May 2024 CA-WSP-19M-01888-00

APPENDIX M

Existing Utility Report

CITY OF TORONTO

Southwest Agincourt Transportation Connections Study Environmental Assessment EXISTING SERVICING ANALYSIS

October 7th,2022

Southwest Agincourt Transportation Connections Study EA EXISTING SERVICING ANALYSIS

CITY OF TORONTO

PROJECT NO.: 19M-01888-00

DATE: OCTOBER 2022

WSP CANADA INCORPORATED 100 COMMERCE VALLEY DRIVE WEST THORNHILL, ON, CANADA L3T 0A1

PHONE: +1 905 668 3022 FAX: +1 905 668 9443

WSP.COM

Quality Management

ISSUE/REVISION FIRST ISSUE REVISION 1 REVISION 2 REVISION 3

Remarks	Draft Submission	1 st Resubmission	2 nd Resubmission	3rd Resubmission
Date	December 7, 2020	November 10, 2021	February 9, 2022	October 7, 2022
Prepared by	Gordon Wong	Gordon Wong	Gordon Wong	Gordon Wong
Signature	Gorlon Word	Gorlon Word	Gorlon Word	Gorlon Word
Checked by	Mark Mitchell	Mark Mitchell	Mark Mitchell	Mark Mitchell
Signature				
Authorised by				
Signature				
Project number	19M-01888	19M-01888	19M-01888	19M-01888
Report number				
File reference				

This report was prepared by WSP Canada Inc. for the account of The City of Toronto in accordance with the professional services agreement. The disclosure of any information contained in this report is the sole responsibility of the intended recipient. The material in it reflects WSP Canada Inc.'s best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. WSP Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This limitations statement is considered part of this report.

The original of the technology-based document sent herewith has been authenticated and will be retained by WSP Canada Inc. for a minimum of ten years. Since the file transmitted is now out of WSP Canada Inc.'s control and its integrity can no longer be ensured, no guarantee may be given with regards to any modifications made to this document.

Production Team

CLIENT

Asad Yousfani Project Manager

Stephanie Gris Bringas Senior Public Consultation Coordinator

WSP

Alex Williams, P.Eng. Project Manager

Mark Mitchell, P.Eng., PMP Senior Project Engineer

Gordon Wong, E.I.T. Designer

Peter Yu, P.Eng., PMP Project Manager

TABLE OF CONTENTS

1	Introduction	1
2	SUE Investigation	3
3	Existing Sanitary Sewer	4
3.1	Existing Conditions	4
3.2	Sanitary Sewer Analysis	5
3.3	Results and Recommendations	6
4	Existing Storm Sewer	7
4.1	Existing Conditions	7
4.2	Storm Sewer Analysis	7
4.3	Results and Recommendations	7
4.4	Major System Analysis	9
4.5	Flood Flow Management Study	9
5	Existing Water Distribution	10
5.1	Existing Conditions	10
5.2	Field Investigation	10
5.3	Water Distribution Analysis	11
5.4	Results and Recommendations	12
6	Conclusion	13

Appendices

- **A** SUE INVESTIGATION
- **B** SANITARY SEWER ANALYSIS
- C STORM SEWER ANLAYSIS
- **D** WATER DISTRIBUTION NETWORK ANALYSIS

1 Introduction

The City of Toronto is initiating the Southwest Agincourt Transportation Connections Study (Herein referred to as the SW Agincourt EA) to study ways to improve and expand transportation connections from Village Green Square (south of the Canadian Pacific Railway corridor), to Sheppard Avenue East and Agincourt GO Station. This connection is identified in the City of Toronto's Official Plan and Council-approved Agincourt Secondary Plan to support anticipated growth in the area. The study's Focus Area is shown in **Figure 1**.

The number of people living and working in this area has grown and will continue to grow as a result of planned developments. As the number of people using the transportation system increases, transportation infrastructure improvements will be needed to ensure that people can drive, walk, and cycle to destinations safely and efficiently.

The study Focus Area is bound by Kennedy Road to the west, Dowry Street to the north, the Stouffville GO Train Line to the east, and Village Green Square to the south.

Study Objectives:

- 1. Provide high quality transportation infrastructure that addresses the needs of this growing area
- 2. Improve street network connectivity to key destinations, particularly the Agincourt GO station, Collingwood Park and schools
- 3. Improve the safety of people walking, cycling, taking public transit, and driving

As part of the SW Agincourt EA, this report documents the existing conditions of the sanitary sewer, storm sewer, and water distribution network of the focus study area. Please note that this report is for the analysis of the Existing Servicing in the study area. A future report for the analysis of the Proposing Servicing in the study area will account for the known future development(s).

As Avenue Cardwell Avenue Agincourt GO Station Reidmount Dowry Street **FOCUS** Sheppard Avenue E AREA Gordon Stouffville GO Train Line Jade Street Collingwood Street Road Cowdray Midland Avenue Kennedy Toronto Court Village Green Square 401 Not to Scale

Figure 1: Map of Southwest Agincourt Transportation Connections Study Focus Area

2 SUE Investigation

A Subsurface Utility Engineering (SUE) Investigation of the study area was completed by T2 Utility Engineers between June and August 2020. The investigation included Quality Level 'B', 'C', and 'D'. A summary of the different quality levels of SUE can be seen below;

- Quality Level 'D' Information derived from existing records or verbal recollections.
- Quality Level 'C' Information obtained by surveying and plotting visible above ground
 utility features and by using professional judgement in correlating this information to the
 Quality 'D' information.
- Quality Level 'B' Information obtained through the application of appropriate surface geophysical methods to determine the existence and appropriate horizontal position of the utilities.
- Quality Level 'A' Precise horizontal and vertical location of utilities obtained by actual exposure and subsequent measurement of subsurface utilities.

A topographic survey was provided by IBW Surveyors which was the base of the SUE Investigation. Field verifications of utilities were completed using a combination of electromagnetic pipe and cable locate equipment. Inverts of existing sewers were confirmed by field depth measurement. The SUE drawings prepared by T2 Utility Engineers can be found in **Appendix A.**

3 Existing Sanitary Sewer

3.1 Existing Conditions

WSP Canada Inc. (WSP) analyzed the existing conditions of the sanitary sewers in the study area by reviewing the as-built plan and profiles and Digital Map Owners Group (DMOG) mapping information from the City of Toronto. The information from the City records was confirmed in the SUE analysis.

The study area for this EA falls under the City Chronic Basement Flooding Study Area 59. The Basement Flooding EA started in 2019 and is currently in progress.

There are three (3) separate sanitary sewer networks in the study area. There is an existing network of 250mm sanitary sewers on Cowdray Court which flow east and connect to the 1050mm West Highland Creek sanitary trunk sewer which runs from north to south on the eastern boundary of the study area. A separate 250mm sanitary sewer network runs north on Kennedy Road and then East on Collingwood Street, also connecting to the existing 1050mm West Highland Creek sanitary trunk sewer. The third 250mm sanitary sewer network runs north on Kennedy Road and east on Sheppard Avenue, also connecting to the 1050mm West Highland Creek sanitary trunk sewer.

These sanitary sewers service the existing residential and commercial developments in the study area, with the sanitary sewers along Kennedy Road servicing some high-density residential developments west of the study area.

3.2 Sanitary Sewer Analysis

WSP completed a sanitary sewer analysis of each of the sanitary sewer networks. The following City of Toronto design parameters we used in the analysis;

- ▶ 240 L/cap/day for the average day flow generation rate for existing residential use
- ➤ 250 L/cap/day or 180,000 L/floor ha/day for the average day flow generation rate for existing commercial and office use. The greater of the two will be used in the analysis.
- ➤ 3.5 people per Single Family House
- ▶ 400 persons / ha of lot area or 2.7 persons / unit for apartments and condos. The greater of the two will be used in the analysis.
- Commercial population: 1.1 people / 100m² of GFA
- Office population: 3.3 people / 100m² of GFA
- School/Church population: 86 people / ha of lot area
- Peaking Factor
 - Residential Harmon
 - Institutional/Commercial (included in average flow)
- Extraneous Flows;

Groundwater = 3.0 L/s/ha (commercial and apartment buildings only)

Infiltration = 0.26 L/s/ha (only for Dry Weather flow conditions)

Wet Weather = 3.0 L/s/ha for first 50 ha

Wet Weather = 2.0 L/s/ha over 50 ha

The demand and peaking factors are based on City of Toronto, Design Criteria for Sewers and Watermain, January 2021. Since this report focuses on the Existing Conditions of the study area, it is assumed that the existing buildings and infrastructures predates the City of Toronto's new Foundation drain policy which prohibits long-term groundwater system to discharge to the sanitary sewer system. It is assumed that only the commercial and apartment buildings on Sheppard Avenue East would have groundwater discharge to the existing sanitary sewer network in the area. An allowance of 3.0 L/s/ha was used for groundwater flow. As groundwater is only anticipated to be discharged to the sanitary sewer in instances where the underground structure penetrates the groundwater table, only the apartment buildings and the large commercial building on the northeast corner of Sheppard Avenue and Kennedy Road were assumed to have groundwater flow.

The City of Toronto record drawings were used to confirm the lengths, slopes, and sizes of each pipe. This information was verified by using the SUE investigation results. Both the dry and wet weather conditions were analyzed for each network. To facilitate the analysis, a Sanitary Sewer Drainage Area Plan was created and is located in **Appendix B**.

3.3 Results and Recommendations

In both the dry and wet weather scenario, the analysis demonstrates that the existing municipal sanitary sewer systems within the study area have adequate capacity to support the existing developments without surcharging in any leg. The full sanitary sewer analysis can be seen in **Appendix B**.

4 Existing Storm Sewer

4.1 Existing Conditions

WSP analyzed the existing conditions of the storm sewers in the study area by reviewing the as-built plan and profiles and DMOG mapping information from the City of Toronto. The information in the City records was confirmed in the SUE analysis.

There are three (3) separate storm sewer networks in the study area. There is an existing network of storm sewers on Cowdray Court, ranging in size from 675mm to 900mm, which flow east and discharge to West Highland Creek. A separate storm sewer network, ranging in size from 300mm to 600mm, which run north on Kennedy Road and then East on Collingwood Street, also discharges to West Highland Creek. The third storm sewer network, ranging in size from 375mm to 975mm, runs north on Kennedy Road and east on Sheppard Avenue, also discharges to West Highland Creek.

4.2 Storm Sewer Analysis

WSP completed a storm sewer analysis of each of the storm sewer networks. The analysis uses the rational method for runoff volume calculation and the IDF curve found in the City of Toronto Design Criteria for Sewers and Watermains, January 2021. The 2-year return frequency storm was analyzed as storm sewers in the City of Toronto are required to convey the 2-year storm without surcharging. For arterial roads, such as Kennedy Road and Sheppard Avenue East, the storm sewers should be designed for the 10-year storm without surcharging. Therefore, a storm sewer analysis was also conducted for the Collingwood Street and Sheppard Avenue storm sewer system for the 10-year storm event.

In addition, the 2-year and 10-year hydraulic grade line (HGL) analyses were conducted for the respective storm sewer networks. For both the 2-year and the 10-year HGL analysis, either the flood line in the creek under the respective storm event or the obvert of the downstream pipe discharging into the creek was used as the starting point of the HGL, whichever is larger.

The City of Toronto record drawings were used to confirm the lengths, slopes, and sizes of each pipe. This information was verified by using the SUE investigation results. To facilitate the analysis, a Storm Sewer Drainage Area Plan was created and is located in **Appendix C**.

4.3 Results and Recommendations

The storm sewer analysis demonstrates that the existing municipal storm sewer networks within the study area have adequate capacity to support the existing developments without surcharging in any sewer leg for the 2-year storm event. However, under the 10-year storm event, majority of the storm sewers including the sewers on the arterial roads are overcapacity, but no surcharge is expected.

For the Cowdray Court sewer network, which is not an arterial road, the capacity of the storm sewers ranges from 12-75% and the hydraulic grade line (HGL) ranges from 2.64-4.07 m below the ground surface during the 2-year storm event.

For the Collingwood Street sewer network, the capacity of the storm sewers ranges from 52-89% and the HGL ranges from 2.42-3.34 m below the ground surface during the 2-year storm event. During the 10-year storm event, the capacity of the sewers ranges from 95-164% and the HGL ranges from 0.37-3.24 m below the ground surface.

For the Sheppard Avenue sewer network, the capacity of the storm sewers ranges from 30-89% and the HGL ranges from 1.91-4.73 m below the ground surface during the 2-year storm event. During the 10-year storm event, the capacity of the sewers ranges from 56-164% and the HGL ranges from 0.04-4.24 m below the ground surface.

Therefore, the Cowdray Court sewer network has capacity to convey the 2-year predevelopment flows without surcharging. While Collingwood Street and Sheppard Avenue sewer networks has the capability to convey both the 2-year and 10-year pre-development flows without surcharging. However, the hydraulic grade line for several pipes in the respective networks (highlighted in yellow on the design sheets) are less than the City of Toronto's requirement of 1.8 m below the ground surface.

City design criteria indicates that only storm sewers located within urban arterial roads (Kennedy Road & Sheppard Avenue East) are to be designed for a 10-year storm. The Cowdray Court area does not discharge storm flows to these streets so the control of flows to the 2-year storm event in the post development condition within the proposed development blocks will not reduce the flow in these sewers. Any upgrade to the storm sewers on Kennedy Road and Sheppard Avenue East would be beyond the scope of this project. The capacity issues have only been highlighted in this report as these streets are within the study area.

Since the WSP's scope for the proposed works do not impact the arterial roads within the Study Area, the civil consultants for the future developments that will discharge to the arterial roads would need to determine the upgrades and/or stormwater management facility required to ensure the existing storm network can handle the flows from the proposed developments. The full storm sewer analysis can be seen in **Appendix C**.

4.4 Major System Analysis

As part of the storm system analysis, WSP analyzed the major storm system to confirm that the study area has safe overland flow routes to a watercourse and that the allowable ponding depth as determined in the latest city standards is not exceeded. WSP reviewed in detail the record drawings provided by the City of Toronto and the topographic survey prepared by IBW Surveyors. From the analysis, it was determined that overland flow routes are provided throughout the entire study area north of the existing railway and south of Sheppard Avenue East and the majority of the ponding is less than the maximum water depth of 0.30 m and also the requirements as stated in Table 17 for the available ponding for each road classification in the City of Toronto's Design Criteria for Sewers and Watermains dated January 2021. Under a major storm event, runoff from the study area will ultimately flow towards West Highland Creek.

Overland flow from Collingwood Street and Cowdray Court will flow east into Collingwood Park and the open space east of the existing cul-de-sac on Cowdry Court, respectively, and discharge into West Highland Creek.

The two most eastern catchbasins on Collingwood Street will experience approximately 0.06 m of ponding prior to overland flow to the creek. The road width of Collingwood Street is approximately 8.0 m. Assuming a 2.0% crossfall, the depth of ponding allowable as per Table 17 in City of Toronto's guideline is 0.08 m. Therefore, the ponding depth of 0.06 m on Collingwood Street can be considered acceptable.

While it is expected that the cul-de-sac at the end of Cowdray Court will pond up to approximately 0.36 m before overland flow occurs. This area will be redeveloped as part of the road construction and subdivision development on Cowdray Court. The proposed development will provide an overland flow route to West Highland Creek and ensure ponding will not exceed 0.30 m at any location.

Overflow from Gordon Avenue and Kennedy Road will sheet drain north towards Sheppard Avenue East, which then drains east towards West Highland Creek. No ponding was identified on these streets.

4.5 Flood Flow Management Study

A technical memo dated September 29, 2020 was prepared by WSP to compare the existing Highland Creek HEC-RAS 1D model obtained from the Toronto and Region Conservation Authority (TRCA) and WSP 1D/2D coupled model for the area upstream of Sheppard Avenue and the area downstream of the railway double crossings. From the analysis, it was determined that a portion of Sheppard Avenue East west of the creek and the north half of Gordon Avenue within the study area are located within the regional floodplain under existing conditions. Please see the memo "Agincourt HEC-RAS Model Update" provided under a separate cover for more information.

5 Existing Water Distribution

5.1 Existing Conditions

WSP analyzed the existing conditions of the water distribution networks in the study area by reviewing the as-built plan and profiles and DMOG mapping information from the City of Toronto. The information in the City records was confirmed in the SUE analysis.

The study area is located in Pressure District 4. There is a 1500mm trunk watermain which runs through the study area. A transmission supply point between the transmission watermain and the local network is located at the Sheppard Avenue and Kennedy Road intersection. There are multiple connection points between the trunk watermain and the local water distribution mains. A pump was place at the following locations to simulate the connections to the feeder main:

- Sheppard Avenue and Birchmount Road
- Sheppard Avenue and Kennedy Road
- Midland Avenue and Salome Drive
- Midland Avenue and Progress Avenue

Please refer to Section 5.3 and **Appendix D** for more information.

A 300mm watermain runs along Kennedy Road and Sheppard Road East, which supplies Collingwood Street, Gordon Avenue, Cowdray Court, and Village Green Square. There is also an additional 200mm watermain located on the northeast corner of Village Green Square, to provide more looping and redundancy in the system.

Please note that as a result of framework studies for the developments within the vicinity of Kennedy Road and Sheppard Avenue, there will be a realignment of the boundaries of pressure districts 4 and 5. The realignment is expected to take place in September/October 2022. Once completed, the impacts of the realignment will be considered in the proposed servicing report prepared under a separated cover.

5.2 Field Investigation

As part of the existing water distribution network analysis, WSP completed a hydraulic field investigation that involved the completion of 7 hydrant flow tests within the study area. The tests were completed at various locations throughout the network that would help create and calibrate a water distribution model. The results of the hydrant flow tests can be seen in **Appendix D.**

5.3 Water Distribution Analysis

The computer model used to analyze the existing water distribution system was H20NET, which is an iterative node balancing type program designed to simulate distribution networks. The City of Toronto record drawings were used to confirm the length and sizes of each pipe. This information was verified by using the SUE investigation results.

A fictitious pump curve was introduced to the model based on the information obtained from on-site hydrant flow tests. Specifically, hydrant flow test No. 2 was used to set up the boundary conditions for this project as this is the one closet to the large feeder main. The pump curve has been used at each connection between a watermain and the large trunk watermain. Please refer to **Appendix D** for the hydrant flow tests and the pump curve used in the model.

The modelling criteria used to determine the capabilities of the existing distribution system is based on the City's design criteria. The C-factor has been calibrated to match the findings from field tests rather than utilizing the standard factors provided in the City of Toronto Design Criteria for Sewers and Watermains. The following criteria was used in the modelling:

- ► Peak Hour = 2.25 times average day
- ► Maximum Day = 1.50 times average day
- ► Average Consumption Rate = 310 litres/capita/day (Single Family)
 - = 190 litres/capita/day (Apartment)
- ► C Factor = 70 (150mm)
 - = 80 (200 mm or 250 mm)
 - = 90 (300 mm to 600 mm)
- ▶ Minimum Pressure During Peak Hour = 275kPa
- ► Minimum Pressure During Max Day + Fire Demand = 140kPa

For the Max Day Plus Fire modelling analysis, required fire flow demand for properties within the study area were conservatively estimated. For some of the proposed developments in Village Green Square, the required fire flow was taken from available Functional Servicing Reports which were found on the City's website.

The flow and pressure in the model were calibrated using the hydrant flow test results. To facilitate the analysis, a Water Distribution Network Plan was created and is located in **Appendix E.**

5.4 Results and Recommendations

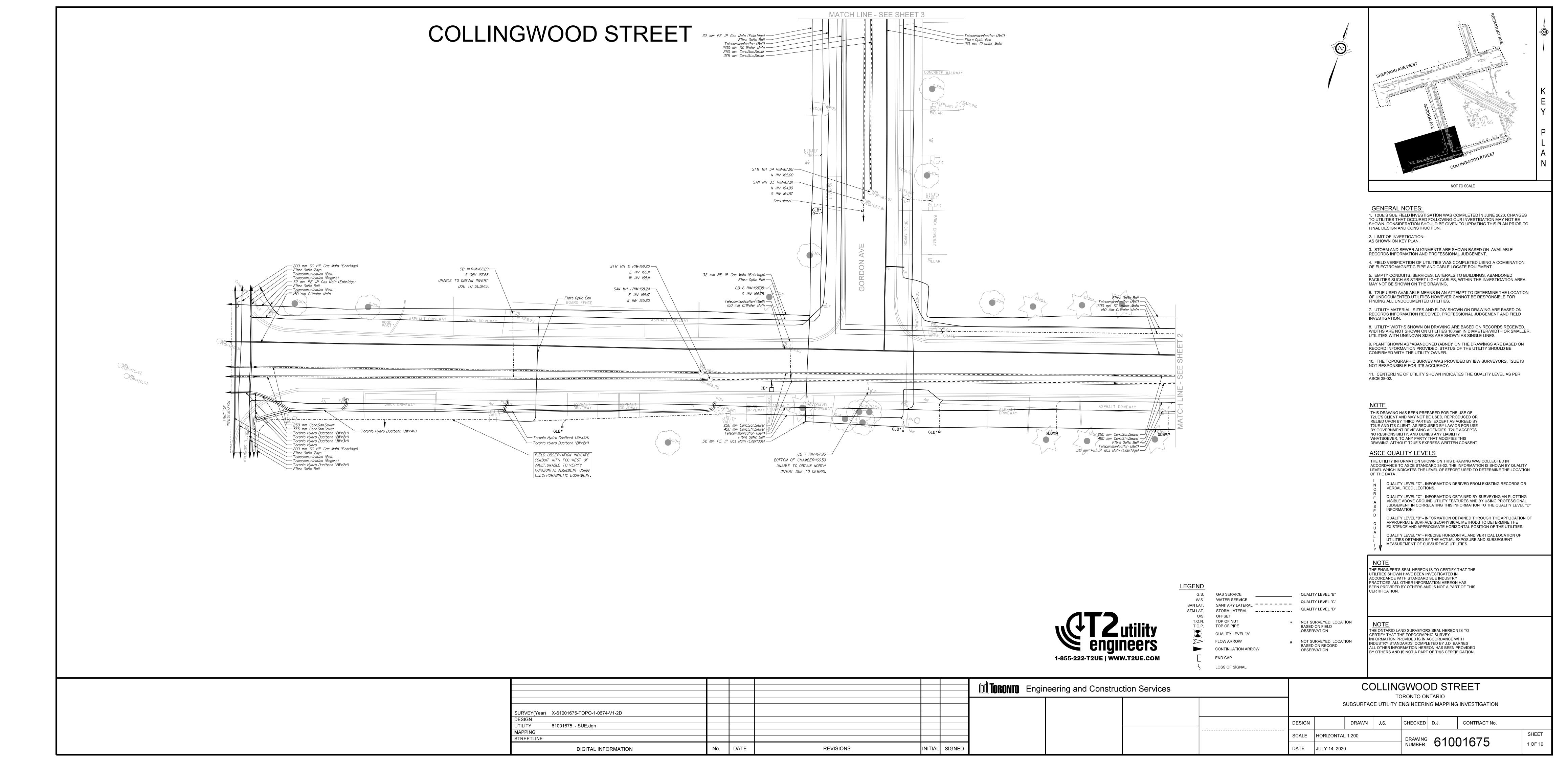
As shown in the results in **Appendix D**, under peak hour scenario the pressure in the study area ranges between 299l kPa at Node J27 to 449 kPa at Node J39. The pressures are above the City criteria of 275kPa. For the maximum day plus fire flow scenario, the residual pressures at the required fire flow rates range between -356.51 kPa at Node J36 and 438.31 kPa at Node J39. There are multiple nodes within the study area that do not provide adequate fire flow, specifically Nodes J36 and J60. It is important to note that these nodes are located at the ends of existing dead-end connections. The high-density residential development area, Village Green Square, within the study area has sufficient flow and pressure thanks to the introduction of the existing watermain network located south of Highway 401 to the model.

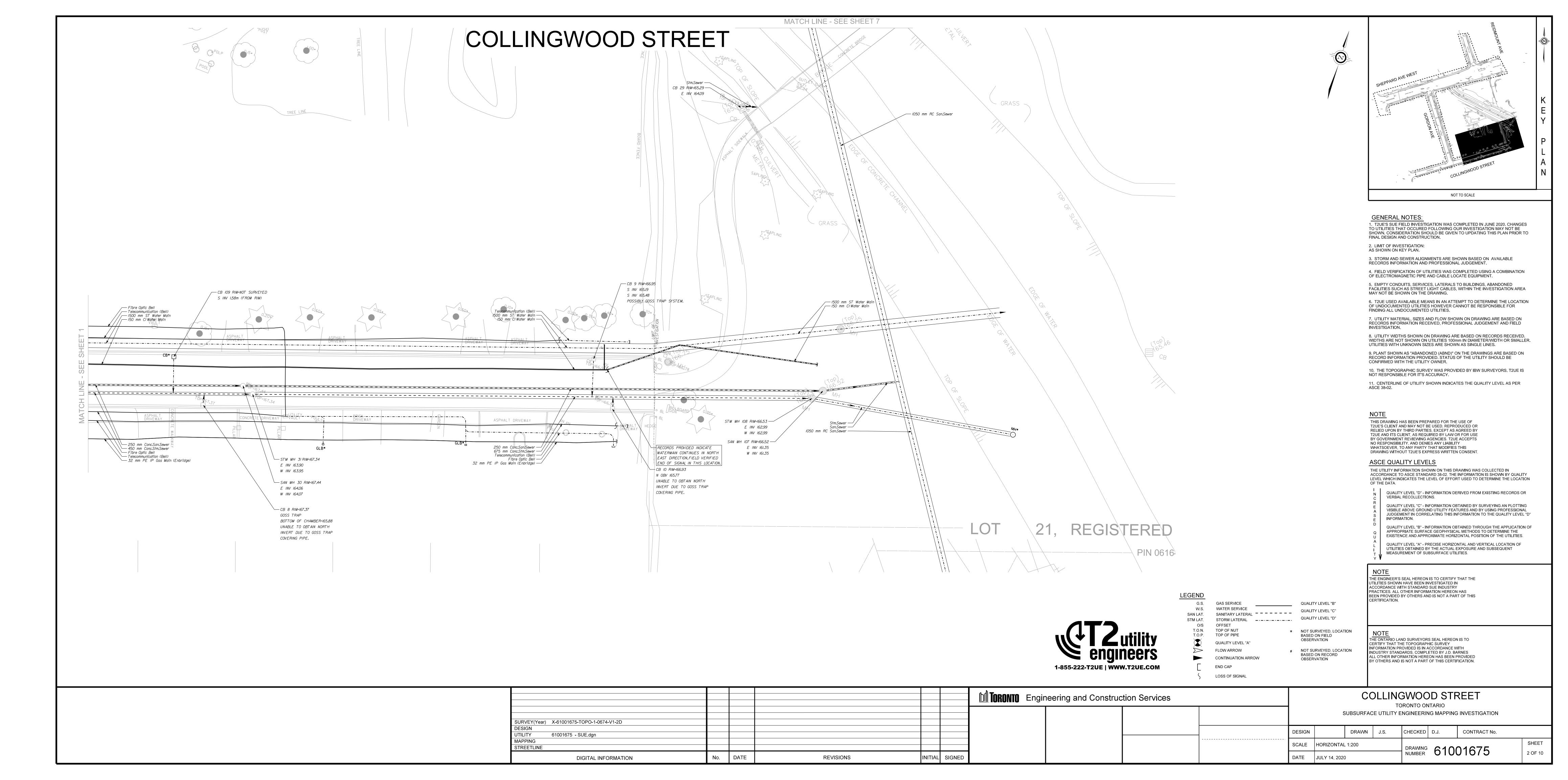
When the proposed condition is modelled, the potential to provide watermain looping through the proposed grade separation under the CP Rail and through the new development at Cowdray Court will be analyzed and modelled. This looping may improve the available fire flow available to service the Village Green Square development area.

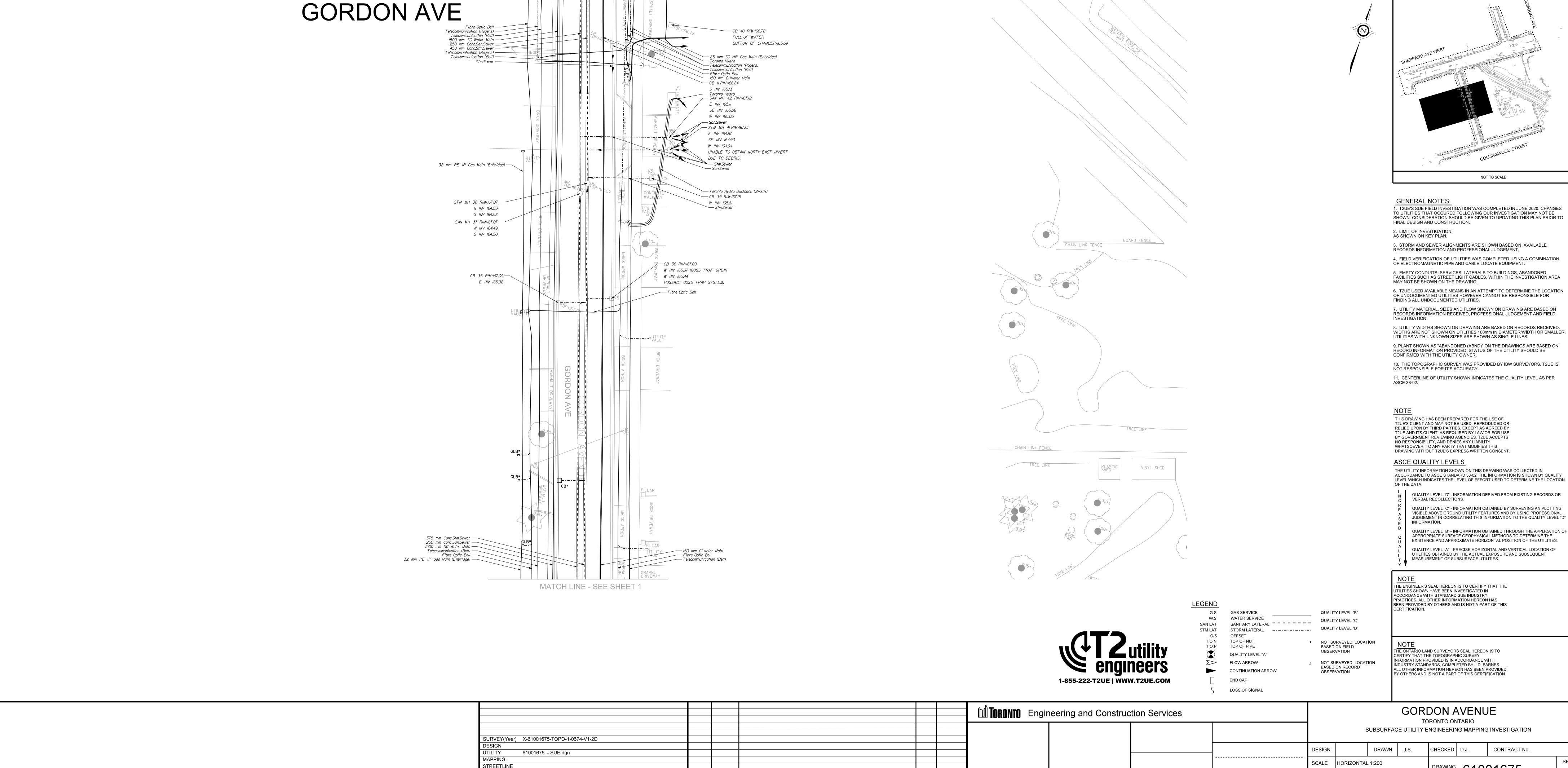
6 Conclusion

In this report the existing storm, sanitary, and water distribution networks were analyzed, and the existing capacities were assessed. Based on our analyses the following was determined:

- ▶ The existing sanitary sewer networks within the study area are operating below capacity for both the dry and wet weather conditions,
- ▶ The existing storm sewer networks within the study area are operating below capacity for the 2-year storm. Under the 10-year storm event, there are multiple sewers along the arterial roads in the study area operating above capacity. Based on the HGL analysis, surcharging is not expected for all storm sewer networks during the 10-year storm event. Within the study area, multiple overland flow routes are available to convey runoff from major storm events safely to West Highland Creek. From detailed analysis, several locations of ponding were identified. Apart from the ponding located at the cul-de-sac of Cowdry Court which will be removed upon future development, ponding exceeding a depth of 0.30 m was not identified under existing conditions.
- ► The existing water distribution network provides adequate pressure for the peak hour scenario. Under the max day + fire flow scenario, several nodes failed to provide the minimum pressure at the required fire flow. However, it is important to note that those nodes are located at existing dead-end connections. The high-density residential development area, Village Green Square, located within the study area has adequate flows and pressures. When the proposed condition is modelled, looping will be introduced into the system which may help improve flow and pressure in the system.

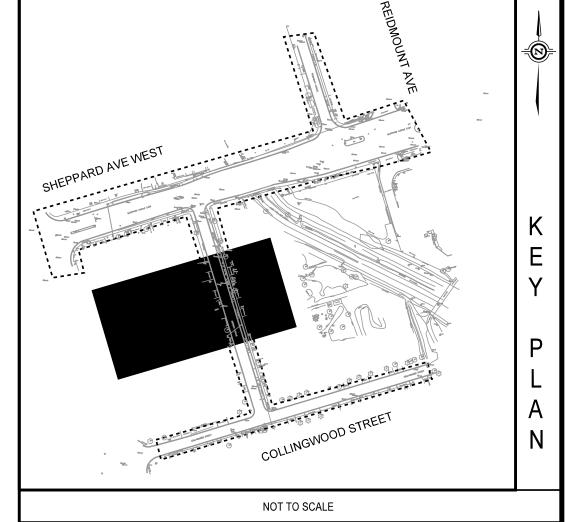

WSP CANADA INCORPORATED


M.T. MITCHELL IN 100218106 IN 1


Gordon Wong, E.I.T. Designer Land Development Mark Mitchell, P.Eng., PMP Senior Project Engineer Land Development

APPENDIX

SUE INVESTIGATION



SIGNED

REVISIONS

MATCH LINE - SEE SHEET 4

DIGITAL INFORMATION

GENERAL NOTES:

1. T2UE'S SUE FIELD INVESTIGATION WAS COMPLETED IN JUNE 2020. CHANGES TO UTILITIES THAT OCCURED FOLLOWING OUR INVESTIGATION MAY NOT BE SHOWN. CONSIDERATION SHOULD BE GIVEN TO UPDATING THIS PLAN PRIOR TO FINAL DESIGN AND CONSTRUCTION.

3. STORM AND SEWER ALIGNMENTS ARE SHOWN BASED ON AVAILABLE RECORDS INFORMATION AND PROFESSIONAL JUDGEMENT.

4. FIELD VERIFICATION OF UTILITIES WAS COMPLETED USING A COMBINATION OF ELECTROMAGNETIC PIPE AND CABLE LOCATE EQUIPMENT.

5. EMPTY CONDUITS, SERVICES, LATERALS TO BUILDINGS, ABANDONED FACILITIES SUCH AS STREET LIGHT CABLES, WITHIN THE INVESTIGATION AREA MAY NOT BE SHOWN ON THE DRAWING.

6. T2UE USED AVAILABLE MEANS IN AN ATTEMPT TO DETERMINE THE LOCATION OF UNDOCUMENTED UTILITIES HOWEVER CANNOT BE RESPONSIBLE FOR FINDING ALL UNDOCUMENTED UTILITIES.

7. UTILITY MATERIAL, SIZES AND FLOW SHOWN ON DRAWING ARE BASED ON RECORDS INFORMATION RECEIVED, PROFESSIONAL JUDGEMENT AND FIELD

UTILITIES WITH UNKNOWN SIZES ARE SHOWN AS SINGLE LINES.

9. PLANT SHOWN AS "ABANDONED (ABND)" ON THE DRAWINGS ARE BASED ON RECORD INFORMATION PROVIDED. STATUS OF THE UTILITY SHOULD BE CONFIRMED WITH THE UTILITY OWNER.

10. THE TOPOGRAPHIC SURVEY WAS PROVIDED BY IBW SURVEYORS. T2UE IS NOT RESPONSIBLE FOR IT'S ACCURACY.

11. CENTERLINE OF UTILITY SHOWN INDICATES THE QUALITY LEVEL AS PER

THIS DRAWING HAS BEEN PREPARED FOR THE USE OF T2UE'S CLIENT AND MAY NOT BE USED, REPRODUCED OR RELIED UPON BY THIRD PARTIES, EXCEPT AS AGREED BY T2UE AND ITS CLIENT, AS REQUIRED BY LAW OR FOR USE BY GOVERNMENT REVIEWING AGENCIES. T2UE ACCEPTS NO RESPONSIBILITY, AND DENIES ANY LIABILITY WHATSOEVER, TO ANY PARTY THAT MODIFIES THIS

ASCE QUALITY LEVELS

THE UTILITY INFORMATION SHOWN ON THIS DRAWING WAS COLLECTED IN ACCORDANCE TO ASCE STANDARD 38-02. THE INFORMATION IS SHOWN BY QUALITY LEVEL WHICH INDICATES THE LEVEL OF EFFORT USED TO DETERMINE THE LOCATION

QUALITY LEVEL "D" - INFORMATION DERIVED FROM EXISTING RECORDS OR VERBAL RECOLLECTIONS.

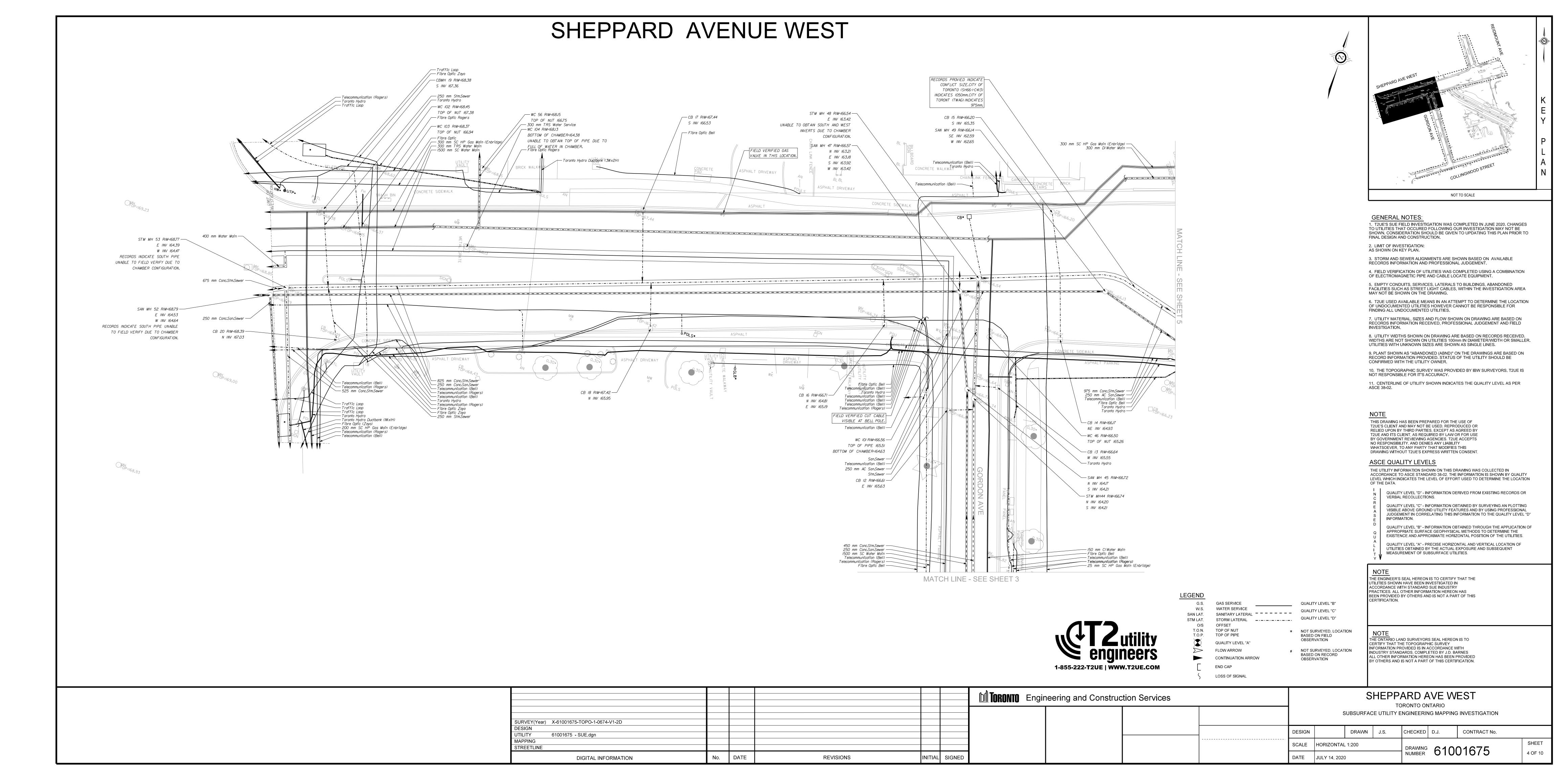
QUALITY LEVEL "C" - INFORMATION OBTAINED BY SURVEYING AN PLOTTING VISIBLE ABOVE GROUND UTILITY FEATURES AND BY USING PROFESSIONAL JUDGEMENT IN CORRELATING THIS INFORMATION TO THE QUALITY LEVEL "D"

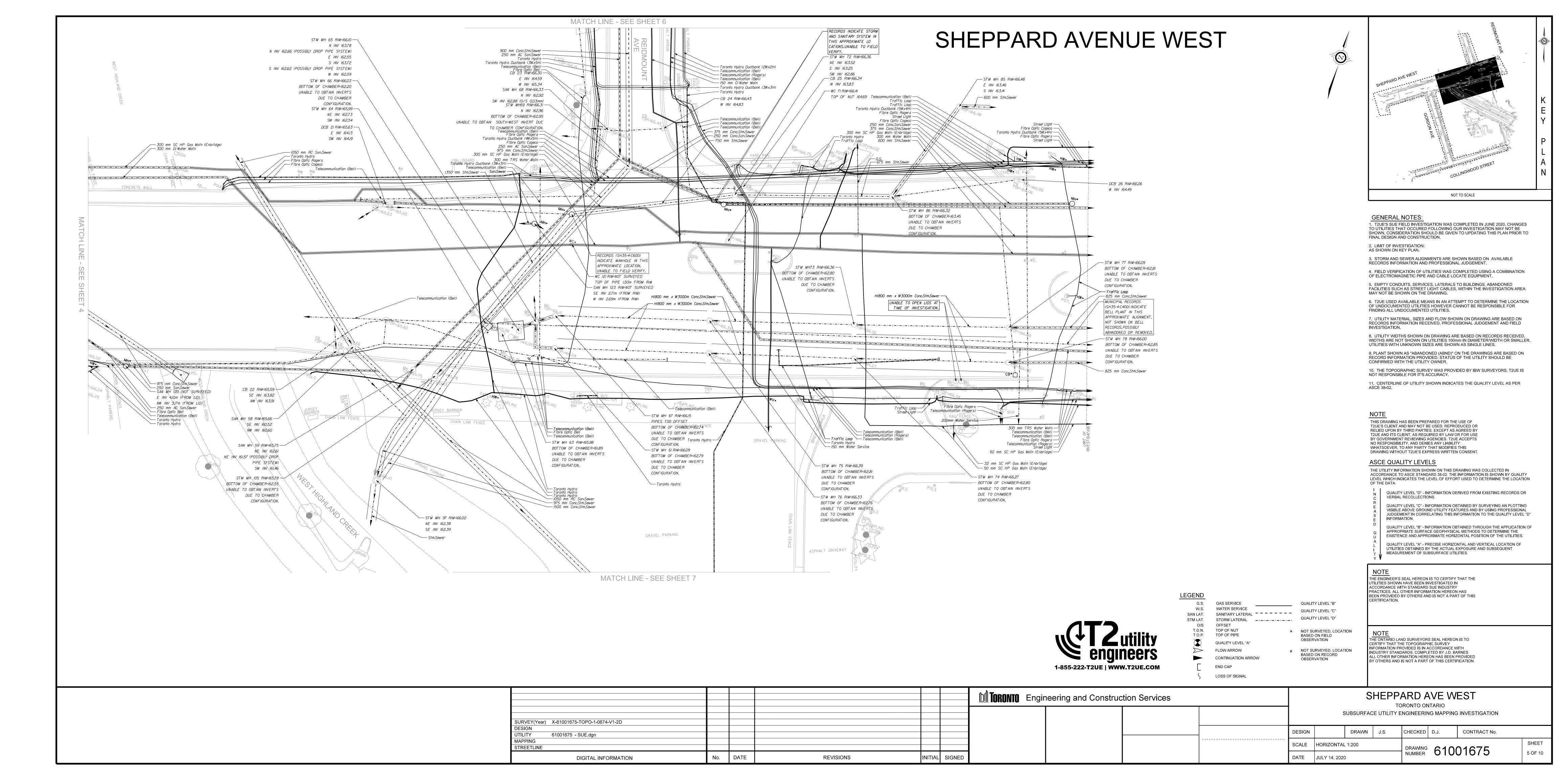
QUALITY LEVEL "B" - INFORMATION OBTAINED THROUGH THE APPLICATION OF APPROPRIATE SURFACE GEOPHYSICAL METHODS TO DETERMINE THE EXISTENCE AND APPROXIMATE HORIZONTAL POSITION OF THE UTILITIES.

QUALITY LEVEL "A" - PRECISE HORIZONTAL AND VERTICAL LOCATION OF UTILITIES OBTAINED BY THE ACTUAL EXPOSURE AND SUBSEQUENT MEASUREMENT OF SUBSURFACE UTILITIES.

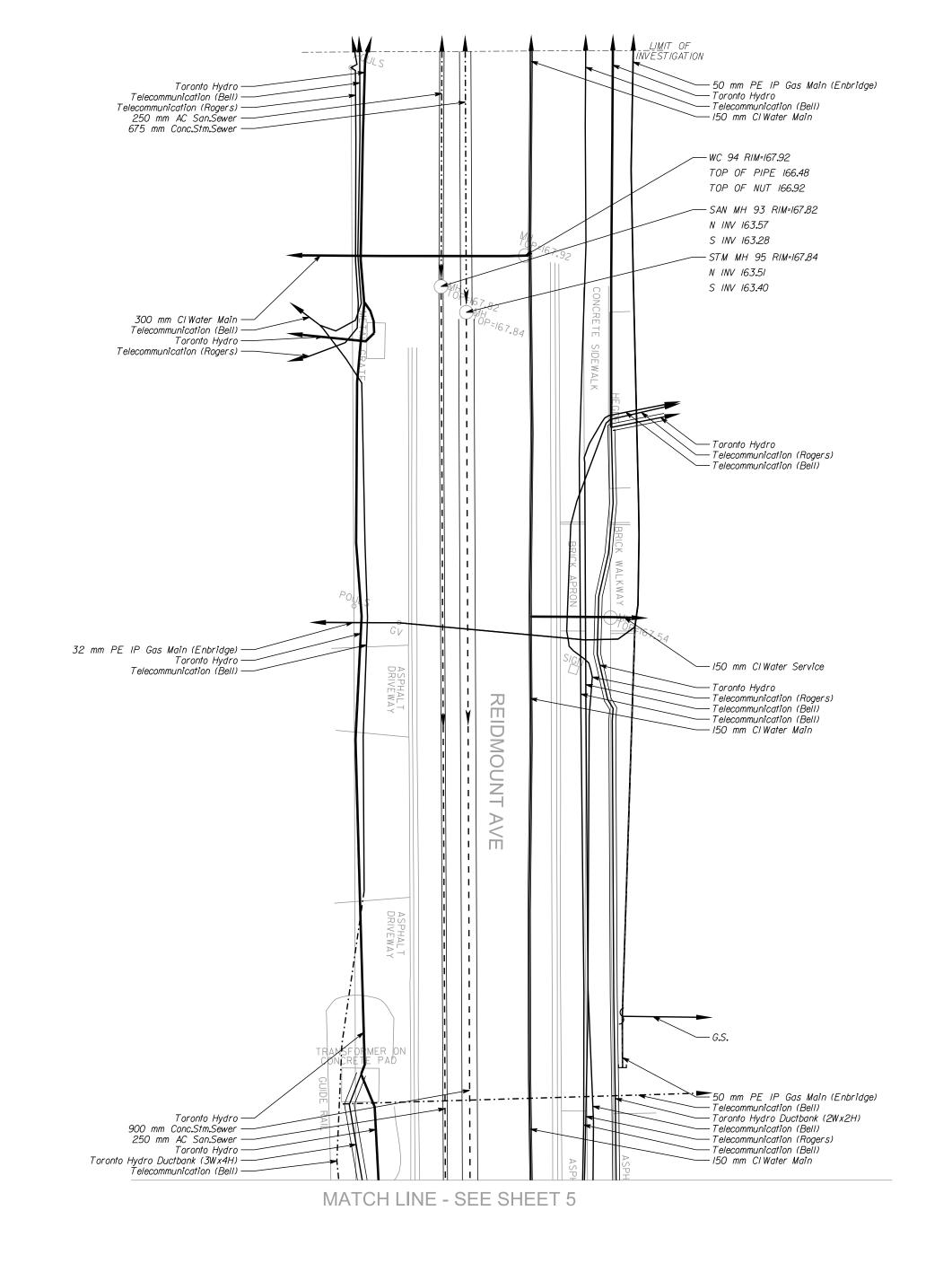
THE ENGINEER'S SEAL HEREON IS TO CERTIFY THAT THE UTILITIES SHOWN HAVE BEEN INVESTIGATED IN CCORDANCE WITH STANDARD SUE INDUSTRY PRACTICES. ALL OTHER INFORMATION HEREON HAS BEEN PROVIDED BY OTHERS AND IS NOT A PART OF THIS

THE ONTARIO LAND SURVEYORS SEAL HEREON IS TO CERTIFY THAT THE TOPOGRAPHIC SURVEY NFORMATION PROVIDED IS IN ACCORDANCE WITH IDUSTRY STANDARDS, COMPLETED BY J.D. BARNES ALL OTHER INFORMATION HEREON HAS BEEN PROVIDED

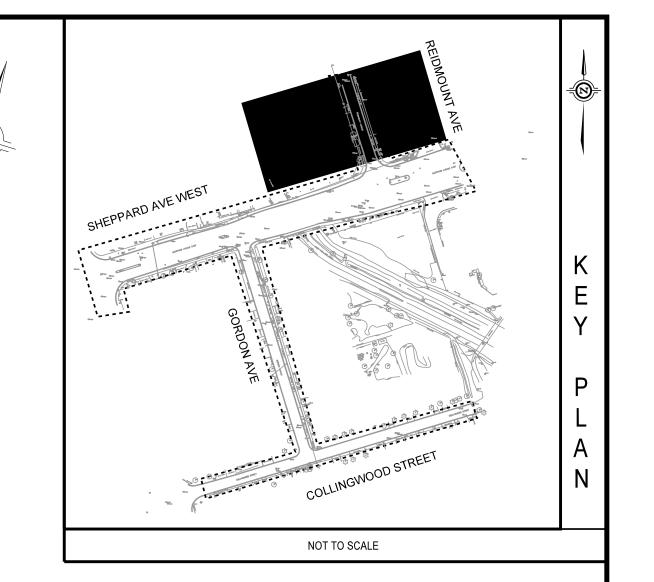

GORDON AVENUE


DATE JULY 14, 2020

TORONTO ONTARIO


SUBSURFACE UTILITY ENGINEERING MAPPING INVESTIGATION

CHECKED D.J. CONTRACT No. DRAWING NUMBER 61001675 3 OF 10



REIDMOUNT AVENUE

DIGITAL INFORMATION

GENERAL NOTES:

1. T2UE'S SUE FIELD INVESTIGATION WAS COMPLETED IN JUNE 2020. CHANGES TO UTILITIES THAT OCCURED FOLLOWING OUR INVESTIGATION MAY NOT BE SHOWN. CONSIDERATION SHOULD BE GIVEN TO UPDATING THIS PLAN PRIOR TO FINAL DESIGN AND CONSTRUCTION.

2. LIMIT OF INVESTIGATION: AS SHOWN ON KEY PLAN.

3. STORM AND SEWER ALIGNMENTS ARE SHOWN BASED ON AVAILABLE RECORDS INFORMATION AND PROFESSIONAL JUDGEMENT.

4. FIELD VERIFICATION OF UTILITIES WAS COMPLETED USING A COMBINATION OF ELECTROMAGNETIC PIPE AND CABLE LOCATE EQUIPMENT.

5. EMPTY CONDUITS, SERVICES, LATERALS TO BUILDINGS, ABANDONED FACILITIES SUCH AS STREET LIGHT CABLES, WITHIN THE INVESTIGATION AREA MAY NOT BE SHOWN ON THE DRAWING.

6. T2UE USED AVAILABLE MEANS IN AN ATTEMPT TO DETERMINE THE LOCATION OF UNDOCUMENTED UTILITIES HOWEVER CANNOT BE RESPONSIBLE FOR FINDING ALL UNDOCUMENTED UTILITIES. 7. UTILITY MATERIAL, SIZES AND FLOW SHOWN ON DRAWING ARE BASED ON RECORDS INFORMATION RECEIVED, PROFESSIONAL JUDGEMENT AND FIELD

8. UTILITY WIDTHS SHOWN ON DRAWING ARE BASED ON RECORDS RECEIVED.

WIDTHS ARE NOT SHOWN ON UTILITIES 100mm IN DIAMETER/WIDTH OR SMALLER. UTILITIES WITH UNKNOWN SIZES ARE SHOWN AS SINGLE LINES.

9. PLANT SHOWN AS "ABANDONED (ABND)" ON THE DRAWINGS ARE BASED ON RECORD INFORMATION PROVIDED. STATUS OF THE UTILITY SHOULD BE CONFIRMED WITH THE UTILITY OWNER. 10. THE TOPOGRAPHIC SURVEY WAS PROVIDED BY IBW SURVEYORS. T2UE IS

NOT RESPONSIBLE FOR IT'S ACCURACY. 11. CENTERLINE OF UTILITY SHOWN INDICATES THE QUALITY LEVEL AS PER

THIS DRAWING HAS BEEN PREPARED FOR THE USE OF T2UE'S CLIENT AND MAY NOT BE USED, REPRODUCED OR RELIED UPON BY THIRD PARTIES, EXCEPT AS AGREED BY T2UE AND ITS CLIENT. AS REQUIRED BY LAW OR FOR USE BY GOVERNMENT REVIEWING AGENCIES. T2UE ACCEPTS NO RESPONSIBILITY, AND DENIES ANY LIABILITY

WHATSOEVER, TO ANY PARTY THAT MODIFIES THIS DRAWING WITHOUT T2UE'S EXPRESS WRITTEN CONSENT.

ASCE QUALITY LEVELS

THE UTILITY INFORMATION SHOWN ON THIS DRAWING WAS COLLECTED IN ACCORDANCE TO ASCE STANDARD 38-02. THE INFORMATION IS SHOWN BY QUALITY LEVEL WHICH INDICATES THE LEVEL OF EFFORT USED TO DETERMINE THE LOCATION

QUALITY LEVEL "D" - INFORMATION DERIVED FROM EXISTING RECORDS OR VERBAL RECOLLECTIONS.

QUALITY LEVEL "C" - INFORMATION OBTAINED BY SURVEYING AN PLOTTING VISIBLE ABOVE GROUND UTILITY FEATURES AND BY USING PROFESSIONAL JUDGEMENT IN CORRELATING THIS INFORMATION TO THE QUALITY LEVEL "D"

QUALITY LEVEL "B" - INFORMATION OBTAINED THROUGH THE APPLICATION OF APPROPRIATE SURFACE GEOPHYSICAL METHODS TO DETERMINE THE EXISTENCE AND APPROXIMATE HORIZONTAL POSITION OF THE UTILITIES.

QUALITY LEVEL "A" - PRECISE HORIZONTAL AND VERTICAL LOCATION OF UTILITIES OBTAINED BY THE ACTUAL EXPOSURE AND SUBSEQUENT MEASUREMENT OF SUBSURFACE UTILITIES.

THE ENGINEER'S SEAL HEREON IS TO CERTIFY THAT THE UTILITIES SHOWN HAVE BEEN INVESTIGATED IN ACCORDANCE WITH STANDARD SUE INDUSTRY PRACTICES. ALL OTHER INFORMATION HEREON HAS BEEN PROVIDED BY OTHERS AND IS NOT A PART OF THIS CERTIFICATION.

THE ONTARIO LAND SURVEYORS SEAL HEREON IS TO CERTIFY THAT THE TOPOGRAPHIC SURVEY INFORMATION PROVIDED IS IN ACCORDANCE WITH NDUSTRY STANDARDS, COMPLETED BY J.D. BARNES ALL OTHER INFORMATION HEREON HAS BEEN PROVIDED BY OTHERS AND IS NOT A PART OF THIS CERTIFICATION.

G.S. SAN LAT. SANITARY LATERAL - - - - QUALITY LEVEL "C" STM LAT. STORM LATERAL ----- QUALITY LEVEL "D" O/S OFFSET T.O.N. TOP OF NUT T.O.P. TOP OF PIPE * NOT SURVEYED, LOCATION BASED ON FIELD # NOT SURVEYED, LOCATION FLOW ARROW CONTINUATION ARROW

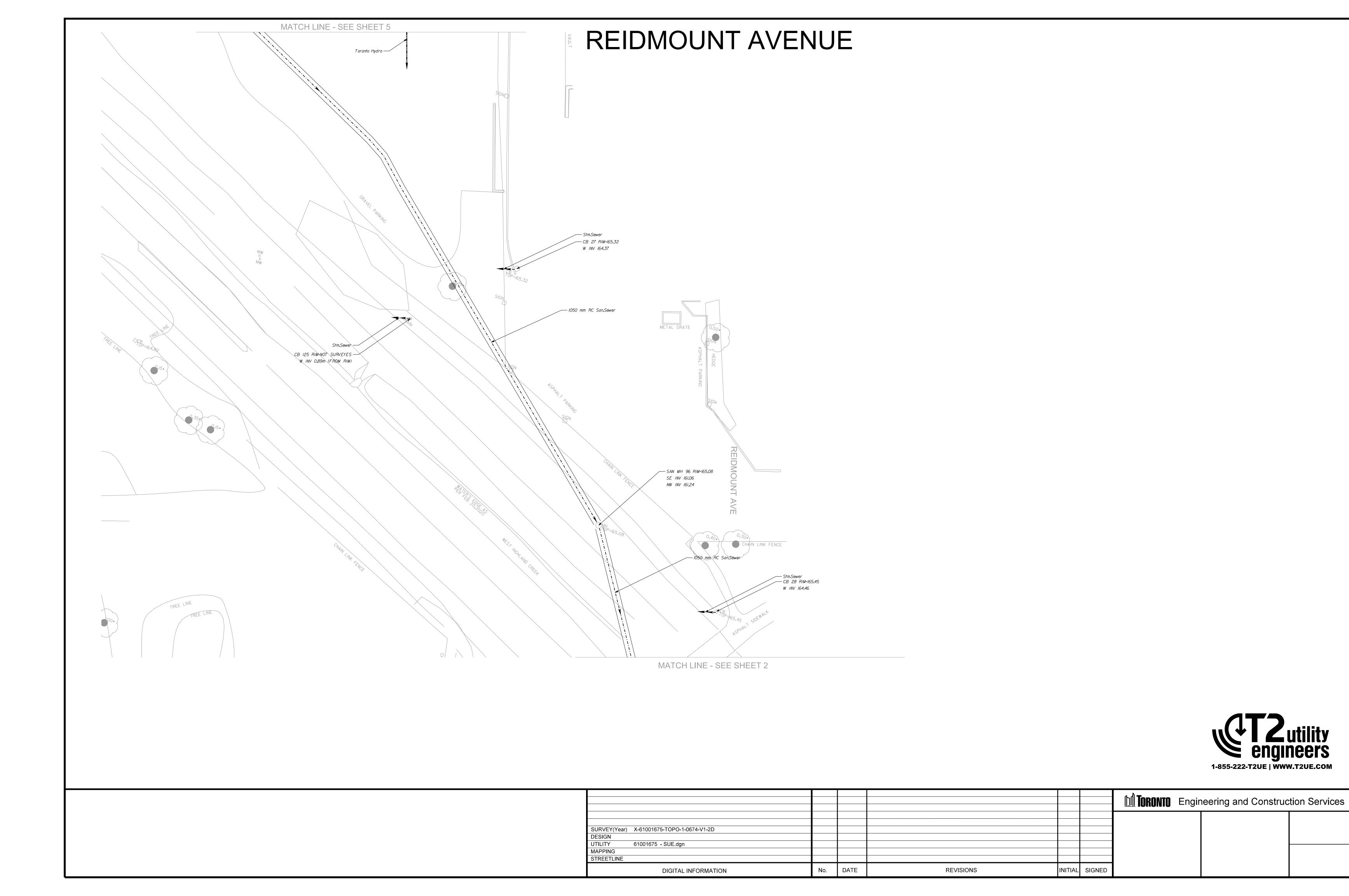
LOSS OF SIGNAL

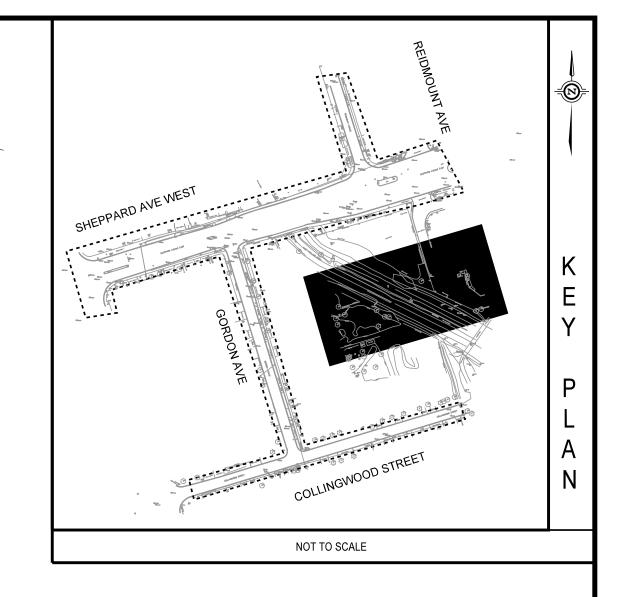
OBSERVATION

BASED ON RECORD

DATE JULY 14, 2020

SHEPPARD AVE W
TORONTO ONTARIO


Interview Ingineering and Construction Services SUBSURFACE UTILITY ENGINEERING MAPPING INVESTIGATION SURVEY(Year) X-61001675-TOPO-1-0674-V1-2D DRAWN J.S. CHECKED D.J. DESIGN 61001675 - SUE.dgn MAPPING SCALE HORIZONTAL 1:200 STREETLINE


SIGNED

REVISIONS

1-855-222-T2UE | WWW.T2UE.COM

CONTRACT No. DRAWING 61001675 6 OF 10

GENERAL NOTES: 1. T2UE'S SUE FIELD INVESTIGATION WAS COMPLETED IN JUNE 2020. CHANGES TO UTILITIES THAT OCCURED FOLLOWING OUR INVESTIGATION MAY NOT BE SHOWN. CONSIDERATION SHOULD BE GIVEN TO UPDATING THIS PLAN PRIOR TO

2. LIMIT OF INVESTIGATION: AS SHOWN ON KEY PLAN.

FINAL DESIGN AND CONSTRUCTION.

3. STORM AND SEWER ALIGNMENTS ARE SHOWN BASED ON AVAILABLE RECORDS INFORMATION AND PROFESSIONAL JUDGEMENT.

4. FIELD VERIFICATION OF UTILITIES WAS COMPLETED USING A COMBINATION OF ELECTROMAGNETIC PIPE AND CABLE LOCATE EQUIPMENT.

5. EMPTY CONDUITS, SERVICES, LATERALS TO BUILDINGS, ABANDONED FACILITIES SUCH AS STREET LIGHT CABLES, WITHIN THE INVESTIGATION AREA MAY NOT BE SHOWN ON THE DRAWING. 6. T2UE USED AVAILABLE MEANS IN AN ATTEMPT TO DETERMINE THE LOCATION

OF UNDOCUMENTED UTILITIES HOWEVER CANNOT BE RESPONSIBLE FOR FINDING ALL UNDOCUMENTED UTILITIES. 7. UTILITY MATERIAL, SIZES AND FLOW SHOWN ON DRAWING ARE BASED ON RECORDS INFORMATION RECEIVED, PROFESSIONAL JUDGEMENT AND FIELD

8. UTILITY WIDTHS SHOWN ON DRAWING ARE BASED ON RECORDS RECEIVED. WIDTHS ARE NOT SHOWN ON UTILITIES 100mm IN DIAMETER/WIDTH OR SMALLER. UTILITIES WITH UNKNOWN SIZES ARE SHOWN AS SINGLE LINES.

9. PLANT SHOWN AS "ABANDONED (ABND)" ON THE DRAWINGS ARE BASED ON RECORD INFORMATION PROVIDED. STATUS OF THE UTILITY SHOULD BE CONFIRMED WITH THE UTILITY OWNER.

10. THE TOPOGRAPHIC SURVEY WAS PROVIDED BY IBW SURVEYORS. T2UE IS NOT RESPONSIBLE FOR IT'S ACCURACY.

11. CENTERLINE OF UTILITY SHOWN INDICATES THE QUALITY LEVEL AS PER

THIS DRAWING HAS BEEN PREPARED FOR THE USE OF T2UE'S CLIENT AND MAY NOT BE USED, REPRODUCED OR RELIED UPON BY THIRD PARTIES, EXCEPT AS AGREED BY T2UE AND ITS CLIENT. AS REQUIRED BY LAW OR FOR USE BY GOVERNMENT REVIEWING AGENCIES. T2UE ACCEPTS NO RESPONSIBILITY, AND DENIES ANY LIABILITY WHATSOEVER, TO ANY PARTY THAT MODIFIES THIS DRAWING WITHOUT T2UE'S EXPRESS WRITTEN CONSENT.

ASCE QUALITY LEVELS

THE UTILITY INFORMATION SHOWN ON THIS DRAWING WAS COLLECTED IN ACCORDANCE TO ASCE STANDARD 38-02. THE INFORMATION IS SHOWN BY QUALITY LEVEL WHICH INDICATES THE LEVEL OF EFFORT USED TO DETERMINE THE LOCATION

QUALITY LEVEL "D" - INFORMATION DERIVED FROM EXISTING RECORDS OR VERBAL RECOLLECTIONS.

QUALITY LEVEL "C" - INFORMATION OBTAINED BY SURVEYING AN PLOTTING VISIBLE ABOVE GROUND UTILITY FEATURES AND BY USING PROFESSIONAL JUDGEMENT IN CORRELATING THIS INFORMATION TO THE QUALITY LEVEL "D"

QUALITY LEVEL "B" - INFORMATION OBTAINED THROUGH THE APPLICATION OF APPROPRIATE SURFACE GEOPHYSICAL METHODS TO DETERMINE THE EXISTENCE AND APPROXIMATE HORIZONTAL POSITION OF THE UTILITIES.

QUALITY LEVEL "A" - PRECISE HORIZONTAL AND VERTICAL LOCATION OF UTILITIES OBTAINED BY THE ACTUAL EXPOSURE AND SUBSEQUENT MEASUREMENT OF SUBSURFACE UTILITIES.

THE ENGINEER'S SEAL HEREON IS TO CERTIFY THAT THE UTILITIES SHOWN HAVE BEEN INVESTIGATED IN ACCORDANCE WITH STANDARD SUE INDUSTRY PRACTICES. ALL OTHER INFORMATION HEREON HAS BEEN PROVIDED BY OTHERS AND IS NOT A PART OF THIS

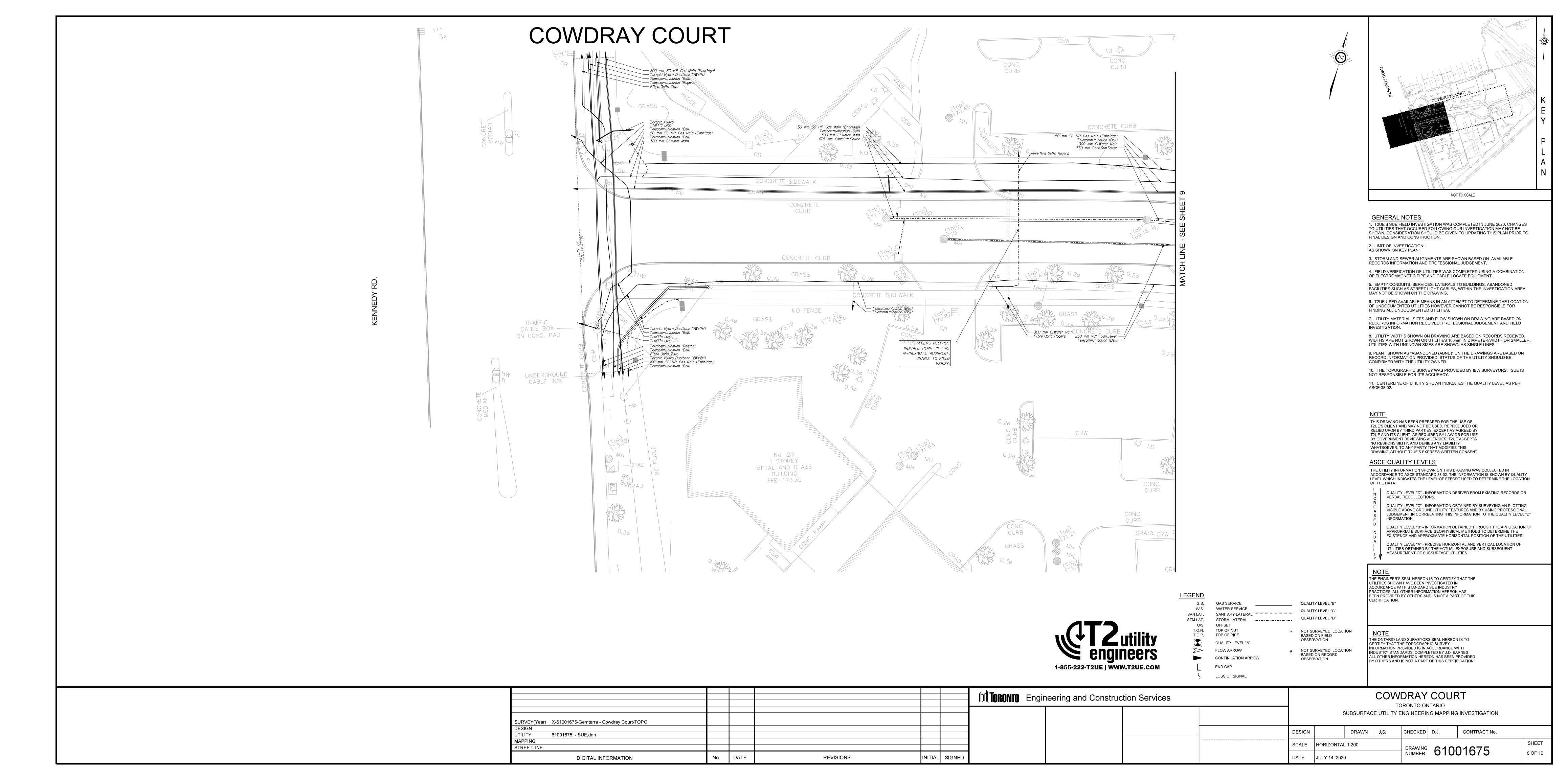
THE ONTARIO LAND SURVEYORS SEAL HEREON IS TO CERTIFY THAT THE TOPOGRAPHIC SURVEY INFORMATION PROVIDED IS IN ACCORDANCE WITH # NOT SURVEYED, LOCATION INDUSTRY STANDARDS, COMPLETED BY J.D. BARNES ALL OTHER INFORMATION HEREON HAS BEEN PROVIDED BASED ON RECORD

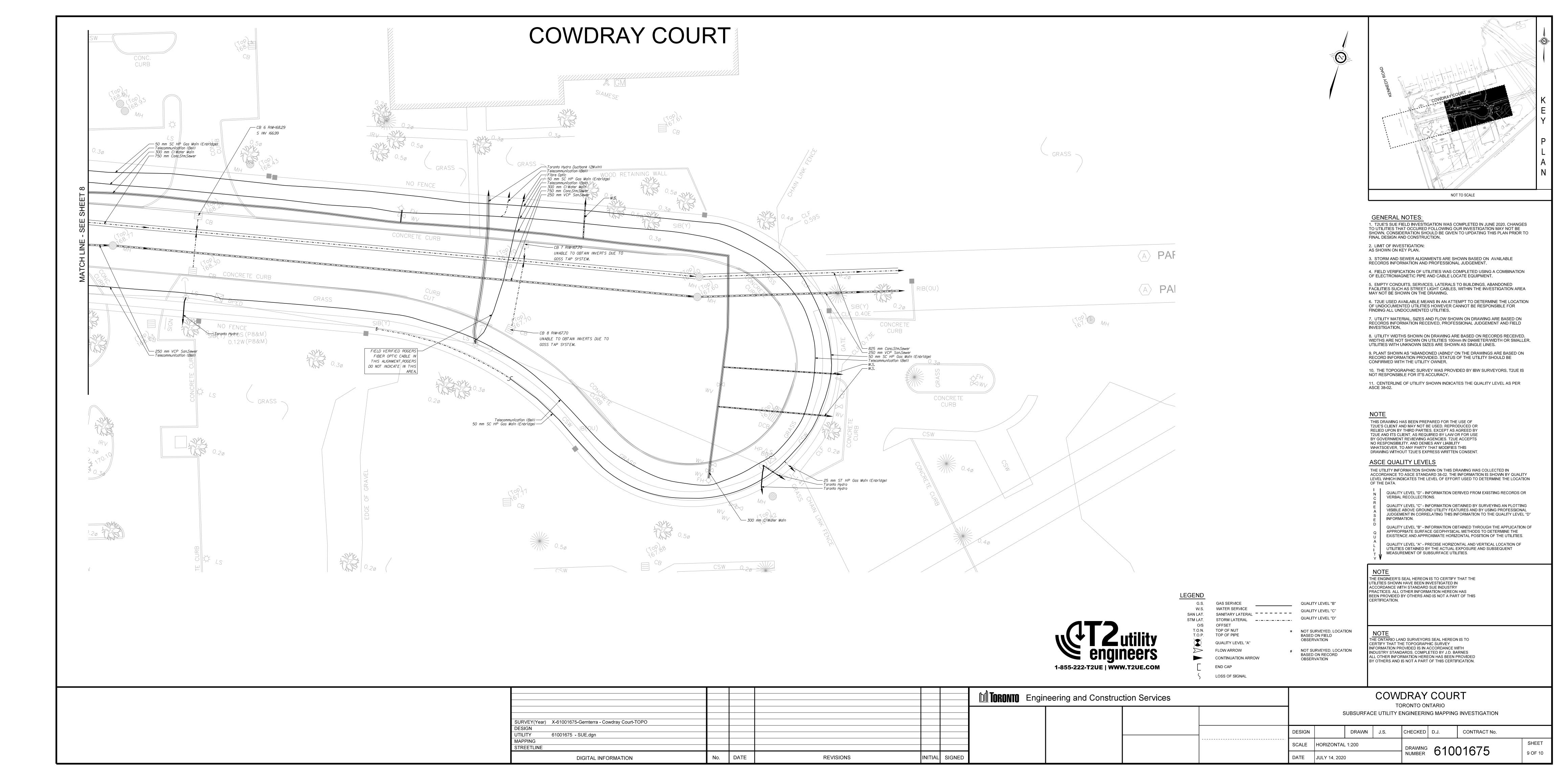
SAN LAT. SANITARY LATERAL - - - - QUALITY LEVEL "C" STM LAT. STORM LATERAL ----- QUALITY LEVEL "D" T.O.N. TOP OF NUT T.O.P. TOP OF PIPE * NOT SURVEYED, LOCATION BASED ON FIELD OBSERVATION FLOW ARROW

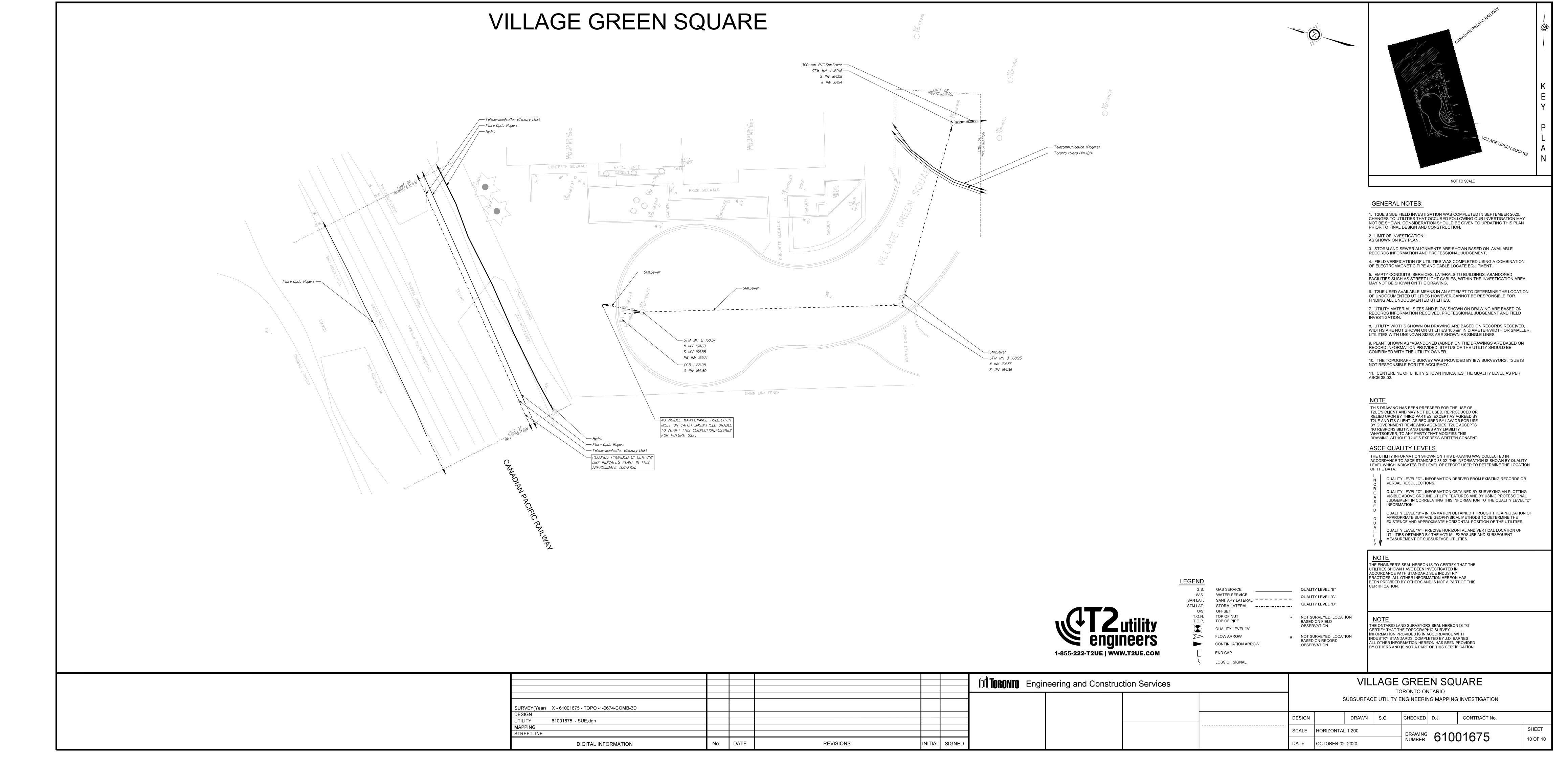
G.S.

W.S. WATER SERVICE

CONTINUATION ARROW LOSS OF SIGNAL


DESIGN


Y OTHERS AND IS NOT A PART OF THIS CERTIFICATION.


SHEPPARD AVE WEST TORONTO ONTARIO

SUBSURFACE UTILITY ENGINEERING MAPPING INVESTIGATION DRAWN J.S. CHECKED D.J. CONTRACT No.

SCALE HORIZONTAL 1:200 DRAWING 61001675 6 OF 10 DATE JULY 14, 2020

APPENDIX

B SANITARY SEWER ANALYSIS

APPENDIX B
SANITARY SEWER ANALYSIS - EXISTING DRY WEATHER CONDITIONS
CITY OF TORONTO

Residential Semi-Detached/Townhomes = 3.5 persons per unit

Apartment and condo = 400 persons per init

Apartment and condo = 2.7 persons per hectar

High Rise (HR2) = 2.7 persons per suite

Senitary Piews

Existing Residential Aug Daily Flow = 240 Litapylary

Commercial Office Ang. Daily Flow = 250 Litapylarston

Commercial, Office Ang. Daily Flow = 180000 Lithos haday

Estancous Flows

Infinitions = 0,260 Libbs

Manning's n = 0.013

PROJECT NO: 19M-0*
DESIGNED BY: GW
CHECKED BY: MM
DESIGN SHEET NO: 1 of

																										3.0 L/s/ha					BASED	ON SUE INVEST	GATION										
				POPULATION (S	See Note 4)																	8	SANITARY FLO	w			INFILT	TRATION FLOW		TOTAL													
			Comm. To	Co	ondo/Apartment		Residential	Semi/Towns	Re	esidential Single		Industrial		Commercial		Office		School/Chu	rch	Res	idential Flows		ICI Flows		n. ICI	Incren	Cumulat				LENGTH NO	MINAL PIPE A	SLOPE	FULL FLOW CAPACITY	FULL	% FULL	% VELOCITY	ACTUAL	DEPTH OF	FROUDE	FLOW REGIME		
Location	Land Use	ID	From To MH MH	# of Units Lot An	rea Pop.	Cumulative Nur Pop. of L	mber Pop Units Equival	c. Cumulative	Number of Units	Pop. (Equivalent	Cumulative Pop.	GFA		mental Incremental To	mental GF	A Incre	mental	GFA Lot Area	Increment Total	tal Avg.	Peaking Pe Factor Res	eak Cum	m. Peaking	Peak ICI 180 Flow L/ha	using 1,000 Tota	Sev Tributar	y Area Tributar	r Groundwa ry Flow (1)		FLOW		OLL (A)		CAPACITY	VELOCITY		*LLCOIII	VELOCITY	12011	HOMBER		Notes	
					Equivalent	r op.	Inits Equival		(Units)			(m2) (F	A	rea				(m2) (ha)			Factor Res	Flow Pop.	p. Factor	Flow L/ni	nday Fi	low	Area	(L/s)															
				(Units) (na)) (Persons)	(Persons) (UI	inits) (Persoi	ons) (Persons)	(Units)	(Persons)	(Persons)	(m2) (F	Persons) (m)	?) (1) (Pers	sons) (m	2) (Per	sons)	(mz) (na)	(Persons)	(L/s)	M (L	L/s) (Perso	ons) M	(L/s) (l	/s) (L	Js) (ha) (ha)	(LIS)	(L/S)	(L/s)	(m) (r	nm) (m2	(%)	(L/s)	(m/s)	(%)	(%)	(m/s)	(m)	(-)	(+)		
COWDARY COURT OUTLET																																											
Cowdray Court	Mixed Use	1	MH1 MH2										2	505 2	18 4,9	62 1	64			0.00	4.50 0.0	.00 192	2 4.15	2.31 1	56 2	.31 2.4	8 2.48		0.64	2.95	40.2	50 0.05	1.74%	78.44	1.60	4%	41%	0.66	0.0375	1.08	SUPERCRITICAL	A Commercial GFA of 2505 m2 was measured for 20 Cov 4964 m2 (1241 m2 * 4 storey) for 100 Cowdry	dry and a Office GFA of
Cowdray Court	Mixed Use	2	MH2 MH3										2	520 2	18			1916 1.05	91	0.00	4.50 0.0	.00 311	1 4.07			L 66 2.0	0 4.48		1.16	4.83	91.7	50 0.05			1.20	8%	55%	0.66	0.05	0.94	SUBCRITICAL	A Commercial GFA of 2520 m2 was measured for 80 Cov 1916 m2 for 40 Cowdry	dry and a School GFA of
Cowdray Court	Mixed Use		MH3 MH4																					3.66 2					1.45			50 0.05									SUBCRITICAL		
Cowdray Court	Mixed Use	4	MH4 TRUNK								-					_		-	+	0.00	4.50 0.0	.00 311	1 4.07	3.66 2	48 3.	1.66 1.0	2 6.61		1.72	5.38	51.2	50 0.05	5.73%	142.35	2.90	4%	41%	1.19	0.0375	1.96	SUPERCRITICAL	+	
COLLINGWOOD STREET OUTLET Kennedy Road	Residential																																										
			MH5 MH6						6	21	21									0.06	4.38 0.3	.26 0	4.50	0.00 0	.00 0.	.26 0.8	0.80		0.21	0.46	103.9	50 0.05	1.06%	61.23	1.25	1%	0%	0.00	0.005	0.00	SUBCRITICAL	Assumed the 4 residential units on the west side of Kenne	edy drains to the
Kennedy Road	Residential	6	MHS MH7						4	14	35									0.10	4.34 0.	.42 0	4.50	0.00 0	.00 0.	.42 0.5	7 1.37		0.36	0.78	94.8	150 0.05	0.97%	58.57	1.19	1%	30%	0.36	0.005	1.62	SUPERCRITICAL	Collingwood Street Sanitary Sewer network	•
Collingwood Street	Residential		MH7 MH8						2															0.00 0	.00 0.	.51 0.3			0.44			50 0.05	2.12%	86.59							SUPERCRITICAL	*	
Collingwood Street Collingwood Street	Residential Residential	8	MH8 MH9 MH9 MH10						6 8	21 28	63 91										4.29 0.1 4.25 1.1		4.50	0.00 0	00 0.				0.64		98.5	50 0.05 50 0.05		64.87 64.60		2%					SUPERCRITICAL SUPERCRITICAL		
Collingwood Street	Residential	10	MH10 TRUNK						0	0	91											.08 0		0.00 0		.08 0.0			0.93		7.6			147.59				0.90			SUPERCRITICAL		
																																					-						
SHEPPARD AVENUE OUTLET																																											
Kennedy Road	Residential	11																							17 0	.17 0.5	1 051								1.06			0.00				counted to be more conservative. Commercial GFAs of 16 were measured for 2219, 2221. and 2223 Kennedy respec	2 m2, 81 m2 and 172 m2 ctively. All buildings are
			MH11 MH12										-	10 1	9					0.00	4.50 0.0	.00 9	4.42	0.12 0	.17 0.	.17 0.5	1 0.51		0.13	0.30	81.4	50 0.05	0.76%	51.84	1.06	1%	0%	0.00	0.005	0.00	SUBCRITICAL	counted as two-storey	
Kennedy Road	Mixed Use	12	MH12 MH13										2	324 2	16					0.00	4.50 0.0	.00 35	5 4.34	0.44 0	.65 0.	.65 0.7	8 1.29		0.34	0.99	75.6	50 0.05	0.64%	47.57	0.97	2%	38%	0.37	0.015	0.96	SUBCRITICAL	Commercial GFAs of 118 m2, 362 m2 and 682 m2 were n 2245 Kennedy respectively. All buildings are counted as to	
Kennedy Road	Commercial	13	MH13 MH14										3	09 4	4					0.00	4.50 0.0	.00 39	9 4.34	0.49 0	72 0.	.72 0.6	9 1.98		0.51	1.23	86.0	50 0.05	0.65%	47.94		3%	38%	0.37	0.025	0.75	SUBCRITICAL	A Commercial GFA of 309 m2 was measured for 3905 Ke	nnedy
																																			0.00							Based on Google Maps and Room layouts found online, it	t was assumed the building
Sheppard Avenue	Residential	14	MH15 MH16	156 0.93	3 422	422														1 17	401 4	70 0	4.50	0.00	00 4	70 12	9 129	3.87	0.34	8 91	107.6	50 0.05	1 09%	62.09	1.26	14%	68%	0.86	0.065	1.08	SUPERCRITICAL	has 12 suite per floor for 13 floors. The 2.7 ppl/suite criteri	a was used since it provided
																				0.00																							
Easement	Residential	15																																								Based on Google Maps and Room layouts found online, it has 8 suite per floor for 18 floors. The 2.7 ppl/suite criteria	
Sheppard Avenue	Commercial	16	MH17 MH16 MH16 MH18	144 0.87	7 389	389 811														1.08	4.03 4.3	.35 0	4.50	0.00 0		.35 0.9		2.88	0.25		60.4	50 0.05 50 0.05			1.46	10%	62%	0.91	0.055	1.24	SUPERCRITICAL SUPERCRITICAL	a higher population.	
Sheppard Avenue	Commercial	17	MH18 MH14			811																		0.00 0					0.67			50 0.05		83.25							SUPERCRITICAL		
Sheppard Avenue	Mixed Use	18																																							SUPERCRITICAL	R OFF OF 907 x Hz (9 1900) T 122 Hz) was measured up floor as commercial space and the upper levels as office s 295 m2 was measured for 4015 Sheppard. A Commercial 284 m2) was measured was 4023 Sheppard. A Commerce measured for 4022 Sheppard.	space. A Commercial GFA of I GFA of 568 m2 (2 floors *
-		 	mH14 MH19	1		811			1	4	4		2	303 3	750	2	.00		+	0.00	3.80 8.	.73 319	9 4.0/	a./b 2	oo 12	2.40 1.1	5.69	0.84	1.48	20.80	107.9	0.05	0.85%	64.83	1.12	38%	93%	1.04	0.10/5	1.01	SUPERURITICAL	measured to: 4022 Sneppard.	
Gordon Avenue	Residential	19	MH20 MH21						13		46							224 0.08	8		4.32 0.1			0.10 0		.65 1.2			0.32		85.2			39.00					0.015		SUBCRITICAL	A Church GFA of 224 m2 was measured for 15 Gordon	
Gordon Avenue Gordon Avenue	Mixed Use Mixed Use	20	MH21 MH22 MH22 MH10		+		_		2		53										4.31 0.0			0.10 0		1.74 0.2 1.74 0.0			0.39			50 0.05 50 0.05		42.88 77.76							SUBCRITICAL		
		-	MH22 MH19						,		33									0.13	4.31 U.I	8	4.42	5.10	0.	0.0	1.01	0.00	0.35	1.10	12.0	0.00	1./1%	11.16	1.06	170	30%	0.40	0.005	2.10	COPERCRITICAL		
Sheppard Avenue	Mixed Use	22	MH19 MH23			811					57			70 :	7 41	4 1	14			2.41	3.84 9.3	26 348	8 4.05	4.08 3	10 13	3.33 0.2	7 7.47	6.84	1.94	22.12	22.0	50 0.05	2.68%	97.35	1.98	23%	79%	1.57	0.0825	1.74	SUPERCRITICAL	A Office GFA of 414 m2 (2 floor * 207 m2) was measured A Commercial GFA of 570 m2 was measured for 4045-40	
Sheppard Avenue	Mixed Use	23	MH23 MH24			811					57													4.08 3					1.95	22.13											SUBCRITICAL		
Sheppard Avenue	Mixed Use	24	MH24 TRUNK	+	+	811		_	-		57					_			+		3.84 9.3			4.08 3	10 13	3.33 0.1	0 7.62	6.84	1.98	22.15	38.3	50 0.05	3.59%	112.67	2.30	20%	75%	1.72	0.0775	1.97	SUPERCRITICAL		
(1) Groundwater flow only assumed	I from apartment buildi	ngs and commercial b	building on Shepp	oard Ave as these	e buildings will	have undergro	ound structure	e penetrate groun	ndwater table	e. Please note	that this design	gn sheet is fo	r the existing/p	re-developm	ent condition	which is ass	sumed to p	redate City of Toror	ito's New Fou	undation Dra	in Policy.																						

APPENDIX B
SANITARY SEWER ANALYSIS - EXISTING WET WEATHER CONDITION
CITY OF TORONTO

																										BA	ISED ON SUE INVESTIGA	ATION									
									JLATION (See Note 4									SANITAR					NFILTRATION FL	ow	TOTAL PEAK		NOMINAL PIPE ARE		FULL	FULL				EPTH OF FROL	IDE.		
Location	Land Use	ID		Apartment	Residential Sem			idential Single	Indus	strial	Commercial	(Office		School/Church		ntial Flows	ICI F		Cum. ICI Flows using	le	Incremental	Sewer Groun	Wet dwate Weather	CANITADY	LENGTH	NOMINAL PIPE ARE PIPE SIZE (AF)	M SLOF	PE FLOW CAPACITY	FLOW Y VELOCITY				FLOW NUME		GIME	Notes
			# of Unite Lot Area	Pop. Cumi Equivalent Po	ulative Number Pop. op. of Units Equivalent	Cumulative It	Number of Units	Pop. Cumulati Equivalent Pop.		Total	Incremental Incremental Commercial Total	GFA	Incremental Total	GFA	Lot Area Incrementa Total	Res Flow	eaking Peak actor Res Flow	Cum. Peal Pop. Fac	king Peak ICI tor Flow	180,000 T L/ha/day	otal Peak Flow		Tributary Area r Flo	w (1) Flow	FLOW												
			(Units) (ha)	(Persons) (Pers	sons) (Units) (Persons)	(Persons)	(Units)	(Persons) (Persons	s) (m2)	(Persons)	Area (m2) (1) (Persons)	(m2)	(Persons)	(m2)	(ha) (Persons)	(1/e)	M (1/s)	(Persons) N	(1/s)	(1/s)	(1/s)	(ha)	(ha) (L	/s) (L/s)	(1/s)	(m)	(mm) (m2)	(%)	(1/s)	(m/s)		(%)	(m/s)	(m) ((-)		
																,,	,,	,	1-7	/	,,	()	()			(,	()		\	(1-27					
COWDARY COURT OUTLET																																		$-\!+\!-$			
Cowdray Court	Mixed Use	1	MH1 MH2								2505 28	4,962	164			0.00	4.50 0.00	192 4.1	15 2.31	1.56	2.31	2.48	2.48	7.44	9.75	40.2	250 0.05	1.749	% 78.44	1.60	12%	64%	1.02	0.06 1.3	3 SUPERCR	A Commercial GF ITICAL 4964 m2 (1241 m	FA of 2505 m2 was measured for 20 Cowdry and a Office GFA of n2 * 4 storey) for 100 Cowdry
Cowdray Court	Mixed Use	2	MH2 MH3								2520 28			1916	1.05 91	0.00	4.50 0.00	311 4.0	3.66	2.48	3.66	2.00	4.48	13.44	17.10	91.7	250 0.05	0.989	% 58.87	1.20	29%	85%	1.02	0.095 1.0	6 SUPERCR	A Commercial GF ITICAL 1916 m2 for 40 C	FA of 2520 m2 was measured for 80 Cowdry and a School GFA of cowdry
Cowdray Court	Mixed Use	3	MH3 MH4														4.50 0.00						5.59	16.77			250 0.05										
Cowdray Court	Mixed Use	4	MH4 TRUNK			+			_							0.00	4.50 0.00	311 4.0	7 3.66	2.48	3.66	1.02	6.61	19.83	23.49	51.2	250 0.05	5.73	% 142.35	2.90	17%	71%	2.06	J.0725 2.4	4 SUPERCR	TICAL	
COLLINGWOOD STREET OUTLET																																					
Kennedy Road	Residential	5	MH5 MH6				6	21 21								0.06	4.38 0.26	0 4.5	50 0.00	0.00	0.26	0.80	0.80	2.40	2.66	103.9	250 0.05	1.06	61.23	1.25	4%	44%	0.55	0.0375 0.9	0 SUBCRIT		
Kennedy Road	Residential	6	MH6 MH7				4	14 35								0.10	4.34 0.42	0 4.5	50 0.00	0.00	0.42	0.57	1.37	4.11	4.53	94.8	250 0.05	0.97	% 58.57	1.19	8%	54%	0.64	0.05 0.9	2 SUBCRIT	Street	esidential units on the west side of Kennedy drains to the Collingwo network
Collingwood Street	Residential	7	MH7 MH8					7 42												0.00		0.34		5.13			250 0.05										
Collingwood Street	Residential	8	MH8 MH9				6	21 63									4.29 0.75					0.70	2.46			0.0.0	250 0.05										
Collingwood Street Collingwood Street	Residential Residential	10	MH9 MH10 MH10 TRUNK			-	8	28 91									4.25 1.08		60 0.00			1.04	3.50	10.50		90.6		1.189		1.32					2 SUPERCR		
Odningwood Outcot	residentia		MH10 IRUNK					0 91								0.25	4.20 1.08	0 4.0	0.00	0.00	1.08	0.06	3.50	10.08	11.76	7.6	250 0.05	0.10	147.59	3.01	676	54%	1.02	0.05 2.3	2 SUPERCR	IICAL	
SHEPPARD AVENUE OUTLET																																					ervative. Commercial GFAs of 152 m2, 81 m2 and 172 m2 were
Kennedy Road	Residential	11	MH11 MH12								810 9					0.00	4.50 0.00	9 4.4	12 0.12	0.17	0.17	0.51	0.51	1.53	1.70	81.4	250 0.05	0.769	51.84	1.06	3%	41%	0.43	0.025 0./	7 SUBCRIT	measured for 221	ervative. Commercial GFAs or 152 m2, 61 m2 and 172 m2 were 19, 2221. and 2223 Kennedy respectively. All buildings are counted
Kennedy Road	Mixed Use	12	MH12 MH13								2324 26					0.00	4.50 0.00	35 4.3	34 0.44	0.65	0.65	0.78	1.29	3.87	4.52	75.6	250 0.05	0.649	% 47.57	0.97	10%	58%	0.56	0.055 0.7	7 SUBCRIT		As of 118 m2, 362 m2 and 682 m2 were measured for 2229, 2235. a espectively. All buildings are counted as two-storey.
Kennedy Road	Commercial	13	MH13 MH14								309 4					0.00	4.50 0.00	39 4.3	34 0.49	0.72	0.72	0.69	1.98	5.94	6.66	86.0	250 0.05	0.65	% 47.94	0.98	14%	66%	0.64	0.065 0.8	1 SUBCRIT		FA of 309 m2 was measured for 3905 Kennedy
																																					Maps and Room layouts found online, it was assumed the building
Sheppard Avenue	Residential	14	MH15 MH16 156 0.93	422 43	22											1.17	4.01 4.70	0 4.5	50 0.00	0.00	4.70	1.29	1.29 3.	87 3.87	12.44	107.6	250 0.05	1.099	62.09	1.26	20%	76%	0.96	0.0775 1.1	0 SUPERCR	12 suite per floor ! TICAL higher population.	for 13 floors. The 2.7 ppl/suite criteria was used since it provided a
Easement	Residential	15	MH17 MH16 144 0.87	389 3	80											1.08	4.03 4.35	0 45	50 0.00	0.00	4.35	0.96	0.96 2	88 2.88	10.11	60.4	250 0.05	1.489	% 71.85	1.46	14%	68%	1.00	0.065 1.2	5 SUPERCR	8 suite per floor fo	e Maps and Room layouts found online, it was assumed the building or 18 floors. The 2.7 ppl/suite criteria was used since it provided a h
Sheppard Avenue	Commercial	16	MH16 MH18	8	11											2.25	3.86 8.69	0 4.5	60 0.00		8.69			75 7.17			250 0.05										
Sheppard Avenue	Commercial	17	MH18 MH14	8	11											2.25	3.86 8.69	0 4.5	0.00	0.00	8.69	0.17	2.56 6.	75 7.68	23.12	66.8	250 0.05	1.969	% 83.25	1.70	28%	84%	1.42	0.0925 1.5	0 SUPERCR	TICAL	TO DESIGN THE PROPERTY OF THE WAY IN THE WAY AND ADDRESS OF THE PARTY.
Sheppard Avenue	Mixed Use	18																																		295 m2 was measure m2) was measure	cal space and the upper levels as office space. A Commercial GFA ssured for 4015 Sheppard. A Commercial GFA of 568 m2 (2 floors * ed was 4023 Sheppard. A Commercial GFA of 278 m2 was measur
			MH14 MH19	8	11		1	4 4			2653 30	7560	250			2.26	3.86 8.73	319 4.0	3.75	2.85	12.48	1.15	5.69 6.	84 17.07		107.9	250 0.05	0.859	6 54.83	1.12	66%	107%	1.20	0.15 0.9	9 SUBCRIT	ICAL for 4022 Sheppare	rd.
Gordon Avenue	Residential	19	MH20 MH21			+	13	46 46	+ +			1	1	224	0 8	0.13	432 055	8 4	2 0.10	0.05	0.65	1.23	1.23	3.69	0.00 4.34	85.2	250 0.05	0.430	19.00	0.79	11%	63%	0.50	0.0575	7 SUBCRIT	ICAL A Church CEA of	f 224 m2 was measured for 15 Gordon
Gordon Avenue	Mixed Use	20	MH20 MH21 MH21 MH22				2	7 53				1		224						0.05			1.49	4.47			250 0.05										ALT THE WAS INVESTIGATION TO CONTROL
Gordon Avenue	Mixed Use	21	MH22 MH19				0	0 53												0.05				4.52			250 0.05										
Sheppard Avenue	Mixed Use	22																																+		A Office GFA of 4	414 m2 (2 floor * 207 m2) was measured for 4028 Sheppard.
Shennard Avenue	Mixed Use	23	MH19 MH23	8	11	+	-+	57			570 7	414	14	!		2.41	3.84 9.26				13.33	0.27		84 22.40 84 22.55		22.0	250 0.05	2.68°		1.98				0.1175 1.7	7 SUPERCR	TICAL A Commercial GF	FA of 570 m2 was measured for 4045-4053 Sheppard
Sheppard Avenue	Mixed Use	24	MH23 MH24 MH24 TRUNK	8'		+ +	-	57												3.10						10.1	250 0.05 250 0.05							0.1020	o obboiti	TICAL	
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-				- 0,				1	_	1	1 1		5.54						0.				3.00	2.00									

APPENDIX

STORM SEWER ANLAYSIS

WSP

DATE REVISED: 2022-10-07 **PROJECT NO:** 19M-01888

C= -0.78 A= 21.8

 $\mathbf{AT}^{\mathbf{C}}$

Q= 2.78* CIA

Agincourt EA
DOWNSTREAM STORM SEWER ANALYSIS
PRE-DEVELOPMENT 2 YEAR STORM

DESIGNED BY: GW/LZ
CHECKED BY: MM
DESIGN SHEET NO: 1 of 7

Street	From	То	LENGTH	AREA ⁽¹⁾	CUMULATIVE AREA	RUN-OFF COEF.	CA	CUMULATIVE	INTENSITY (I ₂)	FLOW (Q)	PIPE DIAMETER	ACTUAL PIPE DIAMETER	SLOPE	CAPACITY	FULL FLOW VELOCITY	SECTION TIME	INLET TIME	CUMULATIVE	CAPACITY
			(m)	(ha)	(ha)			(ha)	(mm/hr)	(m ³ /s)	(mm)	(mm)	(%)	(m ³ /s)	(m/s)	(min)	(min)	(min)	(% FULL)
COWDRAY COURT	OUTLET																		
100 Cowdray Court	SITE	MH1		0.71	0.71	0.75	0.53	0.53	88.19	0.131							10.00		
Cowdray Court	MH1	MH2	41.4	0.18	0.89	0.90	0.16	0.69	88.19	0.170	675	675	2.87	1.42	3.98	0.17	10.00	10.17	12%
20 Cowdray Court	SITE	MH2		1.57	1.57	0.80	1.26	1.26	88.19	0.308							10.00		
80 Cowdray Court	SITE	MH2		0.61	0.61	0.80	0.49	0.49	88.19	0.120							10.00		
Cowdray Court	MH2	MH3	100.6	0.37	3.44	0.90	0.33	2.77	87.01	0.670	750	750	0.99	1.11	2.51	0.67	10.17	10.84	61%
40 Cowdray Court	SITE	MH3		1.05	1.05	0.75	0.79	0.79	88.19	0.193							10.00	1	
Cowdray Court	MH3	MH4	98.8	0.99	5.48	0.50	0.50	4.05	82.80	0.933	825	825	0.76	1.25	2.34	0.70	10.84	11.55	75%
Cowdray Court	MH4	CREEK	73.2	1.14	6.62	0.50	0.57	4.62	78.84	1.013	900	900	0.58	1.38	2.17	0.56	11.55	12.11	74%
COLLINGWOOD STRE	ET OUTLET																		
Kennedy Road	MH5	MH6	103.9	0.34	0.34	0.70	0.24	0.24	88.19	0.058	300	300	0.96	0.09	1.34	1.29	10.00	11.29	62%
Kennedy Road	MH6	MH7	91.7	0.23	0.57	0.70	0.16	0.40	80.22	0.089	300	300	1.06	0.10	1.41	1.09	11.29	12.38	89%
Collingwood Street	MH7	MH8	91.4	0.41	0.98	0.60	0.25	0.65	74.67	0.134	375	375	2.16	0.26	2.33	0.65	12.38	13.03	52%
Collingwood Street	MH8	MH9	98.5	0.89	1.87	0.60	0.53	1.18	71.74	0.235	450	450	1.16	0.31	1.93	0.85	13.03	13.88	77%
Collingwood Street	MH9	MH10	87.2	0.69	2.56	0.60	0.41	1.59	68.29	0.302	525	525	0.98	0.43	1.97	0.74	13.88	14.62	71%
Collingwood Street	MH10	CREEK	33.5		2.56		0.00	1.59	65.58	0.290	600	600	0.66	0.50	1.76	0.32	14.62	14.94	58%

CITY OF TORONTO Agincourt EA

DOWNSTREAM STORM SEWER ANALYSIS

PRE-DEVELOPMENT 2 YEAR STORM

WSP

DATE REVISED: 2022-10-07

PROJECT NO: 19M-01888 DESIGNED BY: GW/LZ CHECKED BY: MM

DESIGN SHEET NO: 1 of 7

$\mathbf{AT}^{\mathbf{C}}$ Q= 2.78* CIA -0.78 21.8

	1				1			1				1	1			1		, , , , , , , , , , , , , , , , , , , 	
Street	From	То	LENGTH	AREA ⁽¹⁾	CUMULATIVE AREA (ha)	RUN-OFF COEF.	CA	CUMULATIVE CA (ha)	INTENSITY (I ₂) (mm/hr)	FLOW (Q) (m³/s)	PIPE DIAMETER (mm)	ACTUAL PIPE DIAMETER (mm)	SLOPE	CAPACITY (m³/s)	FULL FLOW VELOCITY (m/s)	SECTION TIME (min)	INLET TIME (min)	CUMULATIVE TIME (min)	CAPACITY
SHEPPARD AVENUE	OUTLET		` ′	` ′	` ,			` ,	,	, ,		, ,	` ′	. ,	, ,	, ,	` ,	, ,	
																			1
Kennedy Road	MH11	MH12	81.4	0.47	0.47	0.70	0.33	0.33	88.19	0.081	300	300	0.89	0.09	1.29	1.05	10.00	11.05	88%
Kennedy Road	MH12	MH13	75.6	0.56	1.03	0.85	0.48	0.81	81.57	0.183	450	450	0.64	0.23	1.43	0.88	11.05	11.93	80%
Kennedy Road	MH13	MH14	86.9	0.56	1.59	0.85	0.48	1.28	76.85	0.274	525	525	0.63	0.34	1.58	0.92	11.93	12.85	80%
Sheppard Avenue	MH15	MH16	107.6	1.60	1.60	0.65	1.04	1.04	88.19	0.255	675	675	1.01	0.84	2.36	0.76	10.00	10.76	30%
EASEMENT	MH17	MH16	63.1	0.69	0.69	0.65	0.45	0.45	88.19	0.110	375	375	1.40	0.21	1.88	0.56	10.00	10.56	53%
Sheppard Avenue	MH16	MH18	32.6	0.21	2.50	0.85	0.18	1.67	83.29	0.386	675	675	1.36	0.98	2.74	0.20	10.76	10.96	39%
Sheppard Avenue	MH18	MH14	67.4	0.36	2.86	0.90	0.32	1.99	82.12	0.455	675	675	2.02	1.19	3.34	0.34	10.96	11.29	38%
Sheppard Avenue	MH14	MH19	108.2	0.79	5.24	0.85	0.67	3.94	72.53	0.795	825	825	0.79	1.28	2.39	0.76	12.85	13.60	62%
Gordon Avenue	MH20	MH21	85.2	0.75	0.75	0.55	0.41	0.41	88.19	0.101	375	375	0.42	0.11	1.03	1.38	10.00	11.38	89%
Gordon Avenue	MH21	MH22	54.3	0.51	1.26	0.60	0.31	0.72	79.73	0.159	450	450	0.62	0.22	1.41	0.64	11.38	12.02	71%
Gordon Avenue	MH22	MH19	12.8		1.26			0.72	76.40	0.153	450	450	1.78	0.38	2.39	0.09	12.02	12.11	40%
Sheppard Avenue	MH19	CREEK	43.2	0.17	6.67	0.85	0.14	4.81	69.37	0.927	975	975	1.68	2.90	3.89	0.19	13.60	13.79	32%
																			ł

I=

C=

Storm flow parameters and equations obtained from City of Toronto Design Criteria for Sewers and Watermains, January 2021.
 Existing pipe information obtained from plan & profile drawings from the City of Toronto, and Dorsch Model.

^{(3).} See attached proposed storm sewer layout for more details.

Agincourt EA DOWNSTREAM STORM SEWER ANALYSIS - PRE-DEVELOPMENT 2-YEAR HGL ANALYSIS (COWDRAY COURT) 2 YEAR STORM

DATE REVISED: 2022-10-07
PROJECT NO: 19M-01888
DESIGNED BY: GW/LZ
CHECKED BY: MM
DESIGN SHEET NO: 2 of 7

			TOTAL									Velocity	Velocity	D/S	Pipe	Pipe	Velocity	Total	Depth	Depth	Flow	Flow	HGL	HGL	Obvert	Obvert	Тор	Depth		
LOCATION	FROM	TO	FLOW	LENGTH	GRADIENT	PIPE SIZE	CAPACITY	VELOCITY	VELOCITY	%Full	%Velocity	U/S	D/S	Invert	Friction	Friction	Head Loss	Losses	of Flow	of Flow	Depth	Depth	Elev	Elev	Elev	Elev	of MH	of	Froude	Notes
	MH	MH						FULL	ACTUAL			(V _u)	(V_d)		Slope	Loss	at D/S MH	in D/S MH			Elev.	Elev.	at D/S	at U/S	at D/S	at U/S	Elev	HGL	Number	140169
			(m³/sec)	(m)	(%)	(mm)	(m³/sec)	(m/sec)	(m/sec)							(H _f)	(H _v)	(H _v +H _b)			at D/S	at U/S	(HGL ₁)	(HGL ₁ +H _f)			at U/S	at U/S		
												(m/sec)	(m/sec)	(m)	(%)	(m)	(m)	(m)	(%)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(-)	(-)
Cowdray Court	MH1	MH2	0.170	41.4	2.87	675	1.424	3.98	2.55	12.0%	64%	2.55	2.66	165.80	0.04	0.02	0.03	0.03	24%	0.16	165.96	167.15	166.48	167.15	166.48	167.66	171.22	4.07	2.02	SUPERCRITICAL
Cowdray Court	MH2	MH3	0.670	100.6	0.99	750	1.108	2.51	2.66	61.0%	106%	2.66	2.60	164.59	0.36	0.36	-0.02	0.00	57%	0.43	165.02	166.01	165.34	166.01	165.34	166.34	169.21	3.20	1.30	SUPERCRITICAL
Cowdray Court	мнз	MH4	0.933	98.8	0.76	825	1.251	2.34	2.60	75.0%	111%	2.60	2.41	163.75	0.42	0.42	-0.05	0.00	66%	0.54	164.29	165.05	164.58	165.05	164.58	165.33	167.69	2.64	1.12	SUPERCRITICAL
Cowdray Court	MH4	CREEK	1.013	73.2	0.58	900	1.379	2.17	2.41	74.0%	111%	2.41	0.00	163.17	0.31	0.23	-0.29	0.00	65%	0.59	163.76	164 18	164.07	164.30	164.07	164 49	167.06	2.76	1.00	CRITICAL

Agincourt EA DOWNSTREAM STORM SEWER ANALYSIS - PRE-DEVELOPMENT 2-YEAR HGL ANALYSIS (COLLINGWOOD STREET) 2 YEAR STORM

DATE REVISED: 2022-10-07
PROJECT NO: 19M-01888
DESIGNED BY: GW/LZ
CHECKED BY: MM
DESIGN SHEET NO: 3 of 7

			TOTAL									Velocity	Velocity	D/S	Pipe	Pipe	Velocity	Total	Depth	Depth	Flow	Flow	HGL	HGL	Obvert	Obvert	Тор	Depth		
LOCATION	FROM	то	FLOW	LENGTH	GRADIENT	PIPE SIZE	CAPACITY	VELOCITY	VELOCITY	%Full	%Velocity	U/S	D/S	Invert	Friction	Friction	Head Loss	Losses	of Flow	of Flow	Depth	Depth	Elev	Elev	Elev	Elev	of MH	of	Froude Number	Notes
	MH	MH						FULL	ACTUAL			(V _u)	(V_d)		Slope	Loss	at D/S MH	in D/S MH			Elev.	Elev.	at D/S	at U/S	at D/S	at U/S	Elev	HGL	Number	Notes
			(m³/sec)	(m)	(%)	(mm)	(m³/sec)	(m/sec)	(m/sec)							(H _f)	(H_v)	(H _v +H _b)			at D/S	at U/S	(HGL ₁)	(HGL ₁ +H _f)			at U/S	at U/S		
												(m/sec)	(m/sec)	(m)	(%)	(m)	(m)	(m)	(%)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(-)	(-)
Kennedy Road	MH5	MH6	0.058	103.9	0.96	300	0.095	1.34	1.42	62.0%	106%	1.42	1.62	169.34	0.36	0.38	0.03	0.03	58%	0.17	169.51	170.51	169.64	170.51	169.64	170.64	172.93	2.42	1.09	SUPERCRITICA
Kennedy Road	MH6	MH7	0.089	91.7	1.06	300	0.100	1.41	1.62	89.0%	115%	1.62	2.38	168.35	0.85	0.78	0.15	0.15	74%	0.22	168.57	169.54	168.65	169.54	168.65	169.62	172.52	2.98	1.10	SUPERCRITICA
Collingwood Street	MH7	MH8	0.134	91.4	2.16	375	0.258	2.33	2.38	52.0%	102%	2.38	2.14	165.13	0.58	0.53	-0.05	0.00	52%	0.20	165.33	167.30	165.51	167.30	165.51	167.48	170.64	3.34	1.72	SUPERCRITICA
Collingwood Street	мн8	мн9	0.235	98.5	1.16	450	0.307	1.93	2.14	77.0%	111%	2.14	2.14	163.93	0.68	0.67	0.00	0.00	67%	0.30	164.23	165.37	164.38	165.37	164.38	165.52	168.20	2.83	1.25	SUPERCRITICA
Collingwood Street	мн9	MH10	0.302	87.2	0.98	525	0.426	1.97	2.14	71.0%	109%	2.14	1.85	163.01	0.49	0.43	-0.06	0.00	63%	0.33	163.34	164.20	163.54	164.20	163.54	164.39	167.34	3.14	1.19	SUPERCRITICA
Collingwood Street	MH10	CREEK	0.290	33.5	0.66	600	0.499	1.76	1.85	58.0%	105%	1.85	0.00	162.76	0.22	0.08	-0.17	0.00	55%	0.33	163.09	163.31	163.36	163.44	163.36	163.58	166.16	2.72	1.03	SUPERCRITICA

CITY OF TORONTO Agincourt EA DOWNSTREAM STORM SEWER ANALYSIS - PRE-DEVELOPMENT 2-YEAR HGL ANALYSIS (SHEPPARD AVENUE) 2 YEAR STORM

DATE REVISED: 2022-10-07 PROJECT NO: 19M-01888 DESIGNED BY: GW/LZ CHECKED BY: MM DESIGN SHEET NO: 4 of 7

	_	,																												
			TOTAL									Velocity	Velocity	D/S	Pipe	Pipe	Velocity	Total	Depth	Depth	Flow	Flow	HGL	HGL	Obvert	Obvert	Тор	Depth		
LOCATION	FROM	TO	FLOW	LENGTH	GRADIENT	PIPE SIZE	CAPACITY	VELOCITY	VELOCITY	%Full	%Velocity	U/S	D/S	Invert	Friction	Friction	Head Loss	Losses	of Flow	of Flow	Depth	Depth	Elev	Elev	Elev	Elev	of MH	of	Froude Number	
	MH	MH						FULL	ACTUAL			(V _u)	(V_d)		Slope	Loss	at D/S MH	in D/S MH			Elev.	Elev.	at D/S	at U/S	at D/S	at U/S	Elev	HGL	Number	Notes
			(m³/sec)	(m)	(%)	(mm)	(m³/sec)	(m/sec)	(m/sec)							(H _f)	(H _v)	(H _v +H _b)			at D/S	at U/S	(HGL₁)	(HGL,+H,)			at U/S	at U/S		
			(1117500)	(,	(70)	()	(1117500)	(1111000)	(500)														٠,							
												(m/sec)	(m/sec)	(m)	(%)	(m)	(m)	(m)	(%)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(-)	(-)
																												<u> </u>		
Kennedy Road	MH11	MH12	0.081	81.4	0.89	300	0.091	1.29	1.48	88.0%	115%	1.48	1.61	166.06	0.70	0.57	0.02	0.02	73%	0.22	166.28	167.00	166.36	167.00	166.36	167.08	171.73	4.73	1.01	SUPERCRITICAL
Kennedy Road	MH12	MH13	0.183	75.6	0.64	450	0.228	1.43	1.61	80.0%	112%	1.61	1.77	165.40	0.41	0.31	0.03	0.03	69%	0.31	165.71	166.19	165.85	166.19	165.85	166.33	170.23	4.04	0.92	SUBCRITICAL
Kennedy Road	MH13	MH14	0.274	86.9	0.63	525	0.341	1.58	1.77	80.0%	112%	1.77	2.53	164.80	0.40	0.35	0.17	0.17	69%	0.36	165.16	165.71	165.33	165.71	165.33	165.87	169.23	3.52	0.94	SUBCRITICAL
																			,											
Sheppard Avenue	MH15	MH16	0.255	107.6	1.01	675	0.845	2.36	2.03	30.0%	86%	2.03	2.58	166.61	0.09	0.10	0.13	0.13	38%	0.26	166.87	167.95	167.29	167.95	167.29	168.37	171.60	3.65	1.28	SUPERCRITICAL
EASEMENT	MH17	MH16	0.110	63.1	1.40	375	0.207	1.88	1.92	53.0%	102%	1.92	2.58	166.89	0.39	0.25	0.15	0.15	52%	0.20	167.09	167.97	167.27	167.97	167.27	168.15	172.21	4.24	1.39	SUPERCRITICAL
Sheppard Avenue	MH16	MH18	0.386	32.6	1.36	675	0.980	2.74	2.58	39.0%	94%	2.58	3.14	166.00	0.21	0.07	0.16	0.16	44%	0.30	166.30	166.74	166.68	166.74	166.68	167.12	170.81	4.07	1.51	SUPERCRITICAL
Sheppard Avenue	MH18	MH14	0.455	67.4	2.02	675	1.195	3.34	3.14	38.0%	94%	3.14	2.53	164.57	0.29	0.20	-0.18	0.00	43%	0.29	164.86	166.22	165.25	166.22	165.25	166.61	170.01	3.79	1.86	SUPERCRITICAL
Sheppard Avenue	MH14	MH19	0.795	108.2	0.79	825	1.276	2.39	2.53	62.0%	106%	2.53	3.42	163.48	0.31	0.33	0.27	0.27	58%	0.48	163.96	164.81	164.31	164.81	164.31	165.16	168.66	3.85	1.17	SUPERCRITICAL
	•													•																
Gordon Road	MH20	MH21	0.101	85.2	0.42	375	0.114	1.03	1.18	89.0%	115%	1.18	1.54	164.47	0.33	0.28	0.05	0.05	74%	0.28	164.75	165.11	165.08	165.36	164.85	165.20	167.82	2.46	0.72	SUBCRITICAL
Gordon Road	MH21	MH22	0.159	54.3	0.62	450	0.224	1.41	1.54	71.0%	109%	1.54	2.25	164.14	0.31	0.17	0.14	0.14	63%	0.28	164.42	164.76	164.86	165.03	164.59	164.93	167.07	2.04	0.92	SUBCRITICAL
Gordon Road	MH22	MH19	0.153	12.8	1.78	450	0.380	2.39	2.25	40.0%	94%	2.25	3.42	163.89	0.29	0.04	0.34	0.34	45%	0.20	164.09	164.72	164.34	164.72	164.34	164.57	166.63	1.91	1.60	SUPERCRITICAL
Sheppard Avenue	MH19	CREEK	0.927	43.2	1.68	975	2.905	3.89	3.42	32.0%	88%	3.42	0.00	162.63	0.17	0.07	-0.60	0.00	40%	0.39	163.02	163.75	163.61	163.75	163.61	164.33	166.54	2.79	1.75	SUPERCRITICAL
	•	•		•	•	•																								

Agincourt EA DOWNSTREAM STORM SEWER ANALYSIS PRE-DEVELOPMENT 10 YEAR STORM

WSP

DATE REVISED: 2022-10-07 PROJECT NO:

19M-01888

DESIGNED BY: GW/LZ CHECKED BY: MM

DESIGN SHEET NO: 5 of 7

Street	From	То	LENGTH	AREA ⁽¹⁾	CUMULATIVE AREA	RUN-OFF COEF.	CA	CUMULATIVE CA	INTENSITY (I ₁₀)	FLOW (Q)	PIPE DIAMETER	ACTUAL PIPE DIAMETER	SLOPE	CAPACITY	FULL FLOW VELOCITY	SECTION TIME	INLET TIME	CUMULATIVE TIME	CAPACIT
			(m)	(ha)	(ha)			(ha)	(mm/hr)	(m ³ /s)	(mm)	(mm)	(%)	(m³/s)	(m/s)	(min)	(min)	(min)	(% FULL
COLLINGWOOD STREE	T OUTLET																		
Kennedy Road	MH5	MH6	103.9	0.34	0.34	0.70	0.24	0.24	162.27	0.107	300	300	0.96	0.09	1.34	1.29	10.00	11.29	113%
Kennedy Road	MH6	MH7	91.7	0.23	0.57	0.70	0.16	0.40	147.24	0.163	300	300	1.06	0.10	1.41	1.09	11.29	12.38	164%
Collingwood Street	MH7	MH8	91.4	0.41	0.98	0.60	0.25	0.65	136.82	0.245	375	375	2.16	0.26	2.33	0.65	12.38	13.03	95%
Collingwood Street	MH8	MH9	98.5	0.89	1.87	0.60	0.53	1.18	131.30	0.430	450	450	1.16	0.31	1.93	0.85	13.03	13.88	140%
Collingwood Street	MH9	MH10	87.2	0.69	2.56	0.60	0.41	1.59	124.83	0.553	525	525	0.98	0.43	1.97	0.74	13.88	14.62	130%
Collingwood Street	MH10	CREEK	33.5		2.56		0.00	1.59	119.76	0.530	600	600	0.66	0.50	1.76	0.32	14.62	14.94	106%
SHEPPARD AVENUE	OUTLET																		
Kennedy Road	MH11	MH12	81.4	0.47	0.47	0.70	0.33	0.33	162.27	0.148	300	300	0.89	0.09	1.29	1.05	10.00	11.05	163%
Kennedy Road	MH12	MH13	75.6	0.56	1.03	0.85	0.48	0.81	149.80	0.335	450	450	0.64	0.23	1.43	0.88	11.05	11.93	147%
Kennedy Road	MH13	MH14	86.9	0.56	1.59	0.85	0.48	1.28	140.90	0.502	525	525	0.63	0.34	1.58	0.92	11.93	12.85	147%
Sheppard Avenue	MH15	MH16	107.6	1.60	1.60	0.65	1.04	1.04	162.27	0.469	675	675	1.01	0.84	2.36	0.76	10.00	10.76	56%
EASEMENT	MH17	MH16	63.1	0.69	0.69	0.65	0.45	0.45	162.27	0.202	375	375	1.40	0.21	1.88	0.56	10.00	10.56	98%
Sheppard Avenue	MH16	MH18	32.6	0.09	2.50	0.85	0.43	1.67	153.04	0.709	675	675	1.36	0.21	2.74	0.20	10.76	10.96	72%
Sheppard Avenue	MH18	MH14	67.4	0.21	2.86	0.83	0.10	1.99	150.82	0.709	675	675	2.02	1.19	3.34	0.20	10.76	11.29	70%
Sheppard Avenue	MH14	MH19	108.2	0.79	5.24	0.85	0.67	3.94	132.79	1.456	825	825	0.79	1.28	2.39	0.76	12.85	13.60	114%
Gordon Avenue	MH20	MH21	85.2	0.75	0.75	0.55	0.41	0.41	162.27	0.186	375	375	0.42	0.11	1.03	1.38	10.00	11.38	164%
Gordon Avenue	MH21	MH22	54.3	0.51	1.26	0.60	0.31	0.72	146.32	0.292	450	450	0.62	0.22	1.41	0.64	11.38	12.02	130%
Gordon Avenue	MH22	MH19	12.8		1.26			0.72	140.05	0.280	450	450	1.78	0.38	2.39	0.09	12.02	12.11	74%
Sheppard Avenue	MH19	CREEK	43.2	0.17	6.67	0.85	0.14	4.81	126.85	1.695	975	975	1.68	2.90	3.89	0.19	13.60	13.79	58%
			1																
			_															1	

 $\mathbf{AT}^{\mathbf{C}}$

-0.8

38.7

C=

A=

Q= 2.78* CIA

^{(1).} Storm flow parameters and equations obtained from City of Toronto Design Criteria for Sewers and Watermains, January 2021.

(2). Existing pipe information obtained from plan & profile drawings from the City of Toronto, and Dorsch Model.

^{(3).} See attached proposed storm sewer layout for more details.

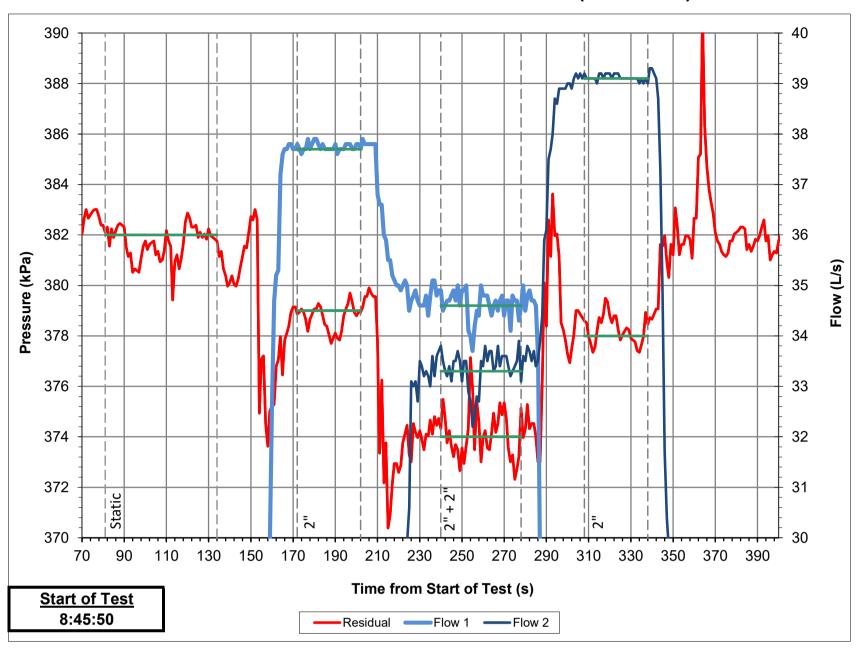
Agincourt EA DOWNSTREAM STORM SEWER ANALYSIS - PRE-DEVELOPMENT 10-YEAR HGL ANALYSIS (COLLINGWOOD STREET) 10 YEAR STORM

DATE REVISED: 2022-10-07
PROJECT NO: 19M-01888
DESIGNED BY: GW/LZ
CHECKED BY: MM
DESIGN SHEET NO: 6 of 7

			TOTAL	TOTAL															Velocity	Velocity	D/S	Pipe	Pipe	Velocity	Total	Depth	Depth	Flow	Flow	HGL	HGL	Obvert	Obvert	Top	Depth		
LOCATION	FROM	то	FLOW	FLOW	Block or	TOTAL	TOTAL	CAPTUE	CB CAPTUR	FLOW	LENGTH	GRADIENT	PIPE SIZE	CAPACITY	VELOCITY	VELOCITY	%Full	%Velocity	U/S	D/S	Invert	Friction	Friction	Head Loss	Losses	of Flow	of Flow	Depth	Depth	Elev	Elev	Elev	Elev	of MH		Froude	Notes
	MH	MH	2-YR	10-YR	Road or	NUMBER	NUMBE	R E	E	USED					FULL	ACTUAL			(V _u)	(V _d)		Slope	Loss	at D/S MH	in D/S MH			Elev.	Elev.	at D/S	at U/S	at D/S	at U/S	Elev	HGL	Number	Notes
			(m³/sec)	(m³/sec)	SCB	LEADS	OF DCB		Y (m³/sec)		(m)	(%)	(mm)	(m³/sec)	(m/sec)	(m/sec)							(H _f)	(H _v)	$(H_v + H_b)$			at D/S	at U/S	(HGL ₁)	(HGL ₁ +H _f)			at U/S	at U/S		
										(m³/sec)									(m/sec)	(m/sec)	(m)	(%)	(m)	(m)	(m)	(%)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(-)	(-)
Kennedy Road	MH5	MH6	0.058	0.107		2		0.120	0.120	0.107	103.9	0.96	300	0.095	1.34	1.50	113.0%	112%	1.50	1.58	169.34	1.23	1.28	0.01	0.01	94%	0.28	169.62	170.62	171.28	172.56	169.64	170.64	172.93	0.37	0.90	SUBCRITICAL
Kennedy Road	MH6	MH7	0.089	0.163		3		0.180	0.180	0.163	91.7	1.06	300	0.100	1.41	1.58	164.0%	112%	1.58	2.71	168.35	2.85	2.62	0.25	0.25	94%	0.28	168.63	169.60	168.65	171.27	168.65	169.62	172.52	1.25	0.95	SUBCRITICAL
Collingwood Street	MH7	MH8	0.134	0.245		0		0.000	0.000	0.134	91.4	2.16	375	0.258	2.33	2.71	95.0%	116%	2.71	2.16	165.13	0.58	0.53	-0.13	0.00	78%	0.29	165.42	167.40	165.64	167.40	165.51	167.48	170.64	3.24	1.60	SUPERCRITIC
Collingwood Street	MH8	мн9	0.235	0.430		4		0.240	0.240	0.240	98.5	1.16	450	0.307	1.93	2.16	140.0%	112%	2.16	2.20	163.93	0.71	0.70	0.01	0.01	94%	0.42	164.35	165.50	164.95	165.64	164.38	165.52	168.20	2.56	1.06	SUPERCRITIC
Collingwood Street	MH9	MH10	0.302	0.553		2		0.120	0.120	0.302	87.2	0.98	525	0.426	1.97	2.20	130.0%	112%	2.20	1.99	163.01	0.49	0.43	-0.04	0.00	94%	0.49	163.50	164.36	164.51	164.94	163.54	164.39	167.34	2.40	1.00	CRITICAL
Collingwood Street	MH10	CREEK	0.290	0.530		0		0.000	0.000	0.290	33.5	0.66	600	0.499	1.76	1.99	106.0%	113%	1.99	0.00	162.76	0.22	0.08	-0.20	0.00	89%	0.53	163.29	163.52	164.43	164.51	163.36	163.58	166 16	1.65	0.87	SUBCRITICAL

CITY OF TORONTO Agincourt EA DOWNSTREAM STORM SEWER ANALYSIS - PRE-DEVELOPMENT 10-YEAR HGL ANALYSIS (SHEPPARD AVENUE) 10 YEAR STORM

DATE REVISED: 2022-10-07 PROJECT NO: 19M-01888 CHECKED BY: MM


DESIGN SHEET NO: 7 of 7

			TOTAL	TOTAL				СВ										Velocity	Velocity	D/S	Pipe	Pipe	Velocity	Total	Depth	Depth	Flow	Flow	HGL	HGL	Obvert	Obvert	Top	Depth		
LOCATION	FROM	TO	FLOW	FLOW		TOTAL		CAPTUR	FLOW	LENGTH	GRADIENT	PIPE SIZE	CAPACITY	VELOCITY	VELOCITY	%Full	%Velocity	U/S	D/S	Invert	Friction	Friction	Head Loss	Losses	of Flow	of Flow	Depth	Depth	Elev	Elev	Elev	Elev	of MH		Froude Number	Notes
	MH	MH	2-YR	10-YR	Block or	NUMBER	TOTAL	E	USED					FULL	ACTUAL			(V _u)	(V _d)		Slope	Loss	at D/S MH	in D/S MH			Elev.	Elev.	at D/S	at U/S	at D/S	at U/S	Elev	HGL	Hulliber	Notes
			(m³/sec)	(m³/sec)	Road or SCB	OF CB LEADS	NUMBER OF DCBS	CAPACIT	IN HGL	(m)	(%)	(mm)	(m³/sec)	(m/sec)	(m/sec)							(H _f)	(H _v)	(H _v +H _b)			at D/S	at U/S	(HGL ₁)	(HGL ₁ +H _f)			at U/S	at U/S		
						LEADS		r (m-/sec)	(m³/sec)									(m/sec)	(m/sec)	(m)	(%)	(m)	(m)	(m)	(%)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(-)	(-)
																		-																	- '	.,
Kennedy Road	MH11	MH12	0.081	0.148		1		0.060	0.081	81.4	0.89	300	0.091	1.29	1.45	163.0%	112%	1.45	1.61	166.06	0.70	0.57	0.02	0.02	73%	0.22	166.28	167.00	168.42	168.98	166.36	167.08	171.73	2.75	0.99 SUBC	CRITICAL
Kennedy Road	MH12	MH13	0.183	0.335		4		0.240	0.240	75.6	0.64	450	0.228	1.43	1.61	147.0%	112%	1.61	1.77	165.40	0.71	0.54	0.03	0.02	88%	0.40		166.28	167.85	168.39	165.85	166.33	170.23	1.84		CRITICAL
Kennedy Road	MH13	MH14	0.274	0.502		4	-	0.440	0.440	86.9	0.63	525	0.341	1.58	1.77	147.0%	112%	1.77	2.67	164.80	1.05	0.91	0.03	0.03	94%	0.49		165.84	166.92	167.83	165.33		169.23	1.40		CRITICAL
Reilliedy Road	mnis	MIT IS	0.274	0.502	1	4	2	0.440	0.440	86.9	0.63	525	0.341	1.58	1.77	147.0%	112%	1.77	2.67	164.80	1.05	0.91	0.21	0.21	94%	0.49	165.29	165.84	166.92	167.83	165.33	165.87	169.23	1.40	0.80 SUBC	RITICAL
					1														Ι								г									
Sheppard Avenue	MH15		0.255	0.469		2		0.120	0.255	103.9	0.96	675	0.845	2.36	2.43	56.0%	103%	2.43	3.01	166.61	0.09	0.10	0.16	0.16	38%	0.26	166.87	167.86	167.34	167.86	167.29	168.28	171.60	3.74	1.53 SUPE	
EASEMENT	MH17	MH16	0.110	0.202		0		0.000	0.110	63.1	1.40	375	0.207	1.88	2.18	98.0%	116%	2.18	3.01	166.89	0.39	0.25	0.22	0.22	52%	0.20	167.09	167.97	167.40	167.97	167.27	168.15	172.21	4.24	1.58 SUPE	RCRITICAL
Sheppard Avenue	MH16	MH18	0.386	0.709		1		0.060	0.386	32.6	1.36	675	0.980	2.74	3.01	72.0%	110%	3.01	3.61	166.00	0.21	0.07	0.20	0.20	44%	0.30	166.30	166.74	167.11	167.18	166.68	167.12	170.81	3.63	1.77 SUPE	RCRITICAL
Sheppard Avenue	MH18	MH14	0.455	0.835		2		0.120	0.455	67.4	2.02	675	1.195	3.34	3.61	70.0%	108%	3.61	2.67	164.57	0.29	0.20	-0.30	0.00	43%	0.29	164.86	166.22	166.71	166.91	165.25	166.61	170.01	3.10	2.14 SUPE	RCRITICAL
Sheppard Avenue	MH14	MH19	0.795	1.456		5		0.300	0.795	108.2	0.79	825	1.276	2.39	2.67	114.0%	112%	2.67	4.09	163.48	0.31	0.33	0.49	0.49	58%	0.48	163.96	164.81	166.38	166.71	164.31	165.16	168.66	1.95	1.23 SUPE	RCRITICAL
			•	•							•		•		•				•			•														
Gordon Road	MH20	MH21	0.101	0.186		3		0.180	0.180	85.2	0.42	375	0.114	1.03	1.15	164.0%	112%	1.15	1.58	164.47	1.05	0.90	0.06	0.06	94%	0.35	164.82	165.18	166.88	167.78	164.85	165.20	167.82	0.04	0.62 SUBC	CRITICAL
Gordon Road	MH21	MH22	0.159	0.292		1		0.060	0.159	54.3	0.62	450	0.224	1.41	1.58	130.0%	112%	1.58	2.65	164.14	0.31	0.17	0.23	0.23	63%	0.28		164.76	166.65	166.82	164.59		167.07	0.25		CRITICAL
Gordon Road	MH22	MH19	0.153	0.280		1		0.060	0.153	12.8	1.78	450	0.380	2.39	2.65	74.0%	111%	2.65	4.09	163.89	0.29	0.04	0.49	0.49	45%	0.20	164.09	164.72	166.39	166.42	164.34		166.63	0.21		RCRITICAL
				2.200	1	<u> </u>		2.200	200	.2.0		.50						00			5.20	2.04	2.40	2.40		2.20									001 L	
Sheppard Avenue	MH19	CREEK	0.927	1.695				0.120	0.927	43.2	1.68	975	2.905	3.89	4.09	58.0%	105%	4.09	0.00	162.63	0.17	0.07	-0.85	0.00	40%	0.39	163.02	163.75	165.82	165.89	400.04	404.22	400 E 4	0.05	2.09 SUPE	DODITION
			0.321	1.095	1	1 2		0.120	0.021	4U.Z	1.00	913	2.005	3.09	4.09	30.070	10370	4.09	0.00	102.03	0.17	0.07	-0.00	0.00	4-U76	0.39	100.02	103.75	100.02	103.09	103.01	104.33	100.34	0.05	2.00 SUPE	INCINITIONE

APPENDIX

WATER DISTRIBUTION NETWORK ANALYSIS

Test 1 - 3905 SHEPPARD AVE E (HY135743)

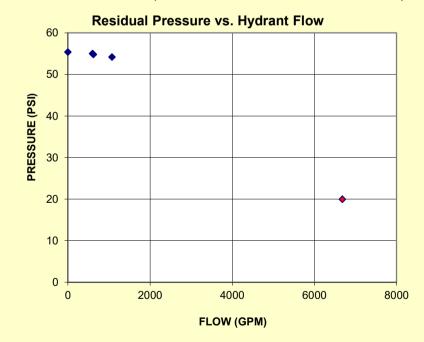
	Subject Wa	atermain Details	Subject Hydrant & Valve Details
Diameter:		Material:	Residual Hydrant: HY135743
Area:	N/A		Flow Hydrant: HY135737

TABLE A: TESTED PRESSURES AND FLOWS

TABLE A. TESTED I REGOOKES AND I ESWS											
	Time		Resi	Residual		Flow Hydrant (HY135737)				Flow	Velocity
Point			on Residual Hydra		Port 1 (S1)		Port 2 (S2)		- Total Flow		velocity
	Start	Finish	(kPa)	(psi)	(L/s)	(GPM)	(L/s)	(GPM)	(L/s)	(GPM)	(m/s)
Static	81	134	382	55.4	0.0	0	0.0	0	0.0	0	N/A
2"	172	202	379	55.0	37.7	598	0.0	0	37.7	598	N/A
2"	308	338	378	54.8	0.0	0	39.1	620	39.1	620	N/A
1" + 2"			0	0.0	0.0	0	0.0	0	0.0	0	N/A
2" + 2"	240	278	374	54.2	34.6	548	33.3	528	67.9	1076	N/A

3905 SHEPPARD AVE E (HY135743)

HYDRANT FLOW TEST RESULTS


Conditions before Test (STATIC)								
Residual Hydrant:	55.4 psi	382 kPa						
Hydrant that will Flow:	55.4 psi	382 kPa						
Δ pressure:	0.0 psi	0 kPa						
Elevation Difference:	0.0 ft	0.0 m						
(Flow El Residual El.)								
Test Notes:								

TEST		TEST FLOW		RESIDUAL PRESSURE (psi)			Fire Flow at	Fire Flow at			
Port Size (in)	Nozzle Pressure (psi)	(USGPM)	(L/s)	Monitoring Hydrant	Flow Hydrant (Corrected) *	Minimum Residual P _r (psi)	Minimum Residual, Q _r (USGPM)	Minimum Residual, Q _r (L/s)	2% Pressure Drop Achieved?		
STATIC	n/a	0	0	55.4	55.4						
Single Port	Tests										
2	14.7	598.0	37.7	55.0	55.0	20	6691	422	NO		
2	15.8	620.0	39.1	54.8	54.8	20	5584	352	NO		
Two Port	Test										
1						20					
2						20					
Two Port	Test										
2	11.5	528.0	33.3	54.2	5/1.2	20	6670	121	VEQ		

54.2

20

54.2

548.0

34.6

Results								
Static P	ressure	Flow at 20 psi (140kPa)						
(psi)	(kPa)	(gpm)	(L/s)					
55.4	382	6700	423					

421

YES

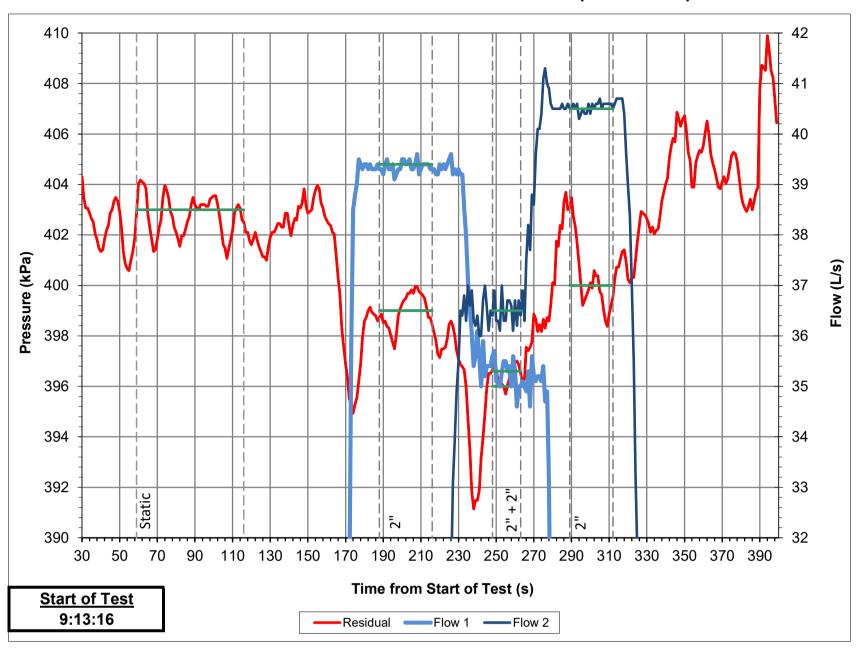
6679

Hydrant Classification as per NFPA 291								
Class	AA	Color	BLUE					

Water Discharged During Test:	9700 L
Rounded up to closest 100L	

DISCLAIMER FOR FIRE FLOW TESTS

12.3


While WSP makes every effort to ensure that the information contained herein is accurate and up to date, WSP is not responsible for unintended or incorrect use of the data and information described and/or contained herein. The user must make his/her own determination as to its accuracy and suitability. The information is representative for a dynamic water system that may change over time.

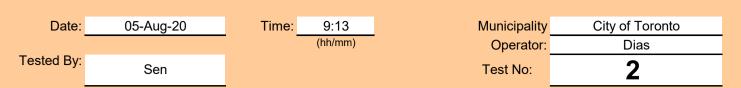
© WSP Canada Inc. 2014.

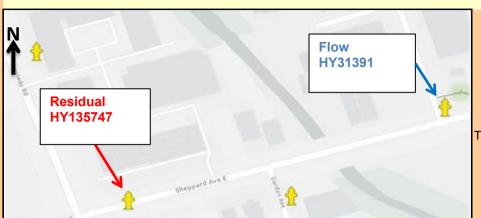
^{*} Pressure correction is equal to the elevation difference. Column 2 (and Table A) show the nozzle pressure while flowing.

^{*} Results carried to nearest 50 gpm or 100 gpm if over 1000 gpm

Test 2 - 4068 SHEPPARD AVE E (HY135747)

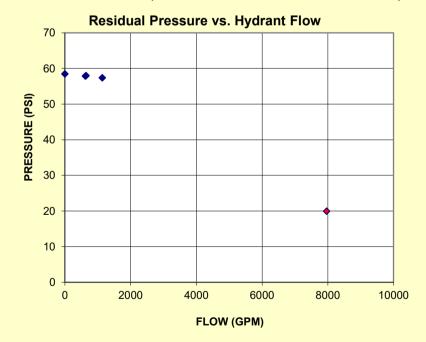
	Subject Wa	atermain Details	Subject Hydrant & Valve Details				
Diameter:		Material:	Residual Hydrant: HY135747				
Area:	N/A		Flow Hydrant: HY31391				


TABLE A: TESTED PRESSURES AND FLOWS


TABLE A. TESTED PRESSURES AND PLOWS											
	Time Point		Residual		Flow Hydrant (HY31391)				Total Flow		Velocity
Point			on Residual Hydra		Port 1 (S1)		Port 2 (S2)		1 Otal Flow		velocity
	Start	Finish	(kPa)	(psi)	(L/s)	(GPM)	(L/s)	(GPM)	(L/s)	(GPM)	(m/s)
Static	59	116	403	58.5	0.0	0	0.0	0	0.0	0	N/A
2"	188	216	399	57.9	39.4	625	0.0	0	39.4	625	N/A
2"	289	312	400	58.0	0.0	0	40.5	642	40.5	642	N/A
1" + 2"			0	0.0	0.0	0	0.0	0	0.0	0	N/A
2" + 2"	248	263	396	57.4	35.3	560	36.5	579	71.8	1138	N/A

4068 SHEPPARD AVE E (HY135747)

HYDRANT FLOW TEST RESULTS



Conditions before Test (STATIC)								
Residual Hydrant:	58.5 psi	403 kPa						
Hydrant that will Flow:	58.5 psi	403 kPa						
∆ pressure:	0.0 psi	0 kPa						
Elevation Difference:	0.0 ft	0.0 m						
(Flow El Residual El.)								
Test Notes:								

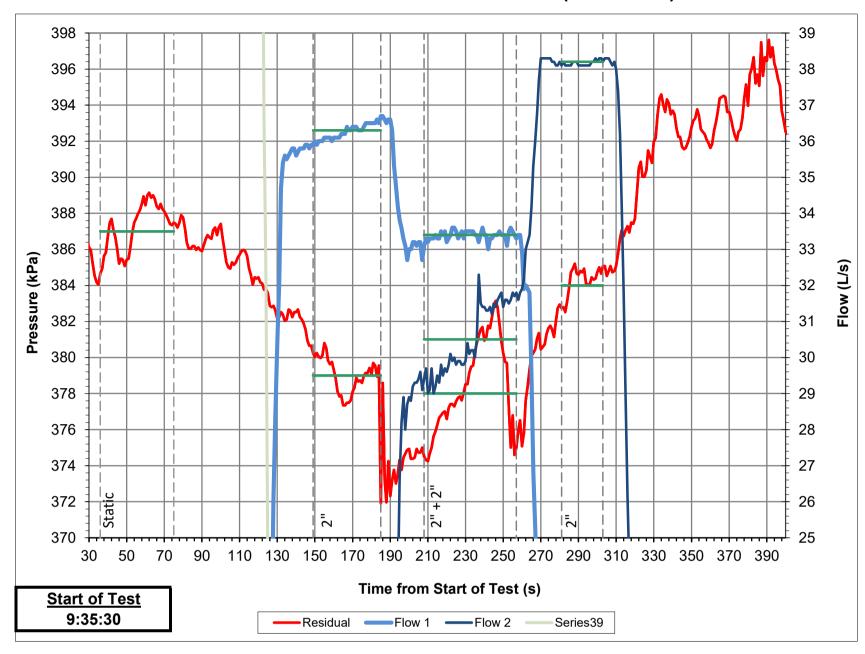
TEST		TEST	FLOW	RESIDUAL PRESSURE (psi)			Fire Flow at	Fire Flow at		
Port Size (in)	Nozzle Pressure (psi)	(USGPM)	(L/s)	Monitoring Hydrant	Flow Hydrant (Corrected) *	Minimum Residual P _r (psi)	Minimum Residual, Q _r (USGPM)	Minimum Residual, Q _r (L/s)	1.6% Pressure Drop Achieved?	
STATIC	n/a	0	0	58.5	58.5					
Single Port	Tests									
2	16.1	625.0	39.4	57.9	57.9	20	6192	391	NO	
2	16.9	642.0	40.5	58	58.0	20	7088	447	NO	
Two Port	Test									
1						20				
2						20				
Two Port	Test									
2	12.9	560.0	35.3	57.4	57.4	20	7959	502	YES	
2	13.8	579.0	36.5	57.4	57.4	20	1909	302	120	

^{*} Pressure correction is equal to the elevation difference. Column 2 (and Table A) show the nozzle pressure while flowing.

Results						
Static P	ressure	Flow at 20 psi (140kPa)*				
(psi)	(kPa)	(gpm)	(L/s)			
58.5	403	8000	505			

^{*} Results carried to nearest 50 gpm or 100 gpm if over 1000 gpm

Hydrant Classification as per NFPA 291					
Class	AA	Color	BLUE		


Water Discharged During Test:	8400 L					
Rounded up to closest 100L						

DISCLAIMER FOR FIRE FLOW TESTS

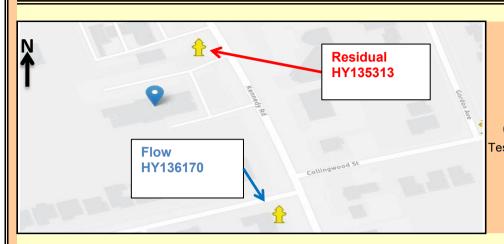
While WSP makes every effort to ensure that the information contained herein is accurate and up to date, WSP is not responsible for unintended or incorrect use of the data and information described and/or contained herein. The user must make his/her own determination as to its accuracy and suitability. The information is representative for a dynamic water system that may change over time.

© WSP Canada Inc. 2014.

Test 3 - 2250 KENNEDY RD (HY135313)

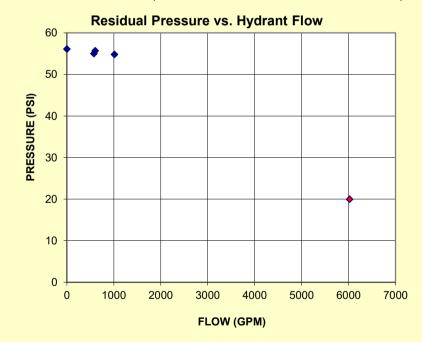
Subject Watermain DetailsSubject Hydrant & Valve DetailsDiameter:Material:Residual Hydrant:HY135313Area:N/AFlow Hydrant:HY136170

TABLE A: TESTED PRESSURES AND FLOWS


TABLE A. TEOTED I REGOGNED AND I EOWO											
	Point		Residual		Flow Hydrant (HY136170)				Total Flow		Valacity
Point			on Residual Hydra		Port 1 (S1)		Port 2 (S2)		Total Flow		Velocity
	Start	Finish	(kPa)	(psi)	(L/s)	(GPM)	(L/s)	(GPM)	(L/s)	(GPM)	(m/s)
Static	36	75	387	56.1	0.0	0	0.0	0	0.0	0	N/A
2"	149	185	379	55.0	36.3	575	0.0	0	36.3	575	N/A
2"	281	303	384	55.7	0.0	0	38.2	605	38.2	605	N/A
1" + 2"			0	0.0	0.0	0	0.0	0	0.0	0	N/A
2" + 2"	208	257	378	54.8	33.4	529	30.5	483	63.9	1013	N/A

2250 KENNEDY RD (HY135313)

HYDRANT FLOW TEST RESULTS



Conditions before Test (STATIC)								
Residual Hydrant:	56.1 psi	387 kPa						
Hydrant that will Flow:	56.1 psi	387 kPa						
Δ pressure:	0.0 psi	0 kPa						
Elevation Difference:	0.0 ft	0.0 m						
(Flow El Residual El.)								
est Notes:								

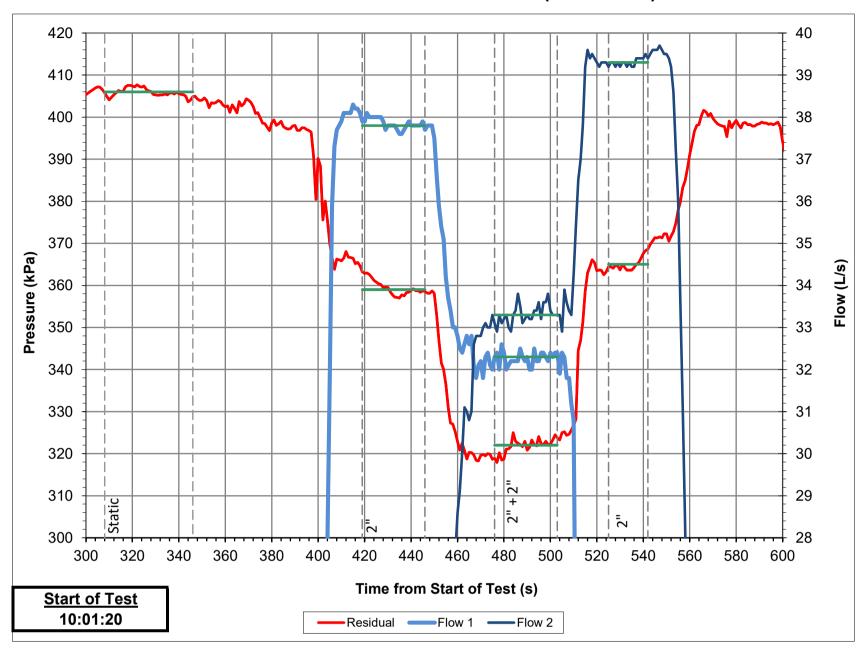
TEST		TEST I	FLOW	RESIDUAL P	RESSURE (psi)		Fire Flow at	Fire Flow at	
Port Size (in)	Nozzle Pressure (psi)	(USGPM)	(L/s)	Monitoring Hydrant	Flow Hydrant (Corrected) *	Minimum Residual P _r (psi)	Minimum Residual, Q _r (USGPM)	Minimum Residual, Q _r (L/s)	2.3% Pressure Drop Achieved?
STATIC	n/a	0	0	56.1	56.1				
Single Port Tests									
2	13.6	575.0	36.3	55.0	55.0	20	3735	236	NO
2	15.0	605.0	38.2	55.7	55.7	20	6624	418	NO
Two Port	Test								
1						20			
2						20			
Two Port Test									
2	9.6	483.0	30.5	54.8	54.8	20	6020	380	YES
2	11.5	529.0	33.4	54.0	54.0	20	0020	360	123

^{*} Pressure correction is equal to the elevation difference. Column 2 (and Table A) show the nozzle pressure while flowing.

Results						
Static P	ressure	Flow at 20 psi (140kPa)*				
(psi)	(kPa)	(gpm)	(L/s)			
56.1	387	6000	379			

^{*} Results carried to nearest 50 gpm or 100 gpm if over 1000 gpm

Hydrant Classification as per NFPA 291					
Class AA Color B					


Water Discharged During Test:	9200 L
Rounded up to closest 100L	

DISCLAIMER FOR FIRE FLOW TESTS

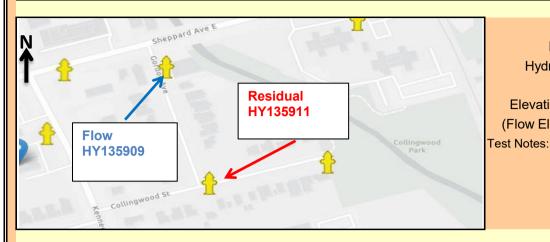
While WSP makes every effort to ensure that the information contained herein is accurate and up to date, WSP is not responsible for unintended or incorrect use of the data and information described and/or contained herein. The user must make his/her own determination as to its accuracy and suitability. The information is representative for a dynamic water system that may change over time.

© WSP Canada Inc. 2014.

Test 4 - 1 GORDON AVE (HY135911)

	Subject Wa	atermain Details	Subject Hydrant & Valve Details			
Diameter:		Material:	Residual Hydrant: HY135911			
Area:	N/A		Flow Hydrant: HY135909			

TABLE A: TESTED PRESSURES AND FLOWS


TABLE A. TESTED FRESSURES AND FLOWS											
Tim		Time		dual	Flow Hydrant (HY135909)				Total Flow		Velocity
Point	Time		on Residual Hydra		Port 1 (S1)		Port 2 (S2)		1 Otal Flow		Velocity
	Start	Finish	(kPa)	(psi)	(L/s)	(GPM)	(L/s)	(GPM)	(L/s)	(GPM)	(m/s)
Static	308	346	406	58.9	0.0	0	0.0	0	0.0	0	N/A
2"	419	446	359	52.1	37.8	599	0.0	0	37.8	599	N/A
2"	525	542	365	52.9	0.0	0	39.3	623	39.3	623	N/A
1" + 2"			0	0.0	0.0	0	0.0	0	0.0	0	N/A
2" + 2"	476	503	322	46.7	32.3	512	33.3	528	65.6	1040	N/A

1 GORDON AVE (HY135911)

HYDRANT FLOW TEST RESULTS



Conditions before Test (STATIC)							
Residual Hydrant:	58.9 psi	406 kPa					
Hydrant that will Flow:	58.9 psi	406 kPa					
∆ pressure:	0.0 psi	0 kPa					
Elevation Difference:	0.0 ft	0.0 m					
(Flow El Residual El.)							
-4 NI-4							

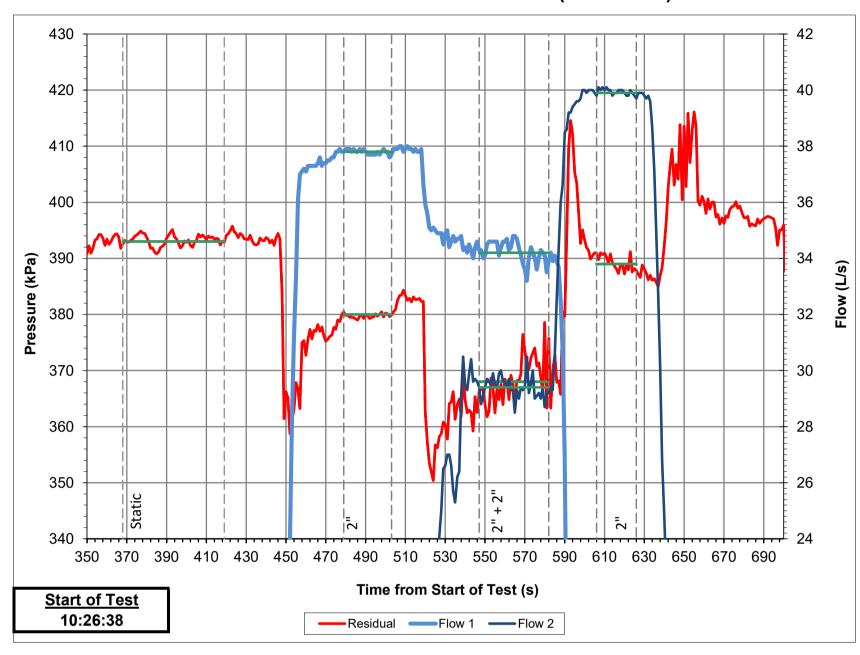
TEST		TEST I	LOW	RESIDUAL P	RESSURE (psi)		Fire Flow at	Fire Flow at	
Port Size (in)	Nozzle Pressure (psi)	(USGPM)	(L/s)	Monitoring Hydrant	Flow Hydrant (Corrected) *	Minimum Residual P _r (psi)	Minimum Residual, Q _r (USGPM)	Minimum Residual, Q _r (L/s)	20% Pressure Drop Achieved?
STATIC	n/a	0	0	58.9	58.9				
Single Port	Tests								
2	14.7	599.0	37.8	52.1	52.1	20	1538	97	NO
2	15.9	623.0	39.3	52.9	52.9	20	1711	108	NO
Two Port	Test								
1						20			
2						20			
Two Port Test									
2	10.8	512.0	32.3	46.7	46.7	20	1946	123	YES
2	11.5	528.0	33.3	40.7	40.7	20	1940	125	123

^{*} Pressure correction is equal to the elevation difference. Column 2 (and Table A) show the nozzle pressure while flowing.

Results						
Static P	ressure	Flow at 20 psi (140kPa)*				
(psi)	(kPa)	(gpm)	(L/s)			
58.9	406	1900	120			

^{*} Results carried to nearest 50 gpm or 100 gpm if over 1000 gpm

Hydrant Classification as per NFPA 291					
Class	AA	Color	BLUE		


Water Discharged During Test:	7700 L	
Rounded up to closest 100L		

DISCLAIMER FOR FIRE FLOW TESTS

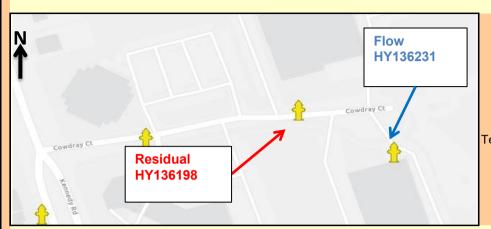
While WSP makes every effort to ensure that the information contained herein is accurate and up to date, WSP is not responsible for unintended or incorrect use of the data and information described and/or contained herein. The user must make his/her own determination as to its accuracy and suitability. The information is representative for a dynamic water system that may change over time.

© WSP Canada Inc. 2014.

Test 5 - 80 COWDRAY CRT (HY136198)

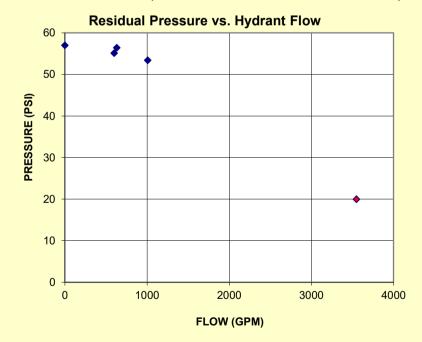
Subject Watermain Details			Subject Hydrant & Valve Details
Diameter:		Material:	Residual Hydrant: HY136198
Area:	N/A		Flow Hydrant: HY136231

TABLE A: TESTED PRESSURES AND FLOWS


TABLE A. TEOTED I REGOONED AND I EOWO											
	Time		Residual		Flow Hydrant (HY136231)				Total Flow		Velocity
Point			on Residual Hydra		Port 1 (S1)		Port 2 (S2)		1 Otal Flow		velocity
	Start	Finish	(kPa)	(psi)	(L/s)	(GPM)	(L/s)	(GPM)	(L/s)	(GPM)	(m/s)
Static	368	419	393	57.0	0.0	0	0.0	0	0.0	0	N/A
2"	479	503	380	55.1	37.8	599	0.0	0	37.8	599	N/A
2"	606	626	389	56.4	0.0	0	39.9	632	39.9	632	N/A
1" + 2"			0	0.0	0.0	0	0.0	0	0.0	0	N/A
2" + 2"	547	582	368	53.4	34.2	542	29.4	466	63.6	1008	N/A

80 COWDRAY CRT (HY136198)

HYDRANT FLOW TEST RESULTS



Conditions before Test (STATIC)							
Residual Hydrant:	57.0 psi	393 kPa					
Hydrant that will Flow:	57.0 psi	393 kPa					
Δ pressure:	0.0 psi	0 kPa					
Elevation Difference:	0.0 ft	0.0 m					
Flow El Residual El.)							
Notos							

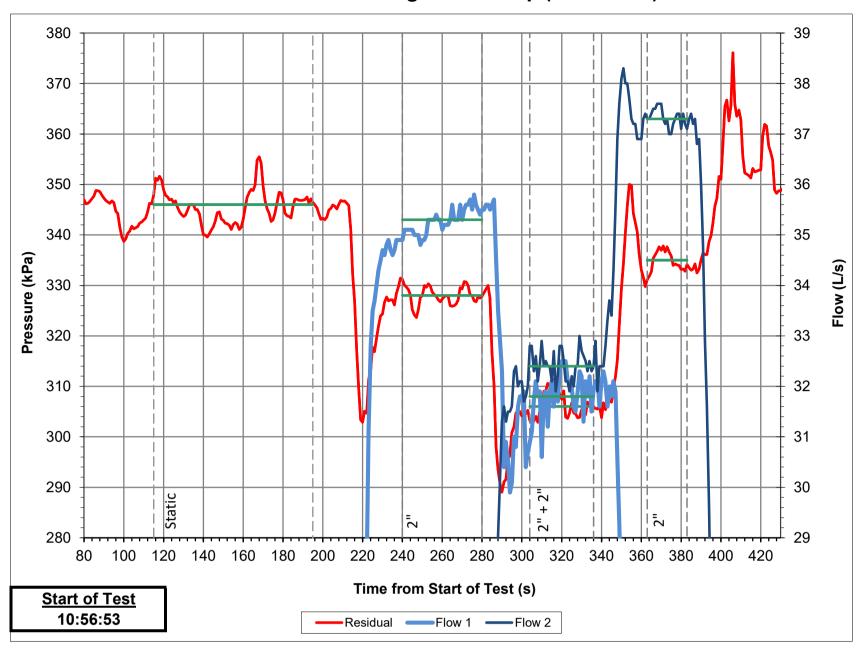
TEST		TEST	FLOW	RESIDUAL P	PRESSURE (psi)		Fire Flow at	Fire Flow at	
Port Size (in)	Nozzle Pressure (psi)	(USGPM)	(L/s)	Monitoring Hydrant	Flow Hydrant (Corrected) *	Minimum Residual P _r (psi)	Minimum Residual, Q _r (USGPM)	Minimum Residual, Q _r (L/s)	6% Pressure Drop Achieved?
STATIC	n/a	0	0	57.0	57.0				
Single Port Tests									
2	14.7	599.0	37.8	55.1	55.1	20	2977	188	NO
2	16.4	632.0	39.9	56.4	56.4	20	5853	369	NO
Two Port	Test								
1						20			
2						20			
Two Port Test									
2	8.9	466.0	29.4	53.4	53.4	20	3547	224	YES
2	12.1	542.0	34.2	55.4	33.4	20	3347	224	123

^{*} Pressure correction is equal to the elevation difference. Column 2 (and Table A) show the nozzle pressure while flowing.

Results						
Static P	ressure	Flow at 20 psi (140kPa)*				
(psi)	(kPa)	(gpm)	(L/s)			
57.0	393	3500	221			

^{*} Results carried to nearest 50 gpm or 100 gpm if over 1000 gpm

Hydrant Classification as per NFPA 291					
Class	AA	Color	BLUE		


Water Discharged During Test:	9100 L
Rounded up to closest 100l	

DISCLAIMER FOR FIRE FLOW TESTS

While WSP makes every effort to ensure that the information contained herein is accurate and up to date, WSP is not responsible for unintended or incorrect use of the data and information described and/or contained herein. The user must make his/her own determination as to its accuracy and suitability. The information is representative for a dynamic water system that may change over time.

© WSP Canada Inc. 2014.

Test 6 - Village Green Sq (HY136410)

Subject Watermain DetailsSubject Hydrant & Valve DetailsDiameter:Material:Residual Hydrant:HY136410Area:N/AFlow Hydrant:HY136412

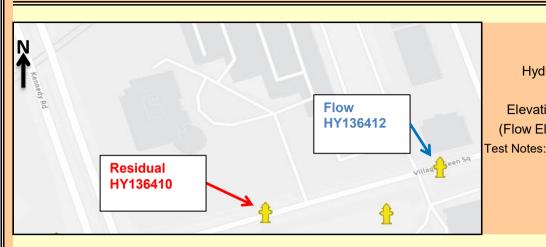
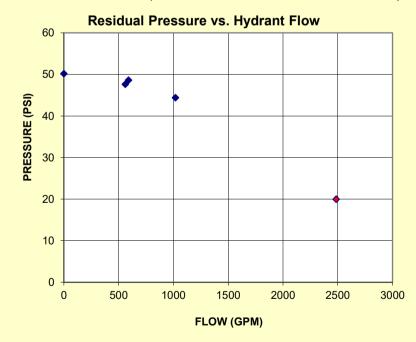

TABLE A: TESTED PRESSURES AND FLOWS

TABLE A. TESTED I RESSERES AND LESTIC											
	Tim	Time		Residual		Flow Hydrant (HY136412)				Flow	Velocity
Point	Time		on Residual Hydra		Port 1 (S1)		Port 2 (S2)		Total Flow		velocity
	Start	Finish	(kPa)	(psi)	(L/s)	(GPM)	(L/s)	(GPM)	(L/s)	(GPM)	(m/s)
Static	115	195	346	50.2	0.0	0	0.0	0	0.0	0	N/A
2"	240	280	328	47.6	35.3	560	0.0	0	35.3	560	N/A
2"	363	383	335	48.6	0.0	0	37.3	591	37.3	591	N/A
1" + 2"			0	0.0	0.0	0	0.0	0	0.0	0	N/A
2" + 2"	304	336	306	44.4	31.8	504	32.4	514	64.2	1018	N/A

Village Green Sq (HY136410) HYDRANT FLOW TEST RESULTS



Conditions before Test (STATIC)								
Residual Hydrant:	50.2 psi	346 kPa						
Hydrant that will Flow:	50.2 psi	346 kPa						
Δ pressure:	0.0 psi	0 kPa						
Elevation Difference:	0.0 ft	0.0 m						
(Flow El Residual El.)								

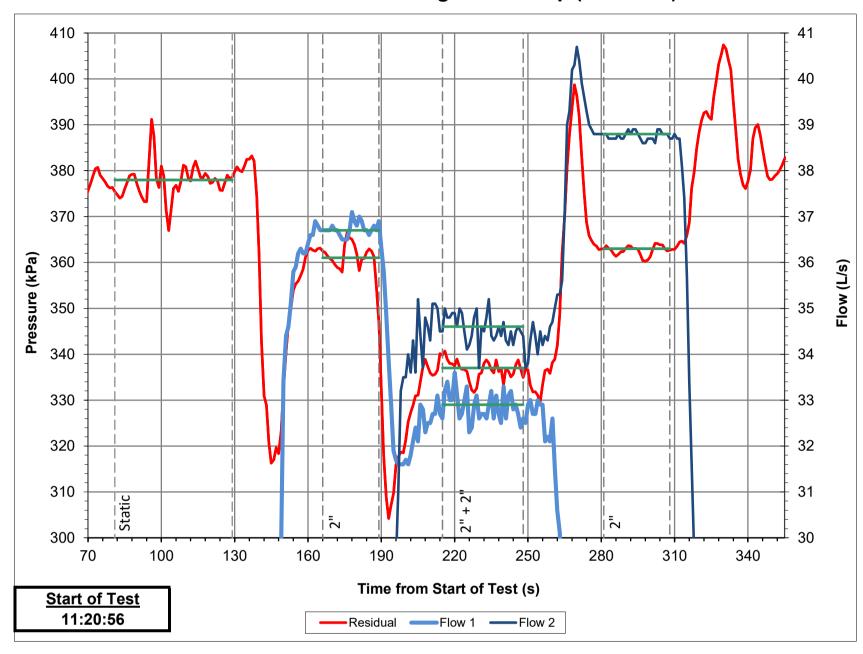
TEST		TEST FLOW RESIDUAL PRESSURE (psi)			Fire Flow at	Fire Flow at				
Port Size (in)	Nozzle Pressure (psi)	(USGPM)	(L/s)	Monitoring Hydrant	Flow Hydrant (Corrected) *	Minimum Residual P _r (psi)	Minimum Residual, Q _r (USGPM)	Minimum Residual, Q _r (L/s)	11% Pressure Drop Achieved?	
STATIC	n/a	0	0	50.2	50.2					
Single Port	Single Port Tests									
2	12.9	560.0	35.3	47.6	47.6	20	2112	133	NO	
2	14.4	591.0	37.3	48.6	48.6	20	2904	183	NO	
Two Port	Two Port Test									
1						20				
2						20				
Two Port	Two Port Test									
2	10.4	504.0	31.8	44.4	44.4	20	2485	157	YES	
2	10.9	514.0	32.4	44.4	77.7	20	2400	137	120	

^{*} Pressure correction is equal to the elevation difference. Column 2 (and Table A) show the nozzle pressure while flowing.

Results								
Static P	ressure	Flow at 20 psi (140kPa)*						
(psi)	(kPa)	(gpm)	(L/s)					
50.2	346	2500	158					

* Results carried to nearest 50 gpm or 100 gpm if over 1000 gpm

Hydrant Classification as per NFPA 291						
Class	AA	Color	BLUE			


Water Discharged During Test:	8400 L
Rounded up to closest 100L	

DISCLAIMER FOR FIRE FLOW TESTS

While WSP makes every effort to ensure that the information contained herein is accurate and up to date, WSP is not responsible for unintended or incorrect use of the data and information described and/or contained herein. The user must make his/her own determination as to its accuracy and suitability. The information is representative for a dynamic water system that may change over time.

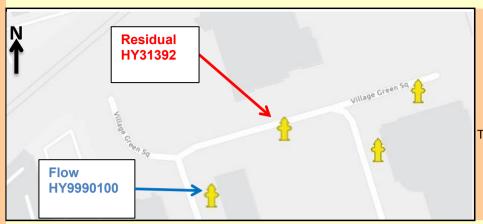
© WSP Canada Inc. 2014.

Test 7 - 255 Village Green Sq (HY31392)

Subject Watermain DetailsSubject Hydrant & Valve DetailsDiameter:Material:Residual Hydrant:HY31392Area:N/AFlow Hydrant:HY9990100

TABLE A: TESTED PRESSURES AND FLOWS

TABLE A. TESTED I RESSERES AND LESTIC											
	Time		Residual		Flow Hydrant (HY9990100)				Total Flow		Velocity
Point			on Residual Hydra		Port 1 (S1)		Port 2 (S2)		Total Flow		velocity
	Start	Finish	(kPa)	(psi)	(L/s)	(GPM)	(L/s)	(GPM)	(L/s)	(GPM)	(m/s)
Static	81	129	378	54.8	0.0	0	0.0	0	0.0	0	N/A
2"	166	189	361	52.4	36.7	582	0.0	0	36.7	582	N/A
2"	281	308	363	52.6	0.0	0	38.8	615	38.8	615	N/A
1" + 2"			0	0.0	0.0	0	0.0	0	0.0	0	N/A
2" + 2"	215	248	337	48.9	32.9	521	34.6	548	67.5	1070	N/A

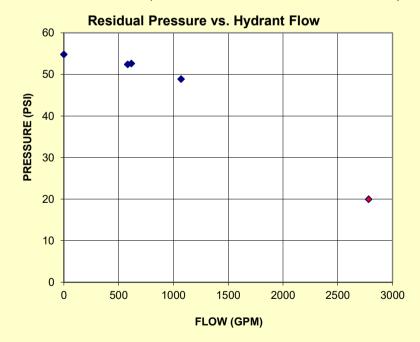


255 Village Green Sq (HY31392) HYDRANT FLOW TEST RESULTS

 Date:
 05-Aug-20
 Time:
 11:20
 Municipality
 City of Toronto

 (hh/mm)
 Operator:
 Dias

 Tested By:
 Sen
 Test No:
 7



Conditions before Test (STATIC)								
Residual Hydrant:	54.8 psi	378 kPa						
Hydrant that will Flow:	54.8 psi	378 kPa						
Δ pressure:	0.0 psi	0 kPa						
Elevation Difference:	0.0 ft	0.0 m						
(Flow El Residual El.)								
st Notes:								

TEST		TEST	FLOW	RESIDUAL PRESSURE (psi)			Fire Flow at	Fire Flow at		
Port Size (in)	Nozzle Pressure (psi)	(USGPM)	(L/s)	Monitoring Hydrant	Flow Hydrant (Corrected) *	Minimum Residual P _r (psi)	Minimum Residual, Q _r (USGPM)	Minimum Residual, Q _r (L/s)	10% Pressure Drop Achieved?	
STATIC	n/a	0	0	54.8	54.8					
Single Port	Single Port Tests									
2	13.9	582.0	36.7	52.4	52.4	20	2454	155	NO	
2	15.5	615.0	38.8	52.6	52.6	20	2717	171	NO	
Two Port	Two Port Test									
1						20				
2						20				
Two Port Test										
2	11.2	521.0	32.9	48.9	48.9	20	2782	176	YES	
2	12.3	548.0	34.6	40.9	40.9	20	2102	170		

^{*} Pressure correction is equal to the elevation difference. Column 2 (and Table A) show the nozzle pressure while flowing.

	Results								
Static P	ressure	Flow at 20 psi (140kPa)							
(psi)	(kPa)	(gpm)	(L/s)						
54.8	378	2800	177						

* Results carried to nearest 50 gpm or 100 gpm if over 1000 gpm

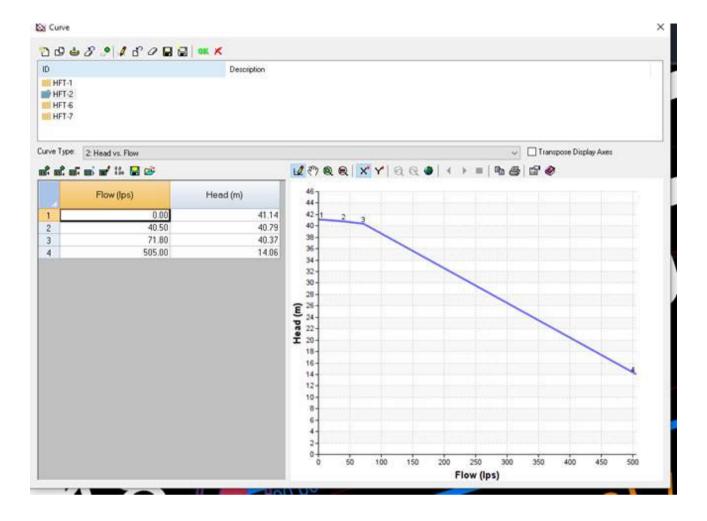
Hydrant Classification as per NFPA 291						
Class	AA	Color	BLUE			

Water Discharged During Test:	8900 L
Rounded up to closest 100l	

DISCLAIMER FOR FIRE FLOW TESTS

While WSP makes every effort to ensure that the information contained herein is accurate and up to date, WSP is not responsible for unintended or incorrect use of the data and information described and/or contained herein. The user must make his/her own determination as to its accuracy and suitability. The information is representative for a dynamic water system that may change over time.

© WSP Canada Inc. 2014.


Residential Commercial Apartments

310 LCD 0.00359 L/s 190 LCD 0.0022 L/s 3.5 unit 2.7 unit 400 ppl/ha 1.1 100m² 3.3 100m² 1.4 2.1 3.1 Single Family = Townhouse = Apartments = Max Day Peak Hour Min Hour 1.50 2.25 0.80 1.30 2.50 0.84 1.10 1.20 Rate 1 Bed Apartment 2 Bed Apartment 3 Bed Apartment High-rise 0.84 ICI =

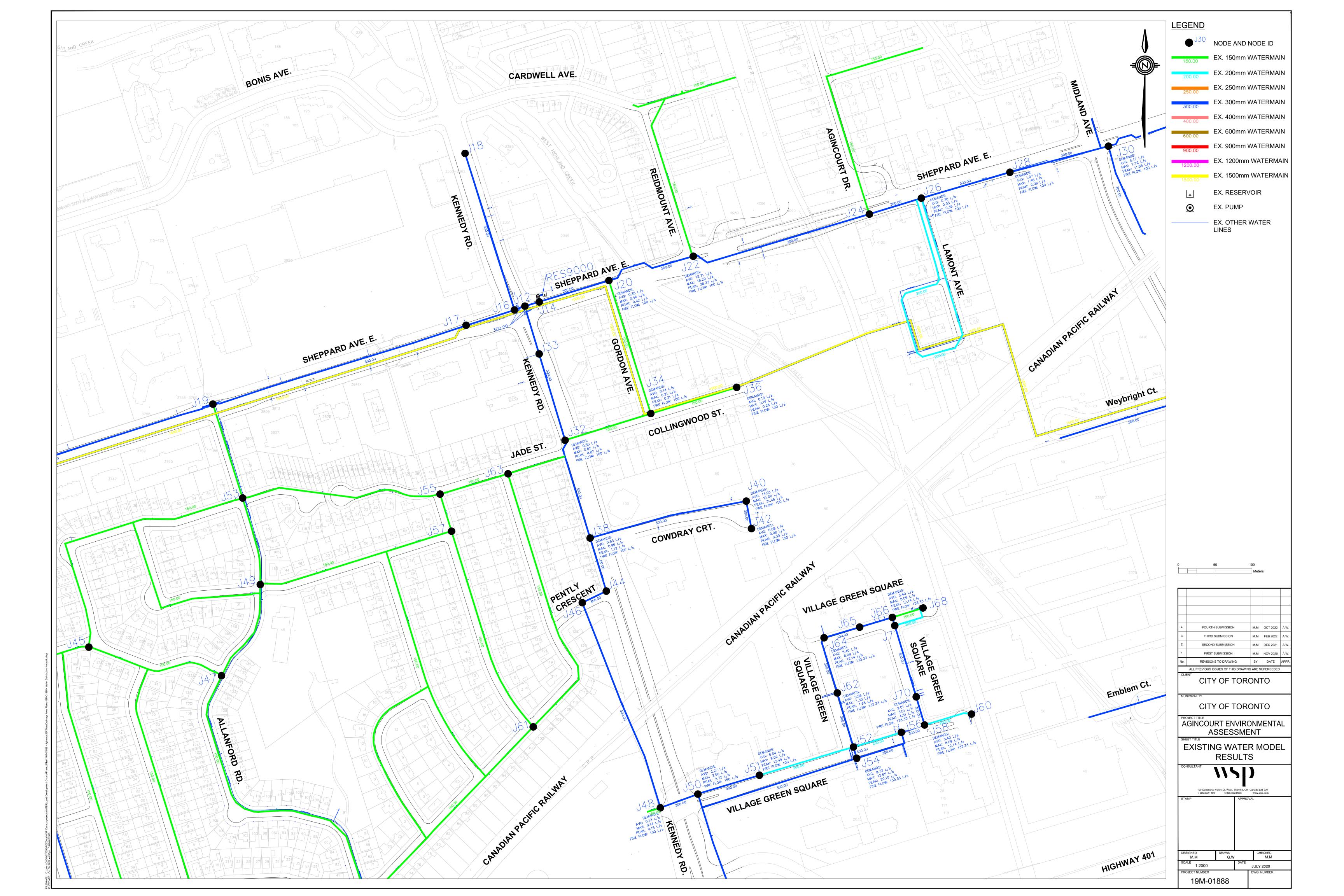
Office =

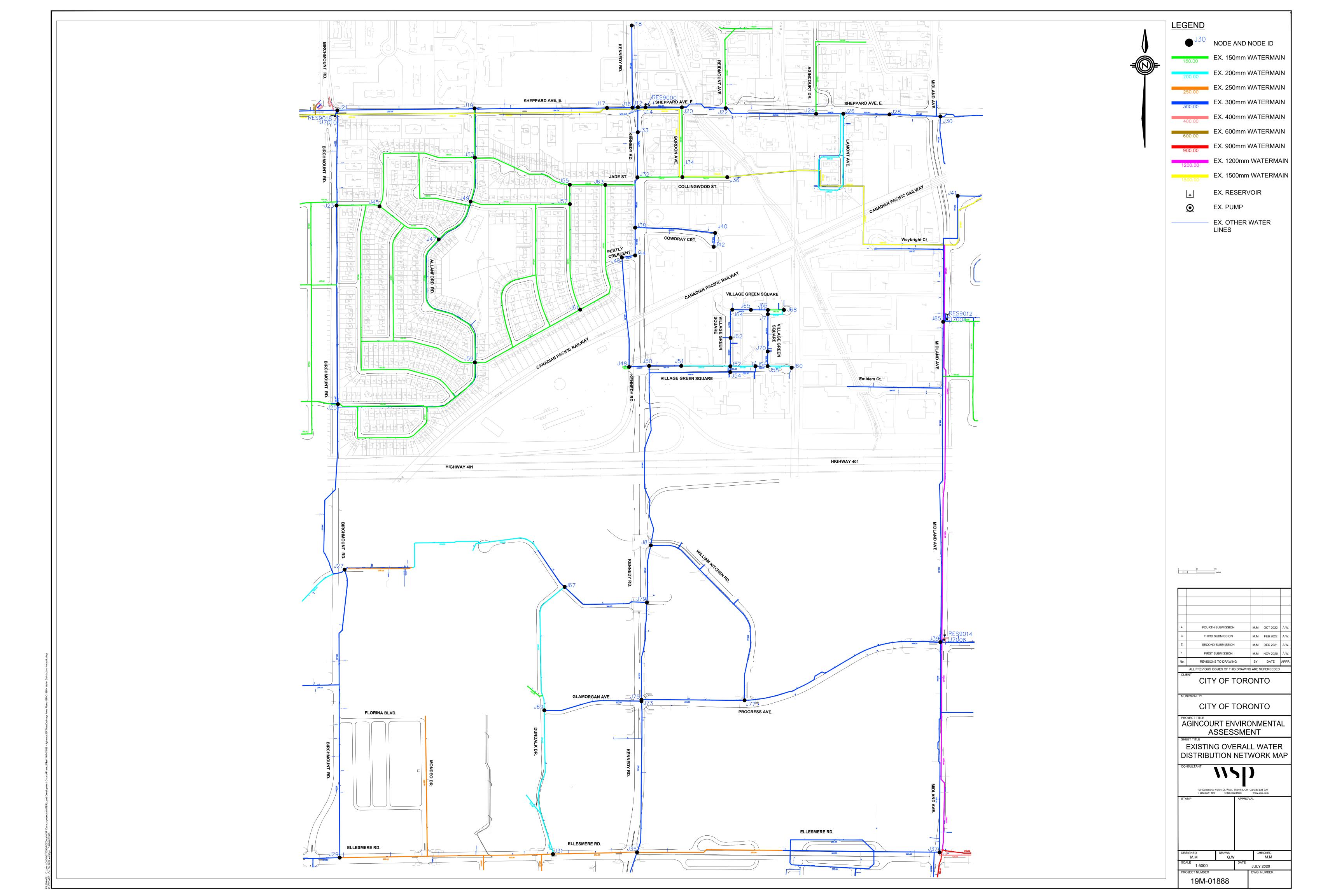
	Notes	Single Family	Townhouse	Apartments	1 Bed Apartments	2 Bed Apartments	3 Bed Apartments	Residential Population	Office	ICI	Non-res Pop	Average	Min	Max	Peak
ID		unit	unit	ha	unit	unit	unit		ha	ha					
J12															
J14															
J16															
J18															
J20		15						53		0.4	44	0.35	0.28	0.46	0.62
J22				7.35				2940	1.82	0.02	603	12.71	10.26	18.20	26.33
J24															
J26								0		0.76	84	0.30	0.25	0.33	0.36
J28			80					216		0.73	81	1.07	0.86	1.48	2.09
J30					371	427		1417	0.06	0.04	25	5.17	4.14	7.72	11.55
J32				0.18				72		0.6	66	0.50	0.41	0.65	0.87
J34		11						39			0	0.14	0.11	0.21	0.31
J36		10						35			0	0.13	0.10	0.19	0.28
J38		10						35	0.59		195	0.83	0.69	0.96	1.12
J40	20 Cowdary Ct.				1649	445	206	3882		0.25	28	14.03	11.23	21.00	31.46
J42										0.19	21	0.08	0.06	0.08	0.09
J44															
J46															
J48										0.31	35	0.13	0.11	0.14	0.15
J50										5.75	633	2.27	1.91	2.50	2.73
J51	50 Village Green Sq.				558	279	93	1656	0.06	0.07	28	6.04	4.84	9.02	13.49
J52															
J54	2035 Kennedy Rd.				972	372	71	2363	0.70	0.04	237	9.33	7.50	13.65	20.10
J56															
J58	135 Village Green Sq.				415	395	30	1504			0	5.40	4.32	8.09	12.14
J60															
J62	THs - Village Green Sq.		89					241			0	0.86	0.69	1.30	1.95
J64	275 Village Green Sq.				415	395	30	1504			0	5.40	4.32	8.09	12.14
J66	255 Village Green Sq.				415	395	30	1504			0	5.40	4.32	8.09	12.14
J68															
J70	181 Village Green Sq.				188	94	31	559				2.01	1.60	3.01	4.51

72.1 58.0 105.2 154.4

WSP Fictious Pump Curve based on Hydrant Flow Test No. 2

WATER MODELLING RESULTS - EXISTING


Project: Agincourt EA
Job No.: 19M-01888
Date: 2022-02-08


Peak Hour

Peak Hour								
ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)				
J12	0	168.89	208.59	389				
J14	0	168.37	208.64	395				
J16	0	169.23	208.59	386				
J17	0	169	208.61	388				
J17	0	170		378				
	0	174	208.59					
J19			208.71	340				
J20	0.62	166	208.48	416				
J21	0	177	208.86	312				
J22	26.33	166.3	208.35	412				
J23	0	177	208.77	311				
J24	0	170	208.35	376				
J25	0	171	208.64	369				
J26	0.36	171	208.35	366				
J27	0	178	208.55	299				
J28	2.09	172	208.35	356				
J29	0	173	208.51	348				
J30	11.55	175	208.35	327				
J31	0	167	208.43	406				
J32	0.87	170.2	207.84	369				
J33	0	170	208.32	376				
J34	0.31	167.96	208.06	393				
J35	0	167	208.43	406				
J36	0.28	166.95	208.06	403				
J37	0.20	165	208.68	428				
J38	1.12	173.15	207.08	333				
J39	0	163	208.85	449				
J40	31.46	167.8	206.68	381				
J41	0	178	208.8	302				
J42	0.09	167.8	206.68	381				
J43	0.03	172	208.57	358				
J44	0	172.65	206.97	336				
J45	0	173	208.65	349				
J46	0	173	206.91	332				
J47	0	170	208.58	378				
J48	0.15	170	206.46	357				
J49	0	173	208.56	348				
J50	2.73	170	206.37	356				
J51	13.49	172	205.78	331				
J52	0	169	205.47	357				
J53	0	176	208.59	319				
J54	20.1	169	205.48	357				
J55	0	173	208.36	347				
J56	0	169	205.45	357				
J57	0	173	208.39	347				
J58	12.14	169	205.31	356				
J59	0	168	208.55	397				
J60	0	169	205.31	356				
J61	0	171	208.38	366				
J62	1.95	170	205.39	347				
J63	0	173	208.14	344				
J64	12.14	170	205.32	346				
J65	0	170	205.31	346				
J66	12.14	170	205.3	346				
J67	0	175	208.19	325				
J68	0	170	205.3	346				
J69		175	208.3	326				
	0 4.51	170	205.3	346				
J70								
J71	0	170	205.3	346				
J73	0	167	208.3	405				
J75	0	167	208.3	405				
J77	0	167	208.31	405				
J79	0	168	208.15	393				
J81	0	169	207.96	382				
J83	0	170.2	207.74	368				
J85	0	170	208.93	382				

Max Day plus Fire

Demand Pressure (L/s) Static Demand Pressure (L/s) (R/s) (R/		pius riie			1			
D Demand Pressure Head Cemand Cl/s (RPa) (RPa)		Static	Static	Static	Fire-Flow	Residual	Available	Available
CLS (KPa) (M) (LS) (KPa) CLS (KPa) CLS (KPa) CLS (LS) CLS CLS	ID							
	10						Hydrant	Pressure
J14		(L/S)	(KFa)	(111)	(L/S)	(KFa)	(L/s)	(kPa)
J14	J12	0	392	208.91	100	374.17	674.36	140
J16								
J17								
J18								
J19								
J20								
J21								
J22	J20	0.46	420	208.86	100	394.46	481.84	140
J23	J21	0	313	208.98	100	303.49	512.01	140
J23	J22	18.2	416	208.78	100	380.31	380.99	140
J24		0	313					140
J25								
J26								
J27								
J28								
J29								
J30	J28	1.48	360	208.78	100	307.26	236.2	140
J31	J29	0	351	208.81	100	277.67	181.23	140
J31	J30	7.72	331	208.78	100	274.87	215.53	140
J32								
J33								
J34								
J35								
J36								
J37								
J38								
J39	J37	0	430	208.88	100	391.83	311.43	140
J39	J38	0.96	343	208.16	150	269.08	289.84	140
J40		0	450	208.96				140
J41								
J42								
J43								
J44								
J45								
J46	J44	0	347	208.1		301.89	275	140
J47 0 381 208.86 100 111.22 94.02 140 J48 0.14 371 207.84 100 313.96 255.31 140 J49 0 351 208.86 100 120.04 95.18 140 J50 2.5 370 207.8 150 267.13 254.86 140 J51 9.02 348 207.51 100 249.16 171.27 140 J52 0 376 207.37 133.33 239.52 191.81 140 J53 0 322 208.87 100 172.89 111.63 140 J53 0 322 208.87 100 145.82 101.57 140 J55 0 350 208.77 100 145.82 101.57 140 J55 0 350 208.78 100 112.99 93.6 140 J57 0 351 208.78	J45	0	352	208.89	100	152.14	103.3	140
J48 0.14 371 207.84 100 313.96 255.31 140 J49 0 351 208.86 100 120.04 95.18 140 J50 2.5 370 207.8 150 267.13 254.86 140 J51 9.02 348 207.51 100 249.16 171.27 140 J52 0 376 207.37 133.33 239.52 191.81 140 J53 0 322 208.87 100 172.89 111.63 140 J53 0 322 208.87 100 172.89 111.63 140 J55 0 350 208.77 100 145.82 101.57 140 J55 0 350 208.77 100 145.82 101.57 140 J56 0 376 207.36 133.33 232.57 185.44 140 J57 0 351 208.78 <td>J46</td> <td>0</td> <td>344</td> <td>208.07</td> <td>100</td> <td>296.57</td> <td>265.36</td> <td>140</td>	J46	0	344	208.07	100	296.57	265.36	140
J48 0.14 371 207.84 100 313.96 255.31 140 J49 0 351 208.86 100 120.04 95.18 140 J50 2.5 370 207.8 150 267.13 254.86 140 J51 9.02 348 207.51 100 249.16 171.27 140 J52 0 376 207.37 133.33 239.52 191.81 140 J53 0 322 208.87 100 172.89 111.63 140 J53 0 322 208.87 100 172.89 111.63 140 J55 0 350 208.77 100 145.82 101.57 140 J55 0 350 208.77 100 145.82 101.57 140 J56 0 376 207.36 133.33 232.57 185.44 140 J57 0 351 208.78 <td>J47</td> <td>0</td> <td>381</td> <td>208.86</td> <td>100</td> <td>111.22</td> <td>94.02</td> <td>140</td>	J47	0	381	208.86	100	111.22	94.02	140
J49								
J50								
J51 9.02 348 207.51 100 249.16 171.27 140 J52 0 376 207.37 133.33 239.52 191.81 140 J53 0 322 208.87 100 172.89 111.63 140 J54 13.65 376 207.37 133.33 240.84 206.7 140 J55 0 350 208.77 100 145.82 101.57 140 J56 0 376 207.36 133.33 232.57 185.44 140 J57 0 351 208.78 100 112.99 93.6 140 J58 8.09 375 207.29 133.33 212.39 178.06 140 J59 0 400 208.84 100 18.23 81.14 140 J60 0 375 207.29 133.33 240.84 240.87 140 J61 0 370 208.78 100 2.22 77.41 140 J62 1.3 366 207.33 133.33 217.23 177.43 140 J63 0 349 208.67 100 179.17 112.19 140 J64 8.09 365 207.29 133.33 209.25 178.22 140 J66 8.09 365 207.29 133.33 209.25 178.22 140 J66 8.09 365 207.29 133.33 203.96 174.46 140 J67 0 330 208.65 100 284.72 237.62 140 J68 0 365 207.29 133.33 203.96 174.46 140 J69 0 330 208.71 100 286.72 241.05 140 J70 3.01 365 207.29 133.33 202.32 168.19 140 J71 0 365 207.29 133.33 204.31 166.2 140 J73 0 409 208.71 100 378.55 385.88 140 J75 0 409 208.71 100 378.55 385.88 140 J77 0 409 208.71 100 378.55 385.88 140 J79 0 398 208.64 100 364.04 354.15 140 J81 0 388 208.55 100 342.30 377.44 140 J83 0 375 208.49 100 342.30 377.44 140 J83 10 375 208.49 100 342.30 377.44 140								
J52								
J53								
J54	J52	0		207.37		239.52	191.81	140
J55	J53	0	322	208.87	100	172.89	111.63	140
J55	J54	13.65	376	207.37	133.33	240.84	206.7	140
J56	J55		350	208.77	100	145.82	101.57	140
J57 0 351 208.78 100 112.99 93.6 140 J58 8.09 375 207.29 133.33 212.39 178.06 140 J59 0 400 208.84 100 18.23 81.14 140 J60 0 375 207.29 133.33 86.36 117.65 140 J61 0 370 208.78 100 2.22 77.41 140 J62 1.3 366 207.33 133.33 217.23 177.43 140 J63 0 349 208.67 100 179.17 112.19 140 J63 0 349 208.67 100 179.17 112.19 140 J64 8.09 365 207.29 133.33 209.25 178.22 140 J65 0 365 207.29 133.33 203.96 174.46 140 J67 0 330 208.65<								
J58 8.09 375 207.29 133.33 212.39 178.06 140 J59 0 400 208.84 100 18.23 81.14 140 J60 0 375 207.29 133.33 86.36 117.65 140 J61 0 370 208.78 100 2.22 77.41 140 J62 1.3 366 207.33 133.33 217.23 177.43 140 J63 0 349 208.67 100 179.17 112.19 140 J64 8.09 365 207.3 133.33 209.25 178.22 140 J65 0 365 207.29 133.33 206.15 167.9 140 J66 8.09 365 207.29 133.33 203.96 174.46 140 J67 0 330 208.65 100 284.72 237.62 140 J68 0 365 2								
J59 0 400 208.84 100 18.23 81.14 140 J60 0 375 207.29 133.33 86.36 117.65 140 J61 0 370 208.78 100 2.22 77.41 140 J62 1.3 366 207.33 133.33 217.23 177.43 140 J63 0 349 208.67 100 179.17 112.19 140 J64 8.09 365 207.3 133.33 209.25 178.22 140 J65 0 365 207.29 133.33 209.25 178.22 140 J65 0 365 207.29 133.33 206.15 167.9 140 J67 0 330 208.65 100 284.72 237.62 140 J68 0 365 207.29 133.33 191.06 157.72 140 J69 0 330 208.71<								
J60 0 375 207.29 133.33 86.36 117.65 140 J61 0 370 208.78 100 2.22 77.41 140 J62 1.3 366 207.33 133.33 217.23 177.43 140 J63 0 349 208.67 100 179.17 112.19 140 J64 8.09 365 207.3 133.33 209.25 178.22 140 J65 0 365 207.29 133.33 206.15 167.9 140 J66 8.09 365 207.29 133.33 203.96 174.46 140 J67 0 330 208.65 100 284.72 237.62 140 J68 0 365 207.29 133.33 191.06 157.72 140 J69 0 330 208.71 100 286.72 241.05 140 J70 3.01 365 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
J61 0 370 208.78 100 2.22 77.41 140 J62 1.3 366 207.33 133.33 217.23 177.43 140 J63 0 349 208.67 100 179.17 112.19 140 J64 8.09 365 207.3 133.33 209.25 178.22 140 J65 0 365 207.29 133.33 206.15 167.9 140 J66 8.09 365 207.29 133.33 203.96 174.46 140 J67 0 330 208.65 100 284.72 237.62 140 J68 0 365 207.29 133.33 191.06 157.72 140 J69 0 330 208.65 100 286.72 241.05 140 J70 3.01 365 207.29 133.33 202.32 168.19 140 J71 0 365 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
J62 1.3 366 207.33 133.33 217.23 177.43 140 J63 0 349 208.67 100 179.17 112.19 140 J64 8.09 365 207.3 133.33 209.25 178.22 140 J65 0 365 207.29 133.33 206.15 167.9 140 J66 8.09 365 207.29 133.33 203.96 174.46 140 J67 0 330 208.65 100 284.72 237.62 140 J68 0 365 207.29 133.33 191.06 157.72 140 J69 0 330 208.71 100 286.72 241.05 140 J70 3.01 365 207.29 133.33 202.32 168.19 140 J71 0 365 207.29 133.33 202.32 168.19 140 J73 0 409								
J63 0 349 208.67 100 179.17 112.19 140 J64 8.09 365 207.3 133.33 209.25 178.22 140 J65 0 365 207.29 133.33 206.15 167.9 140 J66 8.09 365 207.29 133.33 203.96 174.46 140 J67 0 330 208.65 100 284.72 237.62 140 J68 0 365 207.29 133.33 191.06 157.72 140 J69 0 330 208.71 100 286.72 241.05 140 J70 3.01 365 207.29 133.33 202.32 168.19 140 J71 0 365 207.29 133.33 202.32 168.19 140 J73 0 409 208.71 100 378.51 385.08 140 J75 0 409 <								
J64 8.09 365 207.3 133.33 209.25 178.22 140 J65 0 365 207.29 133.33 206.15 167.9 140 J66 8.09 365 207.29 133.33 203.96 174.46 140 J67 0 330 208.65 100 284.72 237.62 140 J68 0 365 207.29 133.33 191.06 157.72 140 J69 0 330 208.71 100 286.72 241.05 140 J70 3.01 365 207.29 133.33 202.32 168.19 140 J71 0 365 207.29 133.33 202.32 168.19 140 J71 0 365 207.29 133.33 202.32 168.19 140 J73 0 409 208.71 100 378.51 385.08 140 J75 0 409	J62	1.3	366	207.33	133.33	217.23	177.43	140
J64 8.09 365 207.3 133.33 209.25 178.22 140 J65 0 365 207.29 133.33 206.15 167.9 140 J66 8.09 365 207.29 133.33 203.96 174.46 140 J67 0 330 208.65 100 284.72 237.62 140 J68 0 365 207.29 133.33 191.06 157.72 140 J69 0 330 208.71 100 286.72 241.05 140 J70 3.01 365 207.29 133.33 202.32 168.19 140 J71 0 365 207.29 133.33 202.32 168.19 140 J71 0 365 207.29 133.33 202.32 168.19 140 J73 0 409 208.71 100 378.51 385.08 140 J75 0 409	J63	0	349	208.67	100	179.17	112.19	140
J65 0 365 207.29 133.33 206.15 167.9 140 J66 8.09 365 207.29 133.33 203.96 174.46 140 J67 0 330 208.65 100 284.72 237.62 140 J68 0 365 207.29 133.33 191.06 157.72 140 J89 0 330 208.71 100 286.72 241.05 140 J70 3.01 365 207.29 133.33 202.32 168.19 140 J71 0 365 207.29 133 204.31 166.2 140 J73 0 409 208.71 100 378.51 385.08 140 J75 0 409 208.71 100 378.55 385.88 140 J77 0 409 208.71 100 379.12 386.93 140 J79 0 398 208.64		8.09	365			209.25		
J66 8.09 365 207.29 133.33 203.96 174.46 140 J67 0 330 208.65 100 284.72 237.62 140 J68 0 365 207.29 133.33 191.06 157.72 140 J69 0 330 208.71 100 286.72 241.05 140 J70 3.01 365 207.29 133.33 202.32 168.19 140 J71 0 365 207.29 133 204.31 166.2 140 J73 0 409 208.71 100 378.51 385.08 140 J75 0 409 208.71 100 378.55 385.88 140 J77 0 409 208.71 100 379.12 386.93 140 J79 0 398 208.64 100 364.04 354.15 140 J81 0 388 208.55 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
J67 0 330 208.65 100 284.72 237.62 140 J68 0 365 207.29 133.33 191.06 157.72 140 J69 0 330 208.71 100 286.72 241.05 140 J70 3.01 365 207.29 133.33 202.32 168.19 140 J71 0 365 207.29 133 204.31 166.2 140 J73 0 409 208.71 100 378.51 385.08 140 J75 0 409 208.71 100 378.55 385.88 140 J77 0 409 208.71 100 379.12 386.93 140 J79 0 398 208.64 100 364.04 354.15 140 J81 0 388 208.55 100 351.43 344.07 140 J83 0 375 208.49								
J68 0 365 207.29 133.33 191.06 157.72 140 J69 0 330 208.71 100 286.72 241.05 140 J70 3.01 365 207.29 133.33 202.32 168.19 140 J71 0 365 207.29 133 204.31 166.2 140 J73 0 409 208.71 100 378.51 385.08 140 J75 0 409 208.71 100 378.55 385.88 140 J77 0 409 208.71 100 379.12 386.93 140 J79 0 398 208.64 100 364.04 354.15 140 J81 0 388 208.55 100 351.43 344.07 140 J83 0 375 208.49 100 342.30 377.44 140								
J69 0 330 208.71 100 286.72 241.05 140 J70 3.01 365 207.29 133.33 202.32 168.19 140 J71 0 365 207.29 133 204.31 166.2 140 J73 0 409 208.71 100 378.51 385.08 140 J75 0 409 208.71 100 378.55 385.88 140 J77 0 409 208.71 100 379.12 386.93 140 J79 0 398 208.64 100 364.04 354.15 140 J81 0 388 208.55 100 351.43 344.07 140 J83 0 375 208.49 100 342.30 377.44 140								
J70 3.01 365 207.29 133.33 202.32 168.19 140 J71 0 365 207.29 133 204.31 166.2 140 J73 0 409 208.71 100 378.51 385.08 140 J75 0 409 208.71 100 378.55 385.88 140 J77 0 409 208.71 100 379.12 386.93 140 J79 0 398 208.64 100 364.04 354.15 140 J81 0 388 208.55 100 351.43 344.07 140 J83 0 375 208.49 100 342.30 377.44 140								
J71 0 365 207.29 133 204.31 166.2 140 J73 0 409 208.71 100 378.51 385.08 140 J75 0 409 208.71 100 378.55 385.88 140 J77 0 409 208.71 100 379.12 386.93 140 J79 0 398 208.64 100 364.04 354.15 140 J81 0 388 208.55 100 351.43 344.07 140 J83 0 375 208.49 100 342.30 377.44 140								
J73 0 409 208.71 100 378.51 385.08 140 J75 0 409 208.71 100 378.55 385.88 140 J77 0 409 208.71 100 379.12 386.93 140 J79 0 398 208.64 100 364.04 354.15 140 J81 0 388 208.55 100 351.43 344.07 140 J83 0 375 208.49 100 342.30 377.44 140	J70	3.01				202.32		140
J73 0 409 208.71 100 378.51 385.08 140 J75 0 409 208.71 100 378.55 385.88 140 J77 0 409 208.71 100 379.12 386.93 140 J79 0 398 208.64 100 364.04 354.15 140 J81 0 388 208.55 100 351.43 344.07 140 J83 0 375 208.49 100 342.30 377.44 140	J71	0	365	207.29	133	204.31	166.2	140
J75 0 409 208.71 100 378.55 385.88 140 J77 0 409 208.71 100 379.12 386.93 140 J79 0 398 208.64 100 364.04 354.15 140 J81 0 388 208.55 100 351.43 344.07 140 J83 0 375 208.49 100 342.30 377.44 140		0		208.71				140
J77 0 409 208.71 100 379.12 386.93 140 J79 0 398 208.64 100 364.04 354.15 140 J81 0 388 208.55 100 351.43 344.07 140 J83 0 375 208.49 100 342.30 377.44 140								
J79 0 398 208.64 100 364.04 354.15 140 J81 0 388 208.55 100 351.43 344.07 140 J83 0 375 208.49 100 342.30 377.44 140								
J81 0 388 208.55 100 351.43 344.07 140 J83 0 375 208.49 100 342.30 377.44 140								
J83 0 375 208.49 100 342.30 377.44 140								
J85 0 382 209.01 100 372.95 599.53 140		0						
	J85	0	382	209.01	100	372.95	599.53	140

