

APPENDIX F

GEOTECHNICAL INVESTIGATION REPORT

Geotechnical Investigation

Proposed Passmore Avenue Road Improvements From Markham Road to 450 m West of Markham Road City of Toronto, Ontario

Prepared For:

Morrison Hershfield Limited

GeoPro Project No.: 16-1406-01

Report Date: January 16, 2017

Professional, Proficient, Proactive

T: (905) 237-8336 E: office@geoproconsulting.ca

Units 57, 40 Vogell Road, Richmond Hill, Ontario L4B 3N6

Table of Contents

1	INTRODUCTION1			
2	INVES	STIGATION PROCEDURE2		
	2.1	Existing Pavement Condition Survey2		
	2.2	Borehole and Asphalt Concrete Core Investigation2		
	2.3	Laboratory Testing		
3	PAVE	MENT AND SUBSURFACE CONDITIONS		
	3.1	Existing Pavement Conditions		
	3.2	Subsurface Conditions3		
	3.3	Groundwater Conditions5		
	3.4	Topsoil Thickness Measurements5		
4	LABO	RATORY TEST RESULTS6		
	4.1	Grain Size Analysis Results6		
	4.2	Asbestos Analysis Results6		
5	DISCU	JSSION AND RECOMMENDATIONS7		
	5.1	Pavement Designs7		
	5.1.1	Traffic Data Analysis7		
	5.1.2 Pavement Design			
	5.1.3	Pavement Widening and Reconstruction Recommendations8		
	5.1.4	Drainage Improvements10		
	5.1.5	General Pavement Recommendations10		
	5.1.5	1 Pavement Materials10		
	5.1.5	2 Asphalt Cement Grade10		
	5.1.5	.3 Tack Coat		

	5.1.5.	4 Compaction	11
	5.1.5.	5 Pavement Tapers	11
	5.1.5.	6 Subgrade Preparation	11
	5.1.5.	7 Reuse and Disposal of Existing Pavement Materials	11
	5.1.5.	8 Maintenance	12
	5.2	Storm and Sanitary Sewer Installations	12
	5.2.1	Conventional (Open Cut) Installation of the Proposed Sewer	12
	5.2.2	Trenching Excavation and Temporary Groundwater Control	12
	5.2.3	Temporary Shoring and Trench Boxes	13
	5.2.4	Pipe Support and Bedding	14
	5.2.5	Trench Backfill	15
6	ENVIR	CONMENTAL SOIL ANALYTICAL RESULTS	16
	6.1	Soil Sample Submission	16
	6.2	Soil Analytical Results	16
	6.2.1	O.Reg. 153/04 Results	16
	6.2.2	TCLP Results	17
	6.3	Discussion of Analytical Results	17
7	MON	ITORING AND TESTING	18
8	CLOSI	JRE	19

Drawings	No.
Borehole and Core Location Plan	1
Earth Pressure Distribution Diagram	2
Enclosures	No.
Notes on Sample Description	1A
Explanation of Terms Used in the Record of Boreholes	1B
Borehole Logs	2 to 5
Figures	No.
Grain Size Analysis Curves	1 to 3
Appendix A Photographs of Pavement Condition Survey	
Appendix B Photographs of Asphalt Concrete Cores	

Appendix C Asbestos Analysis Results

Appendix D

Traffic Data Analyses

Appendix E

Environmental Soil Analytical Results

Limitations to the Report

1 INTRODUCTION

GeoPro Consulting Limited (GeoPro) was retained by Morrison Hershfield Limited (the Client) to conduct a geotechnical investigation for the proposed road improvements on Passmore Avenue, in the City of Toronto, Ontario. It is understood that the proposed road section of Passmore Avenue from Markham Road to 450 m west of Markham Road will be widened from a 2-lane rural section to a 4-lane urban section.

The purpose of this geotechnical investigation was to obtain information on the existing subsurface conditions by means of a limited number of boreholes, in-situ tests and laboratory tests of soil samples to provide required geotechnical design information. Based on GeoPro's interpretation of the obtained data, geotechnical comments and recommendations related to the project designs are provided.

This report is prepared with the condition that the design will be in accordance with all applicable standards and codes, regulations of authorities having jurisdiction, and good engineering practice. Furthermore, the recommendations and opinions in this report are applicable only to the proposed project as described above. On-going liaison and communication with GeoPro during the design stage and construction phase of the project is strongly recommended to confirm that the recommendations in this report are applicable and/or correctly interpreted and implemented. Also, any queries concerning the geotechnical aspects of the proposed project shall be directed to GeoPro for further elaboration and/or clarification.

This report is provided on the basis of the terms of reference presented in our approved proposal prepared based on our understanding of the project. If there are any changes in the design features relevant to the geotechnical analyses, or if any questions arise concerning the geotechnical aspects of the codes and standards, this office should be contacted to review the design. It may then be necessary to carry out additional borings and reporting before the recommendations of this report can be relied upon.

This report deals with geotechnical issues only. The geo-environmental (chemical) aspects of the subsurface conditions, including the consequences of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources were not investigated and were beyond the scope of this assignment. However, limited chemical testing was carried out on selected soil samples for excess soil disposal purposes.

The site investigation and recommendations follow generally accepted practice for geotechnical consultants in Ontario. Laboratory testing, for most part, follows ASTM or CSA Standards or modifications of these standards that have become standard practice in Ontario.

This report has been prepared for the Client only. Third party use of this report without GeoPro's consent is prohibited. The limitations to the report presented above form an integral part of the report and they must be considered in conjunction with this report.

2 INVESTIGATION PROCEDURE

2.1 Existing Pavement Condition Survey

A visual pavement condition survey was completed, identifying general pavement surface distresses and roadway drainage characteristics. The survey was conducted in general accordance with MTO SP-022 Flexible Pavement Condition Rating Guidelines for Municipalities. Photographs of the typical pavement distresses and general conditions with annotated comments are provided in Appendix A.

2.2 Borehole and Asphalt Concrete Core Investigation

Field work for the geotechnical investigation was carried out on December 9, 2016, during which time four (4) boreholes (Boreholes BH1 to BH4) were advanced to depths ranging from about 6.2 m to 6.6 m below the existing ground surface. In addition, the pavement was cored at nine locations (AC1 to AC9) using a core drill in order to obtain samples of the existing asphalt concrete for thickness measurements, visual examination and asbestos analysis. The borehole and core locations are shown on Borehole and Core Location Plan, Drawing 1. Borehole logs are provided in Enclosures 2 to 5 and pavement core photographs are provided in Appendix B.

The boreholes were advanced using truck-mounted continuous flight auger equipment supplied by a specialist drilling subcontractor under the supervision of a GeoPro engineering staff. Soil samples were recovered at regular intervals of depth using a 50 mm O.D. split-spoon sampler driven into the soil in accordance with the Standard Penetration Test (SPT) procedure described in ASTM D1586 - 11 Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils.

Groundwater condition observations were made in the open boreholes during drilling and upon completion of drilling. Borehole BH1 was backfilled and sealed upon completion of drilling. Monitoring well (51 mm in diameter) was installed in each of the Boreholes BH2 to BH4 to monitor the groundwater levels.

All soil samples obtained during this investigation were brought to our laboratory for further examination and geotechnical classification testing on selected soil samples. The elevations at the as-drilled borehole locations were not available at the time of preparing the report. The borehole locations plotted on the Borehole Location Plan, Drawing 1 were based on the measurement of the site features and should be considered to be approximate.

2.3 Laboratory Testing

In the laboratory, each soil sample was examined as to its visual and textural characteristics by the project engineer. Moisture content determinations were carried out on all subsoil samples. Four samples of the granular base/subbase materials were analyzed for comparison with the City of Toronto Standard Specifications TS 1010 gradation requirements, and three subgrade soil samples were tested for grain size analysis to assess their drainage characteristics and frost susceptibility. The complete laboratory test results are shown in Figures 1 to 3.

Nine (9) asphalt concrete samples were collected and submitted to AGAT Laboratories for testing of the presence of asbestos filler in the asphalt concrete. The asbestos analysis results are provided in Appendix C.

3 PAVEMENT AND SUBSURFACE CONDITIONS

3.1 Existing Pavement Conditions

In general, the condition of the existing flexible pavement on Passmore Avenue from Markham Road to 450 m west of Markham Road is considered to be poor with localized very poor areas. The most significant distresses are extensive moderate to severe alligator cracking; frequent slight to severe longitudinal and transverse cracking; frequent slight to severe edge cracking; frequent slight to moderate edge cracking; frequent slight to severe pavement edge breaks; intermittent slight to moderate wheel rutting; intermittent slight to moderate patching and slight to moderate distortion. The ride quality of this section is generally considered to be poor. Selected photographs of typical distresses are provided in Appendix A.

This section of roadway has generally been constructed to a rural cross section (open ditches). The overall surface drainage is generally considered to be poor. Observations along the roadway indicate that pavement surface water generally follows along the existing pavement grades and is being directed to ditches. However, the drainage is impaired by poor grading and surface distresses with unsealed cracks allowing surface water to infiltrate into the underlying pavement and subgrade. At some sections, ditches were observed to be shallow to non-existent and not free-flowing.

3.2 Subsurface Conditions

The borehole locations are shown on Drawing 1. Notes on sample descriptions are presented in Enclosure 1A. Explanations of terms used in the borehole logs are presented in Enclosure 1B. The subsurface conditions in the boreholes (Boreholes BH1 to BH4) are presented in the individual borehole logs (Enclosure 2 to 5 inclusive). Detailed descriptions of the major soil strata encountered in the boreholes drilled at the site are provided in the following.

Existing Pavement Structure

A flexible pavement structure was observed on Passmore Avenue. The range and average thickness of pavement structure is summarized in the following table.

	Pavement Structure, mm			
Section	Asphalt Concrete Range (Average)	Granular Base/Subbase Range (Average)	Total Thickness (Average)	
BH1	60	640	700	
BH2 to BH4	110 - 120 (113)	560 - 570 (563)	670 - 680 (677)	
AC1	50	-	-	
AC2 to AC9	90 - 130 (115)	-	-	

Fill Materials

Fill materials consisting of silt, clayey silt, sandy silt and sand and silt were encountered below the granular base/subbase in all boreholes and extended to depths ranging from about 1.1 m to 2.1 m below the existing ground surface. For cohesionless fill materials, SPT N values ranging from 11 to 26 blows per 300 mm penetration indicated a compact relative density. For cohesive fill materials, SPT N values ranging from 11 to 16 blows per 300 mm penetration indicated a stiff to very stiff consistency. The in-situ moisture content measured in the soil samples ranged from approximately 8% to 22%.

Sand and Silt Till

Sand and Silt Till deposit was encountered below the fill materials in all boreholes and extended to depths ranging from about 5.6 m to 6.6 m below the existing ground surface. Boreholes BH1 and BH3 were terminated in this deposit. SPT N values ranging from 23 to greater than 100 blows per 300 mm penetration indicated a compact to very dense relative density. The natural moisture content measured in the soil samples ranged from approximately 5% to 11%.

Silty Sand

Silty Sand deposit was encountered below or within the sand and silt till deposit in Boreholes BH2 and BH4 and extended to depths ranging from about 6.4 m to 6.6 m below the existing ground surface. SPT N values ranging from 33 to greater than 100 blows per 300 mm penetration indicated a dense to very dense relative density. The natural moisture content measured in the soil samples ranged from approximately 14% to 15%.

3.3 Groundwater Conditions

Groundwater condition observations made in the boreholes during and immediately upon completion of drilling are shown in the borehole logs and are also summarized in the following table.

BH No.	BH Depths (m)	Depth of Water Encountered during Drilling (mBGS)	Water Level upon Completion of Drilling (mBGS)	Cave-in Depth upon Completion of Drilling (mBGS)
BH1	6.6	-	Dry	Open
BH2	6.6	-	5.5	5.6
BH3	6.2	-	Dry	Open
BH4	6.4	-	5.9	Open

Note: mBGS = meters below ground surface

The monitoring wells construction details and the measured groundwater level is shown in the borehole logs and also summarized in the following table.

Monitoring Well	Screen Interval	Water Level (mBGS)	
ID	(mBHS)	Date of Monitoring (December 19, 2016)	
BH2	3.6 ~ 6.6	4.52	
BH3	3.2 ~ 6.2	2.18	
BH4	3.4 ~ 6.4	Dry	

Note: mBGS = meters below ground surface

It should be noted that groundwater levels can vary and are subject to seasonal fluctuations in response to weather events.

3.4 Topsoil Thickness Measurements

Seven test pits were taken in the existing ditches and boulevard. The thickness of topsoil and organic matter was measured in each test pit. The measured thicknesses ranged from 140 mm to 190 mm with an average of 165 mm. The topsoil and organic matter thicknesses are shown in the following table.

Test Pit Number	Thickness of Topsoil (mm)
TP1	190
TP2	160
TP3	140
TP4	160
TP5	180
TP6	150
TP7	170

4 LABORATORY TEST RESULTS

4.1 Grain Size Analysis Results

Sieve analyses were completed on four samples of the recovered granular base/subbase materials, and the results were compared to TS 1010 Granular A and Granular B Type I specifications. The grain size distribution curves for these samples are presented in Figures 1 and 2, and a summary of the results is provided in the following table.

Sample	TS 1010 Granular A	TS 1010 Granular B Type I
	Does not meet TS 1010 due to excessive	Does not meet TS 1010 due to excessive fines
DIT ASTA	percentages passing all sieves	(25.9% passing 0.075 mm sieve)
	Does not meet TS 1010 due to excessive	Does not meet TS 1010 due to excessive fines
BHZ ASIB	percentages passing all sieves	(30.5% passing 0.075 mm sieve)
	Does not meet TS 1010 due to excessive	Does not meet TS 1010 due to excessive fines
BH3 ASIA	percentages passing all sieves	(19.1% passing 0.075 mm sieve)
	Does not meet TS 1010 due to excessive	Does not meet TS 1010 due to excessive fines
	percentages passing most sieves	(30.6% passing 0.075 mm sieve)

Grain size analysis of three subgrade samples confirmed the visual description of the subgrade soils. In addition, the soil was examined and compared to frost susceptibility characteristics in accordance with the MTO Pavement Design and Rehabilitation Manual. The summarized results are provided in the following table, and the grain size distribution curves of these samples are presented in Figure 3.

Soil Sample	Description	Susceptibility of Frost Heaving
BH1 SS3	Silt and Sand Till, some Clay, trace Gravel	Low
BH2 SS6	Silt Sand, trace Clay, trace Gravel	Low
BH3 SS4	Silt and Sand Till, some Clay, trace Gravel	Low

4.2 Asbestos Analysis Results

Nine (9) asphalt concrete samples were submitted to AGAT Laboratories (AGAT) in Mississauga, Ontario to determine if asbestos fibres are present in the existing asphalt concrete. To analyze

asbestos in asphalt samples, AGAT uses a method modified from EPA/NIOSH methodology protocols, and typically expresses results using semi-qualitative ranges.

Based on the analytical results, no asbestos was identified in Core AC1, and detected chrysotile asbestos content is less than 0.5% Reported Detection Limit (RDL) in cores AC5, AC8 and AC9, chrysotile asbestos content is higher than 0.5% RDL in cores AC2 to AC4, AC6 and AC7. Therefore, the asphalt concrete in the pavement structure at this site would be considered as an asbestos containing material. The existing asphalt concrete should not be reused in recycled hot-mix asphalt mixtures and need to be disposed off-site after removing. The asbestos analysis test results are attached in Appendix C.

5 DISCUSSION AND RECOMMENDATIONS

This report contains the findings of GeoPro's geotechnical investigation, together with geotechnical engineering recommendations and comments. These recommendations and comments are based on factual information and are intended only for use by the design engineers. The number of boreholes may not be sufficient to determine all factors that may affect construction methods and costs. Subsurface conditions between and beyond the boreholes may differ from those encountered at the borehole locations, and conditions may become apparent during construction that could not be detected or anticipated at the time of the site investigation. The anticipated construction conditions are also discussed, but only to the extent that they may influence design decisions. The construction methods discussed, however, express GeoPro's opinion only and are not intended to direct contractors on how to carry out construction. Contractors should also be aware that the data and interpretation presented in this report may not be sufficient to assess all factors that may have an effect on construction.

The design drawings of the project were not available when this report was prepared. Once the design drawings and detailed site plan are available, this report will be reviewed by GeoPro, and further recommendations will be provided as needed.

5.1 Pavement Designs

5.1.1 Traffic Data Analysis

Passmore Avenue is considered to be a Collector Roadway. The Client provided GeoPro with traffic data in an email dated January 3, 2017 (2016 AADT of about 8,475, 14% of commercial vehicles and 2% annual growth rate of traffic).

The traffic data was interpreted by GeoPro to estimate the number of Equivalent Single Axle Loads (ESALs) for pavement design purposes. Traffic loading repetitions were determined for the 15-year pavement design life period that is considered typical for municipal pavements of this type. On this basis, the ESAL applications during the design period were calculated in accordance with the Appendix D of MTO MI-183 Adaption and Verification of AASHTO Pavement Design Guide for Ontario Conditions. This traffic data and the ESALs are presented in the following table. The

detailed traffic analysis and estimated ESALs for the 15-year pavement design life are given in Appendix D, Traffic Data Analyses.

Parameters	Traffic Data
AADT (2016)	8,475
Commercial Vehicle Percentage	14.0%
Annual Growth Rate	2.0%
Estimated Total Design ESALs (15-Year)	2,221,000

5.1.2 Pavement Design

The subgrade soils along the length of subject roadway section generally consisted of cohesive/cohesionless fill materials, cohesionless sand and silt till and silty sand based on GeoPro's borehole information. As such, the resilient modulus of subgrade has been assumed to be 25 MPa. The pavement designs were developed based on the 1993 AASHTO Guide for Design of Pavement Structures and MTO MI-183 Adaption and Verification of AASHTO Pavement Design Guide for Ontario Conditions. The pavement design parameters are summarized in the following table.

Design Parameters	Values		
Design Life	15 Years		
ESALs over Analysis Period	2,221,000		
Initial Serviceability Index	4.4		
Terminal Serviceability Index	2.2		
Reliability Level, %	85		
Overall Standard Deviation	0.45		
Design Subgrade Resilient Modulus, MPa	25		
Calculated Design Structure Number	116		
Reconstructed Pavements/Widening Lanes			
Layer Coefficient of Hot Mix Asphalt	0.42		
Layer Coefficient of Granular Base Course	0.14		
Layer Coefficient of Granular Subbase Course	0.09		
Drainage Coefficients of Base and Subbase Courses	1.0		

5.1.3 Pavement Widening and Reconstruction Recommendations

Passmore Avenue will be widened to a 4-lane urban road (curb and gutter) within the project limits. Based on the pavement condition survey, the borehole information, laboratory testing, pavement structural capacity analysis and the assumed traffic, the existing pavement structure from Markham Road to 450 m west of Markham Road is considered to be not adequate to accommodate the anticipated traffic. Therefore, a full depth reconstruction in conjunction with drainage and subdrainage improvements is recommended for the proposed road improvements.

The proposed road widening construction and existing lanes reconstruction should be carried out in general accordance with City of Toronto Drawing T-216.02.6, Flexible Pavement for All Road Classifications, and the recommended pavement structures are shown in the following table.

	Material	Pavement Structure Thickness (mm)
Hot-Mix Asphalt	HL 1 Surface Course	40
(TS 1150)	HL 8 (HS) Binder Course	120
Granular Materials	Granular A Base (19 mm Crusher Run Limestone)	150
(TS 1010)	Granular B Type I Subbase (or Equivalent Material)	350
т	otal Thickness	660
Constructed Pa	vement Structural Number	120
Design	Structural Number	116

The construction sequence should be carried out as follows:

- Existing lanes: completely remove the existing asphalt and granular base/subbase materials and dispose off-site;
- Widening lanes: completely remove the existing topsoil and any other obviously deleterious materials;
- Excavate subgrade to the depth required to accommodate the new pavement structure; the prepared subgrade should be carefully proof-rolled in the presence of the geotechnical engineer from GeoPro; any soft/loose or wet areas or other obviously deleterious materials must be excavated and properly replaced with approved material;
- Backfilling of sub-excavated areas and fine grading may be carried out using TS 1010 Granular B Type I. All backfill materials should be placed in uniform lifts not exceeding 200 mm loose thickness and compacted to at least 98 percent Standard Proctor Maximum Dry Density (SPMDD). The finished subgrade should be provided with a grade of 3 percent towards the positive drainages;
- Place a minimum of 350 mm TS 1010 Granular B Type I subbase course; place in loose lifts not exceeding 200 mm thickness, compact to 100 percent of SPMDD;
- Place 150 mm of TS 1010 Granular A base course compacted to 100 percent of SPMDD; and
- Place 160 mm thickness of hot-mix asphalt (120 mm of TS 1150 HL 8 (HS) binder course placed in two lifts, and one lift of 40 mm of TS 1150 HL 1 surface course), produced and placed in accordance with TS 310. The surface of the completed pavement should be provided with a grade of 2 percent.

The constructed pavement Structural Number is 120, which is greater than the Design Structural Number (116). As such, the pavements are structurally adequate for the expected traffic loads in the 15-year design period.

5.1.4 Drainage Improvements

Control of surface water is an important factor in achieving a good pavement service life. Therefore, we recommend that provisions be made to drain the new pavement subgrade and its granular layers. It is understood that the proposed road improvements are anticipated to consist of typical urban section (concrete curb/gutter and catchbasins). To provide positive drainage across the pavement platform, the surface of pavement should be sloped at a grade of 2 percent and the pavement subgrade should be sloped at a grade of 3 percent towards the subdrains. Subdrains should be designed and constructed in accordance with T-216.02-8, Roadway Subdrains, and the subdrain pipe should be connected to a positive outlet.

5.1.5 General Pavement Recommendations

5.1.5.1 Pavement Materials

The following hot-mix asphalt mix types should be selected:

- HL 1 Surface Course; and
- HL 8 (HS) Binder Course

These hot mix asphalt mixes should be designed and produced in conformance with TS 1150 requirements.

Granular A and Granular B Type I material should be used as base course and subbase course, respectively. Both Granular A and Granular B Type I material should meet TS 1010 specifications.

5.1.5.2 Asphalt Cement Grade

It is recommended that PGAC 64-28 be used in the TS 1150 HL 1 surface course to provide adequate resistance to rutting and shoving due to the heavy truck/buses traffic, and PGAC 58-28 be used in the TS 1150 HL 8 (HS) binder course on Passmore Avenue. Performance graded asphalt cement PGAC 64-28 and 58-28 should conform to TS 1101 requirements.

5.1.5.3 Tack Coat

A tack coat (SS1) should be applied to all construction joints prior to placing hot-mix asphalt to create an adhesive bond. Prior to placing hot-mix asphalt, SS1 tack coat must also be applied to all existing surfaces and between all new lifts in accordance with OPSS 308 requirements.

5.1.5.4 Compaction

All granular base and subbase materials should be placed in uniform lifts not exceeding 200 mm loose thickness and compacted to 100 percent of the material SPMDD at ±2 percent of the materials Optimum Moisture Content (OMC). Hot-mix asphalt should be placed and compacted in accordance with TS 310 specifications.

5.1.5.5 Pavement Tapers

At the limits of construction, appropriate tapering of the pavement thickness to match the existing pavement structure should be implemented in accordance with OPSS and the applicable local municipality specifications.

5.1.5.6 Subgrade Preparation

All topsoil, organics, soft/loose and otherwise disturbed soils should be stripped from the subgrade area. The exposed subgrade soils will be disturbed by construction traffic when wet; especially if site work is carried out during periods of wet weather. Under inclement weather conditions, an adequate granular working surface may be required to facilitate construction traffic as well as to minimize subgrade disturbance and to protect its integrity.

Immediately prior to placing the granular subbase, the exposed subgrade should be compacted and then proofrolled with a heavy rubber tired vehicle (such as a loaded gravel truck) in conjunction with inspection by a geotechnical engineer from GeoPro. The subgrade should be inspected for signs of rutting or displacement. Areas displaying signs of rutting or displacement should be recompacted and retested, or the material should be subexcavated and replaced with well-compacted clean fill materials approved by the geotechnical engineer from GeoPro.

The fill materials may consist of either granular material or local inorganic soils provided that its moisture content is within ±2 percent of OMC. Fill should be placed and compacted in accordance with TS 501 and the final 300 mm of the subgrade should be compacted to 98 percent of SPMDD.

5.1.5.7 Reuse and Disposal of Existing Pavement Materials

It should be noted that gradation analyses of the selected samples of the existing granular base and subbase materials do not meet the TS 1010 granular A and B Type I gradation specifications with excessive content of fines. Therefore, the existing excavated granular materials could not be reused as subbase/base materials, however, they can be reused as subgrade material to replace soft, wet or otherwise disturbed areas identified during proofrolling, subject to the environmental quality of the granular materials.

Due to the presence of asbestos in the existing asphalt concrete, the existing asphalt concrete should be removed and disposed off-site.

5.1.5.8 Maintenance

Routine maintenance should be considered to extend the life of the pavement. Systematic routine preventative maintenance is strongly recommended for all newly constructed pavements. Crack routing and sealing will generally be required within 2 to 3 years after pavement construction. As the pavement ages, it will also be necessary to patch areas of medium to high severity distresses, such as potholes and ravelling.

5.2 Storm and Sanitary Sewer Installations

It is understood that new storm and sanitary sewers connecting the existing storm and sanitary sewers will be carried out in conjunction with the proposed road improvements. It is further understood that all of the sewers will be installed with conventional open cut method.

5.2.1 Conventional (Open Cut) Installation of the Proposed Sewer

The invert depths of the proposed site services are not available at the time of preparing the report. We have assumed that the majority of the sewer installations will require excavations up to 4.0 m below the existing ground surface. According to the results of this investigation, the soils at the proposed founding depths are generally anticipated to be in the native sand and silt till. The native soils are considered to be suitable for supporting the pipes, provided the integrity of the base of the trench can be maintained during construction. The suitability of the existing fill materials to support the pipes, if encountered at the base of the trenches, should be further assessed during construction. This assessment will require inspection during construction by qualified geotechnical personnel from GeoPro to determine the suitability of the fill materials for supporting the pipes.

It should be noted that some difficulties may be encountered in excavating the hard/very dense tills at some locations. In addition, these tills are inferred containing cobbles and boulders, as previously noted. Once the actual service invert depths are finalized, the following comments and recommendations should be reviewed and revised as necessary.

5.2.2 Trenching Excavation and Temporary Groundwater Control

Based on the results of this investigation, the site trenching excavation will be carried out through the existing pavement structure, existing fill materials and the native sand and silt till and silty sand deposits. The trench excavation will be at, above or below the measured groundwater tables depending on the locations.

Groundwater control during excavation within the fill materials and native silty sand soils above the prevailing groundwater tables and glacial till deposits can be handled, as required, by pumping from properly constructed and filtered sumps located within the excavations. However, more significant groundwater seepage should be expected from the cohesionless silty sand deposits below the prevailing groundwater tables. Depending upon the actual thickness and extent of these soils layers, some form of positive (pro-active) groundwater control or depressurization using well points/eductors may be required to maintain the stability of the base and side slopes of the trench excavations, in addition to pumping from sumps. The groundwater level should be lowered to at least 1 m below the excavation base prior to excavating for the site services.

Where excavations are conducted by conventional temporary open cuts, side slopes should not be steeper than 1.0 horizontal to 1 vertical (1.0H:1V). However, depending upon the construction procedures adopted by the contractor, actual groundwater seepage conditions, the success of the contractor's groundwater control methods and weather conditions at the time of construction, some flattening and/or blanketing of the slopes may be required, especially in looser/softer zones (i.e. in fills or wet sandy/silty deposits) or where localized seepage is encountered. Care should be taken to direct surface runoff away from the open excavations and all excavations should be carried out in accordance with the Occupational Health and Safety Act and Regulations for Construction Projects. According to OHSA, the native sand and silt till would be classified as Type 2 soil above groundwater table and Type 3 soil below groundwater table; and shallow fill materials and cohesionless silty sand soil would be classified as Type 3 soils above groundwater table and Type 4 soil below groundwater table and unless supported by shoring or other approved retaining method, the excavations will require minimum side slopes of 3H:1V. In addition, care must be taken during excavation to ensure that adequate support is provided for any existing structures and underground services located adjacent to the excavations.

The excavated material should be placed well back from the edge of the excavation and stockpiling of materials adjacent to the excavation should be prohibited, to minimize surcharge loading near the excavation crest.

5.2.3 Temporary Shoring and Trench Boxes

It is understood that for the majority of the service installations, the extent of the excavations will have to be minimized to allow for traffic to continue using a reduced portion of the existing roadway. Where side slopes of excavations are steepened to limit the extent of the excavation, some form of trench support system such as a trench box system will be required. The earth pressure on the shoring system should be evaluated by using the pressure distribution diagram shown on Drawing 2. It must be emphasized that a trench liner box provides protection for construction personnel but does not provide any lateral support for the adjacent excavation walls, underground services or existing structures. In the case of trench box excavation work, the tolerance for disturbance of any structure founded above a 1 horizontal to 1 vertical line projected up from the base of the excavation should be assessed prior to construction. If adjacent structures and/or utilities or existing pavement structure open for traffic are susceptible to damage from construction induced settlement, then excavation support using sheet piles or a strutted soldier pile and lagging wall must be considered. It is therefore, imperative that any underground services or existing structures adjacent to the excavations be accurately located prior to construction and adequate support provided where required. In addition, steepened excavations should be left open for as short a duration as possible and completely backfilled at the end of each working day. Care should be taken to direct surface runoff away from the open excavations and all excavations should be carried out in accordance with the Occupational Health and Safety Act and Regulations for Construction Projects. In addition, care must be taken during excavation near underground structures (i.e. culvert, gas utilities, etc.) located within or adjacent to the excavation. The owner of the utility/service should also be contacted prior to excavating near their easement to confirm that the proposed excavation meets their requirements.

While the use of trench boxes is an effective and economical trench-support method, its use can cause increased loss of ground relative to properly braced shoring, especially when working close to granular base courses below existing pavements or along existing utility trenches backfilled with granular materials. Trench boxes also reduce the contractor's ability to compact backfill materials placed between the trench wall and the outer trench box shell, thereby increasing the likelihood of post-construction settlements along the trench walls. When trench boxes are used along existing roadways, settlements frequently occur along the trench wall, which may manifest months after completion of backfilling. In such cases, following the backfilling of the trench, road reconstruction should include a provision for saw-cutting the asphalt at least 1 m back from the trench walls, recompacting the upper trench backfill, and then repaving. Where permissible under the OHSA and where its use is considered to be a safe alternative for shoring and bracing, contractors may elect to utilize trench boxes for temporary trench wall support for trenches less than 6 m deep in Type 2 and 3 soils. Where trench depths exceed 6 m (or at any trench depth in Type 4 soil), Engineered Support Systems are required under the OHSA.

Further to the above and in consideration of the predominantly cohesionless fill materials and granular trench backfill materials from the existing underground utilities, if encountered, in close proximity to the proposed excavation above the invert elevations, some loss of ground should be expected for the sections of nearly vertical excavation where a trench box will be used. It is anticipated that in the cohesionless soils, the unsupported soils on the trench sides will relax, filling the void between the trench walls and trench box. This may lead to loss of ground below the pavement and potentially undermine and reduce the stability of the pavement structure adjacent to the open traffic lanes. In order to minimize this effect, the gap between the trench walls and trench box should be minimized during the excavation and trench box installation.

5.2.4 Pipe Support and Bedding

The bedding for the service pipes should be compatible with the type and class of pipe, the surrounding subsoil and anticipated loading conditions and should be designed in accordance with the standard specifications of the local municipality or Ontario Provincial Standard Specifications (OPSS). Where granular bedding is deemed to be acceptable, it should consist of at least 150 mm of OPSS Granular A or 19 mm crusher run limestone material. The thickness of the bedding may, however, may have to be increased (i.e. 300 mm to 450 mm) depending on the pipe diameter or in accordance with local standard specifications or if wet or weak subgrade conditions are encountered, especially when the soils at the trench base level consists of wet sandy/silty deposits. From springline to 300 mm above obvert of the pipe, sand cover could be used. All

bedding and cover material should be placed in 150 mm loose lifts and uniformly compacted to at least 95 percent of the materials Standard Proctor Maximum Dry Density (SPMDD).

To avoid the loss of soil fines from the subgrade, clear stone bedding material should not be used in any case for pipe bedding or to stabilize the bases.

5.2.5 Trench Backfill

Based on visual and tactile examination and the measured nature water contents of the soil samples, the majority of the on-site existing fill materials and native soils above the prevailing groundwater tables will generally be at or near their estimated optimum water contents for compaction. However, the existing fill materials and native silty/sandy soils below the prevailing groundwater tables may be wetter than their estimated optimum water contents for compaction, which should require some aeration prior to be reused as backfill materials.

The excavated materials at suitable water contents may be reused as trench backfill provided they are free of significant amounts of topsoil, organics or other deleterious material, and are placed and compacted as outlined below. It should also be noted that due to the predominantly fine-grained, silty nature of the majority of the existing fill and native soils, some difficulty would be expected in achieving adequate compaction, especially during wet weather.

The backfill should be placed in maximum 300 mm loose lifts at or near ($\pm 2\%$) their optimum moisture content and each lift should be compacted to at least 95% SPMDD. Unsuitable materials such as organic soils, boulders, cobbles, frozen soils, etc. should not be used for backfilling. (In pavement areas, the upper 1.2 m zone of the trench backfill below the subgrade should be a compacted to at least 98% SPMDD.)

It should be noted that if the soils for trench backfilling were placed and compacted at wet of their optimum water content (>2%), pumping and rolling conditions may be encountered, which would require mitigative measures in order to construct roads and utilities. This might include significant extra thicknesses of granular base, base reinforcement using geogrids or importing of better quality common fill.

Alternatively, if placement water contents at the time of construction are too high, or if there is a shortage of suitable in-situ material, then an approved imported sandy material which meets the requirements for OPSS Select Subgrade Material ("SSM") could be used. It should be placed in loose lift thicknesses as indicated above and uniformly compacted to at least 95% SPMDD.

Normal post-construction settlement of the compacted trench backfill should be anticipated, with the majority of such settlement taking place within about 6 months following the completion of trench backfilling operations. This settlement may be compensated for, where necessary, by placing additional granular material prior to asphalt paving. Alternatively, if the asphalt binder course is placed shortly following the completion of trench backfilling operations in these areas, any settlement that may be reflected by subsidence of the surface of the binder asphalt should be compensated for by placing an additional thickness of binder asphalt or by padding.

6 ENVIRONMENTAL SOIL ANALYTICAL RESULTS

6.1 Soil Sample Submission

It is understood that a Phase Two Environmental Site Assessment was being conducted by the Client (MH) at the sampling locations.

The following soil samples were submitted to ALS Environmental Laboratories in Richmond Hill, Ontario ("ALS") for chemical analyses.

Sample ID	Soil Depth (mBGS)	Primary Soil	Analytical Parameters
BH1 SS2	0.76 – 1.22	Organic Silt and Clayey Silt Fill	SAR, Metals and PAHs
BH1 SS6	4.57 – 5.03	Sand and Silt Till	PHCs/VOCs
BH2 SS2A	0.76 – 1.22	Clayey Silt Fill	SAR, Metals and PAHs
BH 2 SS5	3.05 – 3.51	Sand and Silt Till	PHCs/VOCs
BH3 SS3	1.52 – 1.98	Sand and Silt Till	SAR, Metals and PAHs
BH3 SS6	4.57 – 5.03	Sand and Silt Till	PHCs/VOCs
BH4 SS2	0.76 – 1.22	Sandy Silt to Sand and Silt Fill	SAR, Metals and PAHs
BH4 SS6	4.57 – 5.03	Sand and Silt Till	PHCs/VOCs
TCLP	Composite	-	Metals, VOCs and PAHs

Note: PAHs = Polycyclic Aromatic Hydrocarbons PHCs = Petroleum Hydrocarbon Fractions F1 to F4 VOCs = Volatile Organic Compounds

6.2 Soil Analytical Results

6.2.1 O.Reg. 153/04 Results

A copy of the soil analytical results is provided in the Laboratory Certificates of Analysis, attached in Appendix E.

The soil analytical results were compared with the Ontario Ministry of the Environment and Climate Change ("MOECC") "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 2011, Table 1: Full Depth Background Site Condition Standards for Residential/Parkland/Institutional/Industrial/Commercial/Community Property Uses ("2011 MOECC Table 1 Standards"); Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition ("2011 MOECC Table 2 Standards"), and Table 3: Full Depth Generic Site Condition Standards in a non-potable Ground Water Condition ("2011 MOECC Table 3 Standards").

Based on a comparison of the analytical results to the 2011 MOECC Standards, no exceedances were found for metals, PAHs and VOCs in the soil samples analysed. However, exceedances were noted for Sodium Adsorption Ratio (SAR) or PHCs (F2) in the tested soil samples. The exceedance values detected in the soil samples are summarized in the following table.

Soil Sample ID	Parameter	Detected Value	MOECC Table 1 Standards Guideline Value	MOECC Table 2 and 3 Standards (R/P/I) Guideline Value	MOECC Table 2 and 3 Standards (I/C/C) Guideline Value
BH1 SS2	SAR	4.79	<u>2.4</u>	5.0	12.0
BH1 SS6	F2	11	<u>10</u>	150	250
BH2 SS2A	SAR	46.5	<u>2.4</u>	<u>5.0</u>	<u>12.0</u>
BH3 SS3	SAR	> 55	<u>2.4</u>	<u>5.0</u>	<u>12.0</u>
BH3 SS6	F2	12	<u>10</u>	150	250
BH4 SS2	SAR	24.8	2.4	<u>5.0</u>	<u>12.0</u>

Note: R/P/I = Residential, Parkland and Institutional Property Use I/C/C = Industrial, Commercial and Community property Use 0.57 = standard value exceeded by the analytical result

6.2.2 TCLP Results

To characterize the soil wastes, one composite soil sample was tested for TCLP analysis of metals, inorganic, VOCs and PAHs. The results were compared with the standards for respective parameters specified in Leachate Quality Criteria - Schedule 4 of O. Reg. 558/00.

The concentrations of analyzed parameters were non-detectable or below the detection limits, which are below the standards specified in O. Reg. 558/00. Therefore, the tested composite soil sample would be considered as non-hazardous wastes.

6.3 Discussion of Analytical Results

Based on the results, the soils at the site may have been impacted by SAR and PHCs. It should be noted that the samples selected for analysis were taken from the boreholes located on the roadways. The elevated SAR values in the tested soil samples may likely be attributed to the application of de-icing salt on the road. The sources of the elevated PHC concentrations were not known. Based on the results of soil sample analysis, GeoPro will recommend the following disposal options:

- The soils generated at the Site near Borehole BH1 at the same tested sample depth can be re-used for the on-site road development, provided that the soils will not be in contact with groundwater, or re-used at a receiving site which is not considered as an environmentally sensitive site and would accept the soil as per test results.
- 2) The soil generated near Boreholes BH2 to BH4 at the same tested depths could be disposed of as non-hazardous wastes at a licensed landfill site.

It should be noted that the results of the chemical analysis refer only to the soil sample analyzed, which were obtained from specific sampling locations and sample depths, and that the soil chemistry may vary between and beyond the location and depth of the sample taken. Therefore, soil materials to be used on site or transported to other sites must be inspected during excavation for indication of variance in composition or any chemical/environmental constraints. If conditions indicate significant variations, further chemical analyses should be carried out.

Please note that the level of testing outlined herein is meant to provide a broad indication of soil quality based on the limited soil samples tested. The analytical results contained in this report should not be considered a warranty with respect to the soil quality or the use of the soil for any specific purpose. Furthermore, it must be noted that our scope of work was only limited to the review of the analytical results of the limited number of samples. The scope of work did not include any environmental evaluation or assessment of the subject site (such as a Phase One or Phase Two Environmental Site Assessment).

Sites accepting fill may have requirements relating to its aesthetic or engineering properties in addition to its chemical quality. Some receiving sites may have specific chemical testing protocol, which may require additional tests to meet the requirements. The requirements for accepting the fill at an off-site location must be confirmed in advance. GeoPro would be pleased to assist once the receiving sites are determined and the requirements of the receiving sites are available.

7 MONITORING AND TESTING

The geotechnical aspects of the final design drawings and specifications should be reviewed by this office prior to tendering and construction, to confirm that the intent of this report has been met. During construction, full-time engineered fill monitoring and sufficient foundation inspections, subgrade inspections, in-situ density tests and materials testing should be carried out to confirm that the conditions exposed are consistent with those encountered in the boreholes, and to monitor conformance to the pertinent project specification.

8 CLOSURE

We appreciate the opportunity to be of service to you and trust that this report provides sufficient geotechnical engineering information to facilitate the detailed design of this project. We look forward to providing you with continuing service during the construction stage. Please do not hesitate to contact our office should you wish to discuss, in further detail, any aspects of this project.

Yours very truly,

GEOPRO CONSULTING LIMITED

DRAFT

Jessica Yao, P.Eng. Senior Geotechnical Engineer

DRAFT

David B. Liu, P.Eng., Principal

GeoPro Consulting Limited

Geotechnical-Hydrogeology-Environmental-Materials-Inspection

DRAWINGS

	b possnore						m
		Client: Morris	on Hershfield	Project No.: 10	6-1406	Drawing No.:	1
BH1	Borehole Location	Drawn: CC	Approved: DL	Title:	Borehole an	nd Core Location Plan	
AC1	Asphalt Core Location	Date: December 2016	Scale: As shown	Project: Geotechnical Investigation for Passmore Avenue Road Improvements City of Toronto			
191	lest Pit Location	Original Size: Letter	Rev: DL	6	GeoPro Con	nsulting Limited	

DL

Rev:

 If surcharge loadings are present near the excavation, these must be included in the lateral pressure calculation.

Original

Size:

Letter

S.Projects _ Projects 2016/16-1406 MH Passnore Avenue Road Improvements Toronto/BH Plan & Drawing/16-1406 EARTH PRESSURE DISTRIBUTION ON BRACED EXCAVATIONS 20170112.4wg

GeoPro Consulting Limited

GeoPro Consulting Limited

Geotechnical-Hydrogeology-Environmental-Materials-Inspection

ENCLOSURES

Enclosure 1A: Notes on Sample Descriptions

- 1. Each soil stratum is described according to the *Modified Unified Soil Classification System*. The compactness condition of cohesionless soils (SPT) and the consistency of cohesive soils (undrained shear strength) are defined according to Canadian Foundation Engineering Manual, 4th Edition. Different soil classification systems may be used by others. Please note that a description of the soil stratums is based on visual and tactile examination of the samples augmented with field and laboratory test results, such as a grain size analysis and/or Atterberg Limits testing. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.
- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional preliminary geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

Enclosure 1B: Explanation of Terms Used in the Record of Boreholes

Sample Type

- Auger sample AS
- BS Block sample
- CS Chunk sample DO
- Drive open
- DS Dimension type sample
- FS Foil sample
- No recovery NR
- RC Rock core
- SC Soil core
- SS Spoon sample
- SH Shelby tube Sample
- ST Slotted tube
- TO Thin-walled, open
- ΤР Thin-walled, piston
- WS Wash sample

Penetration Resistance

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in) required to drive a 50 mm (2 in) drive open sampler for a distance of 300 mm (12 in).

PM – Samples advanced by manual pressure

WR - Samples advanced by weight of sampler and rod WH – Samples advanced by static weight of hammer

Dynamic Cone Penetration Resistance, Nd:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in) to drive uncased a 50 mm (2 in) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in).

Piezo-Cone Penetration Test (CPT):

An electronic cone penetrometer with a 60 degree conical tip and a projected end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurement of tip resistance (Qt), porewater pressure (PWP) and friction along a sleeve are recorded electronically at 25 mm penetration intervals.

Textural Classification of Soils (ASTM D2487)

Classification	Particle Size		
Boulders	> 300 mm		
Cobbles	75 mm - 300 mm		
Gravel	4.75 mm - 75 mm		
Sand	0.075 mm – 4.75 mm		
Silt	0.002 mm-0.075 mm		
Clay	<0.002 mm(*)		
(*) Canadian Foundation Engineering Manual (4 th Edition)			

Coarse Grain Soil Description (50% greater than 0.075 mm)

Terminology	Proportion
Trace	0-10%
Some	10-20%
Adjective (e.g. silty or sandy)	20-35%
And (e.g. sand and gravel)	> 35%

Soil Description

a) Cohesive Soils(*)

Consistency Value	Undrained Shear	SPT "N"	
	Strength (kPa)		
Very soft	<12	0-2	
Soft	12-25	2-4	
Firm	25-50	4-8	
Stiff	50-100	8-15	
Very stiff	100-200	15-30	
Hard	>200	>30	

(*) Hierarchy of Shear Strength prediction

- 1. Lab triaxial test
- 2. Field vane shear test
- 3. Lab. vane shear test
- 4. SPT "N" value
- 5. Pocket penetrometer

b) Cohesionless Soils

Density Index (Relative Density) SPT "N" Value

Very loose	<4
Loose	4-10
Compact	10-30
Dense	30-50
Very dense	>50

Soil Tests

- Water content w
- Plastic limit \mathbf{W}_{p}
- Liquid limit W
- С Consolidation (oedometer) test
- CID Consolidated isotropically drained triaxial test
- CIU consolidated isotropically undrained triaxial test with porewater pressure measurement
- D_R Relative density (specific gravity, Gs)
- DS Direct shear test
- ENV Environmental/ chemical analysis
- Sieve analysis for particle size М
- Combined sieve and hydrometer (H) analysis MH
- MPC Modified proctor compaction test
- SPC Standard proctor compaction test
- OC Organic content test
- U Unconsolidated Undrained Triaxial Test
- V Field vane (LV-laboratory vane test)
- γ Unit weight

GROUNDWATER ELEVATIONS Measurement $\stackrel{1st}{\checkmark} \stackrel{2nd}{\blacktriangledown} \stackrel{3rd}{\blacktriangledown} \stackrel{4th}{\blacktriangledown}$

GeoPro

O ^{8=3%} Strain at Failure

GROUNDWATER ELEVATIONS

O ^{8=3%} Strain at Failure

1 OF 1

LOG OF BOREHOLE BH2

 $\begin{array}{c} \underline{\text{GROUNDWATER ELEVATIONS}}\\ \text{Measurement} \quad \overset{1\text{st}}{\underbrace{\searrow}} \quad \overset{2\text{nd}}{\underbrace{\swarrow}} \quad \overset{3\text{rd}}{\underbrace{\swarrow}} \quad \overset{4\text{th}}{\underbrace{\checkmark}} \end{array}$

O ^{8=3%} Strain at Failure

O ^{8=3%} Strain at Failure

Geotechnical-Hydrogeology-Environmental-Materials-Inspection

FIGURES

Project No.	16-1406
Project Name	Passmore Avenue Road Improvements, Toronto

Figure 3

GeoPro Consulting Limited

Geotechnical-Hydrogeology-Environmental-Materials-Inspection

APPENDIX A

Photograph 1 – Passmore Avenue, about 80 m west of Markham Road, looking west, showing moderate to severe alligator cracking, moderate to severe transverse cracking and moderate pavement edge breaks.

Photograph 2 – Passmore Avenue, about 20 m east of Dynamic Drive, looking west, showing moderate alligator cracking, moderate longitudinal and transverse cracking, severe pavement edge breaks.

Photograph 3 – Passmore Avenue, about 10 m east of Dynamic Drive, looking east, showing moderate alligator cracking, moderate to severe longitudinal and transverse cracking, moderate to severe pavement edge breaks and slight patching.

Photograph 4 – Passmore Avenue, about 95 m west of Dynamic Drive, looking west, showing moderate to severe edge cracking, moderate wheel rutting, slight alligator cracking, moderate longitudinal cracking, slight to moderate patching. Noting that water ponded on the shoulder without ditch observed.

Photograph 5 – Passmore Avenue, about 140 m west of Dynamic Drive, looking south, showing severe alligator cracking, severe distortion, slight to moderate patching, severe alligator cracking and pothole around maintenance hole. Noting that water ponded on the roadway and shoulder without ditch observed.

Photograph 6 – Passmore Avenue, about 200 m west of Dynamic Drive, looking north, showing slight longitudinal and transverse cracking, slight patching and moderate alligator cracking around maintenance hole.

GeoPro Consulting Limited

 $Geotechnical \hbox{-} Hydrogeology \hbox{-} Environmental \hbox{-} Materials \hbox{-} Inspection$

APPENDIX B

Photograph 1 – AC Core 1

Photograph 2 – AC Core 2

Photograph 3 – AC Core 3

Photograph 4 – AC Core 4

Photograph 5 – AC Core 5

Photograph 6 – AC Core 6

Photograph 7 – AC Core 7

Photograph 8 – AC Core 8

Photograph 9 – AC Core 9

GeoPro Consulting Limited

 $Geotechnical \hbox{-} Hydrogeology \hbox{-} Environmental \hbox{-} Materials \hbox{-} Inspection$

APPENDIX C

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

CLIENT NAME: GEOPRO CONSULTING LTD 40 VOGELL ROAD UNIT 25-27 RICHMOND HILL, ON L4B3N6 (905) 237-8336

ATTENTION TO: Bujing Guan

PROJECT: 16-1406

AGAT WORK ORDER: 16T174219

ASBESTOS REVIEWED BY: Whenhong Zou, Lab Analyst

DATE REPORTED: Jan 09, 2017

PAGES (INCLUDING COVER): 4

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (780) 395-2525

<u>*NOTES</u>		

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 4

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

Certificate of Analysis

AGAT WORK ORDER: 16T174219

PROJECT: 16-1406

CLIENT NAME: GEOPRO CONSULTING LTD

SAMPLING SITE:

ATTENTION TO: Bujing Guan SAMPLED BY:Clement

Bulk Asbestos DATE RECEIVED: 2016-12-28 DATE REPORTED: 2017-01-09 SAMPLE DESCRIPTION: AC-1 AC-2 AC-3 AC-4 AC-5 AC-6 AC-7 AC-8 SAMPLE TYPE: Asphalt Asphalt Asphalt Asphalt Asphalt Asphalt Asphalt Asphalt 2016-12-09 2016-12-09 2016-12-09 2016-12-09 2016-12-09 DATE SAMPLED: 2016-12-09 2016-12-09 2016-12-09 RDL 8111523 8111537 8111538 8111539 8111540 8111542 8111543 Parameter Unit G/S 8111541 Asbestos (Bulk) % 0.5 ND 0.9 0.7 0.7 <0.5 0.8 0.7 <0.5 SAMPLE DESCRIPTION: AC-9 SAMPLE TYPE: Asphalt DATE SAMPLED: 2016-12-09 Parameter Unit G/S RDL 8111544 0.5 Asbestos (Bulk) % <0.5

RDL - Reported Detection Limit; G / S - Guideline / Standard Comments:

8111523

Condition of sample was satisfactory at time of arrival in laboratory. Analysis done at AGAT 5623 McAdam Road Mississauga location.

"ND" - Not Detected

8111537-8111539 Condition of sample was satisfactory at time of arrival in laboratory. Analysis done at AGAT 5623 McAdam Road Mississauga location.

Asbestos Present: Chrysotile

8111540 Condition of sample was satisfactory at time of arrival in laboratory. Analysis done at AGAT 5623 McAdam Road Mississauga location.

A reported concentration of "<0.5%" indicates the presence of confirmed asbestos in trace quantities less than the RDL.

Asbestos Present: Chrysotile

8111541-8111542 Condition of sample was satisfactory at time of arrival in laboratory. Analysis done at AGAT 5623 McAdam Road Mississauga location.

Asbestos Present: Chrysotile

8111543-8111544 Condition of sample was satisfactory at time of arrival in laboratory. Analysis done at AGAT 5623 McAdam Road Mississauga location.

A reported concentration of "<0.5%" indicates the presence of confirmed asbestos in trace quantities less than the RDL.

Asbestos Present: Chrysotile

Wenhong 2m

Certified By:

6310 ROPER ROAD

CANADA T6B 3P9

TEL (780)395-2525 FAX (780)462-2490

EDMONTON, ALBERTA

http://www.agatlabs.com

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

Method Summary

Asbestos (Bulk)	INORG 93-6010	EPA 600/R-93/116 & NIOSH 9002	PLM							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
SAMPLING SITE:		SAMPLED BY:Cle	ment							
PROJECT: 16-1406		ATTENTION TO: Bujing Guan								
CLIENT NAME: GEOPRO CONSULTING L	DER: 16T174219									

Chain of Custody	G (A Record	If this is a Dri	La nking Water	borat	Ories Water Chaln of Cus	stody Fo	prm (p	Ph: 90	N 05.7: water	Aississa 12 510 W	5835 C auga, Oi O Fax: rebearti	coope ntaric 905. 1.aga nan c	ers Av) £42 712.9 tlabs	enue 1Y2 5122 .com		La Wo Cou	i bo irk Oi oler (ival 1	rat rder Quai Temj	ory #: ntity: perat	Us 1(ture:	e Only otto s	74	21	9
Report Information: Company: GeoPr Contact: Buj	o Consu ing Gu	ling	Limi	ted	Regulatory Requirements: No Regulatory Requirement (Please check all applicable boxes) Regulation 153/04				Custody Seal Intact: Yes No N/A Notes:															
Address: Phone: Reports to be sent to: 1. Email: 2. Email: Jessica	р, 40 hond Hil 7-8336 @geoprod @geoprod	Fax: Jos consulto consulto	Road ario -248- ting, c	-3699 a a	Table]Sanit]Storn Indicate	tary n e One	_		CCME Prov. W Objecti	later ives (Quali PWQ0	ity D)		Tur Reg Rus	nai gula sh T	TOU IF TA AT (3 Bu Days	nd AT Rush Isine	Surch	1e (TAT) R 5 to 7 arges Apply) 2 Bus Days	equire Busines	>d: is Days □ 1	Business Day
Project Information: Project: Site Location: 7	16-14 opento	06			Is this submission f Record of Site Condi Yes N	ission for a Report Guideline on OR Date Required (Rush S e Condition? Certificate of Analysis Please provide prior no NO Yes No				Report Guldeline on Certificate of Analysis			urcharge ification ds and st	s May A for rush tatutory	pply): TAT holidays									
AGAT Quote #: Please note: If q Invoice Information: Company: Contact: Address: Email:	uotation number is not prov	PO: ided, client will be t Bill T	illed full price for	r analysis. es [] No []	Sample MatrixLegendBBiotaGWGround WaterOOilPPaintSSoilSDSedimentSWSurface Water	and Inorganics	Scan	e Forming Metals	Custom Metals	DBHWS DCI DCN DEC DFOC DNO_NO_ N DHC DPH DSAR		es: □ voc □:BTEX □ THM (alde	Fractions 1 to 4			phenols		ochlorine Pesticides	Aetals/Inorganics	Use	with for Aspectos			
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Metals	Metal	Hydrid	Client	ORPs: Cr ⁴		Volatil	CCME	ABNS	PAHs	Chloro		Organo	TCLPA	Sewer	Hapi			-
$\begin{array}{c} AC - 1 \\ AC - 2 \\ AC - 3 \\ AC - 4 \\ AC - 5 \\ AC - 6 \\ AC - 7 \\ AC - 8 \\ AC - 8 \\ AC - 9 \end{array}$		o Am	1 Bag	Asphali																	×			
Samples Relinquished By (Print Name and Sign) Samples Relinquished By (Print Name and Sign) Document ID: DIV-78 1511 030	A 2	5116/12,	Data Data 28	Time	35 Shindles Received By (Plint Na 35 Nill Can	whe and Si		6	S	2016	De		2 0py-	Date Date	/16	D low C		72 11- AG	4		Pag	يe 02	of 206	30

GeoPro Consulting Limited

 $Geotechnical \hbox{-} Hydrogeology \hbox{-} Environmental \hbox{-} Materials \hbox{-} Inspection$

APPENDIX D

TRAFFIC DATA AND ESTIMATED ESALs Passmore Avenue (From Markham Road to 450 m West of Markham Road)

Year	Annual Average Daily Traffic	Estimated Cumulative Annual ESALs
2016	8,475	-
2017	8,645	-
2018	8,817	128,400
2019	8,994	259,400
2020	9,174	393,000
2021	9,357	529,300
2022	9,544	668,300
2023	9,735	810,100
2024	9,930	954,700
2025	10,128	1,102,200
2026	10,331	1,252,700
2027	10,538	1,406,200
2028	10,748	1,562,800
2029	10,963	1,722,500
2030	11,183	1,885,400
2031	11,406	2,051,500
2032	11,634	2,221,000

Directional Factor (DF)	0.5
Lane Distribution Factor (LDF)	0.9
Combined Truck Factor (CTF)	0.74
Percent Commercial Vehicles	14.0%
Days Per Year For Truck Traffic	312

GeoPro Consulting Limited

Geotechnical-Hydrogeology-Environmental-Materials-Inspection

APPENDIX E

Morrison Hershfield Limited (Ottawa) ATTN: CINDY ZHAO 235 Yorkland Blvd Suite 600 Toronto ON M2J 1T1 Date Received:12-DEC-16Report Date:19-DEC-16 13:52 (MT)Version:FINAL

Client Phone: 416-499-3110

Certificate of Analysis

Lab Work Order #: L1869032 Project P.O. #: NOT SUBMITTED Job Reference: 1160509 C of C Numbers: 15-573799 Legal Site Desc:

Mary-Lynn Pires Client Services Supervisor

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1869032-1 BH1-SS2 Sampled By: CLIENT on 09-DEC-16 @ 09:00 Matrix: SOIL							
Physical Tests							
% Moisture	25.9		0.10	%	14-DEC-16	14-DEC-16	R3617125
Saturated Paste Extractables							
SAR	4.79		0.10	SAR		19-DEC-16	R3619976
Calcium (Ca)	145		1.0	mg/L		19-DEC-16	R3619976
Magnesium (Mg)	7.7		1.0	mg/L		19-DEC-16	R3619976
Sodium (Na)	218		1.0	mg/L		19-DEC-16	R3619976
Metals							
Antimony (Sb)	<1.0		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Arsenic (As)	3.2		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Barium (Ba)	158		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Beryllium (Be)	0.96		0.50	ug/g	16-DEC-16	16-DEC-16	R3619972
Boron (B)	9.6		5.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Cadmium (Cd)	<0.50		0.50	ug/g	16-DEC-16	16-DEC-16	R3619972
Chromium (Cr)	31.1		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Cobalt (Co)	8.6		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Copper (Cu)	29.1		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Lead (Pb)	11.4		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Molybdenum (Mo)	<1.0		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Nickel (Ni)	21.1		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Selenium (Se)	<1.0		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Silver (Ag)	<0.20		0.20	ug/g	16-DEC-16	16-DEC-16	R3619972
Thallium (TI)	<0.50		0.50	ug/g	16-DEC-16	16-DEC-16	R3619972
Uranium (U)	1.6		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Vanadium (V)	46.2		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Zinc (Zn)	71.3		5.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Polycyclic Aromatic Hydrocarbons				,	10 050 10	40 850 40	B a a <i>i</i> a a a a
Acenaphthene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Acenaphthylene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Anthracene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Benzo(a)anthracene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Benzo(a)pyrene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Benzo(b)fluoranthene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Benzo(k)fluoranthene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Chrysene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Dibenzo(ah)anthracene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Huorene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Indeno(1,2,3-cd)pyrene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
1+2-Methylnaphthalenes	<0.042		0.042	ug/g		19-DEC-16	
1-Methylnaphthalene	<0.030		0.030	ug/g	13-DEC-16	19-DEC-16	R3619836
2-Methylnaphthalene	<0.030		0.030	ug/g	13-DEC-16	19-DEC-16	R3619836

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1869032-1 BH1-SS2 Sampled By: CLIENT on 09-DEC-16 @ 09:00 Matrix: SOIL							
Polycyclic Aromatic Hydrocarbons							
Naphthalene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Phenanthrene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Pyrene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Surrogate: 2-Fluorobiphenyl	94.9		50-140	%	13-DEC-16	19-DEC-16	R3619836
Surrogate: p-Terphenyl d14	91.9		50-140	%	13-DEC-16	19-DEC-16	R3619836
L1869032-2 BH1-SS6 Sampled By: CLIENT on 09-DEC-16 @ 09:00 Matrix: SOIL							
	E 00		0.10	0/	14 DEC 16	14 DEC 16	D2617125
Volatile Organic Compounds	5.00		0.10	70	14-DLC-10	14-020-10	K3017125
Acetone	<0.50		0.50	ua/a	13-DEC-16	14-DEC-16	R3616921
Benzene	<0.0068		0.0068	ua/a	13-DEC-16	14-DEC-16	R3616921
Bromodichloromethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Bromoform	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Bromomethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Carbon tetrachloride	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Chlorobenzene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Dibromochloromethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Chloroform	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,2-Dibromoethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,2-Dichlorobenzene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,3-Dichlorobenzene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,4-Dichlorobenzene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Dichlorodifluoromethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1-Dichloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,2-Dichloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1-Dichloroethylene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
cis-1,2-Dichloroethylene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
trans-1,2-Dichloroethylene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Methylene Chloride	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,2-Dichloropropane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
cis-1,3-Dichloropropene	<0.030		0.030	ug/g	13-DEC-16	14-DEC-16	R3616921
trans-1,3-Dichloropropene	<0.030		0.030	ug/g	13-DEC-16	14-DEC-16	R3616921
1,3-Dichloropropene (cis & trans)	<0.042		0.042	ug/g		15-DEC-16	
Ethylbenzene	<0.018		0.018	ug/g	13-DEC-16	14-DEC-16	R3616921
n-Hexane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Methyl Ethyl Ketone	<0.50		0.50	ug/g	13-DEC-16	14-DEC-16	R3616921
Methyl Isobutyl Ketone	<0.50		0.50	ug/g	13-DEC-16	14-DEC-16	R3616921
МТВЕ	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Styrene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1,1,2-Tetrachloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1869032-2 BH1-SS6 Sampled By: CLIENT on 09-DEC-16 @ 09:00 Matrix: SOIL							
Volatile Organic Compounds							
1,1,2,2-Tetrachloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Tetrachloroethylene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Toluene	<0.080		0.080	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1,1-Trichloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1,2-Trichloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Trichloroethylene	<0.010		0.010	ug/g	13-DEC-16	14-DEC-16	R3616921
Trichlorofluoromethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Vinyl chloride	<0.020		0.020	ug/g	13-DEC-16	14-DEC-16	R3616921
o-Xylene	<0.020		0.020	ug/g	13-DEC-16	14-DEC-16	R3616921
m+p-Xylenes	<0.030		0.030	ug/g	13-DEC-16	14-DEC-16	R3616921
Xylenes (Total)	<0.050		0.050	ug/g		15-DEC-16	
Surrogate: 4-Bromofluorobenzene	87.1		50-140	%	13-DEC-16	14-DEC-16	R3616921
Surrogate: 1,4-Difluorobenzene	96.1		50-140	%	13-DEC-16	14-DEC-16	R3616921
Hydrocarbons							
F1 (C6-C10)	<5.0		5.0	ug/g	13-DEC-16	15-DEC-16	R3616921
F1-BTEX	<5.0		5.0	ug/g		19-DEC-16	
F2 (C10-C16)	11		10	ug/g	13-DEC-16	16-DEC-16	R3618520
F3 (C16-C34)	55		50	ug/g	13-DEC-16	16-DEC-16	R3618520
F4 (C34-C50)	<50		50	ug/g	13-DEC-16	16-DEC-16	R3618520
Total Hydrocarbons (C6-C50)	<72		72	ug/g		19-DEC-16	
Chrom. to baseline at nC50	YES				13-DEC-16	16-DEC-16	R3618520
Surrogate: 2-Bromobenzotrifluoride	88.6		60-140	%	13-DEC-16	16-DEC-16	R3618520
Surrogate: 3,4-Dichlorotoluene	96.7		60-140	%	13-DEC-16	15-DEC-16	R3616921
L1869032-3 BH2-SS2A Sampled By: CLIENT on 09-DEC-16 @ 09:00 Matrix: SOIL							
Physical Tests							
% Moisture	17.1		0.10	%	14-DEC-16	14-DEC-16	R3617125
Saturated Paste Extractables							
SAR	46.5		0.10	SAR		19-DEC-16	R3619976
Calcium (Ca)	12.3		1.0	mg/L		19-DEC-16	R3619976
Magnesium (Mg)	2.9		1.0	mg/L		19-DEC-16	R3619976
Sodium (Na)	699		1.0	mg/L		19-DEC-16	R3619976
	10		4.0				D0040070
Antimony (Sb)	<1.0		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Arsenic (As)	4.2		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Barium (Ba)	147		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
	1.04		0.50	ug/g	16-DEC-16	16-DEC-16	K3619972
	9.4		5.0	ug/g	10-DEC-16	16-DEC-16	K3619972
	<0.50		0.50	ug/g	16-DEC-16	16-DEC-16	R3619972
	32.4		1.0	ug/g	16-DEC-16	16-DEC-16	K3619972
	9.0		1.0	ug/g	16-DEC-16	16-DEC-16	K3619972

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1869032-3 BH2-SS2A							
Sampled By: CLIENT on 09-DEC-16 @ 09:00							
Metals							
Copper (Cu)	22.1		1.0	ua/a	16-DEC-16	16-DEC-16	R3619972
Lead (Pb)	11.0		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Molybdenum (Mo)	<1.0		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Nickel (Ni)	21.3		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Selenium (Se)	<1.0		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Silver (Ag)	<0.20		0.20	ug/g	16-DEC-16	16-DEC-16	R3619972
Thallium (TI)	<0.50		0.50	ug/g	16-DEC-16	16-DEC-16	R3619972
Uranium (U)	<1.0		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Vanadium (V)	43.8		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Zinc (Zn)	56.1		5.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Polycyclic Aromatic Hydrocarbons							
Acenaphthene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Acenaphthylene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Anthracene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Benzo(a)anthracene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Benzo(a)pyrene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Benzo(b)fluoranthene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Benzo(g,h,i)perylene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Benzo(k)fluorantnene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Dibenzo(an)anthracene	<0.050		0.050	ug/g	13-DEC-10	19-DEC-16	R3019830
Fluorance	<0.050		0.050	ug/g	13-DEC-10	19-DEC-16	R3019830
Indeno(1.2.3-cd)pyrepe	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3019030
1+2-Methylnaphthalenes	<0.030		0.030	ug/g	10 020 10	19-DEC-16	13019030
1-Methylnaphthalene	<0.042		0.042	ug/g	13-DEC-16	19-DEC-16	R3619836
2-Methylnaphthalene	<0.030		0.030	ug/g	13-DEC-16	19-DEC-16	R3619836
Naphthalene	< 0.050		0.050	ua/a	13-DEC-16	19-DEC-16	R3619836
Phenanthrene	< 0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Pyrene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Surrogate: 2-Fluorobiphenyl	94.4		50-140	%	13-DEC-16	19-DEC-16	R3619836
Surrogate: p-Terphenyl d14	92.2		50-140	%	13-DEC-16	19-DEC-16	R3619836
L1869032-4 BH2-SS5 Sampled By: CLIENT on 09-DEC-16 @ 09:00 Matrix: SOIL							
Physical Tests							
% Moisture	8.97		0.10	%	14-DEC-16	14-DEC-16	R3617125
Volatile Organic Compounds							
Acetone	<0.50		0.50	ug/g	13-DEC-16	14-DEC-16	R3616921
Benzene	<0.0068		0.0068	ug/g	13-DEC-16	14-DEC-16	R3616921
Bromodichloromethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Bromoform	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1869032-4 BH2-SS5 Sampled By: CLIENT on 09-DEC-16 @ 09:00 Matrix: SOIL							
Volatile Organic Compounds							
Bromomethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Carbon tetrachloride	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Chlorobenzene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Dibromochloromethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Chloroform	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,2-Dibromoethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,2-Dichlorobenzene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,3-Dichlorobenzene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,4-Dichlorobenzene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Dichlorodifluoromethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1-Dichloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,2-Dichloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1-Dichloroethylene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
cis-1,2-Dichloroethylene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
trans-1,2-Dichloroethylene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Methylene Chloride	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,2-Dichloropropane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
cis-1,3-Dichloropropene	<0.030		0.030	ug/g	13-DEC-16	14-DEC-16	R3616921
trans-1,3-Dichloropropene	<0.030		0.030	ug/g	13-DEC-16	14-DEC-16	R3616921
1,3-Dichloropropene (cis & trans)	<0.042		0.042	ug/g		15-DEC-16	
Ethylbenzene	<0.018		0.018	ug/g	13-DEC-16	14-DEC-16	R3616921
n-Hexane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Methyl Ethyl Ketone	<0.50		0.50	ug/g	13-DEC-16	14-DEC-16	R3616921
Methyl Isobutyl Ketone	<0.50		0.50	ug/g	13-DEC-16	14-DEC-16	R3616921
МТВЕ	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Styrene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1,1,2-Tetrachloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1,2,2-Tetrachloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Tetrachloroethylene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Toluene	<0.080		0.080	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1,1-Trichloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1,2-Trichloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Trichloroethylene	<0.010		0.010	ug/g	13-DEC-16	14-DEC-16	R3616921
Trichlorofluoromethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Vinyl chloride	<0.020		0.020	ug/g	13-DEC-16	14-DEC-16	R3616921
o-Xylene	<0.020		0.020	ug/g	13-DEC-16	14-DEC-16	R3616921
m+p-Xylenes	<0.030		0.030	ug/g	13-DEC-16	14-DEC-16	R3616921
Xylenes (Total)	<0.050		0.050	ug/g		15-DEC-16	
Surrogate: 4-Bromofluorobenzene	91.2		50-140	%	13-DEC-16	14-DEC-16	R3616921
Surrogate: 1,4-Difluorobenzene	102.1		50-140	%	13-DEC-16	14-DEC-16	R3616921
Hydrocarbons							

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1869032-4 BH2-SS5 Sampled By: CLIENT on 09-DEC-16 @ 09:00 Matrix: SOIL							
Hydrocarbons							
F1 (C6-C10)	<5.0		5.0	ug/g	13-DEC-16	15-DEC-16	R3616921
F1-BTEX	<5.0		5.0	ug/g		19-DEC-16	
F2 (C10-C16)	<10		10	ug/g	13-DEC-16	16-DEC-16	R3618520
F3 (C16-C34)	<50		50	ug/g	13-DEC-16	16-DEC-16	R3618520
F4 (C34-C50)	<50		50	ug/g	13-DEC-16	16-DEC-16	R3618520
Total Hydrocarbons (C6-C50)	<72		72	ug/g		19-DEC-16	
Chrom. to baseline at nC50	YES				13-DEC-16	16-DEC-16	R3618520
Surrogate: 2-Bromobenzotrifluoride	86.1		60-140	%	13-DEC-16	16-DEC-16	R3618520
Surrogate: 3,4-Dichlorotoluene	103.8		60-140	%	13-DEC-16	15-DEC-16	R3616921
L1869032-5 BH3-SS3 Sampled By: CLIENT on 09-DEC-16 @ 09:00 Matrix: SOIL							
Physical lests							
% Moisture	8.28		0.10	%	14-DEC-16	14-DEC-16	R3617125
SAR	~55	SARI	0.10	SAR		19-DEC-16	P3610076
Calcium (Ca)	-1.0	0,	1.0	mg/l		19-DEC-16	R3619976
Magnesium (Mg)	<1.0		1.0	mg/L		19-DEC-16	R3619976
Sodium (Na)	323		1.0	mg/L		19-DEC-16	R3619976
Metals	323		1.0	iiig/L		13-020-10	10019970
Antimony (Sb)	<1.0		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Arsenic (As)	2.0		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Barium (Ba)	31.9		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Beryllium (Be)	<0.50		0.50	ug/g	16-DEC-16	16-DEC-16	R3619972
Boron (B)	<5.0		5.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Cadmium (Cd)	<0.50		0.50	ug/g	16-DEC-16	16-DEC-16	R3619972
Chromium (Cr)	9.8		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Cobalt (Co)	4.3		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Copper (Cu)	9.1		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Lead (Pb)	4.7		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Molybdenum (Mo)	<1.0		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Nickel (Ni)	8.8		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Selenium (Se)	<1.0		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Silver (Ag)	<0.20		0.20	ug/g	16-DEC-16	16-DEC-16	R3619972
Thallium (TI)	<0.50		0.50	ug/g	16-DEC-16	16-DEC-16	R3619972
Uranium (U)	<1.0		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Vanadium (V)	19.2		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Zinc (Zn)	21.8		5.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Polycyclic Aromatic Hydrocarbons							
Acenaphthene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Acenaphthylene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Anthracene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1869032-5 BH3-SS3 Sampled By: CLIENT on 09-DEC-16 @ 09:00 Matrix: SOIL							
Polycyclic Aromatic Hydrocarbons							
Benzo(a)anthracene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Benzo(a)pyrene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Benzo(b)fluoranthene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Benzo(g,h,i)perylene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Benzo(k)fluoranthene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Chrysene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Dibenzo(ah)anthracene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Fluoranthene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Fluorene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Indeno(1,2,3-cd)pyrene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
1+2-Methylnaphthalenes	<0.042		0.042	ug/g		19-DEC-16	
1-Methylnaphthalene	<0.030		0.030	ug/g	13-DEC-16	19-DEC-16	R3619836
2-Methylnaphthalene	<0.030		0.030	ug/g	13-DEC-16	19-DEC-16	R3619836
Naphthalene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Phenanthrene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Pyrene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Surrogate: 2-Fluorobiphenyl	91.1		50-140	%	13-DEC-16	19-DEC-16	R3619836
Surrogate: p-Terphenyl d14	87.3		50-140	%	13-DEC-16	19-DEC-16	R3619836
L1869032-6 BH3-SS6 Sampled By: CLIENT on 09-DEC-16 @ 09:00 Matrix: SOIL							
Physical Tests							
% Moisture	6.93		0.10	%	14-DEC-16	14-DEC-16	R3617125
Volatile Organic Compounds							
Acetone	<0.50		0.50	ug/g	13-DEC-16	14-DEC-16	R3616921
Benzene	<0.0068		0.0068	ug/g	13-DEC-16	14-DEC-16	R3616921
Bromodichloromethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Bromoform	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Bromomethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Carbon tetrachloride	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Chlorobenzene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Dibromochloromethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Chloroform	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,2-Dibromoethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,2-Dichlorobenzene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,3-Dichlorobenzene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,4-Dichlorobenzene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Dichlorodifluoromethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1-Dichloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,2-Dichloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1-Dichloroethylene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
cis-1,2-Dichloroethylene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1869032-6 BH3-SS6 Sampled By: CLIENT on 09-DEC-16 @ 09:00							
Matrix: SOIL							
Volatile Organic Compounds							
trans-1,2-Dichloroethylene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Methylene Chloride	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,2-Dichloropropane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
cis-1,3-Dichloropropene	<0.030		0.030	ug/g	13-DEC-16	14-DEC-16	R3616921
trans-1,3-Dichloropropene	<0.030		0.030	ug/g	13-DEC-16	14-DEC-16	R3616921
1,3-Dichloropropene (cis & trans)	<0.042		0.042	ug/g		15-DEC-16	
Ethylbenzene	<0.018		0.018	ug/g	13-DEC-16	14-DEC-16	R3616921
n-Hexane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Methyl Ethyl Ketone	<0.50		0.50	ug/g	13-DEC-16	14-DEC-16	R3616921
Methyl Isobutyl Ketone	<0.50		0.50	ug/g	13-DEC-16	14-DEC-16	R3616921
МТВЕ	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Styrene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1,1,2-Tetrachloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1,2,2-Tetrachloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Tetrachloroethylene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Toluene	<0.080		0.080	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1,1-Trichloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1,2-Trichloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Trichloroethylene	<0.010		0.010	ug/g	13-DEC-16	14-DEC-16	R3616921
Trichlorofluoromethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Vinyl chloride	<0.020		0.020	ug/g	13-DEC-16	14-DEC-16	R3616921
o-Xylene	<0.020		0.020	ug/g	13-DEC-16	14-DEC-16	R3616921
m+p-Xylenes	<0.030		0.030	ug/g	13-DEC-16	14-DEC-16	R3616921
Xylenes (Total)	<0.050		0.050	ug/g		15-DEC-16	
Surrogate: 4-Bromofluorobenzene	92.4		50-140	%	13-DEC-16	14-DEC-16	R3616921
Surrogate: 1,4-Difluorobenzene	105.1		50-140	%	13-DEC-16	14-DEC-16	R3616921
Hydrocarbons							
F1 (C6-C10)	<5.0		5.0	ug/g	13-DEC-16	15-DEC-16	R3616921
F1-BTEX	<5.0		5.0	ug/g		19-DEC-16	
F2 (C10-C16)	12		10	ug/g	13-DEC-16	16-DEC-16	R3618520
F3 (C16-C34)	57		50	ug/g	13-DEC-16	16-DEC-16	R3618520
F4 (C34-C50)	<50		50	ug/g	13-DEC-16	16-DEC-16	R3618520
Total Hydrocarbons (C6-C50)	<72		72	ug/g		19-DEC-16	
Chrom. to baseline at nC50	YES				13-DEC-16	16-DEC-16	R3618520
Surrogate: 2-Bromobenzotrifluoride	87.0		60-140	%	13-DEC-16	16-DEC-16	R3618520
Surrogate: 3,4-Dichlorotoluene	108.0		60-140	%	13-DEC-16	15-DEC-16	R3616921
L1869032-7 BH4-SS2 Sampled By: CLIENT on 09-DEC-16 @ 09:00 Matrix: SOIL							
Physical Tests							
% Moisture	8.13		0.10	%	14-DEC-16	14-DEC-16	R3617125
Saturated Paste Extractables							

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1869032-7 BH4-SS2							
Sampled By: CLIENT on 09-DEC-16 @ 09:00							
Matrix: SOIL							
Saturated Paste Extractables	04.0	CADIM	0.40	CAD			D0040070
SAR Calaium (Ca)	24.8	SAR.M	0.10	SAR ma/l		19-DEC-16	R3619976
Calcium (Ca)	4.5		1.0	mg/L		19-DEC-16	R3619976
Magnesium (Mg)	<1.0		1.0	mg/L		19-DEC-16	R3619976
Metals	191		1.0	mg/L		19-DEC-16	R3619976
Antimony (Sb)	<10		1.0	ua/a	16-DEC-16	16-DEC-16	R3619972
Arsenic (As)	2.1		1.0	ua/a	16-DEC-16	16-DEC-16	R3619972
Barium (Ba)	36.7		1.0	ua/a	16-DEC-16	16-DEC-16	R3619972
Bervllium (Be)	<0.50		0.50	ua/a	16-DEC-16	16-DEC-16	R3619972
Boron (B)	5.4		5.0	ua/a	16-DEC-16	16-DEC-16	R3619972
Cadmium (Cd)	<0.50		0.50	ua/a	16-DEC-16	16-DEC-16	R3619972
Chromium (Cr)	13.2		1.0	ua/a	16-DEC-16	16-DEC-16	R3619972
Cobalt (Co)	4.6		1.0	ua/a	16-DEC-16	16-DEC-16	R3619972
Copper (Cu)	10.4		1.0	ua/a	16-DEC-16	16-DEC-16	R3619972
Lead (Pb)	5.7		1.0	ua/a	16-DEC-16	16-DEC-16	R3619972
Molybdenum (Mo)	<1.0		1.0	ua/a	16-DEC-16	16-DEC-16	R3619972
Nickel (Ni)	10.1		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Selenium (Se)	<1.0		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Silver (Ag)	<0.20		0.20	ug/g	16-DEC-16	16-DEC-16	R3619972
Thallium (TI)	<0.50		0.50	ug/g	16-DEC-16	16-DEC-16	R3619972
Uranium (U)	<1.0		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Vanadium (V)	24.6		1.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Zinc (Zn)	26.1		5.0	ug/g	16-DEC-16	16-DEC-16	R3619972
Polycyclic Aromatic Hydrocarbons							
Acenaphthene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Acenaphthylene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Anthracene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Benzo(a)anthracene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Benzo(a)pyrene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Benzo(b)fluoranthene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Benzo(g,h,i)perylene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Benzo(k)fluoranthene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Chrysene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Dibenzo(ah)anthracene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Fluoranthene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Fluorene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
Indeno(1,2,3-cd)pyrene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836
1+2-Methylnaphthalenes	<0.042		0.042	ug/g		19-DEC-16	
1-Methylnaphthalene	<0.030		0.030	ug/g	13-DEC-16	19-DEC-16	R3619836
2-Methylnaphthalene	<0.030		0.030	ug/g	13-DEC-16	19-DEC-16	R3619836
Naphthalene	<0.050		0.050	ug/g	13-DEC-16	19-DEC-16	R3619836

Sample Details	/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1869032-7	BH4-SS2							
Sampled By:	CLIENT on 09-DEC-16 @ 09:00							
Matrix:	SOIL							
Polycyclic A		-0.050		0.050	uala	12 DEC 16		D2610926
Puropo		<0.050		0.050	ug/g	13-DEC-10	10 DEC 16	R3019030
Fylene Surrogato: /	Fluerohiphopyl	<0.050		0.050	ug/g	13-DEC-10	10 DEC 16	R3019030
Surrogate:		89.0		50-140	/0 0/	13 DEC 16	10 DEC 16	R3019030
		00.3		50-140	70	13-DEC-10	19-DEC-10	K3019030
Sampled By: Matrix:	CLIENT on 09-DEC-16 @ 17:00 SOIL							
Physical Te	sts							
% Moisture		7.18		0.10	%	14-DEC-16	14-DEC-16	R3617125
Volatile Org	anic Compounds							
Acetone		<0.50		0.50	ug/g	13-DEC-16	14-DEC-16	R3616921
Benzene		<0.0068		0.0068	ug/g	13-DEC-16	14-DEC-16	R3616921
Bromodichl	promethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Bromoform		<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Bromometh	ane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Carbon tetra	achloride	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Chlorobenz	ene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Dibromoch	oromethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Chloroform		<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,2-Dibrom	bethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,2-Dichloro	benzene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,3-Dichloro	benzene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,4-Dichloro	benzene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Dichlorodifl	uoromethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1-Dichloro	bethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,2-Dichloro	bethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1-Dichloro	pethylene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
cis-1,2-Dich	loroethylene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
trans-1,2-Di	chloroethylene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Methylene (Chloride	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,2-Dichloro	propane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
cis-1,3-Dich	loropropene	<0.030		0.030	ug/g	13-DEC-16	14-DEC-16	R3616921
trans-1,3-Di	chloropropene	<0.030		0.030	ug/g	13-DEC-16	14-DEC-16	R3616921
1,3-Dichloro	ppropene (cis & trans)	<0.042		0.042	ug/g		15-DEC-16	
Ethylbenzer	ne	<0.018		0.018	ug/g	13-DEC-16	14-DEC-16	R3616921
n-Hexane		<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Methyl Ethy	l Ketone	<0.50		0.50	ug/g	13-DEC-16	14-DEC-16	R3616921
Methyl Isob	utyl Ketone	<0.50		0.50	ug/g	13-DEC-16	14-DEC-16	R3616921
MTBE		<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Styrene		<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1,1,2-Tetr	achloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1,2,2-Tetr	achloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
					I			1

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1869032-8 BH4-SS6							
Sampled By: CLIENT on 09-DEC-16 @ 17:00							
Matrix: SOIL							
Volatile Organic Compounds				,	40 050 40		
Tetrachioroethylene	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
	<0.080		0.080	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1,1-I richloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
1,1,2- I richloroethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Trichloroethylene	<0.010		0.010	ug/g	13-DEC-16	14-DEC-16	R3616921
Trichlorofluoromethane	<0.050		0.050	ug/g	13-DEC-16	14-DEC-16	R3616921
Vinyl chloride	<0.020		0.020	ug/g	13-DEC-16	14-DEC-16	R3616921
o-Xylene	<0.020		0.020	ug/g	13-DEC-16	14-DEC-16	R3616921
m+p-Xylenes	<0.030		0.030	ug/g	13-DEC-16	14-DEC-16	R3616921
Xylenes (Total)	<0.050		0.050	ug/g		15-DEC-16	
Surrogate: 4-Bromofluorobenzene	92.3		50-140	%	13-DEC-16	14-DEC-16	R3616921
Surrogate: 1,4-Difluorobenzene	103.0		50-140	%	13-DEC-16	14-DEC-16	R3616921
Hydrocarbons							_
F1 (C6-C10)	<5.0		5.0	ug/g	13-DEC-16	15-DEC-16	R3616921
F1-BTEX	<5.0		5.0	ug/g		19-DEC-16	
F2 (C10-C16)	<10		10	ug/g	13-DEC-16	16-DEC-16	R3618520
F3 (C16-C34)	<50		50	ug/g	13-DEC-16	16-DEC-16	R3618520
F4 (C34-C50)	<50		50	ug/g	13-DEC-16	16-DEC-16	R3618520
Total Hydrocarbons (C6-C50)	<72		72	ug/g		19-DEC-16	
Chrom. to baseline at nC50	YES				13-DEC-16	16-DEC-16	R3618520
Surrogate: 2-Bromobenzotrifluoride	85.8		60-140	%	13-DEC-16	16-DEC-16	R3618520
Surrogate: 3,4-Dichlorotoluene	103.8		60-140	%	13-DEC-16	15-DEC-16	R3616921
L1869032-9 COMPOSITE-TCLP Sampled By: CLIENT on 09-DEC-16 @ 09:00 Matrix: SOIL							
Sample Preparation							
Initial pH	9.68		0.10	pH units	14-DEC-16	14-DEC-16	R3618031
Final pH	5.78		0.10	pH units	14-DEC-16	14-DEC-16	R3618031
TCLP Extractables							
Acenaphthene	<0.0050		0.0050	mg/L	15-DEC-16	19-DEC-16	R3619761
Acenaphthylene	<0.0050		0.0050	mg/L	15-DEC-16	19-DEC-16	R3619761
Anthracene	<0.0050		0.0050	mg/L	15-DEC-16	19-DEC-16	R3619761
Benzo(a)anthracene	<0.0050		0.0050	mg/L	15-DEC-16	19-DEC-16	R3619761
Benzo(a)pyrene	<0.0010		0.0010	mg/L	15-DEC-16	19-DEC-16	R3619761
Benzo(b)fluoranthene	<0.0050		0.0050	mg/L	15-DEC-16	19-DEC-16	R3619761
Benzo(g,h,i)perylene	<0.0050		0.0050	mg/L	15-DEC-16	19-DEC-16	R3619761
TCLP Metals				-			
Arsenic (As)	<0.050		0.050	mg/L		15-DEC-16	R3618255
Barium (Ba)	0.51		0.50	mg/L		15-DEC-16	R3618255
Boron (B)	<2.5		2.5	mg/L		15-DEC-16	R3618255
Cadmium (Cd)	<0.0050		0.0050	mg/L		15-DEC-16	R3618255
Chromium (Cr)	<0.050		0.050	mg/L		15-DEC-16	R3618255
				_			

Sample Details	s/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1869032-9 Sampled By: Matrix:	COMPOSITE-TCLP CLIENT on 09-DEC-16 @ 09:00 SOIL							
TCLP Metal	s							
Lead (Pb)		<0.050		0.050	mg/L		15-DEC-16	R3618255
Mercury (He	g)	<0.00010		0.00010	mg/L		16-DEC-16	R3618639
Selenium (Se)	<0.025		0.025	mg/L		15-DEC-16	R3618255
Silver (Ag)		<0.0050		0.0050	mg/L		15-DEC-16	R3618255
Uranium (U))	<0.25		0.25	mg/L		15-DEC-16	R3618255
TCLP VOCs	5							
1,1-Dichloro	pethylene	<0.025	VTHS	0.025	mg/L		16-DEC-16	R3618254
1,2-Dichloro	obenzene	<0.025	VTHS	0.025	mg/L		16-DEC-16	R3618254
1,2-Dichloro	pethane	<0.025	VTHS	0.025	mg/L		16-DEC-16	R3618254
1,4-Dichloro	obenzene	<0.025	VTHS	0.025	mg/L		16-DEC-16	R3618254
Benzene		<0.025	VTHS	0.025	mg/L		16-DEC-16	R3618254
Carbon tetr	achloride	<0.025	VTHS	0.025	mg/L		16-DEC-16	R3618254
Chlorobenz	ene	<0.025	VTHS	0.025	mg/L		16-DEC-16	R3618254
Chloroform		<0.10	VTHS	0.10	mg/L		16-DEC-16	R3618254
Dichlorome	thane	<0.50	VTHS	0.50	mg/L		16-DEC-16	R3618254
Methyl Ethy	/l Ketone	<1.0	VTHS	1.0	mg/L		16-DEC-16	R3618254
Tetrachloro	ethylene	<0.025	VTHS	0.025	mg/L		16-DEC-16	R3618254
Trichloroeth	hylene	<0.025	VTHS	0.025	mg/L		16-DEC-16	R3618254
Vinyl chlorid	de	<0.050	VTHS	0.050	mg/L		16-DEC-16	R3618254
Surrogate: Volatile Org	4-Bromofluorobenzene ganic Compounds	96.4		70-130	%		16-DEC-16	R3618254
Surrogate: Polycyclic	1,4-Difluorobenzene Aromatic Hydrocarbons	100.5		70-130	%		16-DEC-16	R3618254
Benzo(k)flu	oranthene	<0.0050		0.0050	mg/L	15-DEC-16	19-DEC-16	R3619761
Chrysene		<0.0050		0.0050	mg/L	15-DEC-16	19-DEC-16	R3619761
Dibenzo(ah	anthracene	<0.0050		0.0050	mg/L	15-DEC-16	19-DEC-16	R3619761
Fluoranther	ne	<0.0050		0.0050	mg/L	15-DEC-16	19-DEC-16	R3619761
Fluorene		<0.0050		0.0050	mg/L	15-DEC-16	19-DEC-16	R3619761
Indeno(1,2,	3-cd)pyrene	<0.0050		0.0050	mg/L	15-DEC-16	19-DEC-16	R3619761
Naphthalen	e	<0.0050		0.0050	mg/L	15-DEC-16	19-DEC-16	R3619761
Phenanthre	ene	<0.0050		0.0050	mg/L	15-DEC-16	19-DEC-16	R3619761
Pyrene		<0.0050		0.0050	mg/L	15-DEC-16	19-DEC-16	R3619761
Quinoline		<0.0050		0.0050	mg/L	15-DEC-16	19-DEC-16	R3619761
Surrogate:	d10-Acenaphthene	113.0		50-150	%	15-DEC-16	19-DEC-16	R3619761
Surrogate:	d12-Chrysene	119.7		50-150	%	15-DEC-16	19-DEC-16	R3619761
Surrogate:	d8-Naphthalene	101.6		50-150	%	15-DEC-16	19-DEC-16	R3619761
Surrogate:	d10-Phenanthrene	113.8		50-150	%	15-DEC-16	19-DEC-16	R3619761

Sample Parameter Qualifier key listed:

Qualifier	Description
SAR:L	SAR is incalculable due to Ca and Mg below DL. Lowest possible SAR is reported as minimum value.
SAR:M	Reported SAR represents a maximum value. Actual SAR may be lower if both Ca and Mg were detectable.
VTHS	Volatile test was conducted on sample with headspace. Results may be biased low.

Test Method References:

ALS Test Code Matrix Test D		Test Description	Method Reference**						
F1-F4-511-CALC-WT	Soil	F1-F4 Hydrocarbon Calculated Parameters	CCME CWS-PHC, Pub #1310, Dec 2001-S						

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons. In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

1. All extraction and analysis holding times were met.

2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.

3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.

4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT Soil F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT Soil F2-F4-O.Reg 153/04 (July 2011) MOE DECPH-E3398/CCME TIER 1 Fractions F2, F3 and F4 are determined by extracting a soil sample with a solvent mix. The solvent recovered from the extracted soil sample is dried and treated to remove polar material. The extract is analyzed by GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

HG-TCLP-WT Waste Mercury (CVAA) for O.Reg 347 SW846 7470A

LEACH-TCLP-WT Waste Leachate Procedure for Reg 347 EPA 1311 Inorganic and Semi-Volatile Organic contaminants are leached from waste samples in strict accordance with US EPA Method 1311, "Toxicity Characteristic Leaching Procedure" (TCLP). Test results are reported in leachate concentration units (normally mg/L).

MET-200.2-CCMS-WT Soil Metals in Soil by CRC ICPMS EPA 200.2/6020A (mod) Dried, ground and sieved soil samples are digested with nitric and hydrochloric acids, followed by analysis by CRC ICPMS.

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. This method does not dissolve all silicate materials and may result in a partial extraction. depending on the sample matrix, for some metals, including, but not limited to Al, Ba, Be, Cr, Sr, Ti, Tl, and V.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MET-TCLP-WT Waste O.Reg 347 TCLP Leachable Metals EPA 200.8

METHYLNAPS-CALC-WT	Soil	ABN-Calculated Parameters	SW846 8270

MOISTURE-WT Soil % Moisture Gravimetric: Oven Dried

Reference Information

PAH-511-WT A representative sub-sar	Soil nple of soil is	PAH-O.Reg 153/04 (July 2011) fortified with deuterium-labelled surroga	SW846 3510/8270 ates and a mechanical shaking techniqueis used to extract the sample
benzo(j)fluoranthene ma	y chromatogra	 The extracts are concentrated and a aphically co-elute with benzo(b)fluorant 	hangzed by GC/MS. Depending on the analytical GC/MS column used hene or benzo(k)fluoranthene.
Analysis conducted in ac Protection Act (July 1, 20 must be reported).	ccordance with 011), unless a	n the Protocol for Analytical Methods Us subset of the Analytical Test Group (A	sed in the Assessment of Properties under Part XV.1 of the Environmental TG) has been requested (the Protocol states that all analytes in an ATG
PAH-TCLP-WT Samples are leached ac Depending on the analyt benzo(k)fluoranthene.	Waste cording to TC ical GC/MS co	PAH for O. Reg 347 LP protocol and then the aqueous leach olumn used benzo(j)fluoranthene may o	SW846 8270 (PAH) hate is extracted and the resulting extracts are analyzed on GC/MSD. chromatographically co-elute with benzo(b)fluoranthene or
SAR-R511-WT	Soil	SAR-O.Reg 153/04 (July 2011)	SW846 6010C
A dried, disaggregated s a ICP/OES. The concer not for comparison to an	olid sample is itrations of Na y guideline.	extracted with deionized water, the aq , Ca and Mg are reported as per CALA	ueous extract is separated from the solid, acidified and then analyzed using requirements for calculated parameters. These individual parameters are
Analysis conducted in ac Protection Act (July 1, 20	cordance with	n the Protocol for Analytical Methods U	sed in the Assessment of Properties under Part XV.1 of the Environmental
VOC-1,3-DCP-CALC-WT	Soil	Regulation 153 VOCs	SW8260B/SW8270C
VOC-511-HS-WT Soil and sediment samp	Soil les are extrac	VOC-O.Reg 153/04 (July 2011) ted in methanol and analyzed by heads	SW846 8260 (511) pace-GC/MS.
Analysis conducted in ac Protection Act (July 1, 20 must be reported).	cordance with 011), unless a	n the Protocol for Analytical Methods Us subset of the Analytical Test Group (A	sed in the Assessment of Properties under Part XV.1 of the Environmental TG) has been requested (the Protocol states that all analytes in an ATG
VOC-TCLP-WT A sample of waste is lea leachate is analyzed dire	Waste ched in a zero ctly by heads	VOC for O. Reg 347 b headspace extractor at 30–2 rpm for 7 pace technology, followed by GC/MS u	SW846 8260 18–2.0 hours with the appropriate leaching solution. After tumbling the sing internal standard quantitation.
XYLENES-SUM-CALC- WT	Soil	Sum of Xylene Isomer Concentrations	CALCULATION
Total xylenes represents	the sum of o	-xylene and m&p-xylene.	
** ALS test methods may in	corporate mo	difications from specified reference me	thods to improve performance.
The last two letters of the	above test co	de(s) indicate the laboratory that perfor	med analytical analysis for that test. Refer to the list below:
Laboratory Definition Co	de Labo	ratory Location	

Chain of Custody Numbers:

15-573799

WΤ

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Quality Control Report

			Workorder:	L1869032	R	eport Date:	19-DEC-16	Pa	ge 1 of 14
Client:	Morrison H 235 Yorklar Toronto Ol	ershfield Limitec nd Blvd Suite 60 N M2J 1T1	I (Ottawa) 0						
Contact:		Matrix	Poforonco	Posult	Qualifier	Unite	PPD	Limit	Analyzod
Test		watrix	Reference	Result	Quaimer	Units	RPD	Limit	Analyzed
F1-HS-511-WT		Soil							
Batch H WG2450584-4 F1 (C6-C10)	R3616921 4 DUP		L1869032-2 <5.0	<5.0	RPD-NA	ug/g	N/A	30	15-DEC-16
WG2450584-2 F1 (C6-C10)	2 LCS			96.2		%		80-120	14-DEC-16
WG2450584-1	1 MB								
F1 (C6-C10)				<5.0		ug/g		5	14-DEC-16
Surrogate: 3,	4-Dichlorotol	uene		87.6		%		60-140	14-DEC-16
WG2450584-7 F1 (C6-C10)	7 MS		L1869032-4	95.7		%		60-140	15-DEC-16
F2-F4-511-WT		Soil							
Batch	R3618520								
WG2450781-3	3 CRM		ALS PHC2 IRM	1					
F2 (C10-C16)			99.5		%		70-130	15-DEC-16
F3 (C16-C34)			101.4		%		70-130	15-DEC-16
F4 (C34-C50)			104.4		%		70-130	15-DEC-16
WG2450781-2 F2 (C10-C16	2 LCS)			105.6		%		80-120	15-DEC-16
F3 (C16-C34)			102.3		%		80-120	15-DEC-16
F4 (C34-C50)			95.0		%		80-120	15-DEC-16
WG2450781-1 F2 (C10-C16	1 MB)			<10		ug/g		10	15-DEC-16
F3 (C16-C34)			<50		ug/g		50	15-DEC-16
F4 (C34-C50)			<50		ug/g		50	15-DEC-16
Surrogate: 2-	Bromobenzo	trifluoride		83.5		%		60-140	15-DEC-16
MET-200.2-CCM	S-WT	Soil							
Batch	R3619972								
WG2452767-2	2 CRM		WT-CANMET-1	FILL1					
Antimony (Sb))			98.2		%		70-130	16-DEC-16
Arsenic (As)				103.8		%		70-130	16-DEC-16
Barium (Ba)				105.2		%		70-130	16-DEC-16
Beryllium (Be	e)			89.4		%		70-130	16-DEC-16
Cadmium (Co	d)			94.5		%		70-130	16-DEC-16
Chromium (C	Sr)			104.5		%		70-130	16-DEC-16
Cobalt (Co)				100.0		%		70-130	16-DEC-16
Copper (Cu)				98.6		%		70-130	16-DEC-16
Lead (Pb)				91.4		%		70-130	16-DEC-16

Quality Control Report

		Workorder	: L186903	32	Report Date: 1	9-DEC-16	Page 2 of 14		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-200.2-CCMS-WT	Soil								
Batch R36199	72								
WG2452767-2 CR	Μ	WT-CANME	T-TILL1						
Molybdenum (Mo)			88.2		%		70-130	16-DEC-16	
Nickel (Ni)			100.9		%		70-130	16-DEC-16	
Selenium (Se)			90.9		%		70-130	16-DEC-16	
Silver (Ag)			97.9		%		70-130	16-DEC-16	
Thallium (TI)			95.8		%		70-130	16-DEC-16	
Uranium (U)			103.9		%		70-130	16-DEC-16	
Vanadium (V)			105.2		%		70-130	16-DEC-16	
Zinc (Zn)			96.5		%		70-130	16-DEC-16	
WG2452767-4 LCS Antimony (Sb)	5	1+2	101.4		%		80-120	16-DEC-16	
Arsenic (As)			97.4		%		80-120	16-DEC-16	
Barium (Ba)			93.6		%		80-120	16-DEC-16	
Beryllium (Be)			98.5		%		80-120	16-DEC-16	
Boron (B)			98.8		%		80-120	16-DEC-16	
Cadmium (Cd)			98.2		%		80-120	16-DEC-16	
Chromium (Cr)			98.0		%		80-120	16-DEC-16	
Cobalt (Co)			97.0		%		80-120	16-DEC-16	
Copper (Cu)			96.0		%		80-120	16-DEC-16	
Lead (Pb)			96.4		%		80-120	16-DEC-16	
Molybdenum (Mo)			92.2		%		80-120	16-DEC-16	
Nickel (Ni)			96.4		%		80-120	16-DEC-16	
Selenium (Se)			94.5		%		80-120	16-DEC-16	
Silver (Ag)			97.5		%		80-120	16-DEC-16	
Thallium (Tl)			100.3		%		80-120	16-DEC-16	
Uranium (U)			97.5		%		80-120	16-DEC-16	
Vanadium (V)			100.0		%		80-120	16-DEC-16	
Zinc (Zn)			87.5		%		80-120	16-DEC-16	
WG2452767-1 MB									
Antimony (Sb)			<0.10		mg/kg		0.1	16-DEC-16	
Arsenic (As)			<0.10		mg/kg		0.1	16-DEC-16	
Barium (Ba)			<0.50		mg/kg		0.5	16-DEC-16	
Beryllium (Be)			<0.10		mg/kg		0.1	16-DEC-16	
Boron (B)			<5.0		mg/kg		5	16-DEC-16	
Cadmium (Cd)			<0.020		mg/kg		0.02	16-DEC-16	
Chromium (Cr)			<0.50		mg/kg		0.5	16-DEC-16	

Quality Control Report

Test	Matrix	Workorder: L1869032			Report Date: 19-DEC-16		Page 3 of 14	
		Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R3619972								
WG2452767-1 MB								
Cobalt (Co)			<0.10		mg/kg		0.1	16-DEC-16
Copper (Cu)			<0.50		mg/kg		0.5	16-DEC-16
Lead (Pb)			<0.50		mg/kg		0.5	16-DEC-16
Molybdenum (Mo)			<0.10		mg/kg		0.1	16-DEC-16
Nickel (Ni)			<0.50		mg/kg		0.5	16-DEC-16
Selenium (Se)			<0.20		mg/kg		0.2	16-DEC-16
Silver (Ag)			<0.10		mg/kg		0.1	16-DEC-16
Thallium (TI)			<0.050		mg/kg		0.05	16-DEC-16
Uranium (U)			<0.050		mg/kg		0.05	16-DEC-16
Vanadium (V)			<0.20		mg/kg		0.2	16-DEC-16
Zinc (Zn)			<2.0		mg/kg		2	16-DEC-16
MOISTURE-WT	Soil							
Batch R3617125								
WG2451280-3 DUP		L1869032-4						
% Moisture		8.97	8.70		%	3.0	20	14-DEC-16
WG2451280-2 LCS			00.0		0/			
% Moisture			99.6		%		90-110	14-DEC-16
WG2451280-1 MB % Moisture			<0.10		%		0.1	14 DEC 16
	• "		<0.10		70		0.1	14-DEC-16
PAH-511-WT	Soil							
Batch R3619836								
1-Methvlnaphthalene			96.6		%		50-140	19-DEC-16
2-Methylnaphthalene			95.9		%		50-140	19-DEC-16
Acenaphthene			96.8		%		50-140	19-DEC-16
Acenaphthylene			94.4		%		50-140	19-DEC-16
Anthracene			92.5		%		50-140	19-DEC-16
Benzo(a)anthracene			94.9		%		50-140	19 DEC-16
Benzo(a)pyrene			92.1		%		50-140	19-DEC-16
Benzo(b)fluoranthene			95.8		%		50-140	19-DEC-16
Benzo(g h i)pervlene			89.2		%		50-140	10 DEC 16
Benzo(k)fluoranthene			101 1		%		50 140	10-DEC 16
Chrysene			100.8		%		50 140	10 DEC 16
Dibenzo(ab)anthracono			01 9		%		50-140	19-020-10
Fluoranthene			91.0 88 5		70 0/2		50-140	19-DEC-16
FIUUIAIIUIEIIE			C.00		/0		50-140	19-DEC-16

	Workorder:		: L186903	32	Report Date: 19-DEC-16		Page 4 of 14	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R3619836								
WG2450768-2 LCS								
Fluorene			94.1		%		50-140	19-DEC-16
Indeno(1,2,3-cd)pyrene			84.7		%		50-140	19-DEC-16
Naphthalene			99.4		%		50-140	19-DEC-16
Phenanthrene			97.2		%		50-140	19-DEC-16
Pyrene			90.2		%		50-140	19-DEC-16
WG2450768-1 MB 1-Methylnaphthalene			<0.030		ua/a		0.03	19-DEC-16
2-Methylnaphthalene			<0.030		ua/a		0.00	19-DEC-16
Acenaphthene			<0.050		ua/a		0.00	19-DEC-16
Acenaphthylene			<0.050		na\a		0.05	19-DEC-16
Anthracene			<0.050		ua/a		0.05	19-DEC-16
Benzo(a)anthracene			<0.050		ua/a		0.05	19 DEC-16
Benzo(a)pvrene			< 0.050		ug/g		0.05	19 DEC-16
Benzo(b)fluoranthene			<0.050		ug/g		0.05	19-DEC-16
Benzo(g,h,i)perylene			<0.050		ug/g		0.05	19-DEC-16
Benzo(k)fluoranthene			<0.050		ug/g		0.05	19-DEC-16
Chrysene			< 0.050		ug/g		0.05	19-DEC-16
Dibenzo(ah)anthracene	•		<0.050		ug/g		0.05	19-DEC-16
Fluoranthene			<0.050		ug/g		0.05	19-DEC-16
Fluorene			<0.050		ug/g		0.05	19-DEC-16
Indeno(1,2,3-cd)pyrene			<0.050		ug/g		0.05	19-DEC-16
Naphthalene			<0.050		ug/g		0.05	19-DEC-16
Phenanthrene			<0.050		ug/g		0.05	19-DEC-16
Pyrene			<0.050		ug/g		0.05	19-DEC-16
Surrogate: 2-Fluorobiph	nenyl		93.0		%		50-140	19-DEC-16
Surrogate: p-Terphenyl	d14		87.9		%		50-140	19-DEC-16
SAR-R511-WT	Soil							
Batch R3619976								
WG2453891-2 IRM Calcium (Ca)		WT SAR1	87.8		%		70-130	19-DEC-16
Sodium (Na)			93.9		%		70-130	19-DEC-16
Magnesium (Mg)			86.8		%		70-130	19-DEC-16
WG2453891-1 MB								
Calcium (Ca)			<1.0		mg/L		1	19-DEC-16
Sodium (Na)			<1.0		mg/L		1	19-DEC-16

		Workorder: L1869032 F			eport Date: 1	19-DEC-16	Page 5 of 14		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
SAR-R511-WT	Soil								
Batch R361	9976								
WG2453891-1 N	ЛВ								
Magnesium (Mg)			<1.0		mg/L		1	19-DEC-16	
VOC-511-HS-WT	Soil								
Batch R361	6921								
WG2450584-4 D	DUP	L1869032-2							
1,1,1,2-1 etrachloro	bethane	<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
1,1,2,2-Tetrachloro	bethane	<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
1,1,1-Trichloroetha	ane	<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
1,1,2-Trichloroetha	ane	<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
1,1-Dichloroethane	e	<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
1,1-Dichloroethyler	ne	<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
1,2-Dibromoethane	e	<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
1,2-Dichlorobenze	ne	<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
1,2-Dichloroethane	e	<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
1,2-Dichloropropar	ne	<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
1,3-Dichlorobenze	ne	<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
1,4-Dichlorobenze	ne	<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
Acetone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	14-DEC-16	
Benzene		<0.0068	<0.0068	RPD-NA	ug/g	N/A	40	14-DEC-16	
Bromodichloromet	hane	<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
Bromoform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
Bromomethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
Carbon tetrachlorid	de	<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
Chlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
Chloroform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
cis-1,2-Dichloroeth	nylene	<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
cis-1,3-Dichloropro	opene	<0.030	<0.030	RPD-NA	ug/g	N/A	40	14-DEC-16	
Dibromochloromet	hane	<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
Dichlorodifluorome	ethane	<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	14-DEC-16	
n-Hexane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
Methylene Chloride	e	<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
MTBE		<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
m+p-Xylenes		<0.030	<0.030	RPD-NA	ug/g	N/A	40	14-DEC-16	

		Workorder: L1869032 Re			eport Date:	19-DEC-16	Pa	Page 6 of 14	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
VOC-511-HS-WT	Soil								
Batch R3616	6921								
WG2450584-4 D	UP	L1869032-2	-0.50		uala	N1/A	40		
Mothyl Icobutyl Kot		<0.50	<0.50	RPD-NA	ug/g	IN/A	40	14-DEC-16	
	one	<0.30	<0.00	RPD-NA	ug/g	IN/A	40	14-DEC-16	
Sturopo		<0.020	<0.020	RPD-NA	ug/g	IN/A	40	14-DEC-16	
Tatraphlaraathulan	2	<0.050	<0.050	RPD-NA	ug/g	IN/A	40	14-DEC-16	
Teluene	e	<0.030	<0.050	RPD-NA	ug/g	IN/A	40	14-DEC-16	
trone 4.0 Disklares	Alex de se e	<0.060	<0.060	RPD-NA	ug/g	N/A	40	14-DEC-16	
trans-1,2-Dichloroe	etnylene	<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
trans-1,3-Dichlorop	propene	<0.030	<0.030	RPD-NA	ug/g	N/A	40	14-DEC-16	
		<0.010	<0.010	RPD-NA	ug/g	N/A	40	14-DEC-16	
Irichlorofluorometh	nane	<0.050	<0.050	RPD-NA	ug/g	N/A	40	14-DEC-16	
Vinyl chloride		<0.020	<0.020	RPD-NA	ug/g	N/A	40	14-DEC-16	
WG2450584-2 Lo 1,1,1,2-Tetrachloro	CS bethane		82.9		%		60-130	14-DEC-16	
1,1,2,2-Tetrachloro	ethane		81.5		%		60-130	14-DEC-16	
1,1,1-Trichloroetha	ne		83.7		%		60-130	14-DEC-16	
1,1,2-Trichloroetha	ne		83.0		%		60-130	14-DEC-16	
1,1-Dichloroethane			84.6		%		60-130	14-DEC-16	
1,1-Dichloroethylen	ne		78.7		%		60-130	14-DEC-16	
1,2-Dibromoethane	9		81.5		%		70-130	14-DEC-16	
1,2-Dichlorobenzer	ne		84.5		%		70-130	14-DEC-16	
1,2-Dichloroethane			83.6		%		60-130	14-DEC-16	
1,2-Dichloropropan	e		87.1		%		70-130	14-DEC-16	
1,3-Dichlorobenzer	ne		85.0		%		70-130	14-DEC-16	
1,4-Dichlorobenzer	ne		85.7		%		70-130	14-DEC-16	
Acetone			102.6		%		60-140	14-DEC-16	
Benzene			83.9		%		70-130	14-DEC-16	
Bromodichlorometh	nane		82.3		%		50-140	14-DEC-16	
Bromoform			80.4		%		70-130	14-DEC-16	
Bromomethane			85.6		%		50-140	14-DEC-16	
Carbon tetrachlorid	le		83.0		%		70-130	14-DEC-16	
Chlorobenzene			85.3		%		70-130	14-DEC-16	
Chloroform			82.3		%		70-130	14-DEC-16	
cis-1,2-Dichloroeth	ylene		82.7		%		70-130	14-DEC-16	
cis-1,3-Dichloropro	pene		86.6		%		70-130	14-DEC-16	

		Workorder	: L186903	32	Report Date: 19-DEC-16		Page 7 of 14	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R3616	6921							
WG2450584-2 L	cs				04			
Dibromochiorometr	hane		86.3		%		60-130	14-DEC-16
Dicniorodifiuorome	tnane		63.2		%		50-140	14-DEC-16
Etnyibenzene			81.9		%		70-130	14-DEC-16
n-Hexane			83.2		%		70-130	14-DEC-16
Methylene Chloride			83.6		%		70-130	14-DEC-16
MTBE			84.8		%		70-130	14-DEC-16
m+p-Xylenes			84.3		%		70-130	14-DEC-16
Methyl Ethyl Ketone	e		95.6		%		60-140	14-DEC-16
Methyl Isobutyl Ket	one		91.4		%		60-140	14-DEC-16
o-Xylene			87.1		%		70-130	14-DEC-16
Styrene			87.1		%		70-130	14-DEC-16
Tetrachloroethylene	e		83.3		%		60-130	14-DEC-16
Toluene			83.2		%		70-130	14-DEC-16
trans-1,2-Dichloroe	thylene		83.5		%		60-130	14-DEC-16
trans-1,3-Dichlorop	ropene		87.2		%		70-130	14-DEC-16
Trichloroethylene			84.3		%		60-130	14-DEC-16
Trichlorofluorometh	nane		86.4		%		50-140	14-DEC-16
Vinyl chloride			77.7		%		60-140	14-DEC-16
WG2450584-1 M	В							
1,1,1,2-Tetrachloro	ethane		<0.050		ug/g		0.05	14-DEC-16
1,1,2,2-Tetrachloro	ethane		<0.050		ug/g		0.05	14-DEC-16
1,1,1-Trichloroetha	ne		<0.050		ug/g		0.05	14-DEC-16
1,1,2-Trichloroetha	ne		<0.050		ug/g		0.05	14-DEC-16
1,1-Dichloroethane			<0.050		ug/g		0.05	14-DEC-16
1,1-Dichloroethylen	e		<0.050		ug/g		0.05	14-DEC-16
1,2-Dibromoethane)		<0.050		ug/g		0.05	14-DEC-16
1,2-Dichlorobenzer	ne		<0.050		ug/g		0.05	14-DEC-16
1,2-Dichloroethane			<0.050		ug/g		0.05	14-DEC-16
1,2-Dichloropropan	e		<0.050		ug/g		0.05	14-DEC-16
1,3-Dichlorobenzer	ne		<0.050		ug/g		0.05	14-DEC-16
1,4-Dichlorobenzer	ne		<0.050		ug/g		0.05	14-DEC-16
Acetone			<0.50		ug/g		0.5	14-DEC-16
Benzene			<0.0068		ug/g		0.0068	14-DEC-16
Bromodichlorometh	nane		<0.050		ug/g		0.05	14-DEC-16

		Workorder	Workorder: L1869032			Report Date: 19-DEC-16		Page 8 of 14	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
VOC-511-HS-WT	Soil								
Batch R3616921									
WG2450584-1 MB									
Bromotorm			<0.050		ug/g		0.05	14-DEC-16	
Bromomethane			<0.050		ug/g		0.05	14-DEC-16	
Carbon tetrachloride			<0.050		ug/g		0.05	14-DEC-16	
Chlorobenzene			<0.050		ug/g		0.05	14-DEC-16	
Chloroform			<0.050		ug/g		0.05	14-DEC-16	
cis-1,2-Dichloroethylene			<0.050		ug/g		0.05	14-DEC-16	
cis-1,3-Dichloropropene			<0.030		ug/g		0.03	14-DEC-16	
Dibromochloromethane			<0.050		ug/g		0.05	14-DEC-16	
Dichlorodifluoromethane			<0.050		ug/g		0.05	14-DEC-16	
Ethylbenzene			<0.018		ug/g		0.018	14-DEC-16	
n-Hexane			<0.050		ug/g		0.05	14-DEC-16	
Methylene Chloride			<0.050		ug/g		0.05	14-DEC-16	
MTBE			<0.050		ug/g		0.05	14-DEC-16	
m+p-Xylenes			<0.030		ug/g		0.03	14-DEC-16	
Methyl Ethyl Ketone			<0.50		ug/g		0.5	14-DEC-16	
Methyl Isobutyl Ketone			<0.50		ug/g		0.5	14-DEC-16	
o-Xylene			<0.020		ug/g		0.02	14-DEC-16	
Styrene			<0.050		ug/g		0.05	14-DEC-16	
Tetrachloroethylene			<0.050		ug/g		0.05	14-DEC-16	
Toluene			<0.080		ug/g		0.08	14-DEC-16	
trans-1,2-Dichloroethyler	ne		<0.050		ug/g		0.05	14-DEC-16	
trans-1,3-Dichloroproper	ne		<0.030		ug/g		0.03	14-DEC-16	
Trichloroethylene			<0.010		ug/g		0.01	14-DEC-16	
Trichlorofluoromethane			<0.050		ug/g		0.05	14-DEC-16	
Vinyl chloride			<0.020		ug/g		0.02	14-DEC-16	
Surrogate: 1,4-Difluorobe	enzene		111.3		%		50-140	14-DEC-16	
Surrogate: 4-Bromofluor	obenzene		100.0		%		50-140	14-DEC-16	
WG2450584-5 MS		L1869032-2							
1,1,1,2-Tetrachloroethan	e		86.2		%		50-140	14-DEC-16	
1,1,2,2-Tetrachloroethan	e		86.8		%		50-140	14-DEC-16	
1,1,1-Trichloroethane			85.7		%		50-140	14-DEC-16	
1,1,2-Trichloroethane			88.1		%		50-140	14-DEC-16	
1,1-Dichloroethane			87.6		%		50-140	14-DEC-16	
1,1-Dichloroethylene			81.4		%		50-140	14-DEC-16	

		Workorder: L1869032			Report Date: 19-DEC-16		Page 9 of 14	
Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
VOC-511-HS-WT Soil								
Batch R3616921								
WG2450584-5 MS	L1869032-2							
1,2-Dibromoethane		87.5		%		50-140	14-DEC-16	
1,2-Dichlorobenzene		85.5		%		50-140	14-DEC-16	
1,2-Dichloroethane		89.6		%		50-140	14-DEC-16	
1,2-Dichloropropane		90.6		%		50-140	14-DEC-16	
1,3-Dichlorobenzene		83.1		%		50-140	14-DEC-16	
1,4-Dichlorobenzene		85.1		%		50-140	14-DEC-16	
Acetone		117.4		%		50-140	14-DEC-16	
Benzene		85.9		%		50-140	14-DEC-16	
Bromodichloromethane		86.6		%		50-140	14-DEC-16	
Bromoform		87.6		%		50-140	14-DEC-16	
Bromomethane		86.6		%		50-140	14-DEC-16	
Carbon tetrachloride		83.7		%		50-140	14-DEC-16	
Chlorobenzene		86.1		%		50-140	14-DEC-16	
Chloroform		83.9		%		50-140	14-DEC-16	
cis-1,2-Dichloroethylene		85.7		%		50-140	14-DEC-16	
cis-1,3-Dichloropropene		82.0		%		50-140	14-DEC-16	
Dibromochloromethane		92.4		%		50-140	14-DEC-16	
Dichlorodifluoromethane		72.3		%		50-140	14-DEC-16	
Ethylbenzene		81.0		%		50-140	14-DEC-16	
n-Hexane		86.3		%		50-140	14-DEC-16	
Methylene Chloride		89.0		%		50-140	14-DEC-16	
МТВЕ		86.2		%		50-140	14-DEC-16	
m+p-Xylenes		83.2		%		50-140	14-DEC-16	
Methyl Ethyl Ketone		105.7		%		50-140	14-DEC-16	
Methyl Isobutyl Ketone		98.9		%		50-140	14-DEC-16	
o-Xylene		86.9		%		50-140	14-DEC-16	
Styrene		86.8		%		50-140	14-DEC-16	
Tetrachloroethylene		82.3		%		50-140	14-DEC-16	
Toluene		83.9		%		50-140	14-DEC-16	
trans-1,2-Dichloroethylene		84.3		%		50-140	14-DEC-16	
trans-1,3-Dichloropropene		83.9		%		50-140	14-DEC-16	
Trichloroethylene		83.9		%		50-140	14-DEC-16	
Trichlorofluoromethane		90.9		%		50-140	14-DEC-16	
Vinyl chloride		81.5		%		50-140	14-DEC-16	

			Workorder: L1869032		Report Date: 19-DEC-16		Page 10 of 14		
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
HG-TCLP-WT		Waste							
Batch	R3618639								
WG2452919 Mercury (Hg	-2 LCS g)			101.0		%		70-130	16-DEC-16
WG2452919 Mercury (Hg	-1 MB g)			<0.00010		mg/L		0.0001	16-DEC-16
MET-TCLP-WT		Waste							
Batch	R3618255								
WG2452554	-2 LCS			00.0		0/		70.400	
Silver (Ag)	\			90.0		70		70-130	15-DEC-16
Arsenic (As)			97.5		%		70-130	15-DEC-16
Boron (B)				91.8		%		70-130	15-DEC-16
Barium (Ba)				97.7		%		70-130	15-DEC-16
				97.1		%		70-130	15-DEC-16
	Cr)			95.1		%		70-130	15-DEC-16
Lead (PD)				97.0		%		70-130	15-DEC-16
	se)			96.3		%		70-130	15-DEC-16
Uranium (U)			99.7		%		70-130	15-DEC-16
WG2452554 Silver (Ag)	-1 MB			<0.0050		mg/L		0.005	15-DEC-16
Arsenic (As)			<0.050		mg/L		0.05	15-DEC-16
Boron (B)				<2.5		mg/L		2.5	15-DEC-16
Barium (Ba))			<0.50		mg/L		0.5	15-DEC-16
Cadmium (0	Cd)			<0.0050		mg/L		0.005	15-DEC-16
Chromium (Cr)			<0.050		mg/L		0.05	15-DEC-16
Lead (Pb)				<0.050		mg/L		0.05	15-DEC-16
Selenium (S	Se)			<0.025		mg/L		0.025	15-DEC-16
Uranium (U)			<0.25		mg/L		0.25	15-DEC-16
PAH-TCLP-WT		Waste							
Batch	R3619761								
WG2452720	-5 DUP		L1869032-9						
Acenaphthe	ene		<0.0050	<0.0050	RPD-N	NA mg/L	N/A	50	19-DEC-16
Acenaphthy	lene		<0.0050	<0.0050	RPD-N	NA mg/L	N/A	50	19-DEC-16
Anthracene			<0.0050	<0.0050	RPD-N	NA mg/L	N/A	50	19-DEC-16
Benzo(a)an	thracene		<0.0050	<0.0050	RPD-N	NA mg/L	N/A	50	19-DEC-16
Benzo(a)py	rene		<0.0010	<0.0010	RPD-N	NA mg/L	N/A	50	19-DEC-16
Benzo(b)flu	oranthene		<0.0050	<0.0050	RPD-N	NA mg/L	N/A	50	19-DEC-16
Benzo(g,h,i)	perylene		<0.0050	<0.0050	RPD-N	NA mg/L	N/A	50	19-DEC-16

	Workorder: L1869032 Re			eport Date:	19-DEC-16	Page 11 of 14		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TCLP-WT	Waste							
Batch R3619761								
WG2452720-5 DUP Benzo(k)fluoranthene		L1869032-9 <0.0050	<0.0050	RPD-NA	mg/L	N/A	50	19-DEC-16
Chrysene		<0.0050	<0.0050	RPD-NA	mg/L	N/A	50	19-DEC-16
Dibenzo(ah)anthracene		<0.0050	<0.0050	RPD-NA	mg/L	N/A	50	19-DEC-16
Fluoranthene		<0.0050	<0.0050	RPD-NA	ma/L	N/A	50	19-DEC-16
Fluorene		<0.0050	<0.0050	RPD-NA	mg/L	N/A	50	19-DEC-16
Indeno(1,2,3-cd)pyrene		<0.0050	<0.0050	RPD-NA	mg/L	N/A	50	19-DEC-16
Naphthalene		<0.0050	<0.0050	RPD-NA	mg/L	N/A	50	19-DEC-16
Phenanthrene		<0.0050	<0.0050	RPD-NA	mg/L	N/A	50	19-DEC-16
Pyrene		<0.0050	<0.0050	RPD-NA	mg/L	N/A	50	19-DEC-16
Quinoline		<0.0050	<0.0050	RPD-NA	mg/L	N/A	50	19-DEC-16
WG2452720-2 LCS Acenaphthene			93.0		%		50-130	19-DEC-16
Acenaphthylene			94.6		%		50-130	19-DEC-16
Anthracene			95.4		%		50-130	19-DEC-16
Benzo(a)anthracene			98.8		%		50-140	19-DEC-16
Benzo(a)pyrene			98.8		%		60-140	19-DEC-16
Benzo(b)fluoranthene			93.3		%		50-140	19-DEC-16
Benzo(g,h,i)pervlene			99.0		%		50-140	19-DEC-16
Benzo(k)fluoranthene			94.1		%		50-150	19-DEC-16
Chrysene			99.9		%		50-140	19-DEC-16
Dibenzo(ah)anthracene			98.2		%		50-140	19-DEC-16
Fluoranthene			97.3		%		50-150	19-DEC-16
Fluorene			95.0		%		50-150	19-DEC-16
Indeno(1,2,3-cd)pyrene			96.7		%		50-140	19-DEC-16
Naphthalene			86.3		%		50-130	19-DEC-16
Phenanthrene			95.1		%		50-130	19-DEC-16
Pyrene			103.6		%		50-140	19-DEC-16
Quinoline			124.0		%		50-150	19-DEC-16
WG2452720-1 MB								
Acenaphthene			<0.0050		mg/L		0.005	19-DEC-16
Acenaphthylene			<0.0050		mg/L		0.005	19-DEC-16
Anthracene			<0.0050		mg/L		0.005	19-DEC-16
Benzo(a)anthracene			<0.0050		mg/L		0.005	19-DEC-16
Benzo(a)pyrene			<0.0010		mg/L		0.001	19-DEC-16
Benzo(b)fluoranthene			<0.0050		mg/L		0.005	19-DEC-16

		Workorder: L1869032			Report Date: 19-DEC-16		Page 12 of 14	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TCLP-WT	Waste							
Batch R361	9761							
WG2452720-1	MB		0.0050					
Benzo(g,n,i)pervie	ene		<0.0050		mg/L		0.005	19-DEC-16
Benzo(k)fluoranth	ene		<0.0050		mg/L		0.005	19-DEC-16
Chrysene			<0.0050		mg/L		0.005	19-DEC-16
Dibenzo(ah)anthra	acene		<0.0050		mg/L		0.005	19-DEC-16
Fluoranthene			<0.0050		mg/L		0.005	19-DEC-16
Fluorene			<0.0050		mg/L		0.005	19-DEC-16
Indeno(1,2,3-cd)p	yrene		<0.0050		mg/L		0.005	19-DEC-16
Naphthalene			<0.0050		mg/L		0.005	19-DEC-16
Phenanthrene			<0.0050		mg/L		0.005	19-DEC-16
Pyrene			<0.0050		mg/L		0.005	19-DEC-16
Quinoline			<0.0050		mg/L		0.005	19-DEC-16
Surrogate: d8-Nap	ohthalene		98.6		%		50-150	19-DEC-16
Surrogate: d10-Ph	nenanthrene		117.2		%		50-150	19-DEC-16
Surrogate: d12-Ch	nrysene		119.7		%		50-150	19-DEC-16
Surrogate: d10-Ac	cenaphthene		108.3		%		50-150	19-DEC-16
WG2452720-4	MS	L1869032-9						
Acenaphthene			89.4		%		50-150	19-DEC-16
Acenaphthylene			90.4		%		50-150	19-DEC-16
Anthracene			87.5		%		50-150	19-DEC-16
Benzo(a)anthrace	ne		92.8		%		50-150	19-DEC-16
Benzo(a)pyrene			92.5		%		50-150	19-DEC-16
Benzo(b)fluoranth	ene		89.1		%		50-150	19-DEC-16
Benzo(g,h,i)peryle	ene		89.7		%		50-150	19-DEC-16
Benzo(k)fluoranth	ene		89.0		%		50-150	19-DEC-16
Chrysene			93.7		%		50-150	19-DEC-16
Dibenzo(ah)anthra	acene		79.9		%		50-150	19-DEC-16
Fluoranthene			90.9		%		50-150	19-DEC-16
Fluorene			90.7		%		50-150	19-DEC-16
Indeno(1,2,3-cd)p	yrene		88.3		%		50-150	19-DEC-16
Naphthalene			86.6		%		50-150	19-DEC-16
Phenanthrene			88.1		%		50-150	19-DEC-16
Pyrene			97.4		%		50-150	19-DEC-16
Quinoline			122.5		%		50-150	19-DEC-16

VOC-TCLP-WT

Waste

		Workorder: L1869032			Report Date: 19-DEC-16		Page 13 of 14	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-TCLP-WT	Waste							
Batch R3618254 WG2448725-1 LCS								
1,1-Dichloroethylene			91.7		%		70-130	16-DEC-16
1,2-Dichlorobenzene			88.1		%		70-130	16-DEC-16
1,2-Dichloroethane			98.0		%		70-130	16-DEC-16
1,4-Dichlorobenzene			85.9		%		70-130	16-DEC-16
Benzene			91.9		%		70-130	16-DEC-16
Carbon tetrachloride			88.5		%		60-140	16-DEC-16
Chlorobenzene			89.2		%		70-130	16-DEC-16
Chloroform			90.3		%		70-130	16-DEC-16
Dichloromethane			96.4		%		70-130	16-DEC-16
Methyl Ethyl Ketone			119.9		%		50-150	16-DEC-16
Tetrachloroethylene			88.0		%		70-130	16-DEC-16
Trichloroethylene			85.0		%		70-130	16-DEC-16
Vinyl chloride			88.0		%		60-130	16-DEC-16
WG2448725-2 MB								
1,1-Dichloroethylene			<0.025		mg/L		0.025	16-DEC-16
1,2-Dichlorobenzene			<0.025		mg/L		0.025	16-DEC-16
1,2-Dichloroethane			<0.025		mg/L		0.025	16-DEC-16
1,4-Dichlorobenzene			<0.025		mg/L		0.025	16-DEC-16
Benzene			<0.025		mg/L		0.025	16-DEC-16
Carbon tetrachloride			<0.025		mg/L		0.025	16-DEC-16
Chlorobenzene			<0.025		mg/L		0.025	16-DEC-16
Chloroform			<0.10		mg/L		0.1	16-DEC-16
Dichloromethane			<0.50		mg/L		0.5	16-DEC-16
Methyl Ethyl Ketone			<1.0		mg/L		1	16-DEC-16
Tetrachloroethylene			<0.025		mg/L		0.025	16-DEC-16
Trichloroethylene			<0.025		mg/L		0.025	16-DEC-16
Vinyl chloride			<0.050		mg/L		0.05	16-DEC-16
Surrogate: 1,4-Difluorol	penzene		100.2		%		70-130	16-DEC-16
Surrogate: 4-Bromofluo	robenzene		95.8		%		70-130	16-DEC-16

Workorder: L1869032

Report Date: 19-DEC-16

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

\leftarrow F2 \rightarrow \leftarrow F3 \rightarrow \leftarrow F4 \rightarrow										
nC10	nC16	nC34	nC50							
174°C	287°C	481°C	575°C							
346°F	2 → 4 → F3 → 4 → F4 → F4 → F4 → F4 → F4 →									
Gasoline →		← M	lotor Oils/Lube Oils/Grease—							
•	- Diesel/Jet	Fuels →								

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

174°C	287°C	481°C	575°C							
346°F	549°F	898°F	1067°F							
Gasoli	ne 🔶	← M	lotor Oils/Lube Oils/Grease							
← Diesel/Jet Fuels →										

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→</th><th>—F3—▶∢—F4—</th><th>→</th><th></th></f2-<>	→	—F3—▶ ∢ —F4—	→							
nC10	nC16	nC34	nC50							
174°C	287°C	481°C	575°C							
346°F	549°F	898°F	1067ºF							
Gasolin	e →	← Mo [*]	otor Oils/Lube Oils/Grease	-						
← Diesel/Jet Fuels →										

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Gasoline 🔶	Motor Oils/Lube Oils/Grease	
← Diesel/Jet Fuels →		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS) Environmental	Chain of Cust Re _{Canada To}	tody (COC) / quest Form	Analytica	il L	U, I,	186903	32-C						coc	Numbe	≆: 15 Page	- 5	,73 ₀ ^r	;79	19	
	www.alsglobal.com						e and	i na gitt	જ ે છે. ક	. Asta a	1	*** *									
Report To	Contact and company name below will appear o	in the final report	Report Format / Distribution					Select Service Lovel Below - Please confirm all E&P TATs with your AM - surcharges will apply													
Company:	IMHL pro-		Select Report Format: X PDF K EXCEL 50D (DIGITAL)						E 4 day (P4) E 1 Business day (E1)												
Contact:	LINAY 2	2400		utu) Report wi	nn repu	provide details below if			E 3 day (P3)												
Phone:	an the final room		Select Diobibution:						[®] ¹ / ₂												
	Company Booress below will appear on the when report			<u>~ 7/10+</u>	<u></u>	dena Ni Soura h	relation			Date en	j Time Rec	juired for a	E&P T	Ats: 1		÷			. ·		
Street:			Email 2	<u>_(AUD</u>	<u>ev</u> /	NCHI SMA	1 41102	α'	For tests	that can no	t be perform	ned accordi	ng to the t	service le	vel select	æd, you wif	ntrea ed fi	;ted.			
Postal Code:			Email 3			<u> </u>								Analys	sis Rec	juest				······	
Invoice To	Same as Benort To	NO	1	Invo	oice Dis	stribution				Ind	icate Filtere	ed (F), Pres	served (P)) or Filter	ect and P	reserved ((F/P) belo		T		
	Conv of Invoice with Report	NO	Select Invoice Di	istribution:			FAX				- <u> </u>		1		<u> </u>		T				
Company			Email 1 or Eav										1				+				
Contact:	· · · · · · · · · · · · · · · · · · ·		Email 2		-	······			-7				1						,	ş	
	Project Information		5 the factor of the co	Oil and Gas R	equire	d Fleids (client us	b)		ৰ											iner	
ALS Account # /	Quote #:		AFE/Cost Center:	an a	1	PO#	1	<u>re straft</u>	1	- 1	1		1							onts	
Job #:	1160500	· · ·/·	Major/Minor Code:			Routing Code:			1 2	H							-			ور د	
PO/AFE:			Requisitioner:						臣	ž										Ē	
_SD:			Location:						🔊											Ę	
ALS Lab Wo	rk Order # (185 use only)	2A Roal	ALS Contact:			Sampler:			R.V	R										£	
ALS Sample #	Sample Identification an	nd/or Coordinates		Date		Time	Sample 1	Type	4	4	· ·										
(lab use only).	(This description will app	pear on the report)		(dd-mmm	≻уу)	(hh:mm)			Ň							-+-	<u> </u>	$ \longrightarrow $	┝───╋		
)	BHI- SSZ			DY-D	x -16	1 Garan	<u>, Sai</u>	<u>`(</u>	Х							\perp	_		└──┤		
<u>ک</u>	BWI- SS6					1 1	1.			X											
3	RID - SSA					-60			$[\times]$			1									
11		19 11 11 1		-	1	4				X	-										
<u> </u>					{	မ္းမာ	<u>∽</u> -		\mathbf{x}												
<u> </u>	- 6 <u>H2- 32</u>			<u>+</u>	 	+ +			۴H	$\overline{\nabla}$			1	╀─┤	-	-+-	+	++	[]		
	BHS - 222					<u>├</u>	· - -			$\sim +$				+		·	+	+	╞──╂	<u></u>	
	13410 - 554	·	· · · · · · · · · · · · · · · · · · ·	<u> </u>	4	<u> </u>			\square	$\overline{}$							_ _	+	┝──╋		
&	BH4 - SS6		. <u> </u>	<u> </u>	\checkmark	¥	\downarrow			$ \rightarrow $						\rightarrow		<u> </u>	┝──╉		
																\square		\square			
		<u> </u>		1]	1			
	· · · · · · · · · · · · · · · · · · ·			<u> </u>			• •														
		Special instructions	Specify Criteria to	add on report	by clic	king on the drop-do	wn list belo	w	-	رد ورما شود م	<u>کې چ</u>	AMPLE	COND	TION	AS REC	CEIVED	(lab us	e only)			
Drinkin ure samples take	ng Water (DW) Samples ¹ (client use) n from a Regulated DW System?		(ele	ctronic COC o	nly)				Frozei Ice Pa	1 cks] e Çubes		SIF O Custo	ibserva dy sea	tions Lintact	Yes Yes		No No		
T YE	S DNO								Coolin	g Initiate	<u>د (ک</u>	v_{-}									
tre samples for h	uman drinking water use?								T 34- 1	. INATL	LE COOLE:	RTEMPER	TEMPERATURES CONTAINED				FINALCOOLER TEMPERAT			TAO	
YE	s 🛄 NO									<u>4•2</u>										<u>10-1</u>	
	SHIPMENT RELEASE (client use)		医教育的	INITIAL SI	HPMEN	VT RECEPTION (I	b use only)	1:27)	₩.,			184 gri	FINAL	SHIPM		ECERT	ION (lat	y use or	<u>nty); </u>	<u>29</u> 7628368 Filmer	
Released by:	induzhab Dee.	9. (65-)	Received by:	25		Date: Dec 12	116	ELO	1 ime: 9-0		(eceived	DY:		9	<u>)</u>	70	<u>//Ə</u>	B	<u>)/b/</u>	军40	
EFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING INFOR Il portions of this form may delay analysis, please fill in this form	RMATION	form the user acknowl	edges and agrees	WH!" s with the	TE - LABORATORY Terms and Conditions a	COPY VI	ELLOV the back	V - CLIE (page of	NT COP the white -	report cop	y		-						OCTOBER 20	

_ -

ature to complete all portions of this form may delay analysis, please fill in this form LEG/BLY. By the use of this korn the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

LIMITATIONS TO THE REPORT

This report is intended solely for the Client named. The report is prepared based on the work has been undertaken in accordance with normally accepted geotechnical engineering practices in Ontario.

The comments and recommendations given in this report are based on information determined at the limited number of the test hole and test pit locations. The boundaries between the various strata as shown on the borehole logs are based on non-continuous sampling and represent an inferred transition between the various strata and their lateral continuation rather than a precise plane of geological change. Subsurface and groundwater conditions between and beyond the test holes and test pits may differ significantly from those encountered at the test hole and test pit locations. The benchmark and elevations used in this report are primarily to establish relative elevation differences between the test hole and test pit locations and should not be used for other purposes, such as grading, excavating, planning, development, etc.

The report reflects our best judgment based on the information available to GeoPro Consulting Limited at the time of preparation. Unless otherwise agreed in writing by GeoPro Consulting Limited, it shall not be used to express or imply warranty as to any other purposes. No portion of this report shall be used as a separate entity, it is written to be read in its entirety. The information contained herein in no way reflects on the environment aspects of the project, unless otherwise stated.

The design recommendations given in this report are applicable only to the project designed and constructed completely in accordance with the details stated in this report.

Should any comments and recommendations provided in this report be made on any construction related issues, they are intended only for the guidance of the designers. The number of test holes and test pits may not be sufficient to determine all the factors that may affect construction activities, methods and costs. Such as, the thickness of surficial topsoil or fill layers may vary significantly and unpredictably; the amount of the cobbles and boulders may vary significantly than what described in the report; unexpected water bearing zones/layers with various thickness and extent may be encountered in the fill and native soils. The contractors bidding on this project or undertaking the construction should, therefore, make their own interpretation of the factual information presented and make their own conclusions as to how the subsurface conditions may affect their work and determine the proper construction methods.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. GeoPro Consulting Limited accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We accept no responsibility for any decisions made or actions taken as a result of this report unless we are specifically advised of and participate in such action, in which case our responsibility will be as agreed to at that time.