

DILLON
CONSULTING

broadview Avenue extension environm ental STUDY REPORT Preliminary Arborist Report \& Tree Inventory

City of Toronto

Table of Contents

1.0	Introduction
	1.1 Applicable Policies... 1
	1.1.1 Street Tree By-Law, City of Toronto Municipal Code Chapter 813, Article II 2
	1.1.2 Private Tree Protection By-Law, City of Toronto Municipal Code Chapter 813................. 2
	1.1.3 Migratory Birds Convention Act.. 2
2.0	Methods 3
3.0	2.1 Inventory M ethods.. 3
	Inventory Results 5
	3.1 Species at Risk and Species and Conservation Concern .. 6
4.0	Recommendations and Next Steps 7
5.0	Conclusion 8
	References
	Tables
	Table 1: Tree Condition Rating Categories \qquad .4 Table 2: Summary Count of Inventoried Trees. \qquad Table B-1: Detailed Tree Inventory Results
	Appendices
	A Tree Inventory Figure
	B Tree Inventory Table

1.0 Introduction

The City of Toronto retained Dillon Consulting Limited (Dillon) to provide arborist services for the Environmental Study Report (ESR) for the Broadview Avenue Extension Study in the City of Toronto. The ESR focuses on advancing road designs for the extension of Broadview Avenue from Eastern Avenue to Lake Shore Blvd East, and creation of an new east-west street through the Unilever Precinct between the Don Roadway and Booth Avenue.

The primary Study Area, as shown in the tree inventory figure provided in Appendix A, is the area of direct impact bound by Eastern Avenue to the north, Lake Shore Blvd East to the south, Don Roadway to the west, and Booth Avenue to the east. The area currently consists of a mixture of land uses, including: light industrial, commercial, residential, and transportation corridors.

To support future permits and approvals from the City, the project's arborist services included an inventory of trees within a defined study area and the preparation of an Arborist Report to document the results. The Tree Inventory Study Area (TISA) consisted of the proposed new road connections at 30 Booth Street, Lake Shore Boulevard East and the Broadview Eastern Intersection which are part of the street designs subject to Phase 3 and Phase 4 of the M unicipal Class Environmental Assessment (MECA) Process, plus a surrounding 6-meter setback, extending up to 12 meters for large trees on adjacent properties. The survey was limited to the publicly accessible portions of the TISA and trees on adjacent private properties were documented from the property line.

As the project is in the early design stages, recommendations for tree removal, injury prevention, and preservation will not be provided at this time.

1.1 Applicable Policies

Several municipal policies pertaining to tree protection could apply to the TISA. This report was prepared in accordance with the policies, by-laws and guidelines set forth in the following City specifications, resources and communications:

- Private Tree Protection By-law, City of Toronto Municipal Code Chapter 813 Article III;
- Street Tree By-law, City of Toronto Municipal Code Chapter 813, Article II;
- Tree Protection Plan and Specifications for Construction Near Trees, City of Toronto;
- Arborist Report for Development Applications, City of Toronto;
- Guidelines for Completion of an Arborist Report, City of Toronto;
- Every Tree Counts - Help Grow Toronto's Street Tree Canopy, City of Toronto;
- Urban Forestry Tree Pruning Guidelines, City of Toronto;
- Removal of Crab Apple Trees that are Situated on City Road Allowances Policy, City of Toronto;
- M aintenance of Street Trees which are less than 50\% on City Property (City/Private Boundary Line Trees) Policy, City of Toronto;
- Bees Wasps and Hornets Nests in Trees Policy, City of Toronto;
- Termite Policy, City of Toronto; and
- Migratory Bird Convention Act, Government of Canada, 1994.

The City's tree by-laws and federal legislation relevant to the trees inventoried have been reviewed and are further described below.
1.1.1 Street Tree By-Law, City of Toronto Municipal Code Chapter 813, Article II

Under Article II, Chapter 813 of the City of Toronto M unicipal Code trees on City streets are protected under the Street Tree By-law. As such, no person or corporation can injure, destroy, remove or permit the injury destruction or removal of a City owned tree without a permit (The City of Toronto, 2015b). The need for a permit is required for any trees to be injured, destroyed, or removed by construction activity.

1.1.2 Private Tree Protection By-Law, City of Toronto Municipal Code Chapter 813

Under Article III, Chapter 813 of the City of Toronto M unicipal Code trees on private property with a diameter of 30 centimetres (cm) or greater are protected under the Private Tree By-law (The City of Toronto, 2015a). This also includes trees of any diameter that were planted as a condition of a permit issued under this bylaw or a site plan agreement.
1.1.3 Migratory Birds Convention Act

Environment and Climate Change Canada implements the federal M igratory Birds Convention Act (M BCA) (Government of Canada, 1994) to protect migratory birds and their nests. A person shall not harm a migratory bird or nest without authorization under the regulations.

Vegetation removals shall be completed outside of the period from April 1-August 31 to avoid the core period of migratory bird nesting. If vegetation removal is required to be conducted within this period, an avian survey shall be conducted in the area of planned vegetation removal in advance of the removal activities to determine the presence or absence of a migratory bird(s) or nest(s). If no migratory bird or nest is observed during the survey, vegetation removal may proceed if it is conducted within 48 hours of completing the survey. The results of the survey shall be considered valid for 48 hours from the completion of the survey. If a migratory bird or nest is observed during the survey, vegetation removal that may harm a migratory bird or nest shall be avoided until a subsequent survey confirms the nest is no longer active, and/or until appropriate authorization is obtained.

2.0
 Methods

2.1 Inventory Methods

On September 14, 2020, a tree inventory was conducted by a Dillon arborist certified by the International Society of Arboriculture (ISA). The TISA, included the proposed new road connections at 30 Booth Street, Lake Shore Boulevard East, and the Broadview Eastern Intersection as well as an approximate zone of influence that extended 6 meters from the connections. The inventory followed the guidelines outlined in the City's Arborist Report for Development Applications and included the following trees:

- Public trees of all sizes situated in the City-owned road ROW and other City-owned and/or publicly owned lands within 6 m of the estimated project limits.
- Trees with diameters of 30 cm or more situated on private property or within 6 m of the estimated project limits.

There were no trees on lands designated under City of Toronto M unicipal Code, Chapter 658, RNF Protection, within 6 m of the estimated limits of the TISA.

For each tree subject to the inventory, the following information and methods were collected and applied:

- Identification of species or genus, where determinable.
- Measurement of diameter at breast height DBH at 1.4 metres from the ground for trees within the TISA. For multi-stem trees the stem with the highest diameter was used as the DBH value. For trees on adjacent properties, DBH was visually estimated from the nearest property boundary as site access was not authorized.
- Assignment of a unique tree identification (ID) number.
- Geo-referencing tree locations using a Global Positioning System (GPS) unit.
- A Level 2 (basic) qualitative visual assessment to determine tree health condition, following the condition health rating system detailed in Table 1.

The basic qualitative visual health assessment for trees within the TISA is a detailed visual inspection to determine the condition of each tree. This non-invasive assessment includes evaluating the site conditions, root taper, trunk, and scaffold branch arrangement at the union, as well as the condition of secondary branches and leaves. This assessment is typically conducted by arborists and only includes conditions that can be observed from ground level. It should be noted that this assessment may not provide information on internal, below-ground, and upper-crown conditions or defects that may not be visible or difficult to assess from ground level.

The hazard potential of the tree was assessed using the method outlined in the International Society of Arboriculture publication A Photographic Guide to the Evaluation of Hazard Trees in Urban Area - $2^{\text {nd }}$ Edition (M atheny and Clark, 1994). Using this guide, an overall condition rating (i.e., dead, poor, fair, good or excellent) was given to each tree. These condition ratings are useful when evaluating the retention and/or replacement value of individual trees.

Table 1: Tree Condition Rating Categories

Condi	Description
Dead	A specimen tree/stand is considered dead when it has no living tissue.
Hazard	The specimen tree could either be alive or dead but the tree in its part could pose an imminent hazard to people or property during normal weather conditions. These trees have the potential for splitting, breaking and/or falling over during inclement weather, and because of their proximity to various targets (i.e., people or property), could cause personal injury and/ or severe damage to municipal infrastructure and/or private property.
Poor	Tree in poor condition show major symptoms of decline. At least 50% of main scaffold branches are dead, missing or in diseased state. The trunk shows evidence of advanced rot, deadwood or is hollow throughout. Twig development on the main branches or throughout the canopy is poor and may have limited sucker growth. Callus growth around wounds is minimal. A tree in poor condition could decline further to become a safety hazard. Removal prior to development should be considered if it is considered a hazard tree.
Fair	Tree in fair condition show moderate symptoms of decline in lower canopy or scaffold branches, but more than 50% of scaffold branches are present and viable. The trunk shows limited evidence of rot or insect damage. Good callus growth is present near wound areas. Trees that have scaffold branches that are healthy, but are in a "Y" formation, may also be included in this category, if "included-bark" is evident as the risk of splitting or breakage increases as the tree matures. Removal or preservation of these trees depends on the location of the specimen and associated target potential, and would depend on the species, and its tolerance to grading, trenching and surviving in an urban environment. Some major arboricultural maintenance may be required and may include major scaffold or secondary branch removal, bracing and/or cabling.
Good	Tree in good condition show no symptoms of decline in the trunk, and all scaffold branches are present and are in good condition. Most scaffold branches are at right angles to the trunk, and show good vigour. Small amounts of dead wood may be present in secondary branches, but account for less than 25% of the canopy. Depending on the grading in the immediate area, a tree in good condition would be recommended for preservation. Such a tree would typically survive to maturity without major arboricultural maintenance.
Excellent	Tree in excellent condition show no symptoms of decline in trunk, scaffold or secondary branches. Tree's in this condition have an excellent growth habit and should typically survive to maturity without major arboricultural maintenance.

3.0 Inventory Results

During the site visit completed on September 14, 2020, it was observed that the community of tree species within the TISA consisted of both young and mature trees, with the majority (76\%) measuring 20 cm or less in DBH. A total of 139 trees were observed within or adjacent to the TISA and are summarized
in Table 2. Detailed assessment information of the trees inventoried within the TISA can be found in Table 3, Appendix B with tree locations being shown on the tree inventory figures in Appendix A.

A total of 29 species of trees were observed within the TISA. Of these 29 species, 8 species, consisting of: M anitoba M aple (Acer negundo), Norway M aple (Acer platanoides), Tree-of-heaven (Ailanthus altissima), Bur Oak (Quercus macrocarpa), English Oak (Quercus robur), Northern Red Oak (Quercus rubra), American Basswood (Tilia americana), and Siberian Elm (Ulmus pumila), comprised 65\% of all observations. Overall, the tree species were evenly split between non-native species and native species. With the exception of Kentucky Coffee-tree (Gymnocladus dioicus), the tree species observed were either common native species in Ontario or non-native species frequently planted as landscape trees.

Table 2: Summary Count of Inventoried Trees

Scientific Name	Common Name	Count of Inventoried Trees	Percentage of Inventory
Acer negundo	Manitoba Maple	9	9
Acer platanoides	Norway Maple	7	7
Acer rubrum	Red M aple	1	<1
Acer saccharinum	Silver M aple	4	4
Acer x freemanii	Freeman's Maple	2	2
Aesculus hippocastanum	Horse Chestnut	2	2
Ailanthus altissima	Tree-of-heaven	7	7
Alnus incana	Speckled Alder	1	<1
Amelanchier amabilis	Beautiful Serviceberry	1	$<l$
Amelanchier laevis	Smooth Serviceberry	2	2
Betula papyrifera	Paper Birch	1	<1
Celtis occidentalis	Common Hackberry	2	2
Elaeagnus angustifolia	Russian Olive	1	$<l$
Fraxinus pennsylvanica	Green Ash	3	3
Gleditsia triacanthos inermis	Thornless Honey-locust	4	4
Gymnocladus dioicus	Kentucky Coffee-tree	3	3
Juniperus virginiana	Eastern Red Cedar	1	$<l$
Malus baccata	Siberian Crabapple	1	$<l$

Scientific Name	Common Name	Count of Inventoried Trees	Percentage of Inventory
Malus pumila	Common Apple	1	<1
M orus alba	White M ulberry	2	2
Picea glauca	White Spruce	3	3
Pinus nigra	Black Pine	2	2
Quercus macrocarpa	Bur Oak	9	9
Quercus robur	English Oak	5	5
Quercus rubra	Northern Red Oak	6	6
Sorbus aucuparia	European M ountain-ash	1	<1
Tilia americana	American Basswood	8	8
Tilia cordata	Little-leaf Linden	2	2
Ulmus pumila	Siberian Elm	15	15
Unknown (Dead)		1	<1
Totals		$\mathbf{1 3 9}$	$\mathbf{1 0 0}$

3.1

Species at Risk and Species and Conservation Concern

Naturally occurring Kentucky Coffeetree (Gymnocladus dioicus) is listed as threatened on the Species at Risk in Ontario (SARO) under the ESA 2007; however, planted ornamental Kentucky Coffeetrees are not protected under the Act because their genetic origin is uncertain. Kentucky Coffeetree is also widely planted as an ornamental tree in municipalities according to the Recovery Strategy for the Kentucky Coffeetree (MNRF, 2017). This species is also listed as exotic (LRank L+) by the TRCA meaning it does not historically occur within the TRCA's jurisdiction. Native and naturally occurring Kentucky Coffeetrees are protected, but occur only in M iddlesex, Essex, Kent and Lambton Counties. The four Kentucky Coffeetree's observed within the TISA were found in the landscaped gardens adjacent to the residential buildings at 60 Broadview Avenue. Due to their planted status, and being located outside of the species' natural range, these trees would not be protected under the Endangered Species Act.

4.0
 Recommendations and Next Steps

As the project is in the early design stage, it is not possible to determine the exact number of trees that may need to be removed within the TISA. However, as the project progresses, additional work will be conducted to identify trees that must be removed in order to proceed with construction of the Broadview Avenue Extension Study. The necessary permits and approvals will be obtained from the City and trees will be removed in a safe and environmentally responsible manner. Efforts should also be made to minimize the number of trees that need to be removed and to replace any removed trees with new plantings within the project limits or alternative locations, as determined in consultation with City staff from the Forestry Operations and Ravine Protection groups within the Urban Forestry Branch of the Parks, Forestry, and Recreation Division.

The following are recommended next steps for tree removal and preservation in support of further advancement of the Broadview Avenue Extension Study.

1. Finalize the project detailed design and construction plans and, if necessary, conduct additional assessments to document any additional trees that fall within a revised TISA boundary. One area where additional tree inventory work may be required is the Broadview Avenue and Lake Shore Boulevard intersection, as this area is currently undergoing construction of the road, public realm, and landscape features for the Port Lands Flood Protection and Enabling Infrastructure (PLFPEI) Project. It is expected that tree removals or new plantings within the TISA may occur as a result of the PLFPEI Project since the time of the field investigation for the Broadview Avenue Extension Study.
2. Conduct a remove/retain analysis using the finalized project detailed design and construction plans to determine which trees require removal, preservation, or protection measures.
3. Develop tree protection measures in accordance with the City's Tree Protection Policy and Specification for Construction Near Trees.
4. Consult with the City to obtain relevant approvals for tree removal and other activities that could harm trees, such as excavation and grading in root zones or above-ground pruning. This should include confirmation of any fees to be paid to the City and/ or tree replacement planting requirements, if necessary.

5.0
 Conclusion

The City of Toronto retained Dillon Consulting Limited (Dillon) to provide arborist services for the Environmental Study Report (ESR) for the Broadview Avenue Extension Study. This preliminary Arborist Report and Tree Inventory Figure outline the tree inventory completed on September 14, 2020. As the project is in the early design stage, recommendations for tree removal, injury prevention, and preservation will not be provided at this time.

A total of 139 trees were observed within or adjacent to the Tree Inventory Study Area (TISA), which is defined as the proposed new road connections at 30 Booth Street, Lake Shore Boulevard East, and the Broadview Eastern Intersection, plus a surrounding 6-meter setback. The trees inventoried are considered common species in southern Ontario or were planted trees that are not subject to protections afforded under the Endangered Species Act.

As project design and construction plans advance, consultation with the City is to occur to obtain relevant approvals for tree removal and compensation and make revisions to this Arborist Report as required.

DISCLAIMER

Dillon Consulting Limited (Dillon) has used the degree of care and skill ordinarily exercised under similar circumstances at the time the field work and reporting were performed by reputable members of the environmental consulting profession and International Society of Arboriculture (ISA) Certified Arborists practicing in Canada. This Arborist Report and Tree Inventory Figure were prepared by Dillon for the sole benefit of the addressee noted above. The material in it reflects Dillon's best judgment in light of the information available to Dillon at the time of preparation. Any use which a third party makes of this Arborist Report and Tree Inventory Figure, or any reliance on or decisions made based on it, are the responsibilities of such third parties. Dillon accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Arborist Report and Tree Inventory Figure.

DILLON

References

Arborist Report for Development Applications, July 2010. City of Toronto.
Dunster, J. et al. 2017. Tree Risk Assessment Manual - Second Edition. International Society of Arboriculture, Champaign, Illinois.

Farrar, John Laird. 1995. Trees in Canada. Eighth Impression 2003. Fitzhenry \& Whiteside Limited, Markham, Ontario and the Canadian Forestry Service, Natural Resource Canada, Ottawa, in cooperation with Public Works and Government Services Canada.

M attheny, Nelda P. and James R. Clark. 1994. A Photographic Guide to the Evaluation of Hazard Trees in Urban Area - $2^{\text {nd }}$ Edition. International Society of Arboriculture.

M igratory Birds Convention Act 1994, Government of Canada.
Lilly, S. 2012. Tree Risk Assessment: Levels of Assessment. ISA News, April 2012 Issue. pp. 12-20.
Ravine and Natural Feature Protection By-law No. 513-2008, City of Toronto M unicipal Code, Chapter 658. 2008. City of Toronto. Accessed from: https://www.toronto.ca/legdocs/municode/1184 658.pdf

The City of Toronto. 2015a. City Street Tree By-Law (Article II of Chapter 813). Accessed from: https://www.toronto.ca/legdocs/municode/1184 813.pdf.

The City of Toronto. 2015b. Private Tree By-law (Article III of Chapter 813). Accessed from: https://www.toronto.ca/legdocs/municode/1184_813.pdf.

The City of Toronto. 2011. Guidelines for Completion of an Arborist Report. Parks, Forestry \& Recreation: Urban Forestry. Accessed from: https://www.toronto.ca/data/parks/pdf/trees/arborist-report-guidelines.pdf

Tree Protection Plan and Specifications for Construction Near Trees. July 2010. City of Toronto.
Varga, S., editor. August 2000. Distribution and Status of Vascular Plants of the Greater Toronto Area. Ontario M inistry of Natural Resources, Aurora District. 103 pp.

Appendix A

Tree Inventory Figure

Broadview Avenue Extension Environmental Study Report
Preliminary Arborist Report \& Tree Inventory

January 2023-19-1243

Appendix B

Tree Inventory Table

Broadview Avenue Extension Environmental Study Report
Preliminary Arborist Report \& Tree Inventory

Table B-1: Detailed Tree Inventory Results

$\begin{aligned} & \text { Tree } \\ & \text { ID } \end{aligned}$	Easting*	Northing	Scientific Name	Common Name	Condition	$\begin{aligned} & \text { DBH1 } \\ & (\mathrm{cm}) \end{aligned}$	DBH2 (cm)	$\begin{gathered} \text { DBH3 } \\ (\mathrm{cm}) \end{gathered}$	DBH4 (cm)	DBH5 (cm)	Largest Stem (cm)	Hazard	Comment
Lake Shore Boulevard East Connection													
1	633594.8531	4834640.986	Acer rubrum	Red Maple	Dead	8	0	0	0	0	8	No	
2	633589.4931	4834646.804	Quercus robur	English Oak	Good	18	3	4	3	3	18	No	
3	633587.6803	4834636.583	Quercus rubra	Northern Red Oak	Poor	8	0	0	0	0	8	No	Large closed would at base. Minor witches brooming present in crown.
4	633584.6015	4834642.633	Ulmus pumila	Siberian Elm	Good	3	2	3	0	0	3	No	
5	633582.2462	4834633.026	Quercus rubra	Northern Red Oak	Fair	11	0	0	0	0	11	No	Pre-mature fall colours. Minor scaffold branch dieback observed in crown
6	633577.6791	4834639.161	Ulmus pumila	Siberian Elm	Good	2	0	0	0	0	2	No	
7	633580.7408	4834640.704	Ulmus pumila	Siberian Elm	Good	1	0	0	0	0	1	No	
8	633575.8123	4834638.383	Quercus robur	English Oak)	Good	22	4	3	4	4	22	No	
9	633574.5259	4834628.728	Quercus rubra	Northern Red Oak	Fair	11	0	0	0	0	11	No	Two closed wounds at base.
10	633569.7221	4834633.632	Quercus robur	English Oak	Good	18	3	2	3	3	18	No	
11	633567.6441	4834623.221	Quercus rubra	Northern Red Oak	Dead	8	0	0	0	0	8	No	
12	633561.7391	4834629.399	Quercus robur	English Oak	Good	21	6	2	3	3	21	No	
13	633560.2977	4834627.519	Ulmus pumila	Siberian Elm	Good	2	1	1	0	0	2	No	
14	633560.9683	4834620.865	Quercus rubra	Northern Red Oak	Poor	10	0	0	0	0	10	No	50% live crown remains with pre-mature foliage dieback observed in crown.
15	633556.03	4834625.767	Quercus robur	English Oak	Good	19	3	4	3	3	19	No	
16	633552.0497	4834623.095	Ulmus pumila	Siberian Elm	Good	2	1	1	0	0	2	No	
17	633555.285	4834615.937	Quercus rubra	Northern Red Oak	Fair	9	0	0	0	0	9	No	Two closed wounds at base. M inor witches brooming present in crown.
18	633548.6068	4834620.434	Quercus robur	English Oak	Fair	17	4	3	3	3	17	No	
19	633550.2553	4834611.948	Gleditsia triacanthos inermis	Thornless Honey-locust	Good	5	0	0	0	0	5	No	
20	633541.968	4834616.227	Quercus robur	English Oak	Good	20	2	3	2	3	20	No	
21	633522.5429	4834699.27	Acer x freemanii	Freeman's M aple	Good	20	0	0	0	0	20	No	
22	633539.2949	4834662.863	Sorbus aucuparia	European M ountain-ash	Good	5	0	0	0	0	5	No	Dense grapevine present in canopy.
23	633528.0224	4834656.24	Acer negundo	M anitoba M aple	Fair	5	0	0	0	0	5	No	
30 Booth Street Connection													
24	633750.4662	4834853.903	Acer x freemanii	Freeman's M aple	Good	11	0	0	0	0	11	No	
25	633748.4145	4834862.38	Acer x freemanii	Freeman's M aple	Good	10	0	0	0	0	10	No	
26	633738.0704	4834854.13	Pinus nigra	Black Pine	Good	40	0	0	0	0	40	No	
27	633726.2731	4834851.16	Pinus nigra	Black Pine	Good	30	0	0	0	0	30	No	
28	633735.914	4834895.833	Gleditsia triacanthos inermis	Thornless Honey-locust	Good	8	0	0	0	0	8	No	
29	633733.2395	4834908.557	Alnus incana	Speckled Alder	Good	43	0	0	0	0	43	No	
30	633728.0692	4834919.689	Elaeagnus angustifolia	Russian Olive	Good	3	2	2	0	0	3	No	

[^0]ILLION

Tree ID	Easting*	Northing	Scientific Name	Common Name	Condition	DBH1 (cm)	$\begin{aligned} & \text { DBH2 } \\ & (\mathrm{cm}) \end{aligned}$	DBH3 (cm)	DBH4 (cm)	DBH5 (cm)	Largest Stem (cm)	Hazard	Comment
31	633729.8364	4834917.377	Ulmus pumila	Siberian Elm	Good	16	0	0	0	0	16	No	
32	633728.7613	4834917.356	Fraxinus pennsylvanica	Green Ash	Good	3	0	0	0	0	3	No	
33	633728.9171	4834916.543	Ulmus pumila	Siberian Elm	Good	6	0	0	0	0	6	No	
34	633731.2051	4834909.442	Acer negundo	M anitoba M aple	Good	10	0	0	0	0	10	No	
35	633731.0737	4834907.417	Fraxinus pennsylvanica	Green Ash	Good	3	0	0	0	0	3	No	
36	633731.9363	4834906.494	Fraxinus pennsylvanica	Green Ash	Good	5	0	0	0	0	5	No	
37	633732.8912	4834904.385	Betula papyrifera	Paper Birch	Fair	8	0	0	0	0	8	No	
38	633733.3727	4834901.893	Acer negundo	M anitoba M aple	Good	10	0	0	0	0	10	No	
39	633734.2198	4834899.873	Acer negundo	M anitoba M aple	Good	7	0	0	0	0	7	No	
40	633734.9425	4834894.183	Acer negundo	M anitoba M aple	Fair	14	12	10	0	0	14	No	
41	633735.8356	4834891.632	Acer platanoides	Norway M aple	Dead	20	0	0	0	0	20	No	
42	633736.6541	4834890.556	Acer platanoides	Norway M aple	Good	10	0	0	0	0	10	No	
43	633733.4125	4834889.799	Ailanthus altissima	Tree-of-heaven	Good	3	0	0	0	0	3	No	
44	633731.8069	4834888.732	Acer negundo	M anitoba M aple	Good	10	0	0	0	0	10	No	
45	633728.8692	4834888.353	Ailanthus altissima	Tree-of-heaven	Good	17	0	0	0	0	17	No	
46	633727.314	4834887.756	Ulmus pumila	Siberian Elm	Fair	18	0	0	0	0	18	No	
47	633725.5844	4834887.035	Ailanthus altissima	Tree-of-heaven	Good	15	0	0	0	0	15	No	
48	633722.4442	4834885.863	Ulmus pumila	Siberian Elm	Good	10	0	0	0	0	10	No	
49	633719.1159	4834884.847	Ailanthus altissima	Tree-of-heaven	Good	12	0	0	0	0	12	No	
50	633715.4665	4834883.827	Ulmus pumila	Siberian Elm	Good	10	0	0	0	0	10	No	
51	633670.3651	4834868.519	Ulmus pumila	Siberian Elm	Fair	20	0	0	0	0	20	No	
52	633665.5993	4834867.373	Acer negundo	M anitoba M aple	Fair	10	0	0	0	0	10	No	
53	633660.3903	4834865.22	Unknown (dead)	Unknown (dead)	Dead	10	0	0	0	0	10	No	
54	633651.813	4834862.813	Ulmus pumila	Siberian Elm	Good	15	0	0	0	0	15	No	
55	633648.7399	4834862.115	Acer negundo	M anitoba M aple	Good	15	0	0	0	0	15	No	
56	633643.9742	4834860.531	Ulmus pumila	Siberian Elm	Good	15	0	0	0	0	15	No	
57	633640.5702	4834859.763	Ulmus pumila	Siberian Elm	Good	10	0	0	0	0	10	No	
58	633634.533	4834856.808	Ulmus pumila	Siberian Elm	Good	20	0	0	0	0	20	No	
59	633626.0155	4834854.176	Ulmus pumila	Siberian Elm	Good	15	0	0	0	0	15	No	
60	633620.2058	4834853.017	Ailanthus altissima	Tree-of-heaven	Good	15	0	0	0	0	15	No	
61	633614.8904	4834851.206	Ulmus pumila	Siberian Elm	Good	10	0	0	0	0	10	No	
Broadview Eastern Intersection Connection													
62	633144.5453	4834999.776	Tilia americana	American Basswood	Good	33	0	0	0	0	33	No	
63	633148.3415	4834998.185	Acer saccharinum	Silver M aple	Good	30	0	0	0	0	30	No	
64	633154.6434	4834999.051	Acer saccharinum	Silver M aple	Good	23	0	0	0	0	23	No	
65	633158.4414	4835004.126	Acer negundo	M anitoba M aple	Poor	10	11	0	0	0	11	No	New shoots growing from an old stump.

[^1]dillon

$\begin{gathered} \text { Tree } \\ \text { ID } \end{gathered}$	Easting*	Northing	Scientific Name	Common Name	Condition	DBH1 (cm)	$\begin{aligned} & \text { DBH2 } \\ & (\mathrm{cm}) \end{aligned}$	DBH3 (cm)	DBH4 (cm)	DBH5 (cm)	Largest Stem (cm)	Hazard	Comment
66	633159.1282	4835003.399	Acer negundo	M anitoba M aple	Fair	15	18	0	0	0	18	No	M ain stem is growing through adjacent chain-link fence.
67	633162.177	4834998.83	Ailanthus altissima	Tree-of-heaven	Poor	18	20	0	0	0	20	Yes	Large cavity with decay at base.
68	633164.7318	4834998.394	Ulmus pumila	Siberian Elm	Good	10	0	0	0	0	10	No	
69	633165.8095	4834998.071	Ailanthus altissima	Tree-of-heaven	Fair	25	0	0	0	0	25	No	
70	633166.619	4834997.545	Ailanthus altissima	Tree-of-heaven	Fair	30	0	0	0	0	30	No	
71	633184.7851	4834994.377	Acer negundo	M anitoba M aple	Fair	30	0	0	0	0	30	No	
72	633167.0461	4835031.148	Acer negundo	M anitoba M aple	Good	31	33	24	0	0	33	No	
73	633166.4717	4835032.989	Juniperus virginiana	Eastern Red Cedar	Good	22	0	0	0	0	22	No	
74	633170.1262	4835031.765	Morus alba	White M ulberry	Good	10	6	6	5	8	10	No	
75	633161.5138	4835032.149	M alus pumila	Common Apple	Fair	18	15	20	13	15	20	No	
76	633157.3972	4835036.326	M alus baccata	Siberian Crabapple	Poor	18	14	12	14	13	18	No	
77	633224.293	4835025.807	Ulmus pumila	Siberian Elm	Good to Fair	30	32	0	0	0	32	No	
78	633231.2836	4835031.417	Picea glauca	White Spruce	Good	17	0	0	0	0	17	No	Planted in raised concrete planter.
79	633236.6962	4835033.556	Picea glauca	White Spruce	Fair	13	0	0	0	0	13	No	Planted in raised concrete planter.
80	633241.0314	4835035.955	Picea glauca	White Spruce	Fair	24	0	0	0	0	24	No	Planted in raised concrete planter.
81	633243.5496	4835035.666	Picea glauca	White Spruce	Fair	13	0	0	0	0	13	No	
82	633181.9948	4835063.667	Acer platanoides	Norway M aple	Good	37	0	0	0	0	37	No	
83	633175.7795	4835065.21	Acer platanoides	Norway M aple	Fair	42	0	0	0	0	42	No	
84	633169.6802	4835067.681	Acer platanoides	Norway M aple	Good	44	0	0	0	0	44	No	
85	633162.9236	4835069.398	Acer platanoides	Norway M aple	Good	36	0	0	0	0	36	No	
86	633155.5098	4835070.362	Acer platanoides	Norway M aple	Good	47	0	0	0	0	47	No	
87	633138.5674	4835092.579	Gleditsia triacanthos inermis	Thornless Honey-locust	Good	10	0	0	0	0	10	No	
88	633132.6342	4835110.822	Acer saccharinum	Silver M aple	Good	4	5	0	0	0	5	No	
89	633130.4436	4835115.439	Ailanthus altissima	Tree-of-heaven	Good	6	2	0	0	0	6	No	
90	633120.2073	4835092.35	Gleditsia triacanthos inermis	Thornless Honey-locust	Good	7	0	0	0	0	7	No	
91	633117.7944	4835099.694	Fraxinus pennsylvanica	Green Ash	Poor	18	0	0	0	0	18	No	M arked for removal by City.
92	633106.8786	4835120.366	Acer saccharinum	Silver M aple	Good	37	0	0	0	0	37	No	
93	633104.5375	4835111.753	Gymnocladus dioicus	Kentucky Coffee-tree	Excellent	18	0	0	0	0	18	No	
94	633101.2904	4835108.999	Gymnocladus dioicus	Kentucky Coffee-tree	Excellent	18	0	0	0	0	18	No	
95	633098.0553	4835106.44	Amelanchier amabilis	Beautiful Serviceberry	Good	10	0	0	0	0	10	No	
96	633099.2344	4835110.79	M orus alba	White M ulberry	Good	6	5	5	0	0	6	No	
97	633089.0021	4835106.76	Quercus rubra	Northern Red Oak	Excellent	17	0	0	0	0	17	No	
98	633087.591	4835105.305	Acer saccharinum	Silver M aple	Good	23	0	0	0	0	23	No	
99	633084.7918	4835105.143	Celtis occidentalis	Common Hackberry	Good	15	0	0	0	0	15	No	
100	633082.0685	4835106.504	Celtis occidentalis	Common Hackberry	Good	23	0	0	0	0	23	No	

[^2]January 2023-19-1243
DILLON

$\begin{aligned} & \text { Tree } \\ & \text { ID } \end{aligned}$	Easting*	Northing	Scientific Name	Common Name	Condition	DBH1 (cm)	$\begin{aligned} & \text { DBH2 } \\ & (\mathrm{cm}) \end{aligned}$	DBH3 (cm)	DBH4 (cm)	DBH5 (cm)	Largest Stem (cm)	Hazard	Comment
101	633084.905	4835098.4	Gleditsia triacanthos inermis	Thornless Honey-locust	Good	15	0	0	0	0	15	No	
102	633075.5177	4835103.954	Tilia americana	American Basswood	Fair	15	0	0	0	0	15	No	
103	633068.8382	4835105.521	Tilia americana	American Basswood	Good	11	0	0	0	0	11	No	
104	633080.3613	4835110.739	Gymnocladus dioicus	Kentucky Coffee-tree	Good	19	0	0	0	0	19	No	
105	633079.1601	4835114.341	Gymnocladus dioicus	Kentucky Coffee-tree	Good	17	0	0	0	0	17	No	
106	633077.4791	4835111.243	Amelanchier laevis	Smooth Serviceberry	Good	6	0	0	0	0	6	No	
107	633074.4737	4835113.224	Amelanchier laevis	Smooth Serviceberry	Good	8	0	0	0	0	8	No	
108	633070.8529	4835112.64	Quercus rubra	Northern Red Oak	Good	22	0	0	0	0	22	No	
109	633063.7886	4835105.573	Aesculus hippocastanum	Horse Chestnut	Good	8	0	0	0	0	8	No	
110	633049.7381	4835108.997	Aesculus hippocastanum	Horse Chestnut	Good	8	0	0	0	0	8	No	
111	633035.0223	4835108.585	Tilia americana	American Basswood	Good	17	0	0	0	0	17	No	
112	633025.9246	4835109.822	Tilia americana	American Basswood	Good	15	0	0	0	0	15	No	
113	633015.264	4835118.488	Acer platanoides	Norway M aple	Good	24	0	0	0	0	24	No	
114	633012.831	4835116.379	Acer platanoides	Norway M aple	Good	17	0	0	0	0	17	No	
115	633034.3765	4835083.692	Quercus macrocarpa	Bur Oak	Good	20	0	0	0	0	20	No	
116	633044.3511	4835082.409	Quercus macrocarpa	Bur Oak	Good	13	0	0	0	0	13	No	
117	633053.9888	4835077.786	Quercus macrocarpa	Bur Oak	Good	14	0	0	0	0	14	No	
118	633062.2384	4835075.358	Quercus macrocarpa	Bur Oak	Good	11	0	0	0	0	11	No	
119	633072.7579	4835073.715	Quercus macrocarpa	Bur Oak	Good	16	0	0	0	0	16	No	
120	633084.1391	4835069.312	Quercus macrocarpa	Bur Oak	Good	13	0	0	0	0	13	No	
121	633095.4007	4835064.166	Quercus macrocarpa	Bur Oak	Good	13	0	0	0	0	13	No	
122	633103.7811	4835061.092	Quercus macrocarpa	Bur Oak	Good	12	0	0	0	0	12	No	
123	633110.2871	4835059.277	Quercus macrocarpa	Bur Oak	Good	14	0	0	0	0	14	No	
124	633119.9175	4835055.024	Quercus macrocarpa	Bur Oak	Good	17	0	0	0	0	17	No	
125	633127.3902	4835051.099	Quercus macrocarpa	Bur Oak	Good	17	0	0	0	0	17	No	
126	633105.5108	4835042.826	Tilia cordata	Little-leaf Linden	Good	15	0	0	0	0	15	No	
127	633125.1436	4835020.507	Quercus macrocarpa	Bur Oak	Good	15	0	0	0	0	15	No	
128	633116.3494	4835017.628	Quercus macrocarpa	Bur Oak	Good	15	0	0	0	0	15	No	
129	633131.0003	4834978.986	Gleditsia triacanthos inermis	Thornless Honey-locust	Good	23	0	0	0	0	23	No	
130	633067.109	4834975.109	Tilia americana	American Basswood	Good	55	0	0	0	0	55	No	
131	633062.6515	4834970.439	Tilia americana	American Basswood	Good	45	0	0	0	0	45	No	
132	633060.7302	4834973.121	Tilia americana	American Basswood	Good	49	0	0	0	0	49	No	
133	633054.062	4834970.939	Tilia americana	American Basswood	Good	5	60	0	0	0	60	No	
134	633055.2058	4834967.565	Tilia americana	American Basswood	Good	38	0	0	0	0	38	No	
135	633057.0142	4834963.846	Tilia americana	American Basswood	Good	40	0	0	0	0	40	No	
136	633043.3957	4835006.677	Tilia cordata	Little-leaf Linden	Good	16	0	0	0	0	16	No	

[^3]dillion

Tree ID	Easting*	Northing	Scientific Name	Common Name	Condition	DBH1 (cm)	$\begin{aligned} & \text { DBH2 } \\ & (\mathrm{cm}) \end{aligned}$	DBH3 (cm)	DBH4 (cm)	$\begin{aligned} & \text { DBH5 } \\ & (\mathrm{cm}) \end{aligned}$	Largest Stem (cm)	Hazard	Comment
137	633046.0546	4835016.211	Tilia cordata	Little-leaf Linden	Good	15	0	0	0	0	15	No	
138	632879.1888	4835092.275	Acer negundo	M anitoba M aple	Good	15	12	6	0	0	15	No	
139	632860.7402	4835084.411	Ulmus pumila	Siberian Elm	Good	35	0	0	0	0	35	No	

[^0]: Broadview Avenue Extension Environmental Study Report
 Preliminary Arborist Report \& Tree Inventory
 January 2023-19-1243

[^1]: Broadview Avenue Extension Environmental Study Report
 Preliminary Arborist Report \& Tree Inventory
 January 2023-19-1243

[^2]: Broadview Avenue Extension Environmental Study Report
 Preliminary Arborist Report \& Tree Inventory

[^3]: Broadview Avenue Extension Environmental Study Report
 Preliminary Arborist Report \& Tree Inventory
 January 2023-19-1243

