and one duplicate groundwater sample for analysis of metals and inorganics and PHCs and BTEX. The duplicate sample analytical results for soil are included in **Table 10** and for groundwater in **Table 11** following the text. The submission of these samples demonstrated the accuracy and reliability of the laboratory procedures and instruments. Relative percent difference (RPD) for analytes in duplicate samples were evaluated for this investigation. The RPD calculation is only applicable when both original and duplicate concentrations are greater than five times the laboratory reporting detection limit (RDL).

Acceptable RPD limits are as follows:

- Metals and inorganics 20% water; 30-40% soil (exception of conductivity at 10%)
- VOCs 30% water; 50% soil
- PHCs and PCBs 30% water; 30% soil

The results of the soil duplicate analysis indicated that the relative percent differences (RPDs) between the parent and the duplicate samples (see **Table 10**) were within acceptable limits.

WSP also submitted one duplicate groundwater sample for analysis of metals and inorganics, PHCs and BTEX. The results of the groundwater duplicate analysis indicated that the RPDs between the parent and duplicate samples were not within the acceptable limits for the following parameter analyzed in groundwater collected from BH16-6:

Vanadium – 24.9%

The concentration of vanadium in the parent and duplicate groundwater samples were several orders of magnitude lower than the MOECC Table 3 SCS. The variability noted in the sampling and analysis will not affect the interpretation of the results.

CONCLUSIONS

Based on the results of the laboratory analysis of the submitted soil samples, exceedances to the MOECC Table 3 SCS were noted in the following samples:

- Soil sample collected between 0.76 and 1.37 mbgs from BH16-1 located in the north portion of the Site exceeded for cadmium, EC and SAR;
- Soil sample collected between 0.03 and 0.76 mbgs from BH16-2 in the south portion of the Site exceeded for EC and SAR; and
- Soil sample collected between surface and 0.61 mbgs from BH16-4 in the north portion of the Site exceeded for lead and zinc.

Detectable concentrations of organic nitrogen and TKN were observed at BH16-3 between 1.52 and 2.90 mbgs. Because there are no standards for organic nitrogen and TKN in O.Reg.153/04, the detected concentrations of organic nitrogen and TKN were compared to a 1989 guideline published by the MOECC (then referred to as the Ontario Ministry of Environment), which includes a standard of total nitrogen at 0.6% (which corresponds to 6,000 ug/g). Because the detections of organic nitrogen and TKN identified at BH16-3 are much lower than 6,000 ug/g the two parameters are not considered to be present at contaminant concentrations.

Based on the results of the laboratory analysis of the submitted groundwater samples, exceedances to the MOECC were noted in the following samples:

- Groundwater sample collected from the monitoring well installed in BH16-3 exceeded for PHC F2; and
- Groundwater sample collected from the monitoring well installed in BH16-6 exceeded for chloride.

The asphalt cores collected and analyzed for asbestos content were identified as non-detect, meaning that no asbestos fibres were observed in any of the asphalt samples.

RECOMMENDATIONS

Based on the results of the Contaminant Investigation, the following recommendations are made:

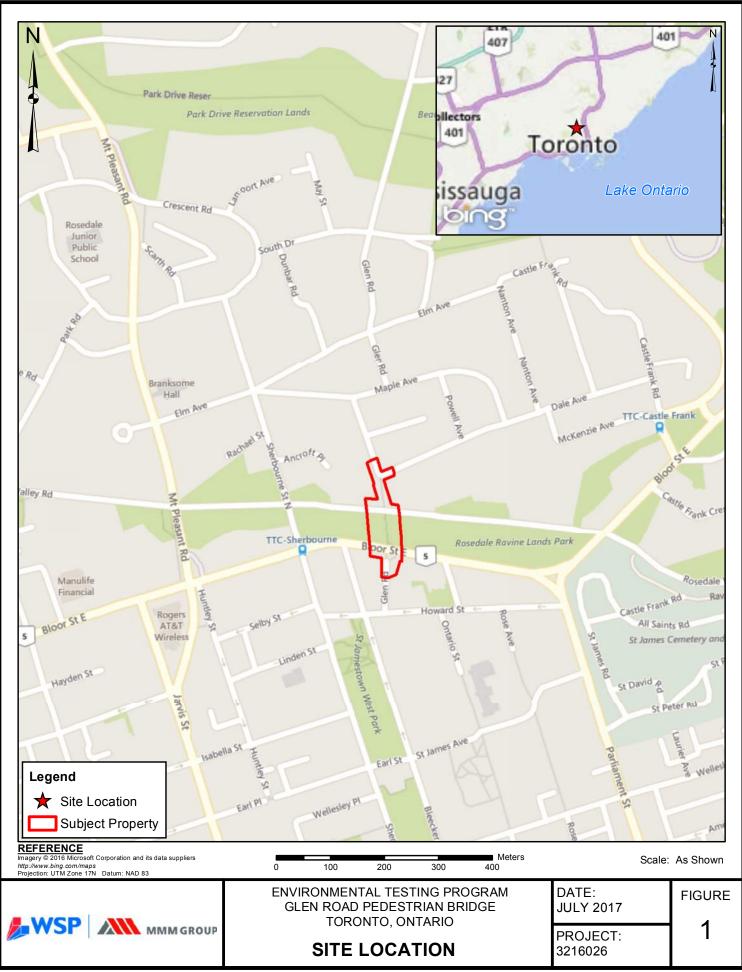
 Excess surficial soil generated during bridge foundation construction in the areas of BH16-1, BH16-2 and BH16-4 should be managed as contaminated material in accordance with MOECC regulations and disposed of at a MOECC licensed receiving facility. Additional soil

vsp

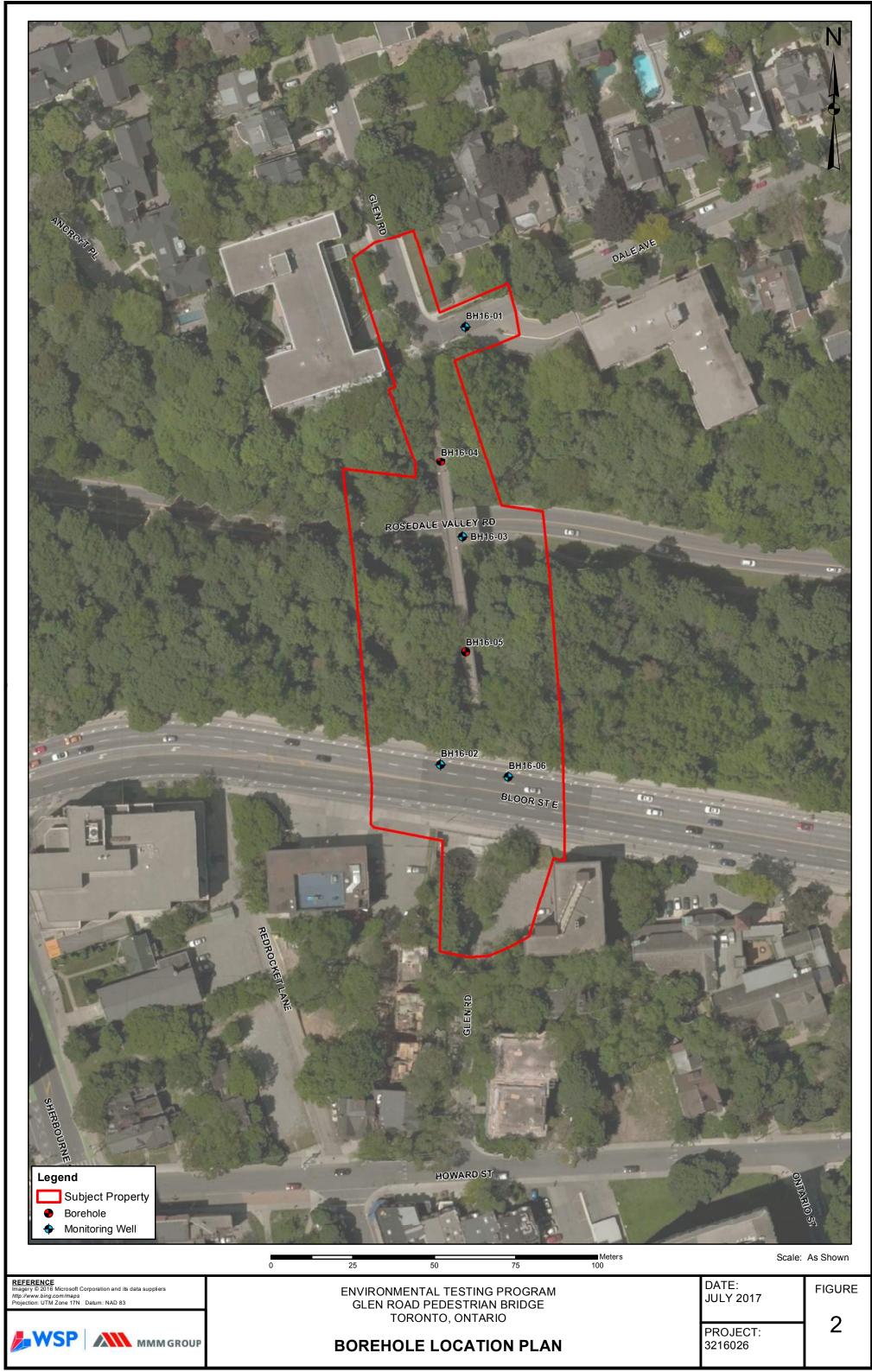
sampling may be warranted to determine the vertical limit of the soil to be managed as contaminated at these locations;

- Excess soil generated during bridge foundation construction in the area of BH16-3 between 1.5 and 3 mbgs should be managed with appropriate health and safety precautions due to the potential presence of sewage effluent within this depth interval;
- Excess groundwater generated during bridge foundation construction in the areas of BH16-3 must be managed as contaminated groundwater in accordance with MOECC regulations and disposed of at a MOECC licensed receiving facility;
- In general, groundwater generated during bridge foundation construction must be tested to ensure it is compliant with City of Toronto Sewer-Use Bylaw prior to discharging to sewers; and
- A MOECC licenced well contractor should be retained to decommission the four monitoring wells on the Subject Property, as outlined in O. Reg. 903 under the *Ontario Water Resources Act*. The decommissioning should be overseen by a qualified environmental consultant and copies of the well decommissioning records should be provided to the City of Toronto or a City of Toronto representative (i.e. Contract Administrator).

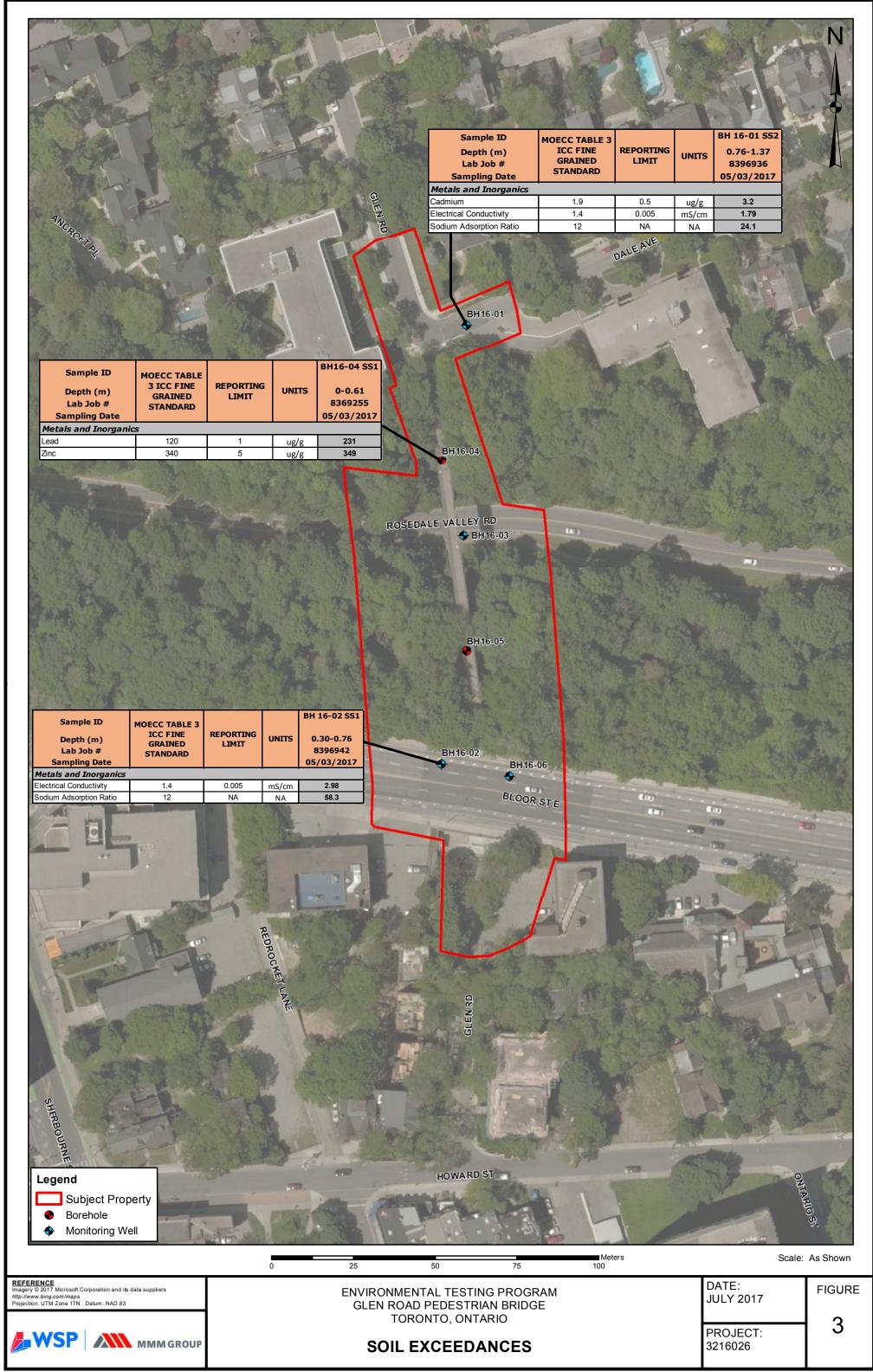
STATEMENT OF LIMITATIONS

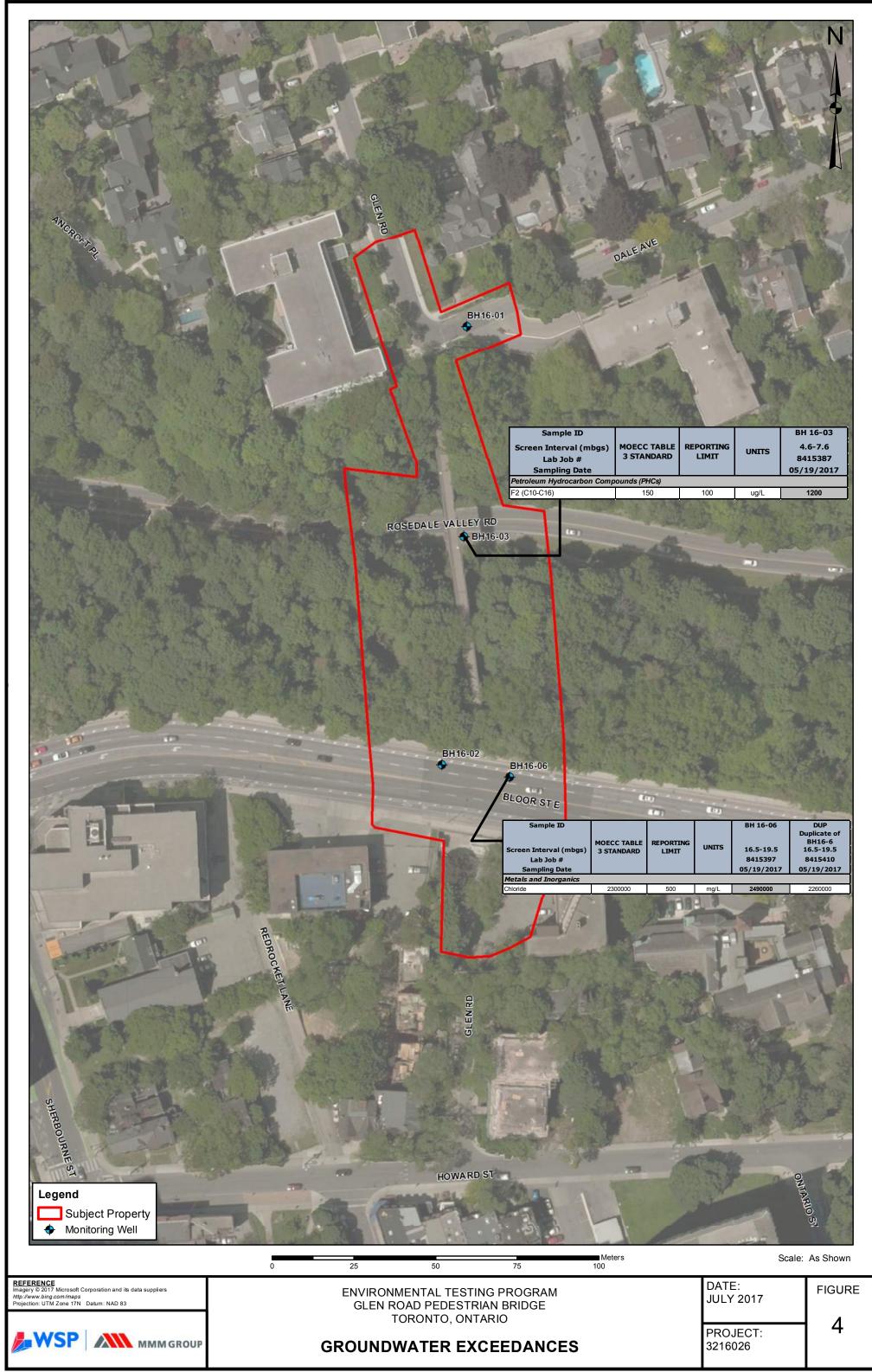

The Contaminant Investigation was carried out in accordance with generally accepted professional practices, industry standards and applicable environmental regulations. The Contaminant Investigation was conducted to obtain information about environmental conditions of the soil, groundwater and asphalt at the Site. This memo report has been prepared and based on information from other sources as indicated in the report, and on information obtained at discrete borehole and monitoring well sampling locations. The conditions reported herein were those encountered at the Site at the time the work was performed and as present at the discrete sampling locations. Conditions between sampling locations may be different than those encountered at the sampling locations and WSP is not responsible for such differences.

The Contaminant Investigation was prepared for the exclusive use by the City of Toronto. Any use of the report by any other party without the written consent of WSP is the sole responsibility of such party. WSP accepts no responsibility for damages that may be suffered by any third party as a result of decisions made or actions taken based on this report.


ENCLOSED

Figures Tables Attachment A – Borehole logs Attachment B – Laboratory Certificates of Analyses FIGURES




I:\EngSoftware\2016\32\3216026\I&E\Env Mgmt\ARC\MXD\Environmental Testing Program\Figure 1 Site Location.mxd

I:\EngSoftware\2016\32\3216026\I&E\Env Mgmt\ARC\MXD\Environmental Testing Program\Figure 2 Borehole Location Plan.mxd

I:\EngSoftware\2016\32\3216026\I&E\Env Mgmt\ARC\MXD\Environmental Testing Program\Figure 3 Soil Exceedances.mxd

I:\EngSoftware\2016\32\3216026\I&E\Env Mgmt\ARC\MXD\Environmental Testing Program\Figure 4 GW Exceedances.mxd

TABLES

Table 4: Summary of Analytical Results in SoilMetals and Inorganics and PhenolsGlen Road Pedestrian Bridge, Toronto, Ontario

Sample ID Depth (m) Lab Job # Sampling Date	MOECC TABLE 3 STANDARD	REPORTING LIMIT	UNITS	BH 16-01 SS2 0.76-1.37 8396936 05/03/2017	BH 16-02 SS1 0.30-0.76 8396942 05/03/2017	BH16-03 SS3 1.52-2.13 8369142 05/03/2017	BH16-03 SS4 2.29-2.90 8369143 05/03/2017	BH16-04 SS1 0-0.61 8369255 05/03/2017	BH16-06 SS2 0.76-1.37 8396949 05/03/2017
Metals and Inorganics						,,			
Antimony	50	0.8	ug/g	2.5	1	<0.8	<0.8	0.8	<0.8
Arsenic	18	1	ug/g	3	5	2	2	7	3
Barium	670	2	ug/g	50	94	31	38	90	26
Beryllium	10	0.5	ug/g	<0.5	0.5	<0.5	<0.5	<0.5	<0.5
Boron (Hot Water Soluble)	2	0.10	ug/g	0.25	0.57	0.22	0.26	0.54	0.24
Cadmium	1.9	0.5	ug/g	3.2	0.9	<0.5	<0.5	0.5	<0.5
Chromium	160	2	ug/g	16	21	11	13	45	32
Chromium VI	10	0.2	ug/g	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cobalt	100	0.5	ug/g	6.2	7	3.1	5.1	11.8	3.1
Copper	300	1	ug/g	15	26	7	10	120	12
Lead	120	1	ug/g	41	96	14	9	231	29
Mercury	20	0.10	ug/g	<0.10	0.26	0.16	<0.10	0.18	0.17
Molybdenum	40	0.5	ug/g	<0.5	<0.5	<0.5	<0.5	6.8	<0.5
Nickel	340	1	ug/g	14	16	7	11	47	7
Selenium	5.5	0.4	ug/g	<0.4	0.5	<0.4	<0.4	<0.4	<0.4
Silver	50	0.2	ug/g	<0.2	<0.2	<0.2	<0.2	0.3	<0.2
Thallium	3.3	0.4	ug/g	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Vanadium	86	1	ug/g	20	23	16	21	30	12
Zinc	340	5	ug/g	111	96	30	25	349	48
рН	5 to 9	NA	pH Units	8.19	9.22	7.26	7.66	7.51	11.2
Electrical Conductivity	1.4	0.005	mS/cm	1.79	2.98	0.415	0.462	0.724	1.4
Sodium Adsorption Ratio	12	NA	N/A	24.1	58.3	3.69	3.7	6.8	9.55
Cyanide, Free	0.051	0.040	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Organic Nitrogen	6,000	50	µg/g	NA	NA	416	235	NA	NA
Total Kjeldahl Nitrogen	6,000	50	µg/g	NA	NA	416	235	NA	NA
Ammonia as N (KCI Extr)	NV	5	µg/g	NA	NA	<5	<5	NA	NA
Nitrate as N (2:1)	NV	1	µg/g	NA	NA	<1	<1	NA	NA
Nitrite as N (2:1)	NV	1	µg/g	NA	NA	<1	<1	NA	NA
Boron (Total)	120	5	ug/g	6	7	<5	<5	9	<5
Uranium	33	0.5	ug/g	<0.5	0.6	<0.5	0.6	0.5	<0.5
Phenols									
Phenols	9.4	1	mg/Kg	NA	NA	<1	<1	NA	NA

Notes:

'NV ' : No Standard establishedNA: Parameter not analyzedMOECC Table 3: Ontario Ministry of the Environment, "Soil, Ground Water and SedimentStandards for Use Under Part XV.1 of the Environmental Protection Act, " March 2004,
amended July 1, 2011. Full Depth Generic Site Condition Standards for Soil in a Non-
Potable Ground Water Condition for Industrial/Commercial/Community Property Use with
Fine Textured Soils.

The Standard used for Organic Nitrogen and Total Kjeldahl Nitrogen is from the 1989 document published by the Ontario Ministry of Environment entitled "Guidelines for the Decommissioning and Cleanup of Sites in Ontario".

100	Exceeds MOECC Table 3 Standards
100	Detection Limit Exceeds MOECC Standard

Table 5: Summary of Analytical Results in Soil PHCs, BTEX and PCBs Glen Road Pedestrian Bridge, Toronto, Ontario

Sample ID Depth (m) Lab Job # Sampling Date	MOECC TABLE 3 STANDARD	REPORTING LIMIT	UNITS	BH 16-01 SS3 1.52-2.13 8396938 05/10/2017	Dup 1 Duplicate of BH16-01-SS3 8396955 05/10/2017	BH 16-01 SS4 2.29-2.90 8396939 05/10/2017	Dup 2 Duplicate of BH16-01-SS4 8396956 05/10/2017	BH 16-02 SS4 2.29-2.90 8396945 05/10/2017	4.57-5.18 8369251	BH16-04 SS5 2.44-3.05 8369257 05/03/2017	1.52-2.13 8396951	4.57-5.18 8396952
Petroleum Hydrocarbon	Compounds (PHC	's)										
F1 (C6-C10)	65	5	ug/g	NA	NA	<5	<5	<5	<5	<5	NA	<5
F1 (C6-C10) - BTEX	65	5	ug/g	NA	NA	<5	<5	<5	<5	<5	NA	<5
F2 (C10-C16)	250	10	ug/g	NA	NA	<10	<10	<10	<10	<10	NA	<10
F3 (C16-C34)	2500	50	ug/g	NA	NA	<50	<50	<50	<50	<50	NA	2000
F4 (C34-C50)	6600	50	ug/g	NA	NA	<50	<50	<50	<50	<50	NA	1100
F4 Gravimetric	6600	50	ug/g	NA	NA	NA	NA	NA	NA	NA	NA	NA
Reached Baseline at C50	NV	NV	NV	NA	NA	YES	YES	YES	YES	YES	NA	YES
Polychlorinated Biphenol	s (PCBs)											
Polychlorinated Biphenols	1.1	0.1	ug/g	<0.1	<0.1	NA	NA	NA	NA	NA	<0.1	NA
Volatile Organic Compou	nds (VOCs)											
Benzene	0.4	0.02	ug/g	NA	NA	<0.02	<0.02	< 0.02	<0.02	<0.02	NA	0.12
Ethylbenzene	19	0.05	ug/g	NA	NA	<0.05	<0.05	<0.05	<0.05	<0.05	NA	<0.05
Toluene	78	0.08	ug/g	NA	NA	<0.08	<0.08	<0.08	<0.08	<0.08	NA	<0.08
Total Xylenes	30	0.05	ug/g	NA	NA	<0.05	<0.05	< 0.05	< 0.05	< 0.05	NA	< 0.05

 Notes:
 NA: Parameter not analyzed

 'NV ' : No Standard established
 NA: Parameter not analyzed

 MOECC Table 3: Ontario Ministry of the Environment, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " March 2004, amended July 1, 2011.

 Full Depth Generic Site Condition Standards for Soil in a Non-Potable Ground Water Condition for Industrial/Commercial/Community Property Use with Fine Textured Soils.

100 100 Exceeds MOECC Table 3 Standards Detection Limit Exceeds MOECC Standard

Table 6: Summary of Analytical Results in SoilTCLP Metals and InorganicsGlen Road Pedestrian Bridge, Toronto, Ontario

Sample ID Lab Job # Date Sampled	MOE O.Reg. 558 SCH. 4	REPORTING LIMIT	Units	BH16-01 SS- Combined 8396984 5/10/2017	BH16-03 SS- Combined 8369259 05/03/2017	BH16-04 SS- Combined 8369260 05/03/2017
TCLP Metals and Inorganics						
Leachable Fluoride (F-)	150	0.05	mg/L	0.13	0.18	0.23
Leachable Free Cyanide	20	0.05	mg/L	<0.05	<0.05	<0.05
Leachable Nitrate + Nitrite	1000	0.70	mg/L	<0.70	<0.70	<0.70
Leachable Mercury (Hg)	0.1	0.01	mg/L	<0.01	<0.01	<0.01
Leachable Arsenic (As)	2.5	0.010	mg/L	<0.010	<0.010	<0.010
Leachable Barium (Ba)	100	0.100	mg/L	0.665	0.896	0.618
Leachable Boron (B)	500	0.050	mg/L	<0.050	<0.050	<0.050
Leachable Cadmium (Cd)	0.5	0.010	mg/L	<0.010	<0.010	<0.010
Leachable Chromium (Cr)	5	0.010	mg/L	0.011	0.016	0.015
Leachable Lead (Pb)	5	0.010	mg/L	<0.010	0.071	<0.010
Leachable Selenium (Se)	1	0.010	mg/L	<0.010	<0.010	<0.010
Leachable Silver (Ag)	5	0.010	mg/L	<0.010	<0.010	<0.010
Leachable Uranium (U)	10	0.050	mg/L	<0.050	<0.050	<0.050

Notes:					
'NV ': No Standard established	NA: Parameter not analyzed				
MOECC O.Reg. 558 Sch. 4: Ontario Ministry of Environment - Leachate Quality Criteria					
100	Exceeds MOECC Leachate Quality Criteria				

Page 1 of 1 July 2017

Table 8: Summary of Analytical Results in Groundwater Metals and Inorganics Glen Road Pedestrian Bridge, Toronto, Ontario

Sample ID Screen Interval (mbgs) Lab Job # Sampling Date	MOECC TABLE 3 STANDARD	REPORTING LIMIT	UNITS	BH 16-03 4.6-7.6 8415387 05/19/2017	BH 16-06 16.5-19.5 8415397 05/19/2017	DUP Duplicate of BH16-06 16.5-19.5 8415410 05/19/201
Metals and Inorganics			1			
Antimony	20000	1.0	ug/L	<1.0	<1.0	<1.0
Arsenic	1900	1.0	ug/L	2.6	7.9	9.4
Barium	29000	2.0	ug/L	288	2130	2100
Beryllium	67	0.5	ug/L	<0.5	<0.5	<0.5
Boron (Total)	45000	10.0	ug/L	59.8	50.8	46.3
Cadmium	2.7	0.2	ug/L	<0.2	<0.2	<0.2
Chromium	810	2.0	ug/L	5.3	49.5	43.3
Chromium VI	140	5	ug/L	<5	<5	<5
Cobalt	66	0.5	ug/L	<0.5	0.9	1
Copper	87	1.0	ug/L	<1.0	2.9	2.1
Lead	25	0.5	ug/L	0.7	1.5	1.7
Mercury	2.8	0.02	ug/L	<0.02	<0.02	<0.02
Molybdenum	9200	0.5	ug/L	3	<0.5	<0.5
Nickel	490	1.0	ug/L	<1.0	3.8	5.5
Selenium	63	1.0	ug/L	1.4	3	3.9
Silver	1.5	0.2	ug/L	<0.2	<0.2	<0.2
Thallium	510	0.3	ug/L	0.6	0.6	0.5
Vanadium	250	0.4	ug/L	3.7	9.5	12.2
Zinc	1100	5.0	ug/L	<5.0	<5.0	6.3
рН	5 to 9	NA	pH Units	7.95	7.79	7.67
Electrical Conductivity	NV	2	mS/cm	1230	7580	7540
Cyanide, Free	66	2	ug/L	<2	<2	<2
Sodium	2300000	1000	ug/L	73200	782000	774000
Chloride	2300000	500	mg/L	181000	2490000	2260000
Uranium	420	0.5	ug/L	<0.5	<0.5	<0.5

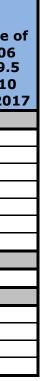
Notes:

NA: Parameter not analyzed

'NV ' : No Standard established MOECC Table 3: Ontario Ministry of the Environment, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " March 2004, amended July 1, 2011. Full Depth Generic Site Condition Standards for Non-Potable Ground Water for All Types of Property Use with fine textured soils.

100	Exceeds MOECC Table 3 Standards
100	Detection Limit Exceeds Applicable Standard

Page 1 of 1 July 2017


Table 9: Summary of Analytical Results in GroundwaterPHCs, PCBs and BTEXGlen Road Pedestrian Bridge, Toronto, Ontario

Sample ID Screen Interval (mbgs) Lab Job # Sampling Date	MOECC TABLE 3 STANDARD	REPORTING LIMIT	UNITS	BH 16-03 4.6-7.6 8415387 05/19/2017	BH 16-06 16.5-19.5 8415397 05/19/2017	DUP Duplicate BH16-06 16.5-19. 8415410 05/19/20
Petroleum Hydrocarbon Com	oounds (PHCs)					
F1 (C6-C10)	750	25	ug/L	<25	<25	<25
F1 (C6-C10) - BTEX	750	25	ug/L	<25	<25	<25
F2 (C10-C16)	150	100	ug/L	1200	<100	<100
F3 (C16-C34)	500	100	ug/L	<100	<100	<100
F4 (C34-C50)	500	100	ug/L	<100	<100	<100
F4 Gravimetric	500	500	ug/L	NA	NA	NA
Reached Baseline at C50	NV	NV	NV	YES	YES	YES
Polychlorinated Biphenyls (Po	CBs)					
Total PCBs	15	0.1	ug/L	<0.1	<0.1	<0.1
Benzene Ethylbenzez Toulene	and Total Xylenes (BTEX)			- 	
Benzene	430	0.20	ug/L	<0.20	<0.20	<0.20
Ethylbenzene	2300	0.10	ug/L	<0.10	<0.10	<0.10
Toluene	18000	0.20	ug/L	<0.20	<0.20	<0.20
Total Xylenes	4200	0.20	ug/L	<0.20	<0.20	<0.20

Notes:

'NV ' : No Standard establishedNA: Parameter not analyzedMOECC Table 3: Ontario Ministry of the Environment, "Soil, Ground Water and SedimentStandards for Use Under Part XV.1 of the Environmental Protection Act, " March 2004,amended July 1, 2011. Full Depth Generic Site Condition Standards for Non-Potable GroundWater for All Types of Property Use with fine textured soils.

100	Exceeds MOECC Table 3 Standards
100	Detection Limit Exceeds MOECC TABLE 3 STANDARD

Page 1 of 1 July 2017

Table 10: Summary of Relative Percent Differences (RPDs) in SoilGlen Road Pedestrian Bridge, Toronto, Ontario

Parameter	MOECC Alert	RDL	Sample ⁽¹⁾	Duplicate	% Difference
	Criteria		BH 16-01 SS4	Dup 2	
BTEX and PHCs					
F1 (C6-C10)	30%	5	<5	<5	-
F1 (C6-C10) - BTEX	30%	5	<5	<5	-
F2 (C10-C16)	30%	10	<10	<10	-
F3 (C16-C34)	30%	50	<50	<50	-
F4 (C34-C50)	30%	50	<50	<50	-
			(1)		
Parameter	MOECC Alert	RDL	Sample ⁽¹⁾	Duplicate	% Difference
Parameter	MOECC Alert Criteria	RDL	Sample ⁽¹⁾ BH 16-01 SS3	Duplicate Dup 1	% Difference
Parameter PCBs		RDL	-	-	% Difference
		RDL 0.1	-	-	% Difference
PCBs Polychlorinated Biphenols	Criteria		BH 16-01 SS3	Dup 1	% Difference
PCBs	Criteria	0.1	BH 16-01 SS3	Dup 1	% Difference
PCBs Polychlorinated Biphenols	Criteria 30%	0.1 ams per gram (µ	<0.1 sg/g) unless otherwise noted.	Dup 1	% Difference

RPD could not be calculated

RPD exceeds MOECC Alert Criteria

55.2%

Table 11: Summary of Relative Percent Differences (RPDs)in GroundwaterGlen Road Pedestrian Bridge, Toronto, Ontario

Parameter	MOECC Alert	RDL	Sample ⁽¹⁾	Duplicate	% Difference				
i ululletel	Criteria	ND L	BH 16-06	DUP					
Metals and Inorgan	nics								
Antimony	20%	1.0	<1.0	<1.0	-				
Arsenic	20%	1.0	7.9	9.4	17.3%				
Barium	20%	2.0	2130	2100	1.4%				
Beryllium	20%	0.5	<0.5	<0.5	-				
Boron (Total)	20%	10.0	50.8	46.3	-				
Cadmium	20%	0.2	<0.2	<0.2	-				
Chromium	20%	2.0	49.5	43.3	13.4%				
Chromium VI	20%	5	<5	<5	-				
Cobalt	20%	0.5	0.9	1	-				
Copper	20%	1.0	2.9	2.1	-				
Lead	20%	0.5	1.5	1.7	-				
Mercury	20%	0.02	<0.02	<0.02	-				
Molybdenum	20%	0.5	<0.5	<0.5	-				
Nickel	20%	1.0	3.8	5.5	-				
Selenium	20%	1.0	3	3.9	-				
Silver	20%	0.2	<0.2	<0.2	-				
Thallium	20%	0.3	0.6	0.5	-				
Vanadium	20%	0.4	9.5	12.2	24.9%				
Zinc	20%	5.0	<5.0	6.3	-				
Electrical Conductivity	10%	2	7580	7540	0.5%				
Cyanide, Free	20%	2	<2	<2	-				
Sodium	20%	1000	782000	774000	1.0%				
Chloride	20%	500	2490000	2260000	9.7%				
Uranium	20%	0.5	<0.5	<0.5	-				

Parameter	MOECC Alert	RDL	Sample ⁽¹⁾	Duplicate	% Difference
	Criteria		BH 16-06	DUP	
BTEX and PHCs					
F1 (C6-C10)	30%	25	<25	<25	-
F1 (C6-C10) - BTEX	30%	25	<25	<25	-
F2 (C10-C16)	30%	100	<100	<100	-
F3 (C16-C34)	30%	100	<100	<100	-
F4 (C34-C50)	30%	100	<100	<100	-
F4 Gravimetric	30%	500	NA	NA	-

Notes:	
(1)	All results reported in micrograms per gram (µg/g) unless otherwise noted.
<	Parameter not detected above value specified
% Difference	Relative Percent Difference = (X-Y)/Average(X,Y) x 100% where X is the sample and Y is the duplicate
-	RPD could not be calculated
40.5%	RPD exceeds MOECC Alert Criteria

ATTACHMENT A

BOREHOLE LOGS

11.	SP .				LO	g of	BOR	EHOLE	3H16	-1									1	OF 1
PROJ	ECT: Glenn Road Pedestrian Bridge EA	Stuc	dy													REF.	NO.	: 161	Л-0141	0-01
CLIEN	T: WSP-MMM Group Limited							Method: Ho	llow Ste	em Au	ger					ENC	L NO	.: 1		
PROJ	ECT LOCATION: Toronto, Ontario							Diameter: 2	03 mm							ORIG	GINA	TED	BY E	Y
DATU	IM: Geodetic							Date: May/	10/2017	to N	/lay/10/2	2017				COM	PILE	D BY	r N	IP
BH LC	DCATION: N 4836859 E 314873															CHE	CKEI) BY	V	W
	SOIL PROFILE		s	AMPL	ES	~		DYNAMIC CC RESISTANCE	PLOT		ION	Р			JRAL	LIQUID		F 1	REM	IARKS
(m)		片				GROUND WATER CONDITIONS		20 4	0 60) 80	0 100			C NATI MOIS CON		LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)		ND N SIZE
ELEV	DESCRIPTION	STRATA PLOT	ъ		BLOWS 0.3 m	D NOI	NOL	SHEAR ST		TH (kP			W _P	(v 5	WL	E) (K	(kN/m		BUTION
DEPTH		ZAT/	NUMBER	ТҮРЕ			ELEVATION	 UNCONF QUICK TI 		+ ; × I	Sensitivity	Ē	WAT	FER CC	NTEN	Г (%)	9 Q Q	NATU	(%)
	Ground Surface	STF	R	IYI	ż	<u> Я</u> С			0 60				1	0 2	0 3	30			GR SA	SI CL
- 110:0	ASPHALT: 170mm GRANULAR FILL: 200mm sand,	\sim					Flush	Mount Cove	r											
109: 8	trace gravel, brown, moist, loose.	\bigotimes	1T	SS	4			-						0						
- 0.4	FILL: silty clay to clayey silt, trace gravel, trace to some sand, brown to	\bigotimes	1B	SS				-						o						
-	dark brown, moist, firm.	\bigotimes						-												
1		\bigotimes	2	SS	6									0					0 10	58 32
-	sandy from 1.1m to 1.4m	\bigotimes					109	-												
-		\bigotimes					-Holep	lua												
-	occasional sand seams	\bigotimes						F												
2		\bigotimes	3	SS	7									0						
- 107.9		\bigotimes					108	-												
- 2.3	SILTY CLAY: trace sand, brown to						100	-												
-	grey, moist, stiff.		4	SS	11			-								0				
-							Cond	-												
3							Sand													
							107													
-			5	SS	8	l∶⊟:										۹ ا				
-			<u> </u>					-												
- - 4							Scree	n F												
			6	SS	12		106	-								>				
-								-												
-		1.				: =:		-												
-			-	SS	14		. .												0 2	40 57
5			'	55	14		-Bento	nite											03	40 57
105.0 - 5.2	END OF THE BOREHOLE	[X.X	—				105													
	Note:																			
	 50mm dia. monitoring well was installed upon completion. 																			
	Water Level Readings:																			
	Date Depth (m) Elevation (m)																			
	May10-17 dry May17-17 dry																			
							1													
							1													
							1													
							1													
							1													
							1													
							1													
						GRAPH	1				8=3%									

CLIENT: WSP-MMM Group Limited Method: Hollow Stem Auger ENCL M PROJECT LOCATION: Toronto, Ontario Diameter: 203 mm ORIGIN DATUM: Geodetic Date: May/10/2017 to May/10/2017 COMPIL BH LOCATION: N 4836725 E 314863 CHECK SOIL PROFILE SAMPLES Image: Stance PLOT (m) Umage: Stance PLOT PLASTIC MOISTURE LIQUID (m) Umage: Stance PLOT Image: Stance PLOT (m) Umage: Stance PLOT Image: Stance PLOT <th>NO.: 2 IATED LED B (ED B)</th> <th>BY EY BY MP</th>	NO.: 2 IATED LED B (ED B)	BY EY BY MP
DATUM: Geodetic Date: May/10/2017 to May/10/2017 COMPIL BH LOCATION: N 4836725 E 314863 CHECK SOIL PROFILE SAMPLES (m) ELEV DESCRIPTION UT V V V V V V V V V V V V V V V V V V	LED B	BY MP
BH LOCATION: N 4836725 E 314863 SOIL PROFILE SOIL PROFILE SAMPLES Main Main Main Main Main Bernor Bernor DESCRIPTION Main M	ED BY	
SOIL PROFILE SAMPLES (m) UNCONFINE (m) UNCONFINE ELEV DESCRIPTION DEPTH DESCRIPTION 114.9 Ground Surface 114.9 Ground Surface 114.9 GRANULAR FILL: 200mm, sand, 114.4 GRANULAR FILL: 200mm, sand, 115.5 1 Some gravel, trace gravel, trace 1 SS 7		Y VW
(m) DESCRIPTION Image: Base of the system I	a) NIT WT	_
119.6 ASPHALT: 130mm 119.6 CONCRETE: 150mm 119.3 GRANULAR FILL: 200mm, sand, 119.4 GRANULAR FILL: 200mm, sand, 0.5 some gravel, trace clay, 0.5 pown, moist, loose. FILL: silty sand, trace gravel, trace 1) NIT	REMARKS
119.6 ASPHALT: 130mm 119.6 CONCRETE: 150mm 119.3 GRANULAR FILL: 200mm, sand, 119.4 GRANULAR FILL: 200mm, sand, 0.5 some gravel, trace clay, 0.5 pown, moist, loose. FILL: silty sand, trace gravel, trace 1	⊃~~	AND GRAIN SIZE
119.6 ASPHALT: 130mm 119.6 CONCRETE: 150mm 119.3 GRANULAR FILL: 200mm, sand, 119.4 GRANULAR FILL: 200mm, sand, 0.5 some gravel, trace clay, 0.5 pown, moist, loose. FILL: silty sand, trace gravel, trace 1	Cu) (k (kN/h	DISTRIBUTION
119.6 ASPHALT: 130mm 119.6 CONCRETE: 150mm 119.4 GRANULAR FILL: 200mm, sand, 119.4 GRANULAR FILL: 200mm, sand, 0.5 some gravel, trace silt, trace clay, 11 SS 7 Flush Mount Cover	NAT	(%)
119.6 CONCRETE: 150mm 119.3 GRANULAR FILL: 200mm, sand, 0.5 some gravel, trace clay, 0.5 brown, moist, loose. FILL: silty sand, trace gravel, trace 1	_	GR SA SI CL
0.5 some gravel, trace silt, trace clay, brown, moist, loose. FILL: silty sand, trace gravel, trace		
brown, moist, loose.		
FILL: silty sand, trace gravel, trace		
2 SS 6 Holeplug		
1.7 FILL: sitty clay, trace gravel, trace		
2 very stiff.		
some sand		3 32 46 19
sandy, trace debris		
4.5 FILL: sand and gravel, trace silt, X		
brown, moist, loose. 7 SS 7 10 110		
5.8 SILTY CLAY: trace sand, brown, 177 moist, stiff.		
		0 2 40 58
8.7 SILTY CLAY TILL: trace gravel.		
trace sand, grey, moist, stiff to very		
contain sand seams from 9.1m to		
Continued Next Page GRAPH + 3, × 3: Numbers refer O \$\$=3% Strain at Failure GROUNDWATER LLEVATIONS NOTES + 3, × 3: to Sensitivity O \$\$=3% Strain at Failure		

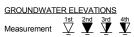
 $\begin{array}{c} 1 \text{ st} \\ \text{Measurement} \\ \underline{\nabla} \\ \underline{$

	ECT: Glenn Road Pedestrian Bridge E/	4 Siu	ay																	M-01410-01
CLIEN	IT: WSP-MMM Group Limited							Metho	od: Hol	llow St	em Au	lger					ENC	L NO).: 2	
PROJ	ECT LOCATION: Toronto, Ontario							Diam	eter: 2	03 mm	ı						ORIC	gina'	TED	
DATU	M: Geodetic							Date:	May/	10/201	7 to I	May/10	0/2017				CON	IPILE	D B	
BH LC	DCATION: N 4836725 E 314863							i									CHE	CKE	D BY	VW
	SOIL PROFILE		s	ampl	ES	~		DYNA RESIS	MIC CO TANCE	NE PEN PLOT		TION				URAL	LIQUID		F	REMARKS
(m)		F				GROUND WATER CONDITIONS		2	0 4	0 6	0 8	30 1	00	PLASTI LIMIT		STURE	LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m ³)	AND
ELEV	RECORDETION	STRATA PLOT	~		BLOWS 0.3 m	AW C	N	SHEA	R STI	RENG	TH (kf	Pa)		W _P		w o	WL	KET (RAL U	GRAIN SIZE DISTRIBUTION
DEPTH	DESCRIPTION	ATA	NUMBER	ш	BLO 0.3		ELEVATION			INED RIAXIAL	+	FIELD V & Sensit LAB V/	ANE ivity	WA	TER CO		T (%)	0 Q Q	ATUF ()	(%)
	Continued	STR	NUN	ТҮРЕ	ż	GRC CON	Ē						00				30		2	GR SA SI CL
-	SILTY CLAY TILL: trace gravel,	is,						-												
-	trace sand, grey, moist, stiff to very stiff.(Continued)		1					-												Auger grinding
-			1					E												
			11	SS	15			-							0					
11		i di					104	-										1		
								-												
-			1					-												
-			1					-												
[103	-												
12			1				103	-												
								-												
			12	SS	24			-							•	4				2 30 46 22
102.1			1					-							-					
12.8	END OF THE BOREHOLE																			
	Note: 1) 50mm dia. monitoring well was																			
	installed upon completion.																			
	Water Level Readings:																			
	Date Depth (m) Elevation (m) May10-17 dry																			
	May 17-17 dry																			
																		1		
																		1		
																		1		
																		1		
																		1		
																		1		
																		1		
2																				
			_			GRAPH								_						

LOG OF BOREHOLE BH16-2

2 OF 2

wsp


PROJ	ECT: Glenn Road Pedestrian Bridge EA	A Stu	dy														REF.	NO.	: 16!	M-01410-01
	T: WSP-MMM Group Limited		.,					Metho	d: Holl	ow Ste	em Au	lger					ENCI			
	ECT LOCATION: Toronto, Ontario							Diam	eter: 20	3 mm							ORIG	3INA ⁻	TED	BY EY
DATU	IM: Geodetic							Date:	May/0	3/2017	' to I	May/0	3/2017	7			COM	PILE	D B۱	r MP
BH LC	DCATION: N 4836787 E 314887																CHE	CKEI	D BY	· VW
	SOIL PROFILE		s	SAMPL	ES			DYNA RESIS	VIC CON TANCE I	NE PEN PLOT		TION			NATI	IRAI			L	REMARKS
(m)		⊢				GROUND WATER CONDITIONS		2		-			00	PLASTI LIMIT	C MOIS	TURE	LIQUID LIMIT	EN	NATURAL UNIT WT (kN/m ³)	AND
LEV	RECORDINAL	STRATA PLOT	~		BLOWS 0.3 m	AW C	No	SHE/		RENGT	H (kF	Pa)		W _P		N >	WL	POCKET PEN. (Cu) (kPa)		GRAIN SIZ DISTRIBUTI
EPTH	DESCRIPTION	ATA	NUMBER	ш	BLO 0.3	DUNE	EVATION		ICONFI		+	FIELD V & Sensit LAB V/	ANE	WA	TER CC		T (%)	00 00	ATUF	(%)
89.2	Ground Surface	STR	NUN	ТҮРЕ	ż	GRO	ELE		0 40				00				30		2	GR SA SI
80.0	ASPHALT: 100mm	XX	47		_		Flush		Cover											
88:9 0.3	GRANULAR FILL: 200mm sand and gravel, brown, moist, loose	\mathbb{X}	1T	SS	7			-						°						
0.0	FILL: silty sand, trace gravel, trace	\mathbb{X}	1B	SS				-							0					
	clay, brown to dark brown, moist, very loose.	\otimes						-												
		\mathbb{X}	2	SS	2			F							0					1 63 31
		\mathbb{X}	-	00	-		88											-		1 00 01
		\boxtimes				Ţ		<u>F</u>												
		\bigotimes	3T	SS	3	\mathbf{V}	W. L. May 1	87.7 m 7, 2017 87.5 m	7											
		\bigotimes	3B	SS	3			87.5 m 3, 2017							0					
		\mathbb{X}					-Holep	Í							_					
36.9 2.3	FILL: sandy silt, trace gravel, some	\bigotimes					01	t l												
	clay, gas odor, brown, moist, very loose to compact.	\mathbb{X}	4	SS	3			-								0				
		\otimes						Ē												
		\mathbb{X}	 			$\overline{\nabla}$		E												
		\bigotimes		~~~	00			86.1 m 3, 2017												No sample recovery
		\mathbb{X}	5	SS	28		may o	F												leccreij
35.5 3.7	SILT TO SANDY SILT: trace	PX -	┣──					F												
0.7	gravel, some clay, grey, moist, very							-												
	dense.		6	SS	55										0					
							+Sand'	-												
							<u>:</u> .	ŀ												
			7	SS	66			Ē							0					1 30 56
								È.												
						1目	84	-												
83.7 5.5	SILTY SAND: trace gravel, grey,	╇╋╿┽				E		Ē												
0.0	moist, very dense.	臣						F												
								Ł												
							Scree 83	n H												
			8	SS	50/ 75mm	「目		E							0					
		臣					:.	-												
								-												
		臣				i E	82	-												
							. 02	-												
						l E		È.												
31.3		뮘	9T	SS	73			-						0						
7.9	SILTY CLAY : trace sand,		9B	SS			-Sand	-							0					
	occasional silt seams, grey, moist, hard.	R	Ë		-		81													
								-												
								-												
		H.						E						1						
		H.					80	E						<u> </u>						
		H.	10	SS	86		00	ŀ						1.	▶ ⊢					0 7 62
		H		33	00		-Bento	t nite						1						0 / 02
1		1.1.1.1.	1	1	1		Donit	1						1		1	1		1 '	
		KK						F												

120	-	2213	-	2.1
	Υ.	-		۱.
•	•			
			L	1

LOG OF BOREHOLE BH16-3

	PROJ	ECT: Glenn Road Pedestrian Bridge EA	A Stud	dy													REF.	NO.	: 161	VI-01410-01
	CLIEN	IT: WSP-MMM Group Limited							Metho	od: Hol	low St	em Au	uger				ENC	L NO	.: 3	
	PROJ	ECT LOCATION: Toronto, Ontario							Diam	eter: 20	03 mm	ı					ORIC	SINA	TED	
	DATU	M: Geodetic							Date:	May/0	03/201	7 to I	May/03	3/2017			COM	IPILE	D B)	
	BH LC	DCATION: N 4836787 E 314887															CHE		D BY	VW
		SOIL PROFILE		S	SAMPL	.ES	n n n		RESIS	MIC CO TANCE	PLOT		TION		PLASTI	JRAL	LIQUID		Ţ,	REMARKS
	(m) <u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" <u>BLOWS</u> 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE# 0 UI • QI	AR STI NCONFI JICK TF	RENG INED	L TH (kf + . ×	Pa) FIELD V/ & Sensiti	NE	W _P		СІМІТ WL (%) Г (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT V (kN/m ³)	AND GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
		SILTY CLAY : trace sand, occasional silt seams, grey, moist, hard.(Continued)			,	-	0.0	79	-									-		
1	78.5 10.7 78.1	SILTY CLAY TILL /SHALE COMPLEX: some shale fragments, grev. moist. hard.		11 12 13	SS SS SS	50/ 100mn 100/			-											spoon
	11.1	 END OF THE BOREHOLE Notes: 1) Borehole was open upon completion. 2) Borehole water level was at 3.1m upon completion of drilling. 3) 50mm dia. monitoring well was installed upon completion. 				75mm 100/ 75mm														
		Water Level Readings: Date Depth (m) Elevation (m) May3-17 3.1 86.1 May17-17 1.5 87.7 June13-17 1.7 87.47																		
719/12																				
SOLLOG 1000 8M 0 4 9-01 LOG. GPU 78/17																				

	יור				LO	g of	BOR	EHC	DLE I	3H16	6-4									1 C)F 1
PRO	JECT: Glenn Road Pedestrian Bridge E/	A Stu	dy														REF.	NO.	: 161	Л-01410-0)1
CLIEI	NT: WSP-MMM Group Limited							Metho	od: Pio	njar							ENC	L NO	.: 4		
PRO	JECT LOCATION: Toronto, Ontario							Diam	eter: 5	1 mm							ORIG	SINA	TED	BY EY	
DATU	JM: Geodetic							Date:	May/	03/201	7 to	May/03	3/2017				COM	PILE	D B	/ MP	
BH L	OCATION: N 4836819 E 314866					-	_	-						_			CHE	CKEI	D BY	VW	
	SOIL PROFILE	ES DYNAMIC CONE PENETRATION RESISTANCE PLOT PLASTIC NATURAL MOISTUR														F	REMARKS				
(m)						GROUND WATER CONDITIONS					\sim	30 1	00	PLASTI LIMIT	C MOIS	TURE	LIQUID LIMIT w _L T (%)	ż.	IT W	AND	
(m) ELEV		STRATA PLOT			BLOWS 0.3 m	o WA	z	SHEA	AR ST	I RENG	TH (kl	Pa)	1	W _P		w 0	WL	(kPa	AL UN N/m ³)	GRAIN S	
DEPTH	DESCRIPTION	ATA	BER		BLO 0.3	DITIO	ELEVATION				+	FIELD V. & Sensiti LAB V/	ANE vity	.v/a			т (%)	DO DD	ATUR (k	(%)	non
92.6	Ground Surface	STR,	NUMBER	ТҮРЕ	ż	GRO CON	ELEY			RIAXIAL 0 6			ANE DO				30		z	GR SA S	SI CL
<u>92.0</u> 92.0	TOPSOIL: 100mm	×1/4			-			-													
- 0.1	FILL: silty clay, some topsoil, trace gravel, trace sand, trace rootlets,	\otimes	1	SS				-								0					
-	brown to darkish brown, moist.	\mathbb{X}					92	_													
-	stiff to very stiff	\otimes					92														
1		\otimes	2	SS				-								0		100			
-		\otimes						-													
-		\mathbb{X}						-													
Ē		\otimes	3	SS			91								0			100			
<u>90.8</u> 1.8	SILTY CLAY TILL: trace gravel,	KX IGT	<u> </u>					E													
2	some sand, brown, moist.		4	SS				-								0		113			
-	stiff to very stiff	1		00		⊻		-													
-		R	╞──				W. L. 9														
E			5	SS			May 03	3, 201. [/						-	•		1		2 18 5	8 22
3																					
-					1			-													
- 89.1	occasional sand seams, occasional oxidized. moist to wet		6	SS				-								°					
3.5	END OF THE BOREHOLE																				
	Notes: 1) Borehole caved-in at 2.7m and																				
	water level was at 2.4 m upon completion of drilling.																				
	2) SPT blow count was not possible																				
	due to use of pionjar drilling method.																				
1																	1				
1																	1				
1																	1				
1																	1				
23/842 0																	1				
01 100 00																	1				
-0 H 0 H 0 H 0-																	1				
8 100																	1				
WSb SOIL I																	1				
~							•		lumbor			e -3%		•							

wsp

	יור				LO	g of	BOR	EHO	DLE	BH1	6-6									1	OF 3
	ECT: Glenn Road Pedestrian Bridge EA	A Stud	у					Matt	od. I I		om 1									<i>N</i> -01410	-01
	NT: WSP-MMM Group Limited IECT LOCATION: Toronto, Ontario									100 Si 103 mm	tem Au	iger								ry EY	,
	JM: Geodetic										7 to N	//av/1	1/2017	,			COM				
	DCATION: N 4836722 E 314883							Date	. way	11/201	1 10 1	viciy/ i	1/2017				CHE				
	SOIL PROFILE		S	AMPL	.ES			DYNA		NE PEI		TION			NAT						
()						GROUND WATER CONDITIONS							00	PLASTI LIMIT	IC NAT MOIS	URAL STURE ITENT	LIQUID LIMIT	Ч.	NATURAL UNIT WT (kN/m ³)	REMA AN	
(m) ELEV		STRATA PLOT			BLOWS 0.3 m	WA ONS	Z		1	1	TH (kF	Pa)	1	W _P		w	WL	POCKET PEN. (Cu) (kPa)	AL UN N/m ³)	GRAIN DISTRIE	
DEPTH	DESCRIPTION	ATA	NUMBER	ш			EVATION			INED RIAXIAL	+	FIELD V & Sensit	ANE ivity	WA	TER CO		Г (%)	00 00	ATUR 4)	(%	
114.9	Ground Surface	STR	NUN	TYPE	ž	GRO	ELE		20 4	40 G	50 8		00				30		2	GR SA	SI CI
11 4.9 114:6	ASPHALT: 110mm GRANULAR FILL: 190mm sand,	\otimes					Flush	Moun	t Cove	r											
0.3	trace gravel, brown, moist, loose.	\bowtie						-													
	FILL: sand, trace gravel, trace to some silt, trace clay, brown, moist,	\bowtie	1	SS	6			-						c							
	very loose to loose.						114														
1	silty clay, trace gravel from 0.6m to	\bigotimes	2	SS	4		114	-							0						
	0.75m							-													
		\bigotimes	3	SS	2			-							•					3 78	16 3
2		\bigotimes	Ĩ		-		113	-										1		0.0	
								-													
-		\bowtie	4T	SS	2			-						0							
<u>112.2</u> 2.7	FILL: silty clay, trace gravel, trace	×	4B	SS												0					
3	FILL: silty clay, trace gravel, trace sand, brown, moist, firm to very stiff.	\bowtie					112	-													
		\otimes	5T	SS	4			-						0							
			5B	SS				-							0						
					-			-													
4	 occasional sand seams						111														
	occasional sand seams	\bowtie	6	SS	9			-							0						
								Ļ													
-			7T	SS ,	69/																
_	asphalt fragments, trace sand		<u> </u>	55	225mr		110								0						
5			7B	SS			_	F													
								_													
	occasional sand seams	\bigotimes	8	SS	20			-							0						
		\bigotimes	Ŭ	00			109	F													
<u>6</u>							109	-													
108.5	contain rootlets	\bigotimes						-													
6.4	SILTY CLAY: trace gravel, trace sand, brown, moist, firm to very		9	SS	9			Ē							0						
	stiff.							-													
z							108	-													
			10	SS	8												0				
								-													
								-													
8			11	SS	7		107											•			
							-Holep	- Iua													
								F													
								Ĺ													
9							106														
-								Ē													
			12	SS	22			È.							0						
			12	33	22			È													
			-+				105	-													
a	Continued Next Page	riku			I		100	L		1	1		1	L	1	1	1	L			

PRO	JECT: Glenn Road Pedestrian Bridge E	A Stud	dy														REF.	NO.	: 161	<i>N</i> -01410-01	
CLIE	NT: WSP-MMM Group Limited								od: Ho			uger					ENC				
	JECT LOCATION: Toronto, Ontario								eter: 2								ORIC				
								Date:	May/	11/20	17 to	May/	11/201	7			COM				
BHL	OCATION: N 4836722 E 314883 SOIL PROFILE			AMPL	ES		1	DYNA	MIC CC	ONE PE	NETRA	TION		<u> </u>			CHE		D BA	VW	
			3			н					~		100	PLAST	TIC NAT MOIS CON	URAL		z	T WT	REMARKS AND	3
(m) ELEV	DESCRIPTION	STRATA PLOT	с		BLOWS 0.3 m	GROUND WATER CONDITIONS	NOI	SHE	AR ST	RENG	J STH (k	Pa)		- W _P	CON	ITENT W O	LIQUID LIMIT WL T (%)	CKET PE (kPa)	NATURAL UNIT WT (kN/m ³)	GRAIN SIZ	
DEPTH		TRAT	NUMBER	ТҮРЕ	"N"		ELEVATION	• Q	NCONF UICK TI 20 4	RIAXIA	LХ	FIELD & Sen: LAB	sitivity VANE 100		ATER CO		T (%) 30	0 0 0	NATU	(%)	~
	Continued SILTY CLAY: trace gravel, trace	S XX	z	-	f	00	ш		20 2	+0	00		100			20 .	50	<u> </u>	$\left - \right $	GR SA SI	CL
-	sand, brown, moist, firm to very							-													
104.4	SILTY CLAY TILL: trace gravel,							-													
-	trace to some sand, grey, moist, very stiff.							-													
11	very sun.		13	SS	17		104	-							0						
-																					
-								-													
12							103	-													
-								-													
-			14	SS	20			-							⊢⊷					1 28 50	21
13							102	-													
-								-													
-								-													
14			15	SS	27		101	-							0						
-			13	00	21			-													
-								-													
-								-													
15							100											-			
-								-													
E								È													
			16	SS	29			-								o					
16							99											-			
-																					
-							+Sand	-													
-																					
17							. 98											-			
-			17	SS	18		:	-							0						
-							W. L.	L 97.6 n	ן ו												
-							May 1	7, 201 [7												
-							. 07														
-							-Scree	n F													
ŀ						:目:	· .	F													
-			18	SS	19			-								0					
						目	96	-													
219 2017 100						目		ŀ													
17. GUB							Sand	E													
400KHW-39-3017 GLB							•	-													
5-2011-400							Bento	F													
\$\$ <mark> 20</mark>	Continued Next Page	18:8				GRAPH			Numbe	rs refer	· _	8=3	[%] Strain			1	1		<u> </u>		
<u>GROU</u>	NDWATER ELEVATIONS					<u>GRAPH</u> NOTES	+ 1	^ ::	Numbe to Sens	itivity	C	, ,	Strain	at Failu	пе						

wsp

LOG OF BOREHOLE BH16-6

2 OF 3

11	51	
		1

LOG OF BOREHOLE BH16-6

	JECT: Glenn Road Pedestrian Bridge E	A Stu	dy																	И-01410-01	
CLIENT: WSP-MMM Group Limited										llow St		uger						LNO			
	JECT LOCATION: Toronto, Ontario		Diameter: 203 mm Date: May/11/2017 to May/11/2017											ORIGINATED BY EY COMPILED BY MP							
								Date:	iviay/	11/201	7 to 1	way/1	1/2017								
BHT	SOIL PROFILE						DYNAMIC CONE PENETRATION							СН			CKE	D B A	V V V		
	SOIL PROFILE			SAMPL		Ř		RESISTANCE PLOT							C NAT	URAL			LM.	REMARKS	
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	ER		BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA		RENG	L TH (kl	1	1	W _P		TENT W O	LIMIT W _L	OCKET PEN (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	AND GRAIN SIZE DISTRIBUTIC (%)	
		TRA	NUMBER	ТҮРЕ	"z	ROL OND	LE 🗸	QUICK TRIAXIAL × LAB VANE 20 40 60 80 100							WATER CONTENT (10 20 30			Ľ			
	Continued		Z 19	⊢ SS	£ 27	00	ш		4	0 0					0 2		50			GR SA SI	
04 F			19	33	21			E							0						
94.5 20.4	END OF THE BOREHOLE																				
	Note: 1) 50mm dia. monitoring well was installation upon completion.																				
	Water Level Readings: Date Depth (m) Elevation (m) May11-17 dry																				
	May17-17 17.3 97.6																				
			I I		1	1	I	1									1	1			

ATTACHMENT B

LABORATORY CERTIFICATES OF ANALYSES

CLIENT NAME: WSP CANADA INC. 51 CONSTELLATION COURT TORONTO, ON M9W1K4 (416) 798-0065

ATTENTION TO: Mani P

PROJECT: 16M-1410-01

AGAT WORK ORDER: 17T212314

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Coordinator

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: May 10, 2017

PAGES (INCLUDING COVER): 13

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 13

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 17T212314 PROJECT: 16M-1410-01

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Mani P

SAMPLED BY:

				Inor	ganic Chem	istry (Soil)
DATE RECEIVED: 2017-05-05						DATE REPORTED: 2017-05-10
		SAMPLE DES	CRIPTION:	BH16-3 SS3	BH16-3 SS4	
		SAM	PLE TYPE:	Soil	Soil	
		DATES	SAMPLED:	2017-05-03	2017-05-03	
Parameter	Unit	G/S	RDL	8369142	8369143	
Organic Nitrogen	µg/g		50	416	235	
Total Kjeldahl Nitrogen	µg/g		50	416	235	
Ammonia as N (KCI Extr)	µg/g		5	<5	<5	
Nitrate as N (2:1)	µg/g		1	<1	<1	
Nitrite as N (2:1)	µg/g		1	<1	<1	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

8369142-8369143 Nitrate & Nitrite were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil).

Elevated RDL indicates the degree of sample dilution prior to the analysis for Total Kjeldahl Nitrogen in order to keep analytes within the calibration range of the instrument and to reduce matrix interference.

Certified By:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 17T212314 PROJECT: 16M-1410-01 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Mani P

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2017-05-05							DATE REPORTED: 2017-05-10
Parameter	Unit	-	CRIPTION: PLE TYPE: AMPLED: RDL	BH16-3 SS3 Soil 2017-05-03 8369142	BH16-3 SS4 Soil 2017-05-03 8369143	BH16-4 SS1 Soil 2017-05-03 8369255	
Antimony	µg/g	50	0.8	<0.8	<0.8	0.8	
Arsenic	µg/g	18	1	2	2	7	
Barium	µg/g	670	2	31	38	90	
Beryllium	µg/g	10	0.5	<0.5	<0.5	<0.5	
Boron	µg/g	120	5	<5	<5	9	
Boron (Hot Water Soluble)	µg/g	2	0.10	0.22	0.26	0.54	
Cadmium	µg/g	1.9	0.5	<0.5	<0.5	0.5	
Chromium	µg/g	160	2	11	13	45	
Cobalt	µg/g	100	0.5	3.1	5.1	11.8	
Copper	µg/g	300	1	7	10	120	
Lead	µg/g	120	1	14	9	231	
Molybdenum	µg/g	40	0.5	<0.5	<0.5	6.8	
Nickel	µg/g	340	1	7	11	47	
Selenium	µg/g	5.5	0.4	<0.4	<0.4	<0.4	
Silver	µg/g	50	0.2	<0.2	<0.2	0.3	
Thallium	µg/g	3.3	0.4	<0.4	<0.4	<0.4	
Jranium	µg/g	33	0.5	<0.5	0.6	0.5	
/anadium	µg/g	86	1	16	21	30	
Zinc	µg/g	340	5	30	25	349	
Chromium VI	µg/g	10	0.2	<0.2	<0.2	<0.2	
Cyanide	µg/g	0.051	0.040	<0.040	<0.040	<0.040	
Mercury	µg/g	20	0.10	0.16	<0.10	0.18	
Electrical Conductivity	mS/cm	1.4	0.005	0.415	0.462	0.724	
Sodium Adsorption Ratio	NA	12	NA	3.69	3.70	6.80	
oH, 2:1 CaCl2 Extraction	pH Units		NA	7.26	7.66	7.51	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Industrial/Commercial/Community Property Use - Medium and Fine Textured Soils

8369142-8369255 EC & SAR were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio.

Certified By:

Amanjot Bhela

AGAT WORK ORDER: 17T212314 PROJECT: 16M-1410-01

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Mani P

SAMPLED BY:

O. Reg. 558 Metals and Inorganics DATE RECEIVED: 2017-05-05 **DATE REPORTED: 2017-05-10** BH16-3 BH16-4 SAMPLE DESCRIPTION: SS-Combined SS-Combined SAMPLE TYPE: Soil Soil DATE SAMPLED: 2017-05-03 2017-05-03 8369259 8369260 Parameter Unit G/S RDL Arsenic Leachate mg/L 2.5 0.010 < 0.010 < 0.010 Barium Leachate 100 0.100 0.896 0.618 mg/L Boron Leachate mg/L 500 0.050 <0.050 < 0.050 Cadmium Leachate mg/L 0.5 0.010 < 0.010 < 0.010 Chromium Leachate 5 0.010 0.016 0.015 mg/L 5 0.071 Lead Leachate mg/L 0.010 <0.010 0.1 Mercury Leachate mg/L 0.01 < 0.01 < 0.01 Selenium Leachate mg/L 1 0.010 < 0.010 < 0.010 Silver Leachate 5 mg/L 0.010 < 0.010 < 0.010 Uranium Leachate mg/L 10 <0.050 < 0.050 0.050 Fluoride Leachate mg/L 150 0.05 0.18 0.23 Cyanide Leachate mg/L 20 0.05 < 0.05 < 0.05 (Nitrate + Nitrite) as N Leachate mg/L 1000 0.70 <0.70 <0.70

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria

Amanjot Bhela

Certified By:

AGAT WORK ORDER: 17T212314 PROJECT: 16M-1410-01 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Mani P

SAMPLED BY:

					Phenols in S	Soil
DATE RECEIVED: 2017-05-05						DATE REPORTED: 2017-05-10
	5	SAMPLE DES	CRIPTION:	BH16-3 SS3	BH16-3 SS4	
		SAM	PLE TYPE:	Soil	Soil	
		DATE	SAMPLED:	2017-05-03	2017-05-03	
Parameter	Unit	G/S	RDL	8369142	8369143	
Phenols	mg/Kg		1	<1	<1	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Amanjot Bhela

AGAT WORK ORDER: 17T212314 PROJECT: 16M-1410-01

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Mani P

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2017-05-05

DATE RECEIVED. 2011-03-03						DATE REFORTED. 2017-03-10
		SAMPLE DESC	RIPTION:	BH16-3 SS7	BH16-4 SS5	
		SAMF	LE TYPE:	Soil	Soil	
		DATE S	AMPLED:	2017-05-03	2017-05-03	
Parameter	Unit	G/S	RDL	8369251	8369257	
Benzene	µg/g	0.4	0.02	<0.02	<0.02	
Foluene	µg/g	78	0.08	<0.08	<0.08	
Ethylbenzene	µg/g	19	0.05	<0.05	<0.05	
(ylene Mixture	µg/g	30	0.05	<0.05	<0.05	
1 (C6 to C10)	µg/g	65	5	<5	<5	
1 (C6 to C10) minus BTEX	µg/g	65	5	<5	<5	
² (C10 to C16)	µg/g	250	10	<10	<10	
F3 (C16 to C34)	µg/g	2500	50	<50	<50	
⁻ 4 (C34 to C50)	µg/g	6600	50	<50	<50	
Gravimetric Heavy Hydrocarbons	µg/g	6600	50	NA	NA	
loisture Content	%		0.1	10.7	18.6	
Surrogate	Unit	Acceptab	Acceptable Limits			
Ferphenyl	%	60-1	40	86	92	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Industrial/Commercial/Community Property Use - Medium and Fine Textured Soils

8369251-8369257 Results are based on sample dry weight.

The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client. Quality Control Data is available upon request.

DATE REPORTED: 2017-05-10

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

Guideline Violation

AGAT WORK ORDER: 17T212314 PROJECT: 16M-1410-01 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

ATTENTION TO: Mani P

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
8369255	BH16-4 SS1	ON T3 S ICC MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Lead	µg/g	120	231
8369255	BH16-4 SS1	ON T3 S ICC MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Zinc	µg/g	340	349

Page 8 of 13

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 16M-1410-01

SAMPLING SITE:

AGAT WORK ORDER: 17T212314 ATTENTION TO: Mani P

SAMPLED BY:

			Soi	l Ana	alysis	5								
RPT Date: May 10, 2017			DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK		МАТ	RIX SPI	KE
PARAMETER	Batch Samp	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery	Lir	eptable mits
	Id Id	Dup #1	Dup #2	KF D		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Upper
O. Reg. 153(511) - Metals & Inorg	anics (Soil)													
Antimony	8371373	<0.8	<0.8	NA	< 0.8	99%	70%	130%	101%	80%	120%	80%	70%	130%
Arsenic	8371373	3	4	NA	< 1	117%	70%	130%	103%	80%	120%	116%	70%	130%
Barium	8371373	59	56	5.2%	< 2	103%	70%	130%	101%	80%	120%	106%	70%	130%
Beryllium	8371373	<0.5	<0.5	NA	< 0.5	92%	70%	130%	102%	80%	120%	106%	70%	130%
Boron	8371373	6	6	NA	< 5	93%	70%	130%	103%	80%	120%	108%	70%	130%
Boron (Hot Water Soluble)	8371373	0.42	0.45	NA	< 0.10	100%	60%	140%	105%	70%	130%	98%	60%	140%
Cadmium	8371373	<0.5	<0.5	NA	< 0.5	105%	70%	130%	99%	80%	120%	97%	70%	130%
Chromium	8371373	13	13	0.0%	< 2	93%	70%	130%	105%	80%	120%	114%	70%	130%
Cobalt	8371373	5.5	5.5	0.0%	< 0.5	101%	70%	130%	101%	80%	120%	111%	70%	130%
Copper	8371373	18	22	20.0%	< 1	98%	70%	130%	104%	80%	120%	115%	70%	130%
Lead	8371373	25	21	17.4%	< 1	110%	70%	130%	115%	80%	120%	103%	70%	130%
Molybdenum	8371373	<0.5	0.5	NA	< 0.5	95%	70%	130%	101%	80%	120%	100%	70%	130%
Nickel	8371373	12	12	0.0%	< 1	106%	70%	130%	109%	80%	120%	107%	70%	130%
Selenium	8371373	<0.4	<0.4	NA	< 0.4	96%	70%	130%	108%	80%	120%	111%	70%	130%
Silver	8371373	0.9	0.7	NA	< 0.2	91%	70%	130%	97%	80%	120%	90%	70%	130%
Thallium	8371373	<0.4	<0.4	NA	< 0.4	95%	70%	130%	102%	80%	120%	97%	70%	130%
Uranium	8371373	<0.5	<0.5	NA	< 0.5	110%	70%	130%	114%	80%	120%	108%	70%	130%
Vanadium	8371373	19	20	5.1%	< 1	104%	70%	130%	107%	80%	120%	114%	70%	130%
Zinc	8371373	58	56	3.5%	< 5	103%	70%	130%	106%	80%	120%	113%	70%	130%
Chromium VI	8368700	<0.2	<0.2	NA	< 0.2	93%	70%	130%	100%	80%	120%	99%	70%	130%
Cyanide	8369142 836914	2 <0.040	<0.040	NA	< 0.040	91%	70%	130%	108%	80%	120%	94%	70%	130%
Mercury	8371373	<0.10	<0.10	NA	< 0.10	101%	70%	130%	101%	80%	120%	98%	70%	130%
Electrical Conductivity	8368062	1.57	1.64	4.4%	< 0.005	95%	90%	110%	NA			NA		
Sodium Adsorption Ratio	8368971	0.026	0.022	16.7%	NA	NA			NA			NA		
pH, 2:1 CaCl2 Extraction	8368120	7.25	7.31	0.8%	NA	100%	80%	120%	NA			NA		
O. Reg. 558 Metals and Inorganic	s													
Arsenic Leachate	8369259 836925	9 <0.010	<0.010	NA	< 0.010	109%	90%	110%	94%	80%	120%	112%	70%	130%
Barium Leachate	8369259 836925	9 0.896	0.901	0.6%	< 0.100	100%	90%	110%	100%	80%	120%	101%	70%	130%
Boron Leachate	8369259 836925	9 <0.050	<0.050	NA	< 0.050	101%	90%	110%	93%	80%	120%	73%	70%	130%
Cadmium Leachate	8369259 836925	9 <0.010	<0.010	NA	< 0.010	102%	90%	110%	101%	80%	120%	100%	70%	130%
Chromium Leachate	8369259 836925	9 0.016	0.016	NA	< 0.010	100%	90%	110%	102%	80%	120%	104%	70%	130%
Lead Leachate	8369259 836925	9 0.071	0.071	0.0%	< 0.010	106%	90%	110%	108%	80%	120%	100%	70%	130%
Mercury Leachate	8369259 836925		<0.01	NA	< 0.01	99%		110%	100%		120%	99%	70%	130%
Selenium Leachate	8369259 836925		<0.010	NA	< 0.010	104%		110%	98%		120%	109%		130%
Silver Leachate	8369259 836925		<0.010	NA	< 0.010	99%		110%	92%		120%	104%		130%
Uranium Leachate	8369259 836925		<0.050	NA	< 0.050	100%		110%	110%		120%	104%	70%	
Fluoride Leachate	8369259 836925	9 0.18	0.18	NA	< 0.05	101%	90%	110%	105%	90%	110%	98%	70%	130%
Cyanide Leachate	8369259 836925		< 0.05	NA	< 0.05	91%		110%	108%		110%	103%		130%
(Nitrate + Nitrite) as N Leachate	8369259 836925		<0.70	NA	< 0.70	101%		120%	105%		120%	106%		130%

AGAT QUALITY ASSURANCE REPORT (V1)

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 16M-1410-01

SAMPLING SITE:

AGAT WORK ORDER: 17T212314

ATTENTION TO: Mani P

SAMPLED BY:

Soil Analysis (Continued)

RPT Date: May 10, 2017			DUPLICATE				REFEREN	REFERENCE MATERIAL			METHOD BLANK SPIKE			RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	1 1 1 1	eptable nits
		iù	-				value	Lower	Upper		Lower	Upper	-	Lower	Uppe
Inorganic Chemistry (Soil)															
Total Kjeldahl Nitrogen	8369142 8	3369142	416	416	0.0%	< 50	101%	80%	120%	102%	80%	120%	99%	70%	130%
Ammonia as N (KCI Extr)	8369142 8	3369142	< 5	< 5	NA	< 5	107%	80%	120%	109%	80%	120%	121%	70%	130%
Nitrate as N (2:1)	8369422		<1	<1	NA	< 1	98%	70%	130%	107%	70%	130%	108%	70%	130%
Nitrite as N (2:1)	8369422		<1	<1	NA	< 1	NA			99%	70%	130%	109%	70%	130%
Phenols in Soil															
Phenols	1 8	369142	<1	<1	NA	< 1	106%	70%	130%		70%	130%	109%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Amanjot Bhela

AGAT QUALITY ASSURANCE REPORT (V1)

Page 9 of 13

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 16M-1410-01

SAMPLING SITE:

AGAT WORK ORDER: 17T212314 ATTENTION TO: Mani P

SAMPLED BY:

Trace Organics Analysis

				•	5										
RPT Date: May 10, 2017				DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Lin	ptable nits	Recovery	Lie	eptable mits
		ia	-				value	Lower	Upper	-	Lower	Upper	-	Lower	Upper
O. Reg. 153(511) - PHCs F1 -	F4 (Soil)														
Benzene	8368704		< 0.02	< 0.02	NA	< 0.02	114%	60%	130%	114%	60%	130%	103%	60%	130%
Toluene	8368704		< 0.08	< 0.08	NA	< 0.08	115%	60%	130%	112%	60%	130%	103%	60%	130%
Ethylbenzene	8368704		< 0.05	< 0.05	NA	< 0.05	109%	60%	130%	115%	60%	130%	106%	60%	130%
Xylene Mixture	8368704		< 0.05	< 0.05	NA	< 0.05	111%	60%	130%	112%	60%	130%	103%	60%	130%
F1 (C6 to C10)	8368704		< 5	< 5	NA	< 5	72%	60%	130%	87%	85%	115%	80%	70%	130%
F2 (C10 to C16)	8368384		< 10	< 10	NA	< 10	108%	60%	130%	94%	80%	120%	101%	70%	130%
F3 (C16 to C34)	8368384		61	63	NA	< 50	106%	60%	130%	83%	80%	120%	106%	70%	130%
F4 (C34 to C50)	8368384		< 50	< 50	NA	< 50	94%	60%	130%	81%	80%	120%	110%	70%	130%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Page 10 of 13

AGAT QUALITY ASSURANCE REPORT (V1)

CLIENT NAME: WSP CANADA INC.

PROJECT: 16M-1410-01

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

AGAT WORK ORDER: 17T212314

ATTENTION TO: Mani P

SAMPLING SITE:		SAMPLED BY:					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Soil Analysis							
Organic Nitrogen			CALCULATION				
Total Kjeldahl Nitrogen	INOR-93-6048	QuikChem 10-107-06-2-I & SM 4500-Norg D	LACHAT FIA				
Ammonia as N (KCI Extr)	INOR-93-6003	AQ-2 EPA 103-A & MOE Protocol/ON Reg. 267/03	AQ-2 DISCRETE ANALYZER				
Nitrate as N (2:1)	INOR-93-6004	McKeague 4.12 & SM 4110 B	ION CHROMATOGRAPH				
Nitrite as N (2:1)	INOR-93-6004	McKeague 4.12 & SM 4110 B	ION CHROMATOGRAPH				
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS				
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS				
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS				
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS				
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS				
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES				
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS				
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS				
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS				
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS				
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS				
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS				
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS				
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS				
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS				
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS				
Jranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS				
/anadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS				
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS				
Chromium VI	INOR-93-6029	SM 3500 B; MSA Part 3, Ch. 25	SPECTROPHOTOMETER				
Cyanide	INOR-93-6052	MOE CN-3015 & E 3009 A;SM 4500 CN	TECHNICON AUTO ANALYZE				
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS				
Electrical Conductivity	INOR-93-6036	McKeague 4.12, SM 2510 B	EC METER				
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-846 6010B	ICP/OES				
oH, 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	PH METER				
Arsenic Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A					
Barium Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A					
Boron Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A					
Cadmium Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A					
Chromium Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A					
_ead Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A					
Mercury Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A					
Selenium Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A					
Silver Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A					
Jranium Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A					
Fluoride Leachate	INOR-93-6018	EPA SW-846-1311 & SM4500-F- C	ION SELECTIVE ELECTRODE				
Cyanide Leachate	INOR-93-6052	EPA SW-846-1311 & MOE 3015 & SM 4500 CN- I					
Nitrate + Nitrite) as N Leachate	INOR-93-6053	EPA SW 846-1311 & SM 4500 - NO3-	LACHAT FIA				

Method Summary

CLIENT NAME: WSP CANADA INC.

PROJECT: 16M-1410-01

AGAT WORK ORDER: 17T212314 **ATTENTION TO: Mani P**

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Phenols	INOR-121-6010	based on EPA 420.2	COLORIMETER
Trace Organics Analysis			
Benzene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Toluene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Ethylbenzene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Xylene Mixture	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method	P & T GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method	P & T GC/FID
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009		GC/FID

CLIENT NAME: WSP CANADA INC. 51 CONSTELLATION COURT TORONTO, ON M9W1K4 (416) 798-0065

ATTENTION TO: Mani P

PROJECT: 16M-01410-01

AGAT WORK ORDER: 17T216290

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Coordinator

DATE REPORTED: Jun 09, 2017

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>*NOTES</u>	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 5

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 17T216290 PROJECT: 16M-01410-01

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Mani P

SAMPLED BY:

O. Reg. 558 Metals and Inorganics DATE RECEIVED: 2017-05-16 **DATE REPORTED: 2017-06-09** BH 16-1 SAMPLE DESCRIPTION: SS-Combined SAMPLE TYPE: Soil DATE SAMPLED: 2017-05-10 8396984 Parameter Unit G/S RDL Arsenic Leachate 2.5 0.010 < 0.010 mg/L Barium Leachate 100 0.100 0.665 mg/L Boron Leachate mg/L 500 0.050 < 0.050 Cadmium Leachate mg/L 0.5 0.010 < 0.010 Chromium Leachate 5 0.010 mg/L 0.011 Lead Leachate mg/L 5 0.010 <0.010 0.1 Mercury Leachate mg/L 0.01 < 0.01 Selenium Leachate mg/L 1 0.010 <0.010 Silver Leachate 5 0.010 < 0.010 mg/L Uranium Leachate mg/L 10 0.050 < 0.050 Fluoride Leachate mg/L 150 0.05 0.13 Cyanide Leachate mg/L 20 0.05 < 0.05 (Nitrate + Nitrite) as N Leachate mg/L 1000 0.70 <0.70

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria

Amanjot Bhela

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 16M-01410-01

SAMPLING SITE:

AGAT WORK ORDER: 17T216290 ATTENTION TO: Mani P

SAMPLED BY:

Soil Analysis

RPT Date: Jun 09, 2017			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLAN	(SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 10	eptable nits	Recovery	1 1 1 1	ptable nits
			-				value	Lower	Upper	-	Lower	Upper	-	Lower	Upper
O. Reg. 558 Metals and Inorgani	cs														
Arsenic Leachate	8437472		<0.010	<0.010	NA	< 0.010	100%	90%	110%	117%	80%	120%	119%	70%	130%
Barium Leachate	8437472		0.555	0.605	8.6%	< 0.100	100%	90%	110%	96%	80%	120%	89%	70%	130%
Boron Leachate	8437472		<0.050	<0.050	NA	< 0.050	103%	90%	110%	99%	80%	120%	112%	70%	130%
Cadmium Leachate	8437472		<0.010	<0.010	NA	< 0.010	99%	90%	110%	108%	80%	120%	100%	70%	130%
Chromium Leachate	8437472		<0.010	<0.010	NA	< 0.010	92%	90%	110%	109%	80%	120%	118%	70%	130%
Lead Leachate	8437472		<0.010	<0.010	NA	< 0.010	91%	90%	110%	96%	80%	120%	85%	70%	130%
Mercury Leachate	8437472		<0.01	<0.01	NA	< 0.01	102%	90%	110%	82%	80%	120%	72%	70%	130%
Selenium Leachate	8437472		<0.010	<0.010	NA	< 0.010	94%	90%	110%	113%	80%	120%	113%	70%	130%
Silver Leachate	8437472		<0.010	<0.010	NA	< 0.010	101%	90%	110%	108%	80%	120%	91%	70%	130%
Uranium Leachate	8437472		<0.050	<0.050	NA	< 0.050	103%	90%	110%	115%	80%	120%	87%	70%	130%
Fluoride Leachate	8437472		0.26	0.26	0.0%	< 0.05	101%	90%	110%	106%	90%	110%	96%	70%	130%
Cyanide Leachate	8437472		<0.05	<0.05	NA	< 0.05	93%	90%	110%	107%	90%	110%	113%	70%	130%
(Nitrate + Nitrite) as N Leachate	8437472		<0.70	<0.70	NA	< 0.70	97%	80%	120%	102%	80%	120%	102%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Amanjot Bhela

AGAT QUALITY ASSURANCE REPORT (V1)

Page 3 of 5

Method Summary

CLIENT NAME: WSP CANADA INC.

PROJECT: 16M-01410-01

AGAT WORK ORDER: 17T216290 ATTENTION TO: Mani P

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis		1	1
Arsenic Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A	ICP-MS
Barium Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A	ICP-MS
Boron Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A	ICP-MS
Cadmium Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A	ICP-MS
Chromium Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A	ICP-MS
Lead Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A	ICP-MS
Mercury Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A	ICP-MS
Selenium Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A	ICP-MS
Silver Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A	ICP-MS
Uranium Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A	ICP-MS
Fluoride Leachate	INOR-93-6018	EPA SW-846-1311 & SM4500-F- C	ION SELECTIVE ELECTRODE
Cyanide Leachate	INOR-93-6052	EPA SW-846-1311 & MOE 3015 & SM 4500 CN- I	TECHNICON AUTO ANALYZER
(Nitrate + Nitrite) as N Leachate	INOR-93-6053	EPA SW 846-1311 & SM 4500 - NO3- I	LACHAT FIA

		F La	abora	ator	ries SR-Z	Ph: 90	05.712.51	5835 Coop auga, Ontar 00 Fax: 909 vebearth.ag	io L4Z 5.712.5	1Y2 1 22	w	lork O	rder # Quan	#:	7	Only		16	120	0
Chain of Custody Record			er sample, pl		Drinking Water Chain of Custody Form (p						A	rrival ⁻	lemp	eratu L	ires:	4	0	1	1-1-	75
Report Information:Company: WSP Contact: $Pmdleef$ Address: ST Address: ST Phone: 437 437 353 Reports to be sent in:1. Email: $Pmdleef$ 2. Email: $Manie PailetProject Information:Project:16 M - 0141Site Location:Glean Rd$	Partel PIGA St Faxtel WSP gg	6- 798 giorg	-0069		Regulatory Requirements: (Please check all applicable boxes) Regulation 153/04 Table Sewer Ind/Com Sani Ind/Com Stor Ress/Park Stor Coarse Ind/coar Fine Ind/coar Is this submission for a Record of Site Condition? Yes No	r Use tary m	Repor	latory Re Regulation CCME Prov. Wate Objectives Other Indicate	r Qualit (PWQC	y)	Tu Re	egula Jsh T X	roui ar TA AT (R 3 Bu: Days OR E PI TAT i	nd 1 NT tush Su sines Date F Date F	rime s Requir provi	red (Ru	T) R 5 to 7 2 Busi Days ush Su or noti	equi Busine iness urcharg ificatio Is and	ges May /	Next Business Day Apply):
Sampled By: AGAT Quote #: Please note: If guotation number is Invoice Information: Company: Contact: Address: Email:		nt be billed full price			Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Field Filtered - Metals, Hg, CrVI	rganics 53 Metals (exc. Hydrides)	TP3 Hydride Metals ORPS: B+HWS OCr ^a Ec OCr ^a Ec OCr ^a Ec	Full Metals Scan	Regulation/Custom Metals	LINU2 LINU3 TIU2 Les: [] VOC [] BTEX [] THM	CCME Fractions 1 to 4			PCBs: 🗆 Total 🛛 Aroclors	rine Pesticides	MAXI LIVUUS LIABNS LIB(a)P LIPUES			
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		Y/N	Metals	ORPS:	Full M	Regula	Volatiles:	CCME	ABNS	PAHs	PCBs:	Organ	Sewer Use			
BH 16-1 SS-Combined BH 16-2 SS-Combined BH 16-6 SS-Combined	May lofn "May My	pin pin tim		5	3 Hold															
Samples: Relinquished By (Print Norrie and Sign):	7-Pelet	- Date May Date	16/12	s=10,	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):	L	h				6/1	17	Time	5	10	pn	~			
Samples Relinquished by (Print Name and Sign).		Date	t Tr	e	Samples Received By (Print Name and Sign)					Date		_	Time			Nº:	Pa	ge	of_	20
Document ID: DRV 78-1511-013								Pink	Сору -	Client I	Yellow	v Сору	- AG	AT I	White	1	- AGAT			2 J evenuer 20, 2016 e 5 of 5

CLIENT NAME: WSP CANADA INC. 51 CONSTELLATION COURT TORONTO, ON M9W1K4 (416) 798-0065

ATTENTION TO: Mani P

PROJECT: 16M-01410-01

AGAT WORK ORDER: 17T216295

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Coordinator

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: May 31, 2017

PAGES (INCLUDING COVER): 11

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 11

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 17T216295 PROJECT: 16M-01410-01 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Mani P

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2017-05-16

DATE RECEIVED. 2017-03-10	,						DATE REPORTED. 2017-03-31
		SAMPLE DES	CRIPTION:	BH 16-1 SS2	BH 16-2 SS1	BH 16-6 SS2	
		SAM	PLE TYPE:	Soil	Soil	Soil	
			SAMPLED:	2017-05-10	2017-05-10	2017-05-11	
Parameter	Unit	G/S	RDL	8396936	8396942	8396949	
Antimony	µg/g	50	0.8	2.5	1.0	<0.8	
Arsenic	µg/g	18	1	3	5	3	
Barium	µg/g	670	2	50	94	26	
Beryllium	µg/g	10	0.5	<0.5	0.5	<0.5	
Boron	µg/g	120	5	6	7	<5	
Boron (Hot Water Soluble)	µg/g	2	0.10	0.25	0.57	0.24	
Cadmium	µg/g	1.9	0.5	3.2	0.9	<0.5	
Chromium	µg/g	160	2	16	21	32	
Cobalt	µg/g	100	0.5	6.2	7.0	3.1	
Copper	µg/g	300	1	15	26	12	
Lead	µg/g	120	1	41	96	29	
Molybdenum	µg/g	40	0.5	<0.5	<0.5	<0.5	
Nickel	µg/g	340	1	14	16	7	
Selenium	µg/g	5.5	0.4	<0.4	0.5	<0.4	
Silver	µg/g	50	0.2	<0.2	<0.2	<0.2	
Thallium	µg/g	3.3	0.4	<0.4	<0.4	<0.4	
Uranium	µg/g	33	0.5	<0.5	0.6	<0.5	
Vanadium	µg/g	86	1	20	23	12	
Zinc	µg/g	340	5	111	96	48	
Chromium VI	µg/g	10	0.2	<0.2	<0.2	<0.2	
Cyanide	µg/g	0.051	0.040	<0.040	<0.040	<0.040	
Mercury	µg/g	20	0.10	<0.10	0.26	0.17	
Electrical Conductivity	mS/cm	1.4	0.005	1.79	2.98	1.40	
Sodium Adsorption Ratio	NA	12	NA	24.1	58.3	9.55	
pH, 2:1 CaCl2 Extraction	pH Units		NA	8.19	9.22	11.2	

Certified By:

Amanjot Bhela

DATE REPORTED: 2017-05-31

AGAT WORK ORDER: 17T216295 PROJECT: 16M-01410-01

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Mani P

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIV	/ED: 2017-05-16	DATE REPORTED: 2017-05-	-31
Comments:	RDL - Reported Detection Limit;	G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -	
	Industrial/Commercial/Community	Property Use - Medium and Fine Textured Soils	

8396936 EC & SAR were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio.

Please note that metals values were confirmed by re-analysis.

8396942-8396949 EC & SAR were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio.

Certified By:

Amanjot Bhela

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 17T216295 PROJECT: 16M-01410-01

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Mani P

SAMPLED BY:

O. Reg. 153(511) - PCBs (Soil)

DATE RECEIVED: 2017-05-16

		SAMPLE DESCRIPTIO	ON: BH 16-1 SS3	BH 16-6 SS3	Dup 1	
		SAMPLE TY	PE: Soil	Soil	Soil	
		DATE SAMPLE	ED: 2017-05-10	2017-05-11	2017-05-10	
Parameter	Unit	G/S RDL	8396938	8396951	8396955	
Aroclor 1242	µg/g	0.1	<0.1	<0.1	<0.1	
Aroclor 1248	µg/g	0.1	<0.1	<0.1	<0.1	
Aroclor 1254	µg/g	0.1	<0.1	<0.1	<0.1	
Aroclor 1260	µg/g	0.1	<0.1	<0.1	<0.1	
Polychlorinated Biphenyls	µg/g	1.1 0.1	<0.1	<0.1	<0.1	
Moisture Content	%	0.1	15.4	16.3	16.5	
Surrogate	Unit	Acceptable Limit	s			
Decachlorobiphenyl	%	60-140	116	112	100	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Industrial/Commercial/Community Property Use - Medium and Fine Textured Soils

8396938-8396955 Results are based on the dry weight of soil extracted.

Certified By:

NPopukolof

DATE REPORTED: 2017-05-31

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 17T216295 PROJECT: 16M-01410-01

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Mani P

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2017-05-16

		SAMPLE DES	CRIPTION:	BH 16-1 SS4	BH 16-2 SS4	BH 16-6 SS7	Dup 2	
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	
		DATES	SAMPLED:	2017-05-10	2017-05-10	2017-05-11	2017-05-10	
Parameter	Unit	G/S	RDL	8396939	8396945	8396952	8396956	
Benzene	µg/g	0.4	0.02	<0.02	<0.02	0.12	<0.02	
Toluene	µg/g	78	0.08	<0.08	<0.08	<0.08	<0.08	
Ethylbenzene	µg/g	19	0.05	<0.05	< 0.05	< 0.05	<0.05	
Xylene Mixture	µg/g	30	0.05	<0.05	<0.05	<0.05	<0.05	
F1 (C6 to C10)	µg/g	65	5	<5	<5	<5	<5	
F1 (C6 to C10) minus BTEX	µg/g	65	5	<5	<5	<5	<5	
F2 (C10 to C16)	µg/g	250	10	<10	<10	<10	<10	
F3 (C16 to C34)	µg/g	2500	50	<50	<50	2000	<50	
F4 (C34 to C50)	µg/g	6600	50	<50	<50	1100	<50	
Gravimetric Heavy Hydrocarbons	µg/g	6600	50	NA	NA	NA	NA	
Moisture Content	%		0.1	22.2	15.0	14.3	23.0	
Surrogate	Unit	Acceptab	le Limits					
Terphenyl	%	60-1	140	85	77	86	83	

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Comments: Industrial/Commercial/Community Property Use - Medium and Fine Textured Soils

8396939-8396956 Results are based on sample dry weight.

The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client. Quality Control Data is available upon request.

Certified By:

NPopukoloj

DATE REPORTED: 2017-05-31

Guideline Violation

AGAT WORK ORDER: 17T216295 PROJECT: 16M-01410-01 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

ATTENTION TO: Mani P

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
8396936	BH 16-1 SS2	ON T3 S ICC MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Cadmium	µg/g	1.9	3.2
8396936	BH 16-1 SS2	ON T3 S ICC MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity	mS/cm	1.4	1.79
8396936	BH 16-1 SS2	ON T3 S ICC MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	NA	12	24.1
8396942	BH 16-2 SS1	ON T3 S ICC MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity	mS/cm	1.4	2.98
8396942	BH 16-2 SS1	ON T3 S ICC MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	NA	12	58.3

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 16M-01410-01

SAMPLING SITE:

AGAT WORK ORDER: 17T216295 ATTENTION TO: Mani P

SAMPLED BY:

Soil Analysis																
RPT Date: May 31, 2017			D	UPLICATE	E		REFEREN	ICE MA	TERIAL	L METHOD BLANK SPIK			PIKE MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery		ptable nits	Recovery		ptable nits	
		ld					Value	Lower	Upper		Lower	Upper	-	Lower	Upper	
O. Reg. 153(511) - Metals & In	organics (Soil)														
Antimony	8396936	8396936	2.5	2.5	NA	< 0.8	108%	70%	130%	101%	80%	120%	98%	70%	130%	
Arsenic	8396936	8396936	3	3	NA	< 1	116%	70%	130%	106%	80%	120%	105%	70%	130%	
Barium	8396936	8396936	50	49	2.0%	< 2	100%	70%	130%	102%	80%	120%	96%	70%	130%	
Beryllium	8396936	8396936	< 0.5	< 0.5	NA	< 0.5	122%	70%	130%	116%	80%	120%	115%	70%	130%	
Boron	8396936	8396936	6	5	NA	< 5	78%	70%	130%	113%	80%	120%	108%	70%	130%	
Boron (Hot Water Soluble)	8396936	8396936	0.25	0.23	NA	< 0.10	97%	60%	140%	105%	70%	130%	98%	60%	140%	
Cadmium	8396936	8396936	3.2	3.0	6.5%	< 0.5	99%	70%	130%	103%	80%	120%	111%	70%	130%	
Chromium	8396936	8396936	16	16	0.0%	< 2	94%	70%	130%	110%	80%	120%	106%	70%	130%	
Cobalt	8396936	8396936	6.2	6.2	0.0%	< 0.5	102%	70%	130%	106%	80%	120%	102%	70%	130%	
Copper	8396936	8396936	15	15	0.0%	< 1	99%	70%	130%	113%	80%	120%	109%	70%	130%	
Lead	8396936	8396936	41	39	5.0%	< 1	107%	70%	130%	107%	80%	120%	104%	70%	130%	
Molybdenum	8396936	8396936	< 0.5	< 0.5	NA	< 0.5	107%	70%	130%	110%	80%	120%	102%	70%	130%	
Nickel	8396936	8396936	14	14	0.0%	< 1	105%	70%	130%	109%	80%	120%	106%	70%	130%	
Selenium	8396936	8396936	< 0.4	< 0.4	NA	< 0.4	89%	70%	130%	97%	80%	120%	99%	70%	130%	
Silver	8396936	8396936	< 0.2	< 0.2	NA	< 0.2	96%	70%	130%	112%	80%	120%	107%	70%	130%	
Thallium	8396936	8396936	< 0.4	< 0.4	NA	< 0.4	104%	70%	130%	109%	80%	120%	104%	70%	130%	
Uranium	8396936	8396936	< 0.5	< 0.5	NA	< 0.5	103%	70%	130%	106%	80%	120%	100%	70%	130%	
Vanadium	8396936	8396936	20	19	5.1%	< 1	102%	70%	130%	96%	80%	120%	96%	70%	130%	
Zinc	8396936	8396936	111	107	3.7%	< 5	98%	70%	130%	119%	80%	120%	120%	70%	130%	
Chromium VI	8397412		<0.2	<0.2	NA	< 0.2	95%	70%	130%	101%	80%	120%	101%	70%	130%	
Cyanide	8391137		<0.040	<0.040	NA	< 0.040	96%	70%	130%	95%	80%	120%	95%	70%	130%	
Mercury	8396936	8396936	< 0.10	<0.10	NA	<0.10	112%	70%	130%	111%	80%	120%	104%	70%	130%	
Electrical Conductivity	8396936	8396936	1.79	1.94	8.0%	< 0.005	93%	90%	110%	NA			NA			
Sodium Adsorption Ratio	8396936	8396936	24.1	27.7	13.9%	NA	NA			NA			NA			
oH, 2:1 CaCl2 Extraction	8393044		6.78	6.77	0.1%	NA	101%	80%	120%	NA			NA			

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Amanjot Bhela

Page 7 of 11

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 16M-01410-01

SAMPLING SITE:

AGAT WORK ORDER: 17T216295 ATTENTION TO: Mani P

SAMPLED BY:

Trace Organics Analysis

RPT Date: May 31, 2017 DUPLICA			UPLICAT	E		REFEREN	REFERENCE MATERIA			BLANK	(SPIKE	МАТ	RIX SPI	IKE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value			Recovery	1.10	ptable nits	Recovery	1.10	eptable mits
		Ia	-	-			value	Lower	Upper	_	Lower	Upper		Lower	Upper
O. Reg. 153(511) - PCBs (Soil)															
Aroclor 1242	8396955 8	3396955	< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1248	8396955 8	3396955	< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1254	8396955 8	3396955	< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1260	8396955 8	3396955	< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Polychlorinated Biphenyls	8396955 8	3396955	< 0.1	< 0.1	NA	< 0.1	95%	60%	140%	79%	60%	140%	76%	60%	140%
O. Reg. 153(511) - PHCs F1 - F	4 (Soil)														
Benzene	8395012		< 0.02	< 0.02	NA	< 0.02	107%	60%	130%	117%	60%	130%	112%	60%	130%
Toluene	8395012		< 0.08	< 0.08	NA	< 0.08	110%	60%	130%	115%	60%	130%	115%	60%	130%
Ethylbenzene	8395012		< 0.05	< 0.05	NA	< 0.05	117%	60%	130%	116%	60%	130%	114%	60%	130%
Xylene Mixture	8395012		< 0.05	< 0.05	NA	< 0.05	111%	60%	130%	114%	60%	130%	113%	60%	130%
F1 (C6 to C10)	8395012		< 5	< 5	NA	< 5	75%	60%	130%	87%	85%	115%	79%	70%	130%
F2 (C10 to C16)	8390581		< 10	< 10	NA	< 10	104%	60%	130%	83%	80%	120%	82%	70%	130%
F3 (C16 to C34)	8390581		< 50	< 50	NA	< 50	103%	60%	130%	81%	80%	120%	90%	70%	130%
F4 (C34 to C50)	8390581		< 50	< 50	NA	< 50	87%	60%	130%	98%	80%	120%	94%	70%	130%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukoli

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 11

Method Summary

CLIENT NAME: WSP CANADA INC.

PROJECT: 16M-01410-01

SAMPLING SITE:

AGAT WORK ORDER: 17T216295

ATTENTION TO: Mani P

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			1
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium VI	INOR-93-6029	SM 3500 B; MSA Part 3, Ch. 25	SPECTROPHOTOMETER
Cyanide	INOR-93-6052	MOE CN-3015 & E 3009 A;SM 4500 CN	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Electrical Conductivity	INOR-93-6036	McKeague 4.12, SM 2510 B	EC METER
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-846 6010B	ICP/OES
oH, 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	PH METER

Method Summary

CLIENT NAME: WSP CANADA INC.

PROJECT: 16M-01410-01

SAMPLING SITE:

AGAT WORK ORDER: 17T216295

ATTENTION TO: Mani P

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	1	I	
Aroclor 1242	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Aroclor 1248	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Aroclor 1254	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Aroclor 1260	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Polychlorinated Biphenyls	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Decachlorobiphenyl	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Moisture Content		MOE E3139	BALANCE
Benzene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Toluene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Ethylbenzene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Xylene Mixture	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method	P & T GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method	P & T GC/FID
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009		GC/FID

CLIENT NAME: WSP CANADA INC. 51 CONSTELLATION COURT TORONTO, ON M9W1K4 (416) 798-0065

ATTENTION TO: Rodney Obdeyn

PROJECT: 16M-01410-01

AGAT WORK ORDER: 17T218665

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

WATER ANALYSIS REVIEWED BY: Inesa Alizarchyk, Inorganic Lab Supervisor

DATE REPORTED: May 31, 2017

PAGES (INCLUDING COVER): 10

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>*NOTES</u>		

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 10

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 17T218665 PROJECT: 16M-01410-01

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Rodney Obdeyn

SAMPLED BY:Pradeep Patel

O. Reg. 153(511) - PCBs (Water)

DATE RECEIVED: 2017-05-23

DATE RECEIVED: 2017-05-23						DATE REPORTED: 2017-05-31
		SAMPLE DESCRIPTION SAMPLE TYPE		BH 16-6 Water	DUP Water	
Parameter	Unit	DATE SAMPLED G / S RDL		2017-05-19 8415397	2017-05-19 8415410	
Aroclor 1242	µg/L	0.1	<0.1	<0.1	<0.1	
Aroclor 1248	µg/L	0.1	<0.1	<0.1	<0.1	
Aroclor 1254	µg/L	0.1	<0.1	<0.1	<0.1	
Aroclor 1260	µg/L	0.1	<0.1	<0.1	<0.1	
Polychlorinated Biphenyls	µg/L	15 0.1	<0.1	<0.1	<0.1	
Surrogate	Unit	Acceptable Limits				
Decachlorobiphenyl	%	60-140	76	88	88	

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Comments: Types of Property Uses - Medium and Fine Textured Soils

teurs

AGAT WORK ORDER: 17T218665 PROJECT: 16M-01410-01 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Rodney Obdeyn

DATE REPORTED: 2017-05-31

SAMPLED BY:Pradeep Patel

O. Reg. 153(511) - PHCs F1 - F4 (Water)

DATE RECEIVED: 2017-05-23

		SAMPLE DESC	RIPTION:	BH 16-3	BH 16-6	DUP	
		SAMP	LE TYPE:	Water	Water	Water	
		DATE S	AMPLED:	2017-05-19	2017-05-19	2017-05-19	
Parameter	Unit	G/S	RDL	8415387	8415397	8415410	
Benzene	µg/L	430	0.20	<0.20	<0.20	<0.20	
Toluene	µg/L	18000	0.20	<0.20	<0.20	<0.20	
Ethylbenzene	µg/L	2300	0.10	<0.10	<0.10	<0.10	
Xylene Mixture	µg/L	4200	0.20	<0.20	<0.20	<0.20	
F1 (C6 to C10)	µg/L	750	25	<25	<25	<25	
F1 (C6 to C10) minus BTEX	µg/L	750	25	<25	<25	<25	
F2 (C10 to C16)	µg/L	150	100	1200	<100	<100	
F3 (C16 to C34)	µg/L	500	100	<100	<100	<100	
F4 (C34 to C50)	µg/L	500	100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	µg/L	500	500	NA	NA	NA	
Surrogate	Unit	Acceptabl	e Limits				
Terphenyl	%	60-1	40	87	73	68	

Certified By:

teur

AGAT WORK ORDER: 17T218665 PROJECT: 16M-01410-01 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Rodney Obdeyn

SAMPLED BY:Pradeep Patel

O. Reg. 153(511) - PHCs F1 - F4 (Water)

DATE RECEIV	ED: 2017-05-23	DATE REPORTED: 2017-05-31
Comments:	RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition S Types of Property Uses - Medium and Fine Textured Soils	Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All
8415387	 Some sediment was observed in the sample. Whole bottle extraction was performed. The C6-C10 fraction is calculated using Toluene response factor. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16 Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram has returned to baseline by the retention time of nC50. Total C6-C50 results are corrected for BTEX contributions. This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 nC34 average. Linearity is within 15%. Extraction and holding times were met for this sample. Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153/04, results are considered value and the presence of individual unidentified compounds. 	n of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present.
8415397-841541	 Some sediment was observed in the sample. Whole bottle extraction was performed. The C6-C10 fraction is calculated using Toluene response factor. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16 Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram The chromatogram has returned to baseline by the retention time of nC50. Total C6-C50 results are corrected for BTEX contributions. This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 nC34 average. Linearity is within 15%. Extraction and holding times were met for this sample. Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153/04, results are considered va NA = Not Applicable 	n of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present.

Certified By:

teur

AGAT WORK ORDER: 17T218665 PROJECT: 16M-01410-01

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Rodney Obdeyn

SAMPLED BY:Pradeep Patel

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2017-05-23	3							DATE REPORTED: 2017-05-31
	S	SAMPLE DESC SAMPI	RIPTION: _E TYPE:	BH 16-3 Water		BH 16-6 Water	DUP Water	
		DATE SA	MPLED:	2017-05-19		2017-05-19	2017-05-19	
Parameter	Unit	G/S	RDL	8415387	RDL	8415397	8415410	
Antimony	µg/L	20000	1.0	<1.0	1.0	<1.0	<1.0	
Arsenic	µg/L	1900	1.0	2.6	1.0	7.9	9.4	
Barium	μg/L	29000	2.0	288	2.0	2130	2100	
Beryllium	µg/L	67	0.5	<0.5	0.5	<0.5	<0.5	
Boron	μg/L	45000	10.0	59.8	10.0	50.8	46.3	
Cadmium	μg/L	2.7	0.2	<0.2	0.2	<0.2	<0.2	
Chromium	μg/L	810	2.0	5.3	2.0	49.5	43.3	
Cobalt	μg/L	66	0.5	<0.5	0.5	0.9	1.0	
Copper	μg/L	87	1.0	<1.0	1.0	2.9	2.1	
Lead	μg/L	25	0.5	0.7	0.5	1.5	1.7	
Molybdenum	μg/L	9200	0.5	3.0	0.5	<0.5	<0.5	
Nickel	μg/L	490	1.0	<1.0	1.0	3.8	5.5	
Selenium	μg/L	63	1.0	1.4	1.0	3.0	3.9	
Silver	μg/L	1.5	0.2	<0.2	0.2	<0.2	<0.2	
Thallium	μg/L	510	0.3	0.6	0.3	0.6	0.5	
Uranium	μg/L	420	0.5	<0.5	0.5	<0.5	<0.5	
Vanadium	μg/L	250	0.4	3.7	0.4	9.5	12.2	
Zinc	μg/L	1100	5.0	<5.0	5.0	<5.0	6.3	
Mercury	μg/L	2.8	0.02	<0.02	0.02	<0.02	<0.02	
Chromium VI	μg/L	140	5	<5	5	<5	<5	
Cyanide	μg/L	66	2	<2	2	<2	<2	
Sodium	μg/L	2300000	1000	73200	5000	782000	774000	
Chloride	μg/L	2300000	500	181000	5000	2490000	2260000	
Electrical Conductivity	uS/cm		2	1230	2	7580	7540	
рН	pH Units		NA	7.95	NA	7.79	7.67	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soils

8415387-8415410 Elevated RDLs indicate the degree of sample dilutions prior to analyses to keep analytes within the calibration range, reduce matrix interference and to avoid contaminating the instrument.

Certified By:

Guideline Violation

AGAT WORK ORDER: 17T218665 PROJECT: 16M-01410-01 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

ATTENTION TO: Rodney Obdeyn

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
8415387	BH 16-3	ON T3 NPGW MFT	O. Reg. 153(511) - PHCs F1 - F4 (Water)	F2 (C10 to C16)	µg/L	150	1200
8415397	BH 16-6	ON T3 NPGW MFT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	µg/L	2300000	2490000

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 16M-01410-01

SAMPLING SITE:

AGAT WORK ORDER: 17T218665 ATTENTION TO: Rodney Obdeyn SAMPLED BY:Pradeep Patel

Trace Organics Analysis

				•	5										
RPT Date: May 31, 2017			DUPLICATE				REFEREN	REFERENCE MATERIAL		METHOD BLANK SPIKE			МАТ	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	1.10	eptable mits
							Value	Lower	Upper	_	Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 -	F4 (Water)														
Benzene	8414363		< 0.20	< 0.20	NA	< 0.20	107%	50%	140%	107%	60%	130%	111%	50%	140%
Toluene	8414363		< 0.20	< 0.20	NA	< 0.20	105%	50%	140%	102%	60%	130%	109%	50%	140%
Ethylbenzene	8414363		< 0.10	< 0.10	NA	< 0.10	95%	50%	140%	97%	60%	130%	100%	50%	140%
Xylene Mixture	8414363		< 0.20	< 0.20	NA	< 0.20	69%	50%	140%	91%	60%	130%	104%	50%	140%
F1 (C6 to C10)	8414363		< 25	< 25	NA	< 25	87%	60%	140%	88%	60%	140%	81%	60%	140%
F2 (C10 to C16)	8394998		< 100	< 100	NA	< 100	96%	60%	140%	75%	60%	140%	61%	60%	140%
F3 (C16 to C34)	8394998		< 100	< 100	NA	< 100	97%	60%	140%	77%	60%	140%	66%	60%	140%
F4 (C34 to C50)	8394998		< 100	< 100	NA	< 100	102%	60%	140%	86%	60%	140%	81%	60%	140%
O. Reg. 153(511) - PCBs (Wat	er)														
Aroclor 1242	8412996		< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1248	8412996		< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1254	8412996		< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1260	8412996		< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Polychlorinated Biphenyls	8412996		< 0.1	< 0.1	NA	< 0.1	80%	60%	140%	62%	60%	140%	65%	60%	140%
Polychlorinated Biphenyls	8412996		< 0.1	< 0.1	NA	< 0.1	80%	60%	140%	62%	60%	140%	65%	60%	6

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

ung

Page 7 of 10

AGAT QUALITY ASSURANCE REPORT (V1)

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 16M-01410-01

SAMPLING SITE:

AGAT WORK ORDER: 17T218665 ATTENTION TO: Rodney Obdeyn SAMPLED BY:Pradeep Patel

Water Analysis

						-								
RPT Date: May 31, 2017		C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE		
PARAMETER	Batch Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Lin	ptable nits	Recovery		ptable nits
						value	Lower	Upper		Lower Uppe			Lower	Upper
O. Reg. 153(511) - Metals & Ir	norganics (Water)													
Antimony	8413401	<1.0	<1.0	NA	< 1.0	100%	70%	130%	98%	80%	120%	99%	70%	130%
Arsenic	8413401	<1.0	<1.0	NA	< 1.0	101%	70%	130%	98%	80%	120%	103%	70%	130%
Barium	8413401	24.2	20.4	17.0%	< 2.0	100%	70%	130%	103%	80%	120%	101%	70%	130%
Beryllium	8413401	<0.5	<0.5	NA	< 0.5	103%	70%	130%	104%	80%	120%	117%	70%	130%
Boron	8413401	10.1	<10.0	NA	< 10.0	105%	70%	130%	100%	80%	120%	108%	70%	130%
Cadmium	8413401	<0.2	<0.2	NA	< 0.2	100%	70%	130%	102%	80%	120%	108%	70%	130%
Chromium	8413401	<2.0	<2.0	NA	< 2.0	100%	70%	130%	99%	80%	120%	101%	70%	130%
Cobalt	8413401	<0.5	<0.5	NA	< 0.5	104%	70%	130%	102%	80%	120%	106%	70%	130%
Copper	8413401	<1.0	<1.0	NA	< 1.0	102%	70%	130%	100%	80%	120%	106%	70%	130%
Lead	8413401	<0.5	<0.5	NA	< 0.5	109%	70%	130%	103%	80%	120%	108%	70%	130%
Molybdenum	8413401	<0.5	<0.5	NA	< 0.5	101%	70%	130%	100%	80%	120%	105%	70%	130%
Nickel	8413401	2.0	1.9	NA	< 1.0	107%	70%	130%	105%	80%	120%	112%	70%	130%
Selenium	8413401	<1.0	<1.0	NA	< 1.0	94%	70%	130%	96%	80%	120%	104%	70%	130%
Silver	8413401	<0.2	<0.2	NA	< 0.2	102%	70%	130%	107%	80%	120%	114%	70%	130%
Thallium	8413401	<0.3	<0.3	NA	< 0.3	106%	70%	130%	100%	80%	120%	101%	70%	130%
Uranium	8413401	<0.5	<0.5	NA	< 0.5	106%	70%	130%	101%	80%	120%	107%	70%	130%
Vanadium	8413401	0.4	0.4	NA	< 0.4	109%	70%	130%	103%	80%	120%	107%	70%	130%
Zinc	8413401	6.8	6.3	NA	< 5.0	104%	70%	130%	104%	80%	120%	107%	70%	130%
Mercury	8415387 8415387	<0.02	<0.02	NA	< 0.02	101%	70%	130%	101%	80%	120%	101%	70%	130%
Chromium VI	8415387 8415387	<5	<5	NA	< 5	104%	70%	130%	102%	80%	120%	101%	70%	130%
Cyanide	8415387 8415387	<2	<2	NA	< 2	96%	70%	130%	99%	80%	120%	97%	70%	130%
Sodium	8409705	8280	8220	0.7%	< 500	98%	70%	130%	98%	80%	120%	94%	70%	130%
Chloride	8415065	12000	11400	5.7%	< 100	94%	70%	130%	101%	70%	130%	114%	70%	130%
Electrical Conductivity	8415387 8415387	1230	1240	0.5%	< 2	103%	90%	110%	NA			NA		
рН	8415387 8415387	7.95	8.02	0.9%	NA	100%	90%	110%	NA			NA		

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 8 of 10

Method Summary

CLIENT NAME: WSP CANADA INC.

PROJECT: 16M-01410-01

SAMPLING SITE:

AGAT WORK ORDER: 17T218665 ATTENTION TO: Rodney Obdeyn SAMPLED BY:Pradeep Patel

SAMPLING SITE:		SAMPLED BY:Pra	adeep Patel				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Trace Organics Analysis		· ·					
Aroclor 1242	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD				
Aroclor 1248	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD				
Aroclor 1254	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD				
Aroclor 1260	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD				
Polychlorinated Biphenyls	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD				
Decachlorobiphenyl	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD				
Benzene	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID				
Toluene	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID				
Ethylbenzene	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID				
Xylene Mixture	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID				
F1 (C6 to C10)	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID				
F1 (C6 to C10) minus BTEX	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID				
F2 (C10 to C16)	VOL-91-5010	MOE PHC-E3421	GC/FID				
F3 (C16 to C34)	VOL-91-5010	MOE PHC-E3421	GC/FID				
F4 (C34 to C50)	VOL-91-5010	MOE PHC-E3421	GC/FID				
Gravimetric Heavy Hydrocarbons	VOL-91-5010	MOE PHC-E3421	BALANCE				
Terphenyl	VOL-91-5010		GC/FID				
Water Analysis							
Antimony	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Arsenic	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Barium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Beryllium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Boron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Chromium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Copper	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Molybdenum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Nickel	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Selenium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Silver	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Thallium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Uranium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Vanadium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Zinc	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Mercury	MET-93-6100	EPA SW-846 7470 & 245.1	CVAAS				
Chromium VI	INOR-93-6034	SM 3500-Cr B	SPECTROPHOTOMETER				
Cyanide	INOR-93-6052	MOE METHOD CN- 3015 & SM 4500 CN- I	TECHNICON AUTO ANALYZER				
Sodium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES				
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH				
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE				
pH	INOR-93-6000	SM 4500-H+ B	PC TITRATE				

INCORPORATED

Laboratory Analysis Report

To:

Danielle Vella

WSP Canada Inc. 51 Constellation Court Toronto, Ontario M9W 1K4

EMC LAB REPORT NUMBER: A31754

Job/Project Name: Glen Road Pedestrian Bridge, Toronto, ON Analysis Method: Polarized Light Microscopy – EPA 600 Date Received: Jun 6/17 Date Analyzed: Jun 13/17 Analyst: Malgorzata Sybydlo, *Laboratory Manager* Job No: 16M-01410-00 Number of Samples: 12 Date Reported: Jun 13/17

				SAMPLE COMP	PONENTS (%	b)
Client's Sample ID	Lab Sample No.	Description/Location	Sample Appearance	Asbestos Fibres	Non- asbestos Fibres	Non- fibrous Material
AS1-1	A31754-1	BH16-01 top of core/ Asphalt (blue/dark grey aggregates)	Black, tar	ND		100
AS1-2	A31754-2	BH16-01 middle of core/ Asphalt (blue/dark grey aggregates)	Black, tar	ND		100
AS1-3	A31754-3	BH16-01 bottom of core/ Asphalt (blue/dark grey aggregates)	Black, tar	ND		100
AS2-1	A31754-4	BH16-02 top layer/ Asphalt (blue/dark grey aggregates)	Black, tar	ND		100
AS2-2	A31754-5	BH16-02 top layer/ Asphalt (blue/dark grey aggregates)	Black, tar	ND		100
AS2-3	A31754-6	BH16-06 top layer/ Asphalt (blue/dark grey aggregates)	Black, tar	ND		100
AS3-1	A31754-7	BH16-02 second layer/ Asphalt (light grey aggregates)	Black, tar	ND		100
AS3-2	A31754-8	BH16-06 second layer/ Asphalt (light grey aggregates)	Black, tar	ND		100
AS3-3	A31754-9	BH16-06 second layer/ Asphalt (light grey aggregates)	Black, tar	ND		100
AS4-1	A31754-10	BH16-02 bottom layer/ Asphalt (large aggregates)	Black, tar	ND		100
AS4-2	A31754-11	BH16-02 bottom layer/ Asphalt (large aggregates)	Black, tar	ND		100

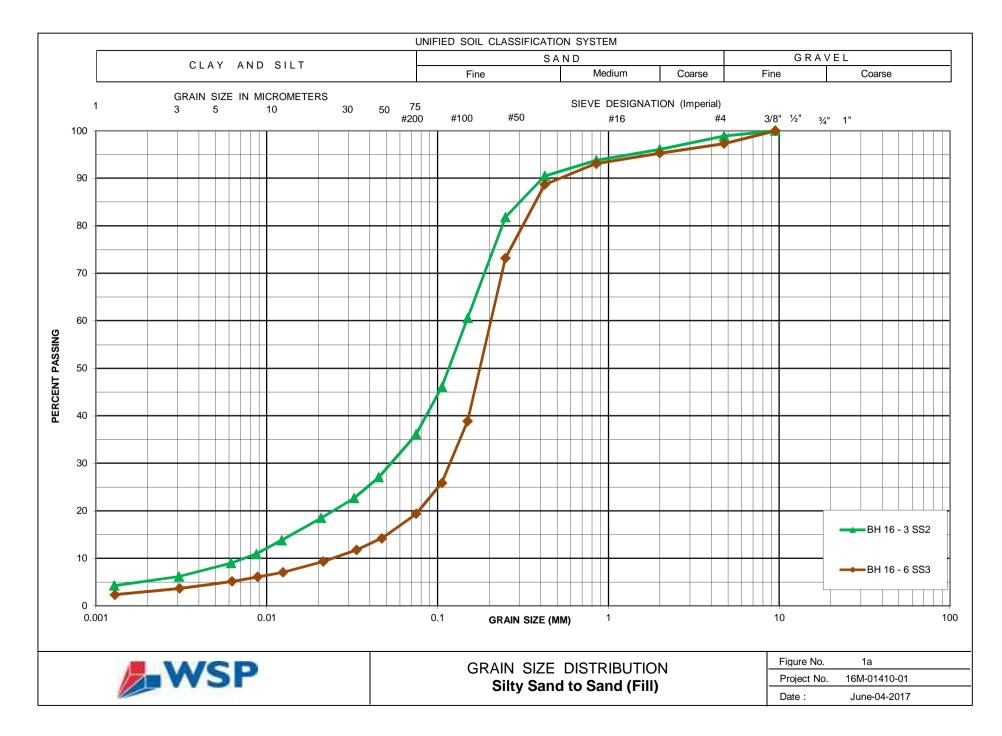
EMC Scientific Inc. 5800 Ambler Drive • Suite 100 • Mississauga • Ontario • L4W 4J4 • T. 905 629 9247 • F. 905 629 2607 EMC Scientific Inc. is Accredited by NVLAP (NVLAP Code 201020-0) for Bulk Asbestos Analysis

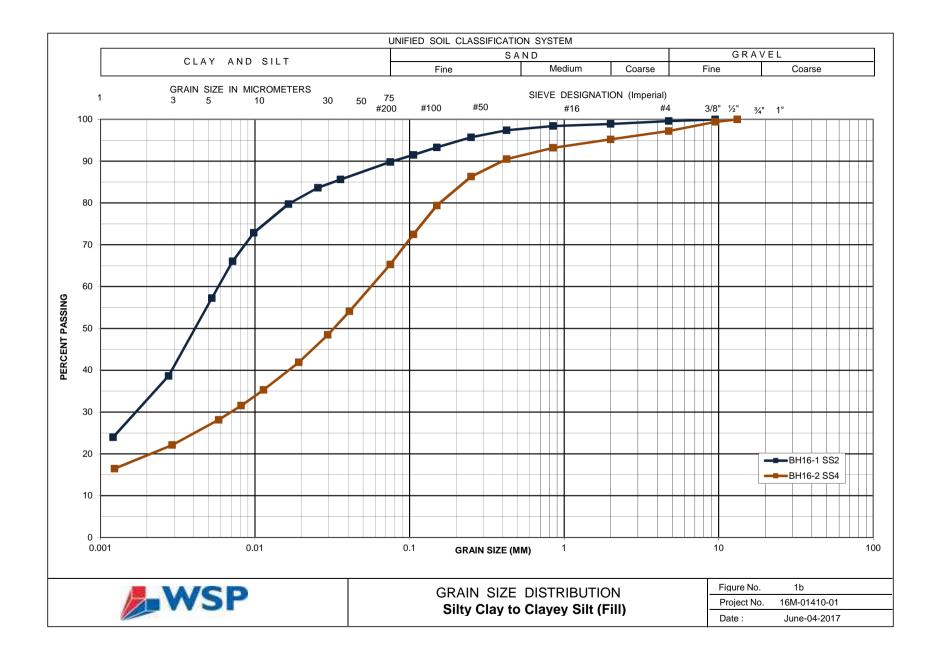
EMC LAB REPORT NUMBER: A31754

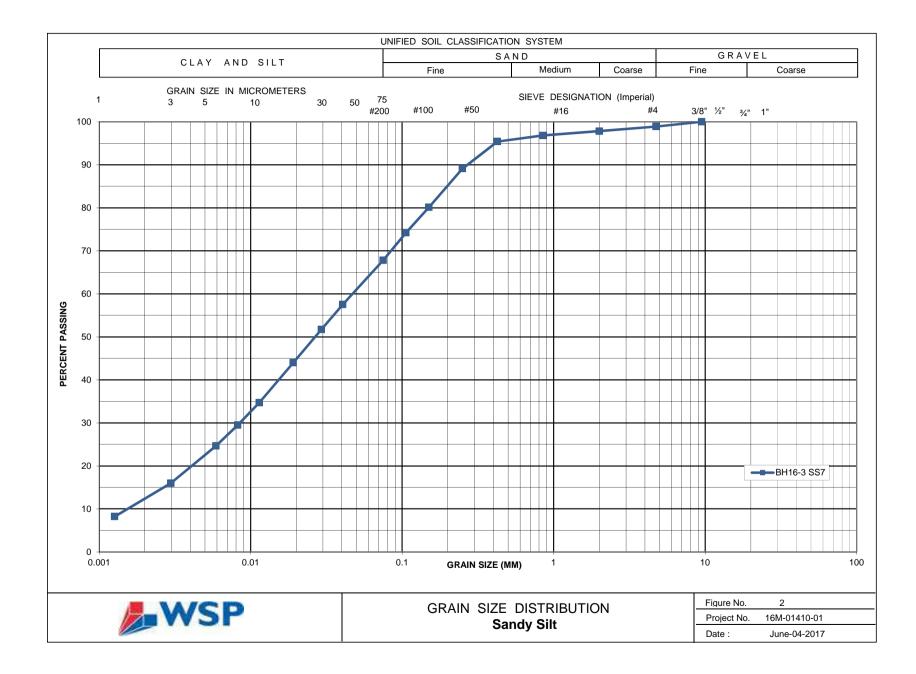
Client's Job/Project No.: 16M-01410-00

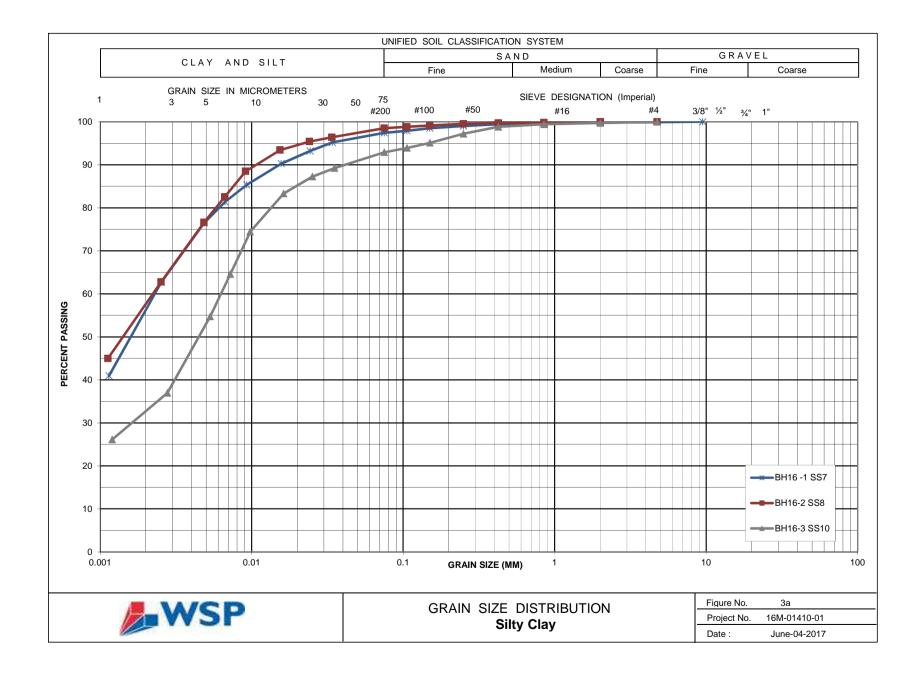
Analyst: Malgorzata Sybydlo, *Laboratory Manager*

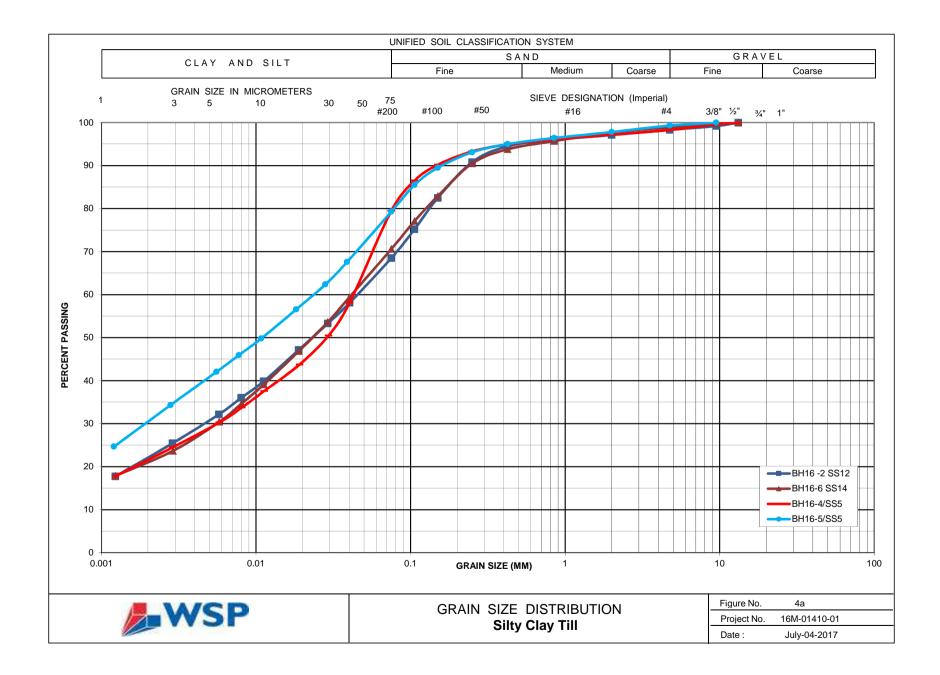
				SAMPLE COMPONENTS (%)						
Client's Sample ID	Lab Sample No.	Description/Location	Sample Appearance	Asbestos Fibres		Non- asbestos Fibres	Non- fibrous Material			
AS4-3	A31754-12	BH16-02 bottom layer/ Asphalt (large aggregates)	Black, tar	ND			100			


Note:


1. Bulk samples are analyzed using Polarized Light Microscopy (PLM) and dispersion staining techniques. The analytical procedures are in accordance with EPA 600/R-93/116 method.


2. The results are only related to the samples analyzed. ND = None Detected (no asbestos fibres were observed), NA = Not Analyzed (analysis stopped due to a previous positive result).


3. This report may not be reproduced, except in full without the written approval of EMC Scientific Inc. This report may not be used by the client to claim product endorsement by NVLAP or any other agency of the U.S. Government.


4. The Ontario Regulatory Threshold for asbestos is 0.5%. The limit of quantification (LOQ) is 0.5%.

