

- To: Maria King, P.Eng. Dillon Consulting Limited 1155 North Service Road West Unit 14 Oakville, ON L6M 3E3
- From: Renato Pasqualoni, P.Eng. Alireza Hejazi, Ph.D., P.Eng. Michael Eastman, P.Eng.

June 22, 2022

Thurber File No.: 26370

FINAL

TECHNICAL MEMORANDUM DESKTOP STUDY GEOTECHNICAL AND HYDROGEOLOGICAL ASSESSMENT ROUGE PARK BRIDGES TRANSPORTATION MASTER PLAN EA TORONTO, ONTARIO

Thurber Engineering Limited (Thurber) has been retained by Dillon Consulting Limited (Dillon) to conduct a desktop study in support of the Rouge Park Bridges Transportation Master Plan Environmental Assessment (EA) for the development of a rehabilitation strategy for five municipal bridges in Toronto, Ontario.

It is a condition of this memorandum that Thurber's performance of its professional services is subject to the attached Statement of Limitations and Conditions.

1 SITE DESCRIPTION

The project study area is shown on Figure 1 and is located within Ward 25-Scarborough-Rouge National Urban Park (RNUP), located in the north-eastern part of the City of Toronto, generally bounded by Morningside Avenue/Neilson Road to the west, Scarborough Pickering Townline to the east, Steeles Avenue East to the north, and Highway 401 to the south. The project focus areas are located at radii of 500 m from each of the five bridges within the study area. The bridges are in an urban setting surrounded by undeveloped land consisting of forests, at the locations presented on Figure 1.

The five municipal bridges consist of the following:

- 1. Maxwell's Bridge (Bridge 802): The existing structure is a single-span cast-in-place concrete bridge supported on two abutments that carries Twyn Rivers Drive over Little Rouge Creek. The structure has a total length of 19 m and a deck width of 7.5 m. The structure was noted to have rehabilitation work to the abutments and deck elements completed between 1998 and 2013.
- 2. Stott's Bridge (Bridge 803): The existing structure is a single-span steel truss bridge supported on two abutments that carries Twyn Rivers Drive over Rouge River. The structure has a total length of 22.1 m and a deck width of 4.7 m. The structure was noted

to have rehabilitation work to the wingwalls, floorbeams and lacing/bracing members completed in 2013.

- 3. Hillside Bridge (Bridge 806): The existing structure is a single-span steel truss bridge supported on two abutments that carries Meadowvale Road over Little Rouge Creek. The structure has a total length of 24.7 m and a deck width of 5.1 m. The structure was noted to have rehabilitation work to the abutments and grading completed in 1986.
- 4. Sewell's Suspension Bridge (Bridge 812): The existing structure is a three-span steel suspension bridge supported on two piers and two abutments that carries Sewells Road over Rouge River. The structure has a total length of 48.8 m and a deck width of 5 m. The structure was noted to have rehabilitation work to the piers, towers and deck elements completed between 1980 and 1987.
- 5. Milne Bailey Bridge (Bridge 813): The existing structure is a two-span steel truss bridge supported on one pier and two abutments that carries Old Finch Avenue over Rouge River. The structure was noted to have rehabilitation work to the pier, abutments and deck elements completed between 1988 and 2013.

2 REVIEW OF AVAILABLE INFORMATION

2.1 Site Physiographic, Geologic, and Hydrogeologic Settings

The study area is situated within two physiographic regions generally known as Iroquois Plain and South Slope. A physiographic region map of the focus areas and surrounding area is shown on Figure 2. The Iroquois Plain physiographic region is located in the southern portion of the study area (Bridges 802 and 803) and represents the former shoreline of glacial Lake Iroquois. It is generally located at the perimeter of Lake Ontario and cuts into the previously deposited clay and till. It is partly underlain with sand deposits, sloping gently upward north from Lake Ontario. The South Slope to the north (Bridges 806, 812, and 813) is typically a drumlinized area consisting of areas of thin (<1 m) aeolian sand deposits underlain by glacial deposits, primarily till (Chapman and Putnam, 1984).

According to available geologic mapping obtained from the Ontario Geological Survey (OGS), while most of the area is underlain by glacial till (Leaside Formation of the late Wisconsinan period), glaciolacustrine deposits of sand and gravel are found in the Iroquois Plain, glaciolacustrine clays are found in the early peripheral lakes and modern alluvial deposits of sand and gravel are found in the valleys of the Rouge River and its tributaries. The mapped surficial geology of the study area is illustrated on Figure 3. Published bedrock mapping indicates that the study area is underlain by shales of the Georgian Bay and Blue Mountain Formations (Figure 4).

The majority of the study area and specifically the project focus areas are located within the Rouge River Watershed and falls under the jurisdiction of the Toronto and Region Conservation Authority (TRCA). The regional topography slopes southerly toward the Rouge River, and eventually drains into Lake Ontario. Groundwater flow is interpreted to follow the existing topography, with the study area draining southeasterly to Rouge River. One prominent landform in the Rouge Watershed,

south of Finch Avenue, is an escarpment representing the shoreline of Lake Iroquois. The Iroquois Plain south of this shoreline consists of deposits of nearshore beach sands and gravels, and silts and clays that were laid down in deeper aquifer. The sand and gravel deposits associated with the Lake Iroquois shoreline are important for local recharge, with estimated infiltration rates of approximately 200 mm/year. The portion of the shoreline nearest Lake Ontario is a local discharge area, where upward gradients from deeper aquifers can result in significant discharge. The silt and clay deposits of the Lake Iroquois plain are less permeable (TRCA, 2007).

The South Slope forms a higher upland to the Iroquois Plain within the study area. The Rouge River and Little Rouge Creek Valleys have incised deep valleys within the study area, with localized steep slopes and erosion features.

2.2 MTO Geocres Library

A desktop study search of available subsurface information within the study area from the MTO Geocres library found the following existing geotechnical reports prepared by others (these reports are included in Appendix A):

- 1. MTO Report with Geocres No. 30M14-161 titled "East Metro Freeway Feasibility Study" dated September 26, 1978.
- 2. MTO Memo with Geocres No. 30M14-244 titled "Slope Stability, Station 175+00 to 200+00" dated March 19, 1980.

In general terms, the encountered stratigraphy near Finch Avenue consisted of sand and gravel overlying uniform fine sand underlain by sandy silt to silty sand overlying shale bedrock.

Deep foundations consisting of steel H-piles driven to bedrock were recommended to support the piers and the west abutment. Shallow foundations were recommended to support the east abutment.

2.3 **Previous Investigations**

Existing available subsurface information was compiled for the study area from previous geotechnical investigations carried out by Thurber. The following report was reviewed in the assessment of site conditions for the study area (this report is included in Appendix B):

1. Thurber Report titled "Geotechnical Investigation, Proposed Zoomobile Bridge Near Indo-Malayan Pavilion, Toronto Zoo, Scarborough, Ontario" dated April 12, 1999.

The field investigation was carried out between March 17 and 22, 1999. The investigation involved drilling four boreholes to depths ranging from 1.7 to 7.7 m.

In general terms, the encountered stratigraphy consisted of topsoil overlying silt and sand to sandy silt till underlain by silty clay to clayey silt tills.

Based on the subsurface conditions encountered at this site, shallow foundations were considered suitable for support of the new bridge abutments and piers.

2.4 Bridge Design Drawings

Design drawings for the existing bridges were reviewed and are included in Appendix C.

The design drawings indicate the existing bridge abutments are supported on shallow foundations. The foundation type for the piers is uncertain.

Borehole logs for the Milne Bailey Bridge prepared by B P Walker are included on Drawing No. 26200-T1 (5013-S-1). Borehole logs for the other four bridges were not included on the design drawings.

In general terms, the encountered stratigraphy at the Milne Bailey Bridge consisted of pavement structure or topsoil overlying fill underlain by clayey silt till overlying cohesionless layers of sand and gravel or silty sand.

2.5 Well Records and Existing Permits

A search of the Ministry of the Environment, Conservation and Parks (MECP) well records database conducted within the study area returned a total of 535 records. Out of 535 records, 21 wells were located within the project focus areas. A well record map is provided as Figure 5. Based on the well records, twelve of the nearby wells are listed as supply wells for either domestic, livestock or public use. The remaining nine wells are listed as either abandoned or not used. The water levels also ranged at depths from 4.9 m to 26.4 m below the ground surface. A review of the water well record database indicates that the depth to bedrock surface is approximately 42 m and two bedrock wells were identified within the project focus areas. A search of water taking permits conducted in September 2020 identified only one active Permit to Tale Water (PTTW) record within the project focus areas. A search of MECP's Access Environment mapping returned no Environmental Activity and Sector Registry (EASR) registrations within the project focus areas. The detailed water well record search results are included in Appendix D.

2.6 Environmental Setting

Based on regional-scale source protection mapping, the study area is not located within a Wellhead Protection Area (WHPA); however, the project focus areas are located within a Significant Groundwater Recharge Area (SGRA) and a Highly Vulnerable Aquifer (HVA). They are also located within the TRCA regulated areas. Based on a review of Ministry of Natural Resources and Forestry (MNRF) online mapping, natural features in the vicinity of the project focus areas include the following:

- a) Rouge River and Little Rouge Creek and/or tributaries traverse the focus areas; multiple tributaries of Morningside Creek and Highland Creek also flow southerly within the study area.
- b) Areas of Natural and Scientific Interest (ANSIs) A Provincially Significant Life Science area exist within the focus areas between Twyn Rivers Drive and Steels Avenue East.

- c) Natural Heritage Areas are located within the project focus areas between Scarborough Pickering Townline and Rouge River.
- d) Wetlands are located at various locations in the vicinity of the focus areas.
- e) Large areas of woodlands also exist within the study area.

According to the *City of Toronto Official Plan (Map 22)*, the land use adjacent to the focus areas is natural area or other open space area (including golf courses, cemeteries, and public utilities). The nearby areas of natural significance are illustrated on Figure 6.

3 PRELIMINARY GEOTECHNICAL RECOMMENDATIONS

We understand that the proposed rehabilitation strategy may involve replacement of all five existing municipal bridges as part of the improvements in this area.

Based on the limited subsurface information found through the desktop study and summarized in Section 2, it is expected that the subsurface conditions at each bridge will vary significantly and could include shallow unconsolidated recent alluvium as well as deeper competent glacial deposits. Groundwater piezometric levels are expected to be significantly influenced by the local stream levels. It is not possible to recommend foundation types for the bridge replacements based on the limited information currently available. It is likely that new foundations (i.e. abutments and piers) for the proposed new bridges will need to be founded on either spread footings or steel H-piles driven to refusal in the overburden or on the bedrock. A geotechnical investigation for the new foundation elements will be required as described in Section 3.1.

Other geotechnical data gaps that may need to be considered include geotechnical stability for the stream valley slopes and for existing approach embankments. The valley slopes in the study area are well know for having significant localized erosion, particularly where the stream meanders encroach on the slope toe. Investigations into the stability of the valley slopes may require only a site observation or may require intrusive investigation such as additional boreholes. Investigation, analysis and reporting relating to the stability of the valley slopes will likely need to meet TRCA and/or MNR requirements as detailed in the MNR Technical Guide titled "River & Stream Systems: Erosion Hazard Limit". The conditions of the existing approach embankments are unknown, and may require improvements, particularly where grade changes or bridge designs warrant.

It is important to note that a field investigation will need to be carried out at each bridge location to verify the subsurface conditions and confirm suitable foundation options (i.e. shallow and/or deep), requirements for approach improvements, as well as to assess valley slope conditions and need for remedial efforts. A preliminary field drilling program is proposed below.

3.1 Proposed Field Investigation

The following presents preliminary geotechnical investigation recommendations related to bridge foundations only, and assuming that bridge sizes and elevations do not change significantly. The field investigation should involve drilling at least 26 boreholes as summarized below:

- 1. Maxwell's Bridge: Two boreholes at each abutment (four total)
- 2. Stott's Bridge: Two boreholes at each abutment (four total)
- 3. Hillside Bridge: Two boreholes at each abutment (four total)
- 4. Sewell's Road Bridge: Two boreholes at each abutment and pier (eight total)
- 5. Milne Bailey Bridge: Two boreholes at each abutment and pier (**six total**)

The above recommendations for the number of boreholes assumes that the new bridges will have the same number of spans as the existing bridges. Additional approach boreholes may also be required if there is a fill or cut.

The boreholes should be drilled to a minimum of 3 m below refusal. If bedrock is encountered, a minimum of 50% of the boreholes should be cored for a minimum depth of 3 m.

Standard Penetration Tests (SPTs) should be carried out at regular intervals of depth. Thin wall (Shelby) tube sampling and field vane testing should be performed in cohesive soils, where applicable.

Routine geotechnical laboratory testing, including natural water content, Atterberg Limits, and grain size distribution analyses (hydrometer and/or sieve) should be conducted on select soil samples.

One-dimensional consolidation testing should be carried out if soft to firm compressible cohesive soils are encountered.

Unconfined compressive strength (UCS) and point load (PL) testing should be carried out on select rock core samples.

4 PRELIMINARY HYDROGEOLOGICAL RECOMMENDATIONS

As described in detail in Sections 2.1 and 2.2, the project focus areas are underlain by heterogeneous materials consisting of sand and gravel, sandy silt to silty sand, silt and sandy silt till. The heterogeneous materials were underlain by shale bedrock. A preliminary review of the MECP well records database also indicated that the water levels ranged at depths from 4.9 m to 26.4 m below the ground surface. However, given the proximity of the structures to local streams, it is anticipated that the groundwater levels will be influenced by stream levels and recent precipitations events. Hydrogeological field investigations will be required to accurately assess the hydrogeological conditions at each bridge location, and these efforts should be coordinated with the geotechnical field work.

Depending on the bridge and foundation designs, at least one monitoring well per foundation element should be installed and a stabilized groundwater level should be measured.

If groundwater conditions indicate the potential need for dewatering, additional stabilized water levels should be measured at the monitoring wells, and in-situ hydraulic conductivity testing should be completed to estimate the permeability of the screened soils. Groundwater quality sampling should also be undertaken. Groundwater quality samples should be analyzed against the Provincial Water Quality Objectives (PWQOs) for select metals and inorganics criteria, as well as for any anthropogenic contaminants if there are visual or olfactory signs of impact from the investigation.

Following completion of the tests, a report summarizing the findings of the hydrogeological investigation should be prepared. The report would characterize the existing geological and hydrogeological setting and provide recommendations for the requirement of an EASR or Category 3 PTTW based on detailed design. Potential short-term and long-term impacts to the natural features and groundwater users as a result of construction related activities need to be investigated.

If it is determined that an EASR or Category 3 PTTW is required, preparation of an application and supporting report should be undertaken. To support application for PTTW, a detailed hydrogeological assessment report should be completed outlining detailed monitoring and reporting requirements along with any required mitigate and management measurement for the pre-construction, construction and post-development phases. Potential environmental impacts to streams from construction dewatering will require assessment by additional experts, including

5 CLOSURE

We trust this memo meets your requirements. If you have any questions or require further information, please do not hesitate to contact us.

Yours truly,

Thurber Engineering Limited

Renato Pasqualoni, P.Eng. Principal

Alireza Hejazi, Ph.D., P.Eng. Senior Hydrogeologist

6 **REFERENCES**

Chapman, L.J. and Putnam, D.F. 1984. *The Physiography of Southern Ontario*, Third Edition. Ontario Geological Survey, Ontario Ministry of Natural Resources.

City of Toronto Official Plan – Map 22 – Land Use Plan, February 2019

Ministry of the Environment, Conservation and Parks. 2020. Source Intake Protection Atlas.

Ministry of the Environment, Conservation and Parks. 2019. Permit to Take Water Database.

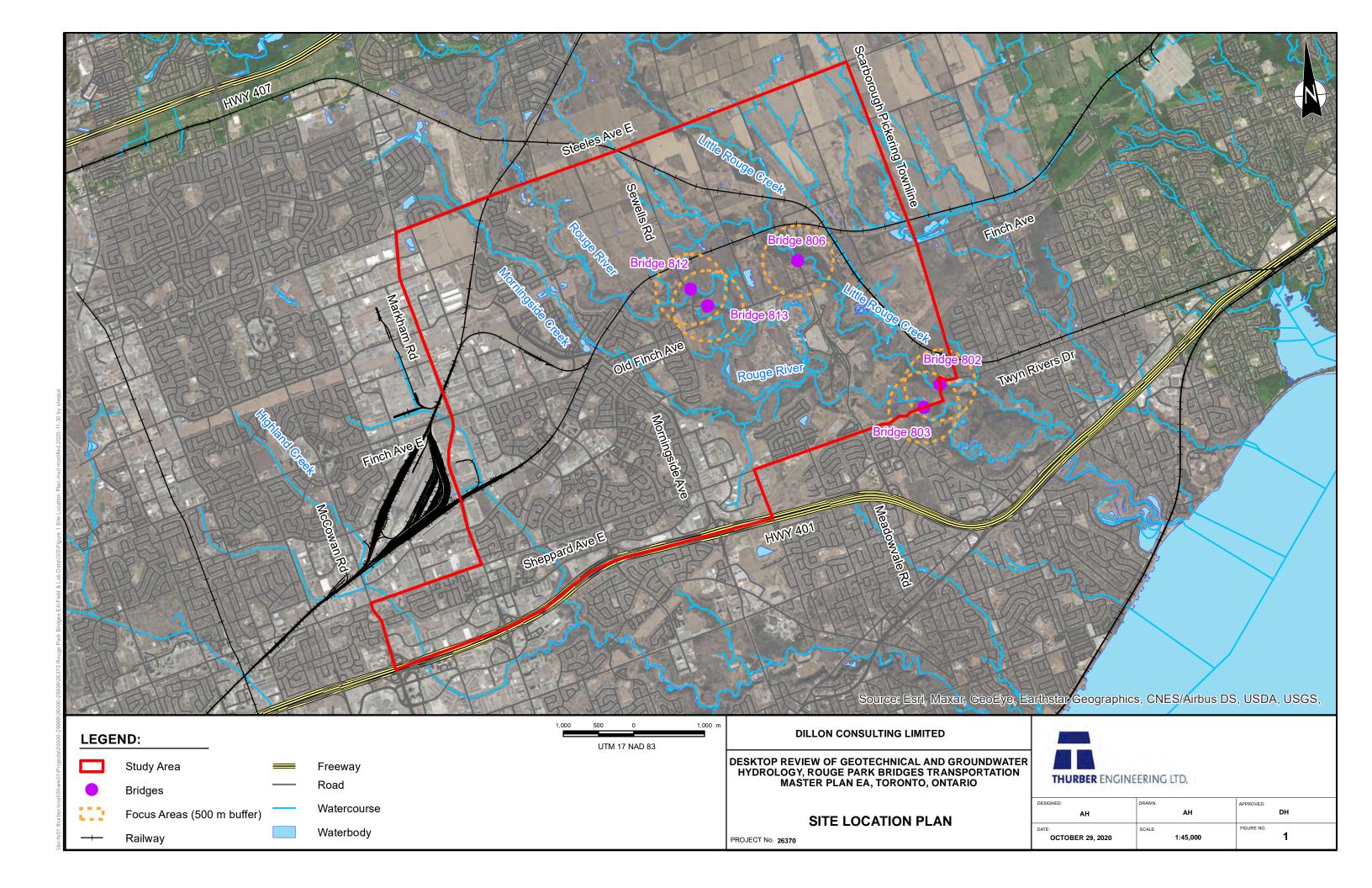
Ministry of the Environment, Conservation and Parks. 2019. Water Well Information System.

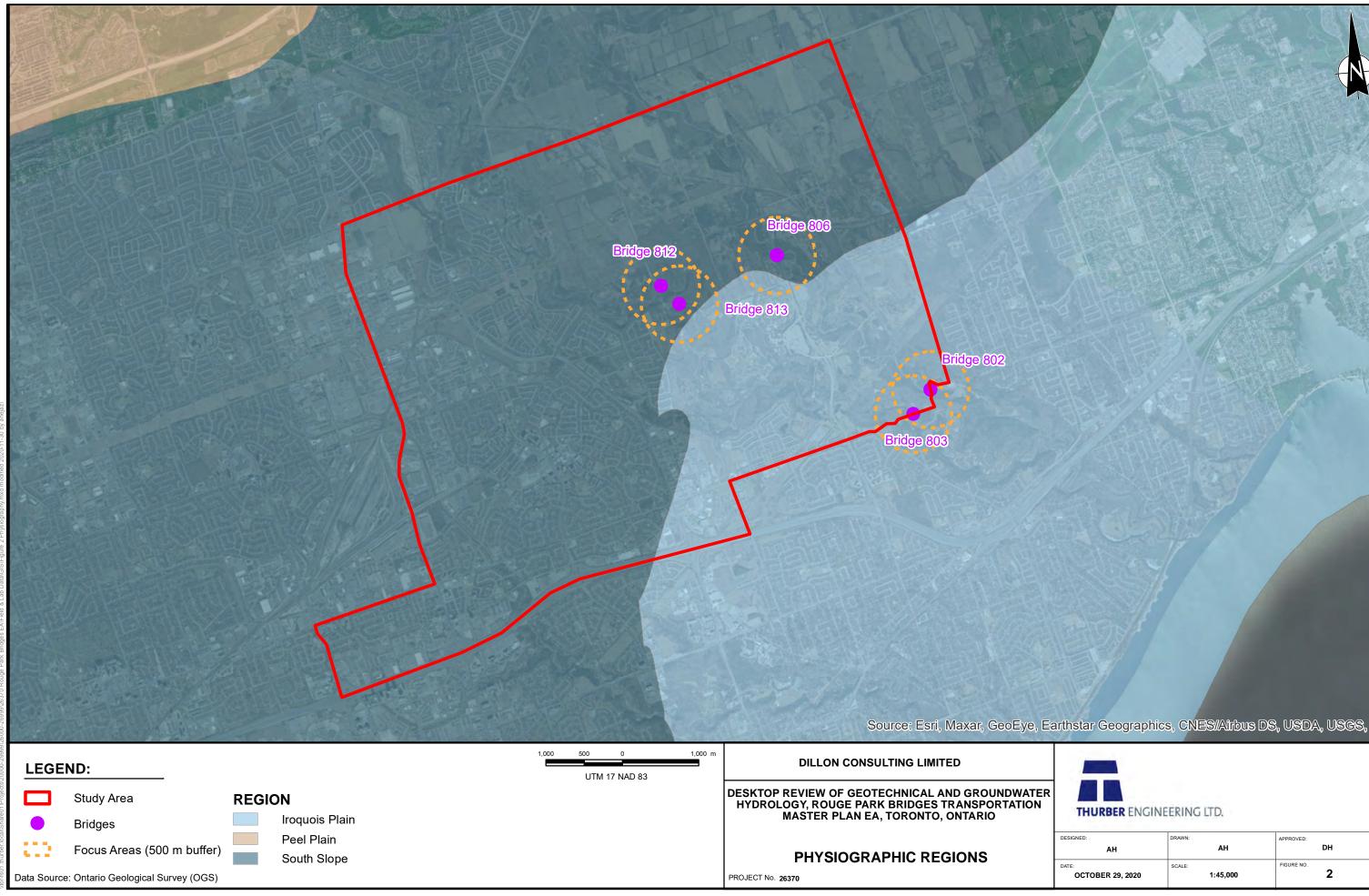
Ministry of Natural Resources and Forestry, Natural Heritage Information Centre database – Make a Heritage Map. Accessed November 2016, Queen's Printer for Ontario, 2015.

Ontario Geological Survey. Bedrock Geology of Ontario Seamless Coverage Data Set 6. 2005.

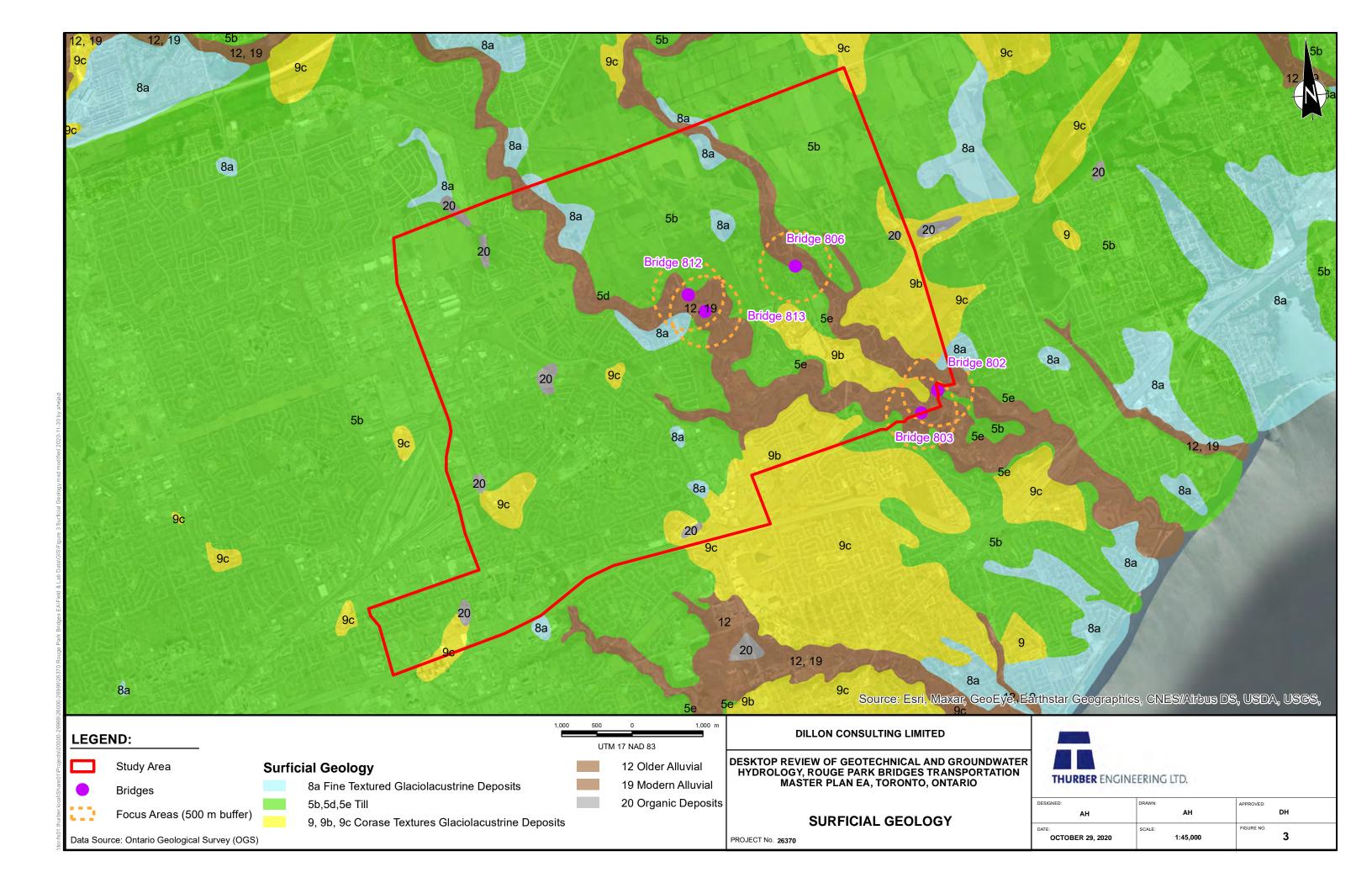
- Ontario Geological Survey. Quaternary geology, seamless coverage of the province of Ontario: Ontario Geological Survey, Data Set 14. 1997.
- Toronto and Region Conservation Authority, Rouge river Watershed Plan, Towards a Healthy and Sustainable Future, Report of the Rouge Watershed Task Force, 2007.

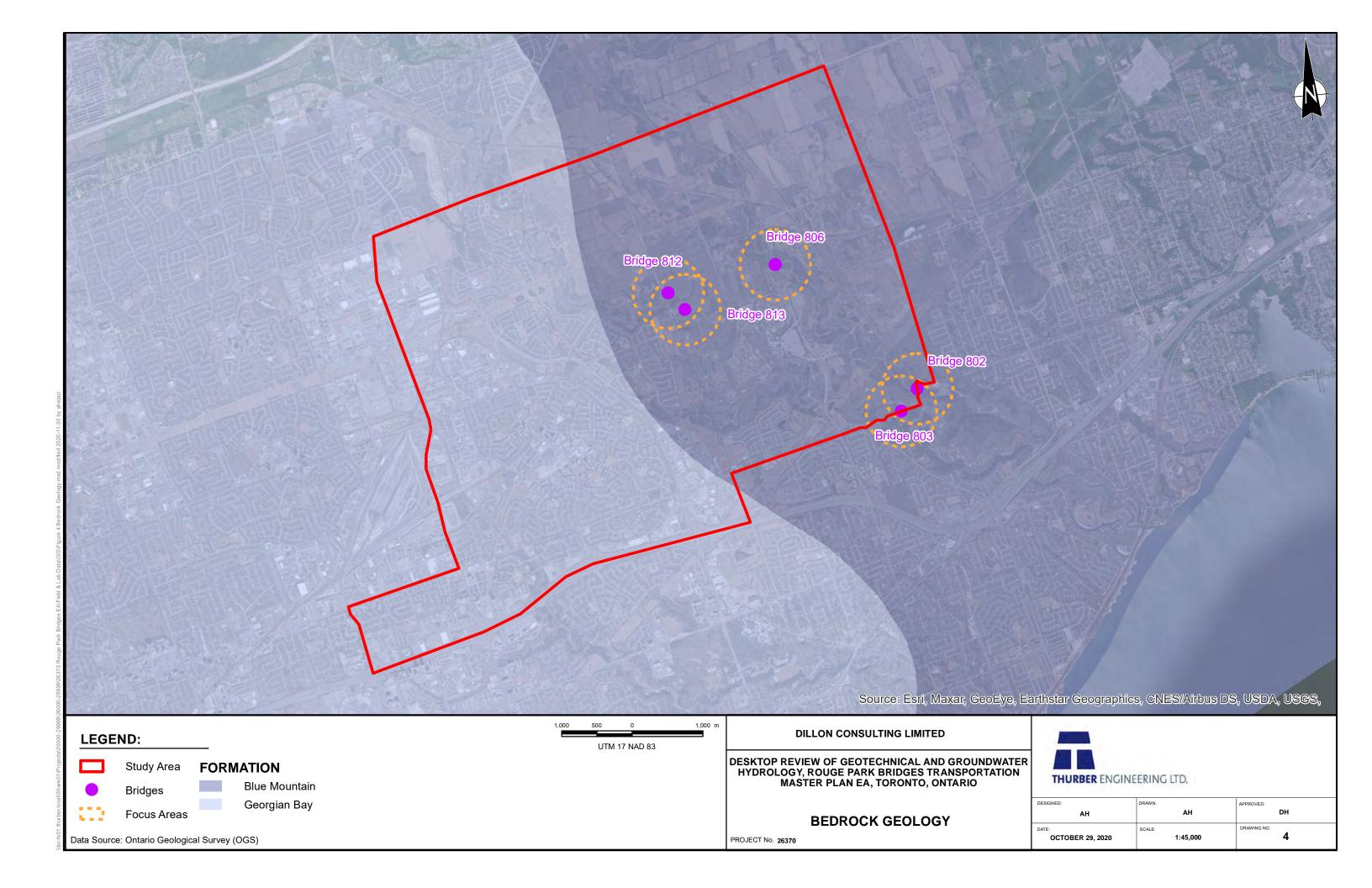
FIGURES

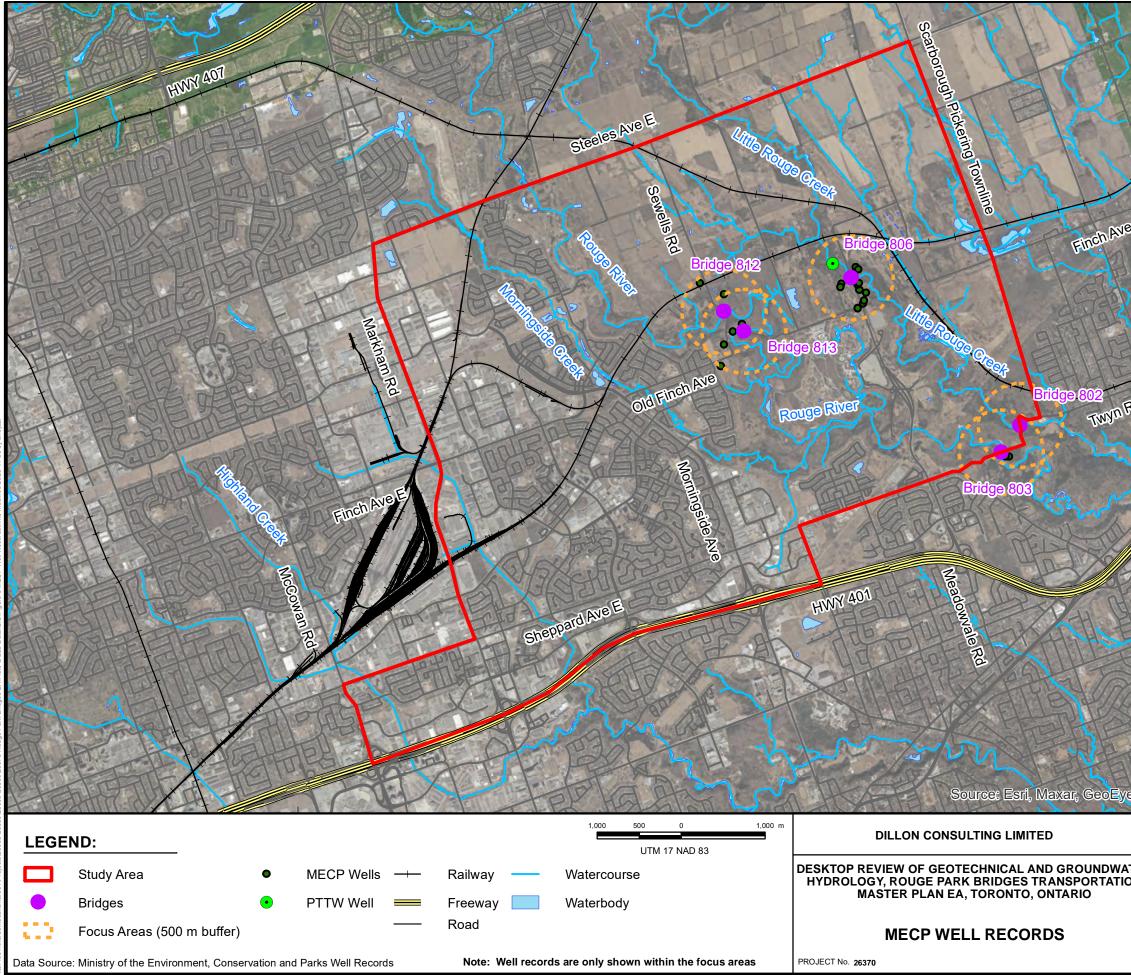

Site Location Plan Physiographic Regions Surficial Geology Bedrock Geology MECP Well Records

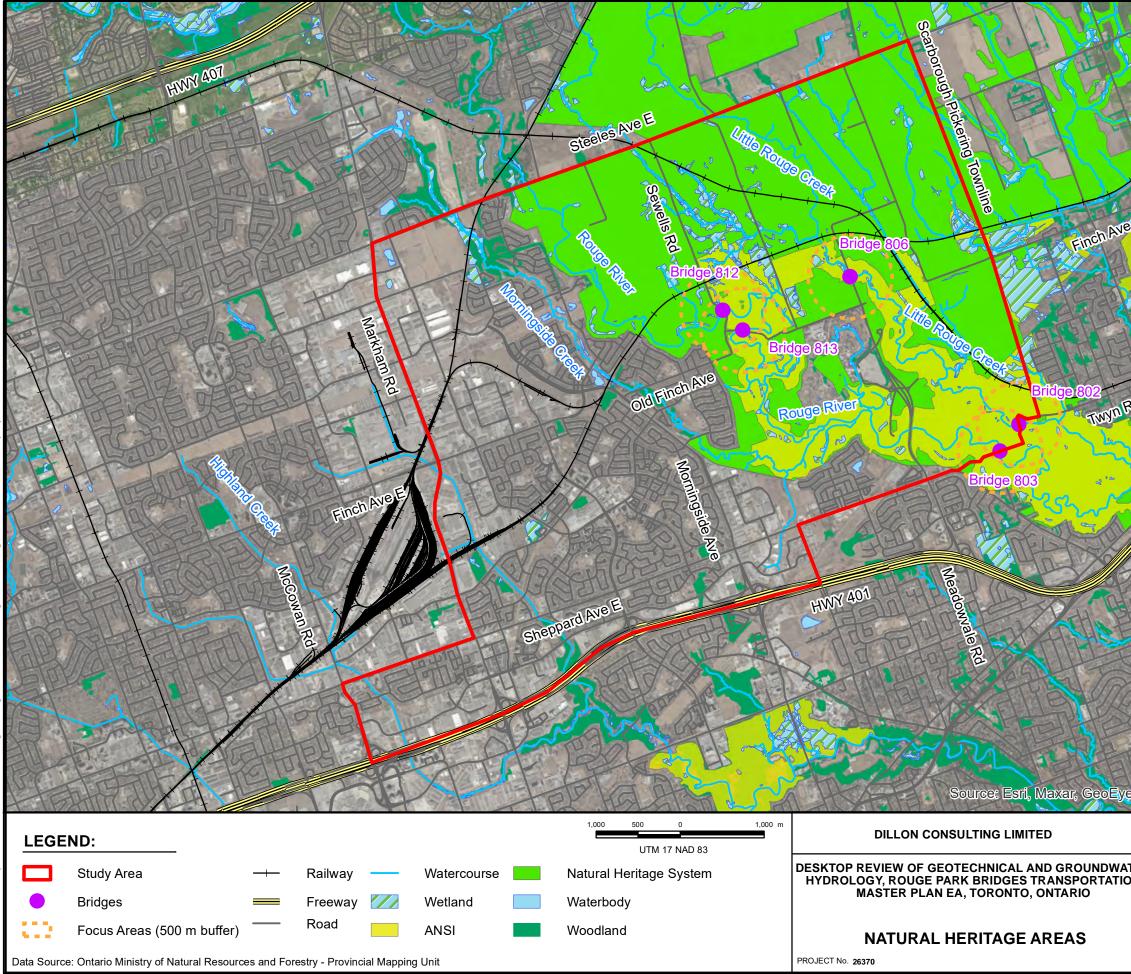

APPENDICES

Appendix A	MTO Geocres Library
Appendix B	Previous Investigations
Appendix C	Bridge Design Drawings
Appendix D	MECP Water Well Records




Figures




THURBER ENGINEERING LTD.		
DESIGNED:	DRAWN:	APPROVED:
DESIGNED:	DRAWN:	APPROVED: DH
DESIGNED:		

e			
アントアート	arthstar Geographics	s, CNES/Airbus DS	, USDA, USGS,
ATER	THURBER ENGINE	X 1 4 40 (X 40)	
		AH SCALE: 1:45,000	APPROVED: DH FIGURE NO. 5
	OCTOBER 29, 2020	1:45,000	5

e	sor		
ATER ION	arthistar Geographics	ERING LTD.	APPROVED:
	AH DATE: OCTOBER 29, 2020	AH SCALE: 1:45,000	DH FIGURE NO. 6

Appendix A

MTO Geocres Library

DOCUMENT MICROFILMING IDENTIFICATION

<u>)</u>_____

æ

. ...

GEOCRES No. 30M14-161
DIST REGION
W.P. No. 25-69-00
CONT. No
W. O. No
STR. SITE No.
HWY. No. E. M.F.
LOCATION EAST METRO FREEWAY
FERS BILITY Study
OVERSIZE DRAWINGS TO BE INCLUDED WITH THIS REPORT
REMARKS:

Ministry of Transportation and		
Ontario Communications Men	norandum	
To: Mr. G.C.E. Burkhardt Head, Structural Section Central Region 3501 Dufferin Street, Downsview	From: Soil Mechanics Section Engineering Materials Office Room 315, Central Building	
Attention:	Date: 78 09 26	
Our File Ref.	In Reply to	

Subject: Re: Feasibility Study, East Metro Freeway W.P. 25-69-00, District 6, Toronto

Introduction

At the request of the Structural Planning Section of the Central Region, the Soil Mechanics Section carried out a foundation investigation for the feasibility study of the proposed East Metro Freeway (E.M.F.). Due to the urgency of this project, our findings and preliminary geotechnical recommendations were given to the Region verbally on August 31, 1976 and are summarized here in this report. A complete foundation report for the feasibility study will be issued in December, 1978 according to the Region's schedule.

Site and Geology

The proposed East Metro Freeway which runs basically north and south, is located partly in Scarborough, Metro Toronto and partly in Markham, County of York. The area under investigation is bounded to the south by Hwy. 401 between Conlins Road and Dean Park Road and to the north by Hwy. 7 just west of Conc. 10E. Most of the area is on a broad crest of high land projecting southward from an elevated plain north of Toronto. The presence of a high upland close to Lake Ontario has caused streams to cut deep youthful valleys. The Rouge River is the major stream of the area, entering near Buttonville in the northwest and reaching Lake Ontario just east of Rouge Hill in Pickering. The overall area is situated in three physiographic regions generally known as Iroquois Plains, South Slope and Peel Plain. According to available geological information, while most of the area is underlain by a glacial till (Leaside Formation of the late Wisconsinan period), lacustrine deposits of sand and gravel are found in the Iroquois Plain, lacustrine clays in the early peripheral lakes and recent terrace deposits of sand and gravel in the valleys of the Rouge River and its tributaries.

SUBSURFACE CONDITIONS AND RECOMMENDATIONS

In general, the subsurface conditions along the proposed route are favorable from a soil mechanics' point of view, except certain cut sections contemplated in the sand and gravel areas where groundwater problems may be anticipated. The subsurface conditions at the various structure sites and the corresponding recommendations are summarized as shown on the following pages.

cont'd.....

Area 1 - Hwy. 401 and Proposed E.M.F.

Subsurface Conditions

0'-13' Very dense sand and gravel 13'-22' Very dense glacial till 22'-43' Very dense sandy silt to silty fine sand 43'-51' Hard clayey silt Groundwater level at 9 feet

Area 2 - E.M.F. and C.P.R. Spur (near Sheppard Ave.) 0'- 9' Random landfill 9'-13' Loose to compact silty sand 13'-23' Very stiff to hard clayey silt 23'-96' Hard glacial till Groundwater level at 6 feet

Recommendations

Cut sections in granular soils below the groundwater level will require extensive temporary and permanent dewatering schemes and slope treatments. In addition, if cuts are contemplated, a detailed hydrogeological study should be carried out to evaluate the consequences of such cuts on the groundwater. In view of the above, a structure to carry E.M.F. over Hwy. 401 is preferred. Subsoil is competent. The structure can be supported on spread footings placed within the undisturbed natural subsoil with an allowable bearing pressure up to 3.0 tsf. The required fills can be constructed with 2:1 side slopes.

The proposed subway crossing will be acceptable; however, some slope treatments consisting of filter or granular blankets, together with permanent subdrain systems will be required. The subway structure can be supported on spread footings placed within the glacial till with an allowable bearing pressure of 3 tsf. The required cuts can be either retained by retaining walls founded in the till or constructed with 2:1 slopes.

m			
	Location	Subsurface Conditions	Recommendations
	Area 3 - E.M.F. and CPR spur (North crossing)	0'-86' Hard glacial till Groundwater level at 12 feet	The proposed subway crossing should pose no problems. Cuts up to 30 feet in height can be constructed with 2:1 slopes; cuts of 30 feet and up to 40 feet in height, however, should be provided with a half height 10 feet wide bench incorporating an intercepting ditch. The subway structure can be supported on spread footings placed within the glacial till with an allowable bearing capacity of 3 tsf.
	Area 3A - E.M.F. and Tributory of Rouge River	0'-27' Very dense silty fine sand 27'38' Very dense glacial till 38'-43' Very dense sandy silt 43'-52' Hard clayey silt 52'-70' Very dense silty sand to sandy silt Groundwater level at 18 feet	The approach fills can be con- structed with 2:1 slopes. The piers of the structure can be sup- ported on spread footings placed within the undisturbed overburden with an allowable capacity of 3 tsf. The abutments can be supported on spread footings either placed within the undisturbed overburden or perched within the approach fills on a compacted granular 'A' pad with an allowable design bearing pressure of 2.5 tsf.
	Depressed Section of E.M.F. Between Area 3A and Area 4	Very dense glacial till	Similar to the recommendations for the cuts in Area 3.
	Area 4 - E.M.F. and Finch Ave. E.	0'-17' Very stiff silty clay 17'-51' Very dense glacial till Groundwater level at 15 feet	The required cuts of up to 25 ft. in depth can be constructed with 2:1 slopes. The structure can be supported on spread footings placed within the glacial till with an allowable bearing pressure up to to 3 tsf.

4

. т

NÉ

•

Area 5 - Finch Avenue Crossing of Rouge River Subsurface Conditions

- (In the river valley) 0'- 4' Nery dense sand and gravel 4'-17' fine sand 17'-62' Sandy silt to silty sand
- shale bedrock at 62 feet Groundwater level at 5 feet

Area 6 - E.M.F. Crossing of Rouge River

- 0'- 8' Compact sand and gravel 8'-33' Hard clayey silt to silty clav 33'-43' Silty sand and clayey silt interbedded. Very dense or hard 43'-66' Very dense silty sand
- Groundwater level at 6 feet

Recommendations

The proposed high level profile grade will require a very long Compact to very dense uniform structure and very high fills and, therefore, it is not preferred. In the alternative low profile scheme, the west approach may require fills up to 40 feet high. The fills should be constructed with 2:1 slopes and a 20 foot wide mid-height berm in both longitudinal and transversal directions. The piers and the west abutment which will be perched in the fills should be supported on steel H piles driven to bedrock. The east abutment can be supported on spread footings placed within the overburden with an allowable pressure of 3 tsf. The footings, however, should be kept at least 50 ft. from the cliff.

> Recommendations for the fills will be similar to those for fills in Area 5. The footing elements of the structure should be supported on end bearing steel H piles. Estimated pile tip elevations around 40 feet below ground surface.

Area 7 - E.M.F. Crossing of Relocated Finch Ave.

Area 8 - E.M.F. Subway at CPR 0'-81' Very dense glacial till Groundwater level at 40 feet

Groundwater level at 20 feet

Compact to very dense sand

Hard silty clay to clayey

Subsurface Conditions

silt.

0'-36'

36'-62'

Area 9 - E.M.F. Subway at CNR

Area 9A - E.M.F. Crossing Steeles Ave. 0'-42' Very dense glacial till 42'-46' Very dense silt Groundwater level at 13 feet

0'- 7' Compact silty fine sand 7'-13' Hard clayey silt to silt some clay 13'-21' Very dense silt to sandy silt, interbedded 21'-33' Hard clayey silt to silt some clay 33'-48' Very dense silt 48'-52' Very dense sand

Groundwater level at 14 feet

Recommendations

No stability problems are anticipated for the proposed cuts and fills. The structure can be supported on spread footings in the overburden with a design pressure of 3 tsf. This crossing is preferred to the Rouge crossing. Cuts up to 25 ft. deep will be required and can be constructed with 2:1 slopes. The structure can be supported on spread footings within the glacial till with a design pressure of 3 tsf.

Similar to Area 8

The cuts can be constructed with 2:1 slopes but should be protected with filter or granular blankets. The structure can be supported on spread footings in the overburden with an allowable pressure of 3 tsf.

S

Area 9B - Existing Steeles Ave. Subway at CNR

Area 9C - E.M.F. Over Tributary to Little Rouge River

Area 10 - E.M.F. Overhead at CPR

Area 11 - E.M.F. and Hwy. 407

Subsurface Conditions

0'- 7' Sand 7'-27' Glacial Till

- 0'- 7' Stiff clayey silt 7'-46' Very dense glacial till
- 0'- 9' Hard clayey silt to silt
 some clay
 9'-21' Very dense sandy silt to
 silty sand
 21'-31' Very dense glacial till
 31'-47' Fine to medium sand under
 sub-artesian pressure
 47'-51' Hard glacial till

0'-46' Very dense glacial till

2

Recommendations

This crossing can be left as it is. The existing structure is on spread footings.

No stability problems for the 10 ft. fills

Because of a water bearing sandy stratum and a sand stratum under sub-artesian condition, it is preferrable to have E.M.F. go over the existing CPR. The abutments should be perched within the fills on end bearing steel H piles. Estimated tip elevations around 15 feet below ground surface.

No stability problems for either cuts or fills. Structure can be supported on spread footings placed within the glacial till with an allowable pressure of 3 tsf.

The various comments outlined in this report are for feasibility study purposes based on very limited information. It will be necessary to carry out detailed subsurface investigations at each site of the proposed structure and related approaches and in some areas groundwater studies, together with pumping tests, may be necessary when the design details and geometrics are finalized. A complete report with borehole log sheets and drawings will be submitted at a later date by this Section.

B.

B. Ly, P. Eng. Senior Engineer

For: M. Devata, P. Eng. Supervising Engineer

BL/MD/gs

cc: M. Thompson I. Williams Files

Structural Section, Central Region, 3501 Dufferin Street, Downsview, Ontario. M3X 1N6 Telephone: 248-3097

September 1, 1978

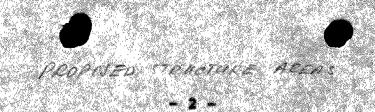
M.M. Dillon Limited, Consulting Engineers & Planners, P.O. Box 219, Station "K", Toronto, Ontario.

Atten: Nr. Jan Williams, Project Manager

Dear Sir:

RE: East Hetro Transportation Corridor from Highway 401 to Highway 7, Preliminary Foundations Information Request, District 6

We have now received preliminary (verbal) geotechnical information from our Soil Mechanics Section regarding the above project. More detailed findings and recommendations (in writing) will be received by this section on or shortly after September 15th, at which time their findings will also be forwarded to you.


In the interim we report the following geotechnical information:

Area 1 - Rwy. 401 & Proposed E.M.F.

This crossing should be an underpass (i.e. E.H.F. should go over the existing Hwy. 401) as the water table is quite high (granular subsoil). Spread footings on natural ground would be acceptable; no stability problems for fill slopes with standard side-slopes are anticipated.

....2

Area 1 - E.M.F. & C.P.R. spur (South Crossing)

The proposed subway crossing (E.N.F. under C.P.R.) will be acceptable; however, some treatment of the cut-slopes will be necessary (i.e. filter or granular blanket). Permanent sub-drains may also be necessary. Spread footings and 2:1 side slopes will suffice.

Area 1 - 1.M.F. & C.P.E. spur (North Crossing)

The proposed subway (E.N.F. under C.P.R.) should encounter no serious problems. Cuts up to 30' with 2:1 side slopes, will not need berns. However, a 35' deep cut may need 10' wide berns. Spread footings should be adequate.

Area 3A - B.M.F. & Tributary of Rouge River

No serious problems should be encountered here; this also goes for fills up to 25' in height. The structure may be founded on spread footings, from a geotechnical point of view.

Depressed Section of E.M.F. Letween Area 3A & Area 4

It is anticipated that relatively good soil conditions exist here allowing the E.M.F. to be in a gut; however, berns may be needed.

Area 4 - E.M.F. & Finch Ave. E.

No problems should be endountered with cuts up to 20'; structures may be founded on spread footings.

Area 5 Finch Ave. Crossing of Rouge River (along existing E.O.W.)

The subsoil is granular. A structural scheme keeping a high profile grade for Finch Ave. would necessitate a long structure and high fills; the abutments should not be closer than 1%:1 from the top of the slopes at the river. A high fill would require multiple berms; piles should be driven through fill to natural soil. It is doubtfull if the Conservation Authority would allow placing of substantial amounts of fill in the Rouge River valley. If a low grade for the Finch Ave. extension is planned, the Soil Mechanics Section would want to do further investigation.

Area 6 - E.H.F. Crossing Rouge River

Eigh fills will need berms (eg. 40'-45' high fills will require 20' wide berms, each side). 70.00 abutments may be founded on piles to natural ground.

÷ 3.÷

Area 7 - E.M.F. Crossing of a Relocated Finch Ave. (South of C.P.R.)

The proposed profile puts Finch Ave. in a small cut while the E.M.F. is on 20' of fill; no problems are anticipated. Spread footings are acceptable.

Area 8 - E.M.F. Subway at C.P.R.

Cuts up to 25' should not encounter any problems; spread footings are acceptable.

Area 9C - B.M.F. over Tributary to Little Rouge River

Fills up to 10' high should not encounter any problems.

Area 9 - B.M.F. at C.N.R.

Cuts up to 20' should not encounter any problems.

Area 9A - B.M.F. Crossing Steeles Ave.

A 20'-25' cut should not encounter any problems.

Area 98 - Existing Steeles Ave. Subway at C.N.R.

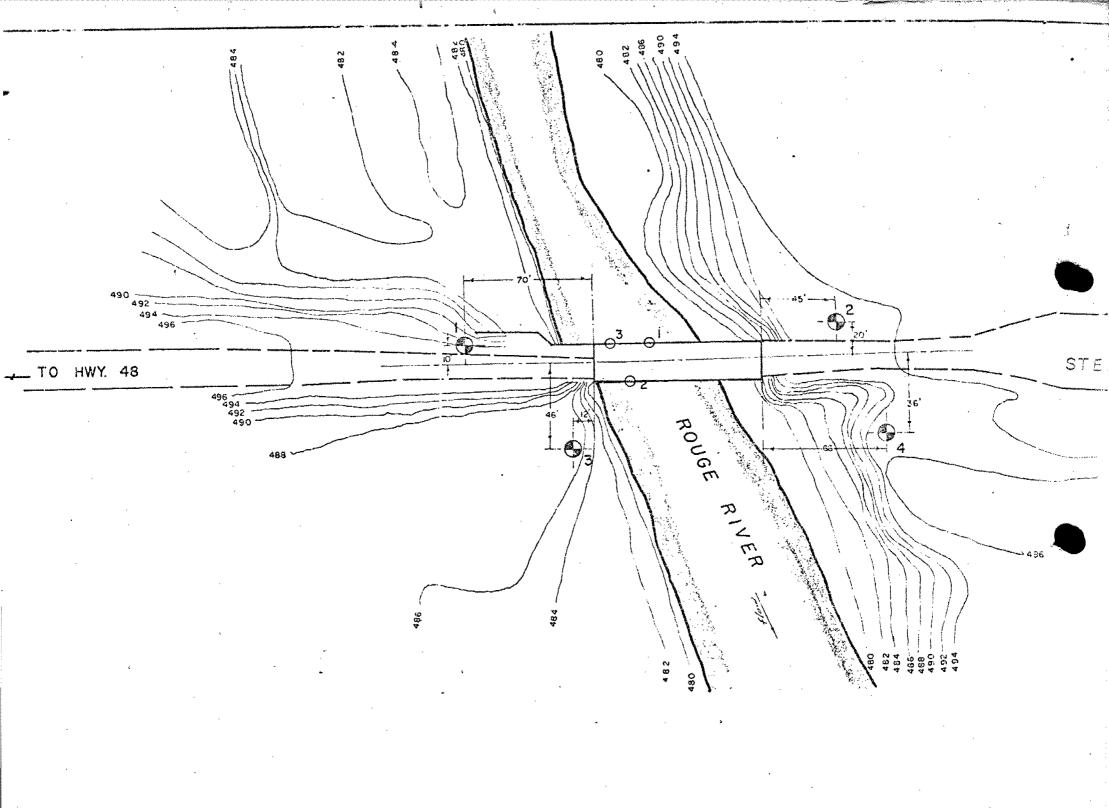
No foundation problems were encountered in the construction of this bridge; it is founded on spread footings. The subsoil consists of dense glacial till.

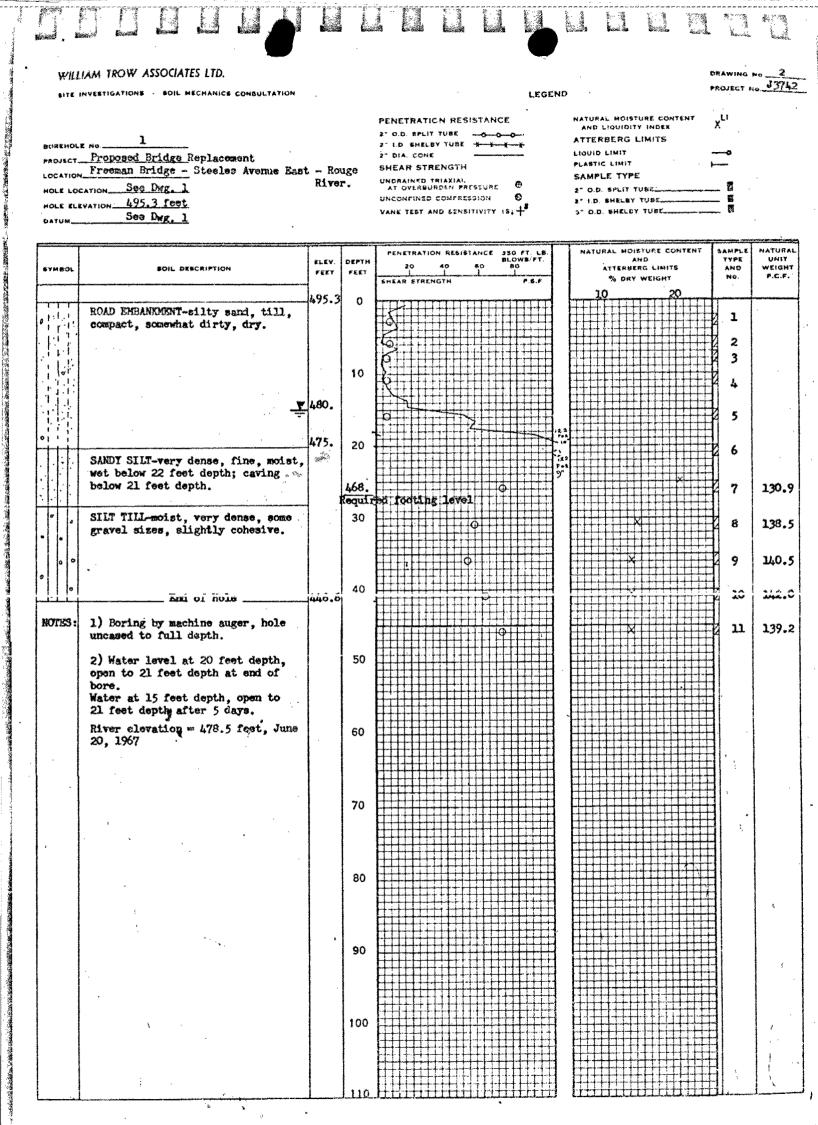
Area 10 - E.M.F. Overhead at C.P.R.

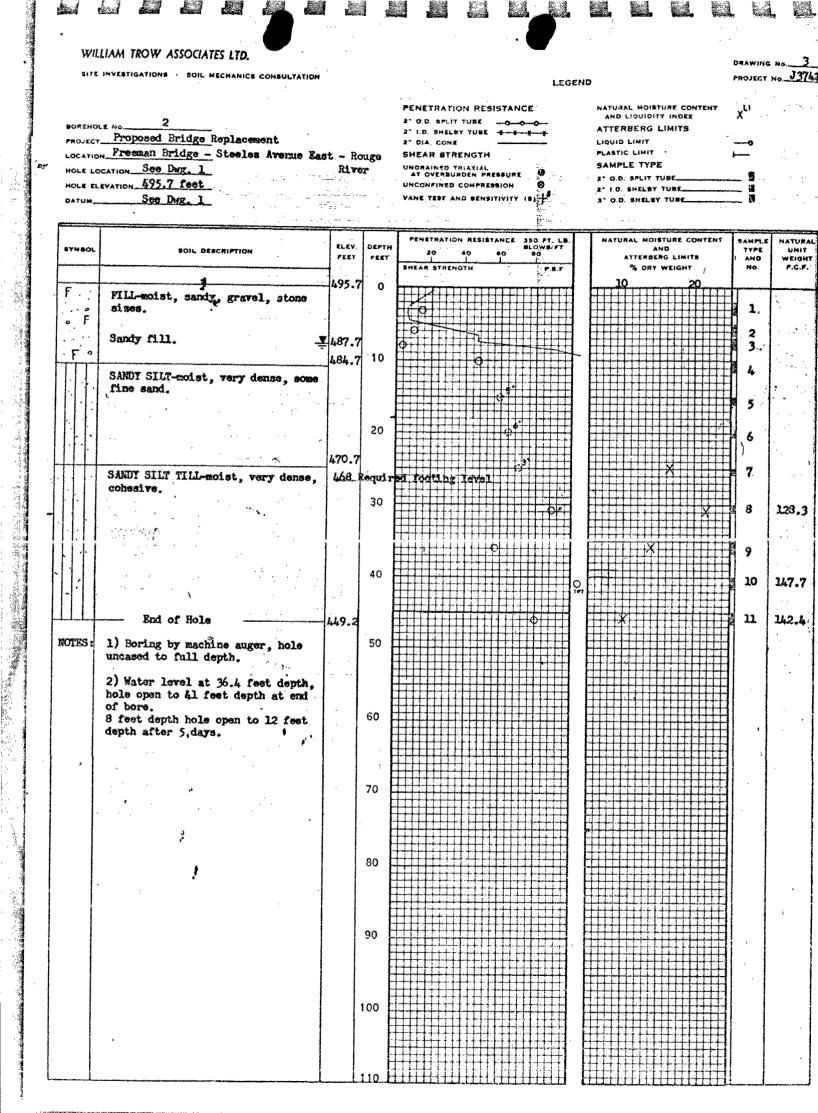
Due to a water bearing sand stratum at approximately 21' below ground, it is preferable to have 2.M.F. go over the existing C.P.R. The structure should be founded on piles driven into the till.

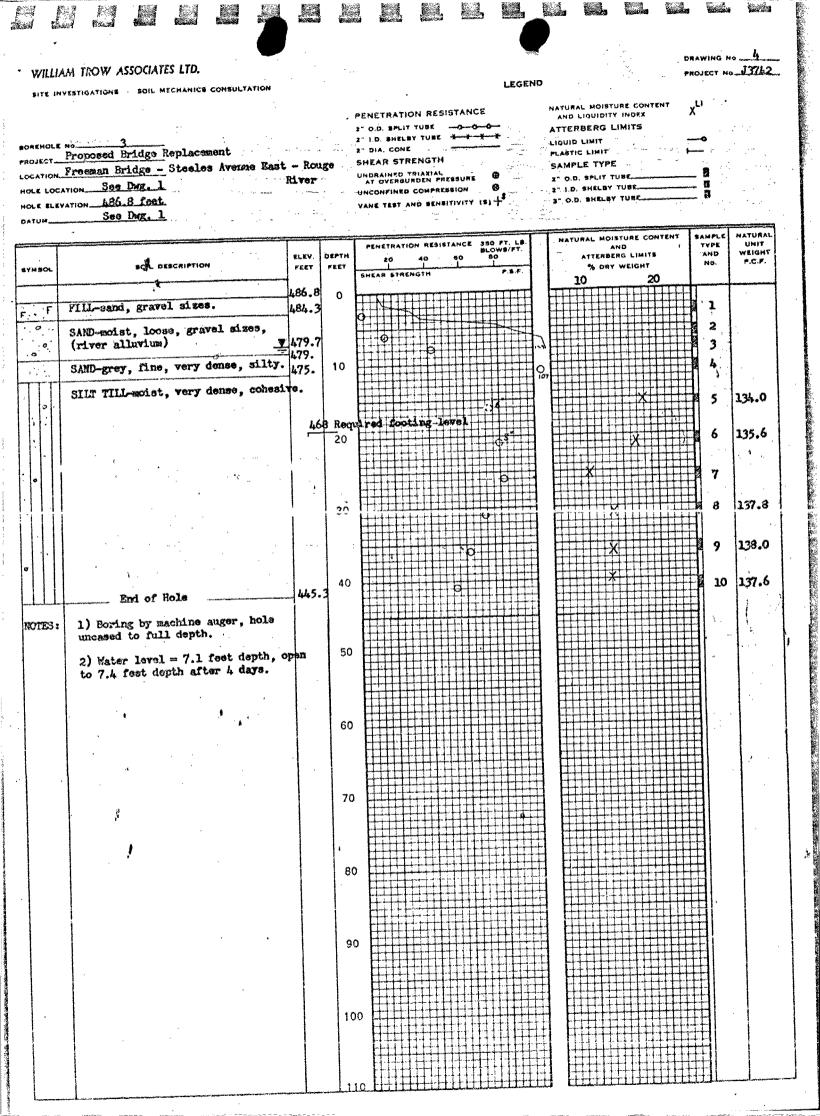
Area 11 - E.M.F. and Hvy. 407 Interchange

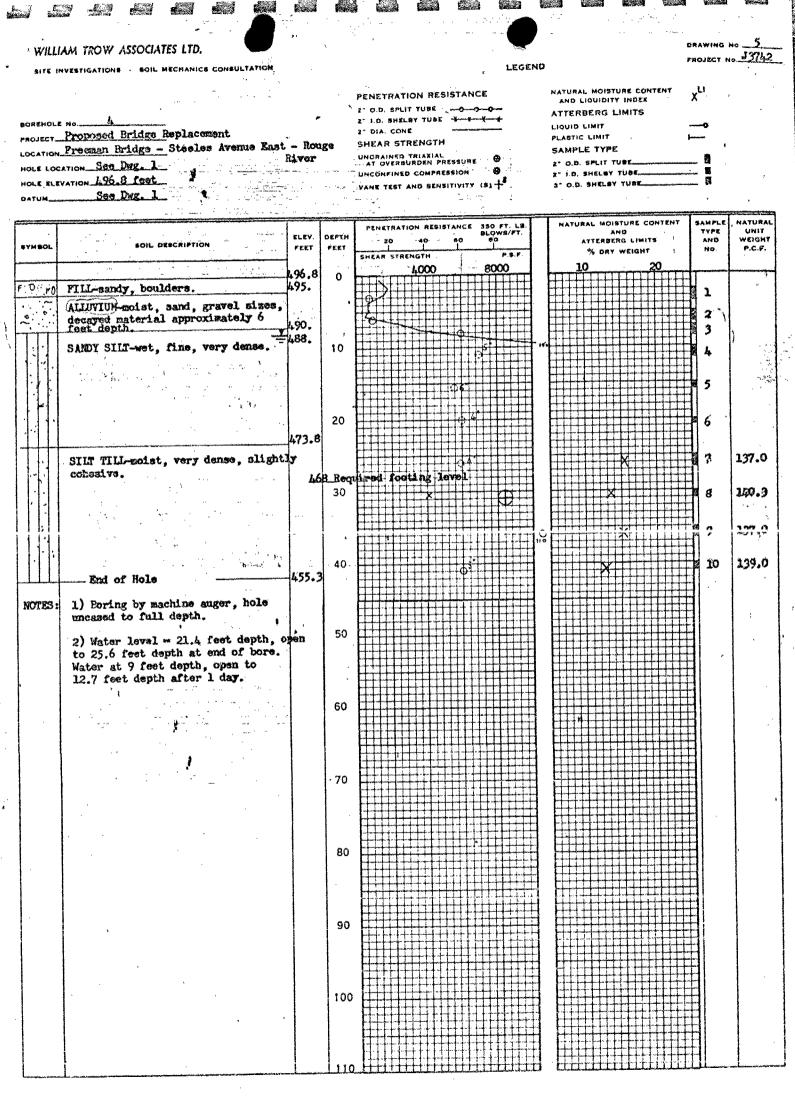
No major problems with cuts or fills. Spread footings may be adequate.

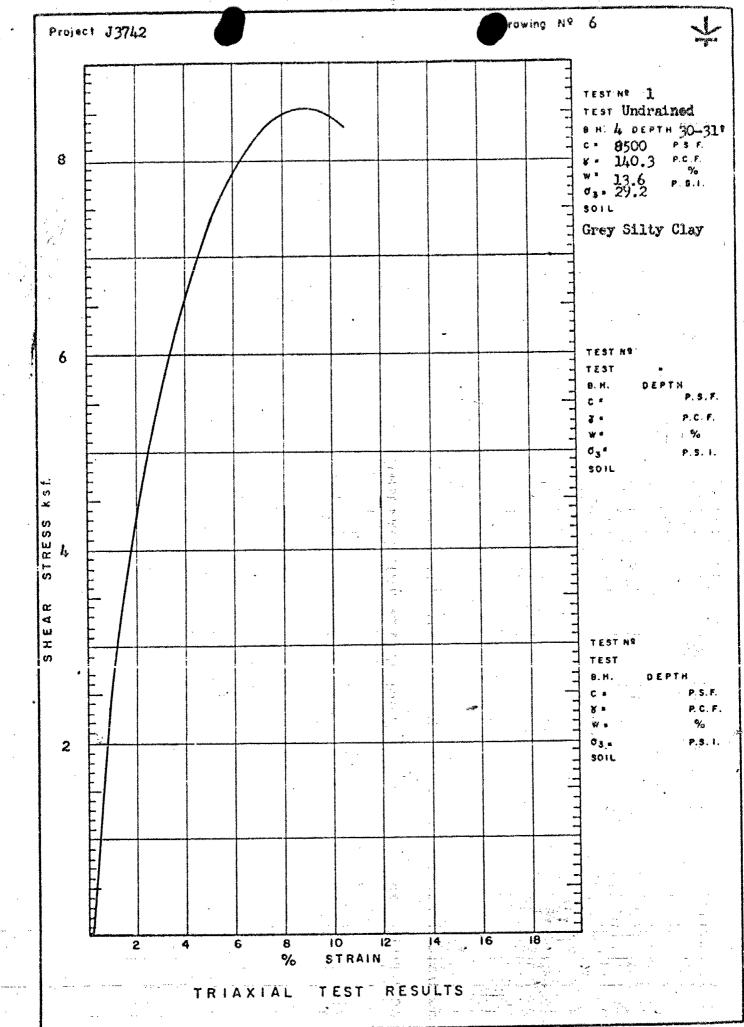

Yours truly,

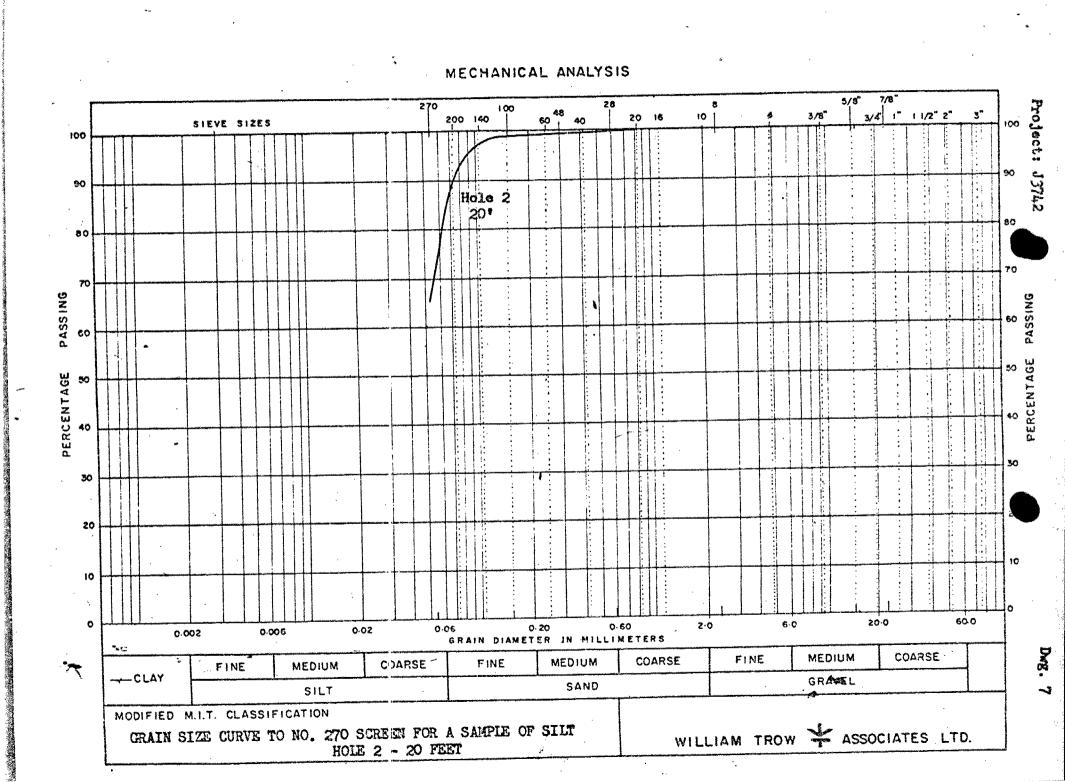

VPBigj

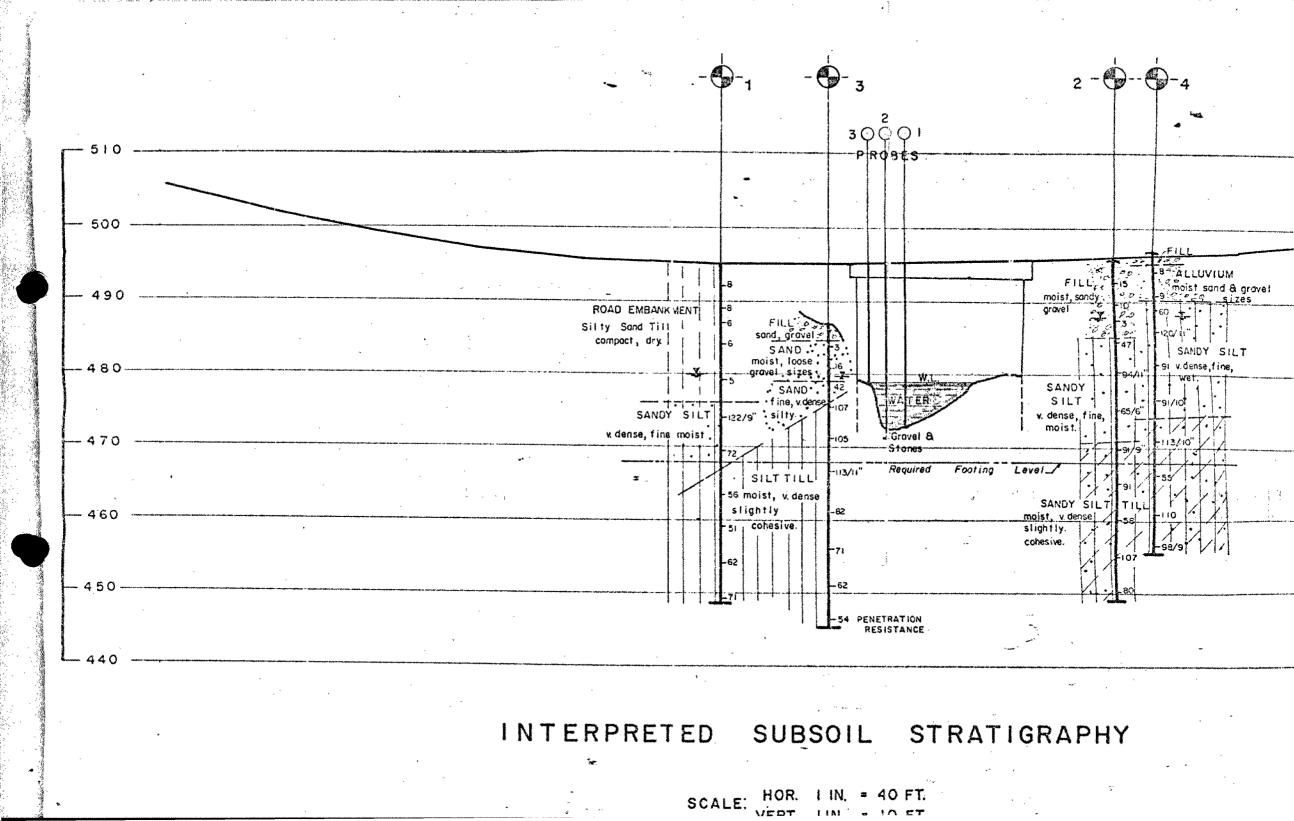

c.c. M. Thompson 8. Ly /


V.F. Boehnke. Area Engineer-Structures, fore G.C.E. Burkhardt.


Read, Structural Section.







and the second sec
DOCUMENT MICROFILMING IDENTIFICATION
30M14-161
GEOCRES No. 30 MI4-227 30 MI5-85
DIST REGION
W.P. No. <u>282-86-01</u> <u>326-88-01</u> 25-69-00
CONT. No
W. O. No
STR. SITE No.
HWY. No. 407
LOCATION HWY 407 ROUTE ENVIRONMENT
STUDY (FROM HWY 48 TO HWY 35/115
OVERSIZE DRAWINGS TO BE INCLUDED WITH THIS REPORT.
REMARKS:

G.I.-30 SEPT. 1976

ENGINEERING MATERIALS OFFICE SOIL MECHANICS SECTION

WP	25-69-00),		DIST	6
HWY	EMF	STR	SITE	N/A	
		bility St Metro Free	-		

DISTRIBUTION

G.C.E. Burkhardt (3) R.D. Gunter M.R. Ernesaks D.E. Thrasher (2)

C. Grebski G.A. Wrong B.J. Giroux R.S. Pillar

R. Hore

Files

R. Fitzgibbon) J. Anderson G. Sloan,

SAMPLE DISPOSITION NOTICE							
ТҮРЕ	DISCARD AFTER	RECOMM. BY					
JARS	79 01 12	m.D					
TUBES							
ROCK							

) cover only

)

GEOCRES 30M14-161

DATE JAN 1 0 1979

FOUNDATION INVESTIGATION REPORT

For

Feasibility Study, East Metro Freeway W.P. 25-69-00 District 6, Toronto

INTRODUCTION

. .

__<u>₹</u>`..

This report contains the results of our foundation investigation carried out for the feasibility study of the proposed East Metro Freeway. The fieldwork was done during the period of August 8, 1978 to August 16, 1978 consisting of a total of 14 sampled boreholes advanced by means of an auger machine equipped with 3½ inch I.D. hollow stem continuous flight augers. The borings ranged in depth from 45 feet to 96 feet below ground surface.

The results of three borings put down by CNR in 1964 for the subway structure at Steeles Avenue are also included here.

SITE AND GEOLOGY

The proposed East Metro Freeway which runs basically north and south is located partly in Scarborough, Metro Toronto and partly in Markham, County of York. The area under investigation is bounded to the south by Hwy. 401 between Conlins Road and Dean Park Road and to the north by Hwy. 7 just west of Conc. 10E. Most of the area is on a broad crest of high land projecting southward from an elevated plain north of Toronto. The ground surface of the general area varies from elevation 650 to 450 feet. The presence of a high upland close to Lake Ontario has caused streams to cut deep youthful valleys. The Rouge River is the major stream of the area, entering near Buttonville in the northwest and reaching Lake Ontario just east of Rouge Hill in Pickering.

The land is mainly used for industrial development in the southern section, parks and recreation near the Rouge River, residential development and farming in the northern section. The overall area is situated in three physiographical regions generally known as Iroquois Plains, South Slope and Peel Plain. According to the available geological information, while most of the area is underlain by a glacial till (Leaside formation of the late Wisconsinan period), lacustrine deposits of sand and gravel are found in the Iroquois Plains, lacustrine clays in the early peripheral lakes and recent terrace deposits of sand and gravel in the valleys of the Rouge River and its tributaries.

SUBSURFACE CONDITIONS

Factual borehole data are shown in the Record of Borehole Sheets. The locations and elevations of the boreholes, together with the estimated stratigraphical profile, are shown in Drawing 256900-A, B and C. A brief description of the subsurface conditions along the route of EMF is as follows.

<u>Area 1</u>: This site is located in the Iroquois Plain. Subsoil here consists of 13 feet of very dense sand and gravel followed by 14 feet of very dense glacial till which is composed of a heterogeneous mixture of sand, silt and trace of gravel and clay. The glacial till is underlain by 16 feet of very dense silt to sandy silt and then followed by a stratum of hard silty clay. The groundwater was observed to be at elevation 424+.

<u>Area 2</u>: This site is located in the beach area of Lake Iroquois. This area is underlain by a thin layer of loose sand, about 5 feet thick and then followed by an extensive stratum of hard glacial till. The glacial till has a cohesive matrix of low plasticity being composed of a heterogeneous mixture of clayey silt, sand and some gravel. In certain places random landfill about 9 feet thick has been left on the ground surface. The groundwater level was observed to be at elevation 445+.

<u>Area 3</u>: Subsoil at this site consists of an extensive deposit of glacial till which is at least 86 feet thick. The glacial till is composed of a heterogeneous mixture of clayey silt, sand and gravel and has a consistency varying from very stiff to hard with depth. The upper 15 feet of the glacial till stratum is brown and desic-cated; below that depth the glacial till is grey. Within the

2.

desiccated zone a one foot thick sand layer was encountered at a depth of about 10 feet below ground surface. The groundwater was observed to be at elevation 463+.

<u>Area 3A</u>: This site is at a tributary of Rouge River. The upper portion of the overburden at this location is a 25 foot thick stratum of dense to very dense fluvial fine to medium sand. This granular stratum is underlain by a 13 foot thick deposit of very dense glacial till (a heterogeneous mixture of sand, silt, some gravel and trace of clay) and then followed by a 5 foot thick layer of very dense silty fine sand. The lower granular layer overlies an 8 foot thick deposit of hard silty clay, which in turn overlies another stratum of very dense silty sand containing seams of silt and clay. The groundwater was observed to be at elevation 426+.

<u>Area 4</u>: This site is located in a peripheral lake during the Pleistocene epoch. The upper 17 feet of the overburden is a lacustrine silty clay of intermediate plasticity. The silty clay was found to have a desiccated crust of about 13 feet. The consistency of the silty clay varies from very stiff to hard in the crust to stiff in the undesiccated zone. The silty clay is underlain by a stratum of hard, cohesive glacial till which is at least 34 feet thick. The groundwater was observed to be at elevation 457+.

<u>Area 5</u>: This site is at the Rouge River. While the river valley banks are composed of a glacial till, the river valley floor is underlain by stream terrace deposits. Subsoil at the river valley floor consists of 3 feet of sand and gravel, followed by 15 feet of compact to very dense uniform fine sand and then followed by 43 feet of sandy silt to silty sand. The above sequence of subsoil is underlain by shale bedrock. The groundwater was observed to be at elevation 374+, corresponding to the water level in the Rouge River.

<u>Area 6</u>: The predominant subsoil at this site is a 35 foot thick deposit of clayey silt. This cohesive deposit is overlain by an 8 foot thick stratum of compact that and the last by a stratum of very dense silty sand which was found to be at least 23 feet thick. The clayey silt is grey and has a low plasticity. Within the cohesive deposit there are seams and thin layers of sand and silt. The groundwater was observed to be at elevation 416+.

З.

<u>Area 7</u>: Subsoil at this site consists of 36 feet of compact to very dense silty fine sand with occasional seams of clay, followed by a stratum at least 25 feet thick of hard clayey silt of intermediate plasticity. The groundwater was observed to be at elevation 433+.

٠<u>ج</u>

<u>Area 8</u>: Subsoil here consists of two sheets of glacial till. The upper sheet is about 48 feet thick and has a non-cohesive matrix. The lower sheet was investigated to a depth of 81 feet below ground surface and has a cohesive matrix with a low plasticity. The non-cohesive glacial till has a relative density of very dense, whereas the consistency of the cohesive glacial till is hard, generally increasing with depth. Within both glacial till sheets there are occasional seams and pockets of sand. The groundwater was observed to be at elevation 496+.

<u>Area 9</u>: Subsoil here consists of 7 feet of silt with clay followed by a stratum of glacial till which was investigated to a depth of 46 feet below ground surface. The glacial till has a non-cohesive to slightly cohesive matrix and has a very dense relative density. The groundwater was observed to be at elevation 510+.

<u>Area 9A</u>: Subsoil at this site consists of 7 feet of compact silty sand followed by 26 feet of generally hard clayey silt with a low plasticity. The cohesive deposit is underlain by a 15 foot thick stratum of very dense silt with trace of clay which in turn is followed by a stratum of very dense silty sand with seams of clay. The groundwater was observed to be at elevation 520+.

<u>Area 9B</u>: The major subsoil type is a non-cohesive glacial till which is composed of a heterogeneous mixture of sand, silt, gravel and clay. The glacial till is overlain by 3 to 8 feet of sands and silts.

<u>Area 9C</u>: The site is underlain by a stratum of glacial till which was investigated to a depth of 46 feet below ground surface. The glacial till is composed of a heterogeneous mixture of sand, silt, some clay and gravel. Within this deposit there are occasional layers and seams of sand. The relative density of the overall stratum varies from compact to very dense with depth, being very dense below a depth of 25 feet below ground surface.

4.

<u>Area 10</u>: The subsurface condition is rather complex at this site. From ground surface downward, subsoil consists of 9 feet of hard clayey silt, followed by 12 feet of very dense silty sand to sandy silt, which in turn is followed by 10 feet of very dense glacial till composed of a heterogeneous mixture of sand, silt, some gravel and clay. The glacial till is underlain by 16 feet of fine to medium sand and then another stratum of hard cohesive glacial till. The deposit of fine to medium sand sandwiched between the two glacial till sheets is under subartesian pressure, with a head stabilized below ground surface at around elevation 571+.

<u>Area 11</u>: The site is underlain by a stratum of glacial till which was investigated to a depth of 45 feet below ground surface. The glacial till is composed of a heterogeneous mixture of clayey silt, sand and gravel. The glacial till has a cohesive matrix with a low plasticity and a hard consistency. Because of the low permeability of the subsoil, the groundwater level did not stabilize during the course of investigation.

DISCUSSIONS AND RECOMMENDATIONS

The proposed alignment and profile of E.M.F., together with the proposed structure locations, are shown on Drawing 256900-A and 256900-B. In general, the subsurface conditions along the route are favourable from a soil mechanics point of view, except certain cut sections contemplated in the sand and gravel areas where groundwater problems may be anticipated. In most cases, the structures can be supported by spread footings placed within the undisturbed overburden, except a few locations where it may be more advantageous to perch the abutments within the very high approach fills on end-bearing piles. Our recommendations for the structure foundations and the related earthworks at the various sites are summarized on the following pages.

The various comments outlined in this report are for feasibility study purposes based on very limited information. It will be necessary to carry out detailed subsurface investigations at each structure location when the design details and geometries are finalized. In some areas groundwater studies, together with pumping tests, may also be necessary.

> B. Ly, P. Eng. Senior Engineer

M. Devata, P. Eng. Supervising Engineer

January, 1979

PROFESSIONAL

B-L. LY

35.5

APPENDIX

. .

- .-...

W.P. ______ AREA_1 ______ LOCATION ______ Hwy. 401 & EMF

ORIGINAL GROUND ELEV. ________

SUBSURFACE CONDITIONS <u>Reference Boreholes</u> BH1 0'-13' very dense sand and gravel	STRUCTURE Spread footings placed within the un- disturbed sand and gravel stratum with an	APPROACHES	REMARKS
0'-13' very dense sand			
<pre>13'-27' very dense glacial till 27'-43' very dense silt to sandy silt 43'-51' hard silty clay</pre>	allowable bearing pressure up to 3 tsf.	Fill heights up to 30 feet will be stable with forward and side slopes of 2:1.	Cut sections in granular soil below the groundwater level will require extensive temporary and per- manent dewatering schemes and slope treatments. Further, if cuts are contem- plated, a detailed hydrogeological study should be carried out to evaluate the ef- fects of such cuts on the groundwater. In view of the above, a
<u>Groundwater</u> Elev. 424 <u>+</u>			view of the above, a structure to carry EMF over Hwy. 401 is preferred.

-

N.P. __25-69-00 _____AREA 2 _____LOCATION __ EMF and CPR Spur (near Sheppard Ave.) _____ DRIGINAL GROUND ELEV. __451+_____

STRUCTURE	APPROACHES	REMARKS
		, ,
Spread footings placed within the glacial till stratum with an allowable bearing pressure of 3 tsf.	The proposed cuts can be either retained by retaining walls founded in the till	The proposed subway crossing will be ac- ceptable, however,
	or constructed with 2:1	some slope treatments
	slopes.	consisting of filter or granular blankets, together with per- manent subdrain sys- tems will be required
	,	
	Spread footings placed within the glacial	Spread footings placed within the glacial till stratum with an allowable bearing pressure of 3 tsf. The proposed cuts can be either retained by retaining walls founded in the till

W.P. <u>25-69-00</u> AREA LOCATION Depressed Section of EMF Between Area 3A and Area 4 ORIGINAL GROUND ELEV. _____

SUBSURFACE CONDITIONS	RECOMMENDATION	JS	REMARKS
	STRUCTURE	APPROACHES	ΝΕΜΆΝΝΟ
Reference Boreholes			
hard glacial till	N/A	Cuts up to 30 feet deep can be constructed with 2:1 slopes. Cuts of 30 feet and up to 40 feet deep should be provided with a half height 10 foot wide bench incorporating an intercepting ditch.	
· · · · · · · · · · · · · · · · · · ·			
Groundwater			

÷.

`,'

ć

 \mathbf{v}

W.P 25-69-00 AREA 3	LOCATIONEMF and CPR Spur (north crossing)
ORIGINAL GROUND ELEV. 475+	

.

SUBSURFACE CONDITIONS	RECOMMENDATIONS)	REMARKS
	STRUCTURE	APPROACHES	
Reference Boreholes BH3			
0'-86' hard glacial till	Spread footings placed within the hard glacial till stratum with an allowable load of 3 tsf.	Cuts up to 30 feet deep can be constructed with 2:1 slopes. Cuts of 30 feet and up to 40 feet deep, however, should be provided with a half height 10 foot wide bench incorporating an intercepting ditch.	
<u>Groundwater</u> Elev. 463 <u>+</u>			

W.P. <u>25-69-00</u> AREA <u>3A</u> LOCATION <u>EMF and Tributary of Rouge River</u>

ORIGINAL GROUND ELEV. ____444+ ____ _____

Reference Boreholes BH 3A STRUCTURE APPROACHES 0'-25' dense to very dense silty fine sand till Piers can be supported on spread footings placed within the undisturbed sandy stratum with an allowable pressure of 3 tsf. Fill heights up to 35 feet will be stable with forward and side slopes of 2:1. 25'-38' very dense glacial till The abutments can be supported on spread footings either placed within the un- disturbed overburden as mentioned earlier or perched within the approach fills on a compacted granular 'A' pad with an allowable pressure of 2.5 tsf. Fill heights up to 35 feet will be stable with forward and side slopes of 2:1. 6roundwater Elev. 426± Groundwater Elev. 426± Fill heights up to 35 feet will be stable with forward and side slopes of 2:1.	SUBSURFACE CONDITIONS		RECOMMENDATIONS		REMARKS	
0'-25' dense to very dense silty fine sand to medium sand 25'-38' very dense glacial till 38'-43' very dense silty fine sand 43'-55' hard silty clay 55'-70' very dense silty sand			STRUCTURE	APPROACHES		
silty fine sand to medium sand 25'-38' very dense glacial till 38'-43' very dense silty fine sand 43'-55' hard silty clay 55'-70' very dense silty sand	Reference	ce Boreholes BH 3A				
<pre>till footings either placed within the un- disturbed overburden as mentioned earlier or perched within the approach fills on a compacted granular 'A' pad with an allowable pressure of 2.5 tsf. 55'-70' very dense silty sand</pre>	0'-25'	silty fine sand to	placed within the undisturbed sandy	will be stable with forward		
38'-43' very dense silty fine sand or perched within the approach fills on a compacted granular 'A' pad with an allowable pressure of 2.5 tsf. 43'-55' hard silty clay or perched within the approach fills on a compacted granular 'A' pad with an allowable pressure of 2.5 tsf. 55'-70' very dense silty sand or perched within the approach fills on a compacted granular 'A' pad with an allowable pressure of 2.5 tsf.	25'-38'	very dense glacial till	footings either placed within the un-			
43'-55' hard silty clay 55'-70' very dense silty sand	38'-43'		or perched within the approach fills on a compacted granular 'A' pad with an			
sand	43'-55'	hard silty clay	allowable pressure of 2.5 tst.			
Groundwater Elev. 426+	55'-70'				,	
Groundwater Elev. 426+						
Groundwater Elev. 426+						
Groundwater Elev. 426+						
	Groundwa	ater Elev. 426+				

t

ŧ

• •

1

*

W.P. 25-69-00 AREA 4 LOCATION EMF and Finch Ave. E. ORIGINAL GROUND ELEV. 472+

SUBSURFACE CONDITIONS	RECOMMENDATIONS	REMARKS	
	STRUCTURE	APPROACHES	REIVIANRO
Reference Boreholes BH4			
0'-17' very stiff to hard silty clay	Spread footings placed within the glacial till stratum with an allowable pressure	Cuts up to 25 feet deep can be constructed with 2:1	,
17'-51' hard glacial till	of 3 tsf.	slopes.	
	· · ·		
	· · · · ·		
, ,			
	·		
Crowndriction Time (57)			
Groundwater Elev. 457+			
	<u> </u>		,

r *

, è

1

, -

W.P. 25-69-00 _____ AREA 5 _____ LOCATION Crossing of Relocated Finch Ave. E. & Rouge River _____ ORIGINAL GROUND ELEV. 379+ _____

	RECOMMENDATIONS		DEMADUS
SUBSURFACE CONDITIONS	STRUCTURE	APPROACHES	REINARNJ
SUBSURFACE CONDITIONS Reference Boreholes BH5 0'-4' sand and gravel 4'-18' compact to very dense uniform fine sand 18'-62' silty sand to sandy silt probable shale bedrock at 62 feet		Fills up to 30 feet in	REMARKS The proposed high level profile grade will re- quire a very long structure and very high fills, therefore, it is not preferred. The alternative low profile scheme should be adopted for this crossing.
<u>Groundwater</u> Elev. 374 <u>+</u>			
پې پې د بې		· · ·	8 X 2

v. p	25-69-00	. <u></u>	AREA	 ·	LOCATION EMF Crossing of Rouge 1	River	
DRIGINA	GROUND	ELEV	42 <u>2+</u>	 	•		

SUBSURFACE CONDITIONS	RECOMMENDATIONS		REMARKS
	STRUCTURE	APPROACHES	
Reference Boreholes BH6 0'-8' compact	The footing elements should be supported	Recommendations for the fills	
sand and gravel	on end-bearing steel H piles. Estimated tip elevations around 381 feet.	will be similar to those for fills in Area 5.	
8'-43' hard clayey silt			
43'-66' very dense silty sand			
		· · · · · · · · · · · · · · · · · · ·	
Groundwater Elev. 416 <u>+</u>			
			,
• ,			
, , , , , , , , , , , , , , , , , , ,			ني ۲ نو ۲ نو ۲

		RECOMMENDATIONS		· · · · · · · · · · · · · · · · · · ·
SUBSI	URFACE CONDITIONS	STRUCTURE	APPROACHES	REMARKS
Referen	ce Boreholes BH7			
0'-36'	compact to very dense silty fine sand	Spread footings placed within the sand stratum with an allowable pressure of 3 tsf.	The proposed cuts and fills will be stable if constructed with 2:1	This crossing is pre- ferred to the crossing at Rouge River.
36'-62'	hard clayey silt		slopes.	
	· · · · ·			
		· · · · · ·		,
			,	
	1			
Groundwa	ater Elev. 433+			· · ·
	<u> </u>			
			,	

W.P. _____ AREA_____ AREA_____ LOCATION _____ CPR Subway at EMF

ORIGINAL GROUND ELEV. _____ 506+_____

SUBSURFACE CONDITIONS	RECOMMENDATIONS		REMARKS
	STRUCTURE	APPROACHES	RUMAKNO
Reference Boreholes BH8			
0'-48' very dense glacial till	Spread footings placed within the very dense glacial till stratum with an	Cuts up to 25 feet deep can be constructed with 2:1	
48'-81' hard glacial till	allowable pressure of 3 tsf.	slopes.	
,			
	, ,		
, ,			
			,
Groundwater Elev. 496+			
`			
			,
	· · ·		
	۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰		аналанан алан жала жалан жалан жалан алан

W.P25-69-00 ARE	A 9 LOCATION CNR S	ubway at EMF	
DRIGINAL GROUND ELEV 52		•	,
	RECOMMENDATION	•	· · · · · · · · · · · · · · · · · · ·
SUBSURFACE CONDITIONS	STRUCTURE	APPROACHES	REMARKS
Reference Boreholes BH9			
0'-7' silt to silt with clay	Spread footings placed within the very dense glacial till with an allowable	Cuts up to 25 feet deep can be constructed with	,
7'-46' very dense glacial till	pressure of 3 tsf.	2:1 slopes.	
· · ·		<i>.</i>	
Groundwater H			
Groundwater Elev. 510+			
•			, ,
			,

____ AREA___ 9A ____ LOCATION __ EMF Crossing Steeles Ave. 25-69-00 W. P. ____

ORIGINAL GROUND ELEV. __^{534±} __

SUBSURFACE CONDITIONS	RECOMMENDATIONS	a Shine and a management of the state of the stat	REMARKS
	STRUCTURE	APPROACHES	REMARNS
Reference Boreholes			
0'-7' compact silty sand	Spread footings placed within the clayey silt stratum with an allowable pressure	The proposed cuts can be constructed with 2:1 slopes	
7'-33' silt some clay to clayey silt very stiff to hard	of 3 tsf.	but should be protected with filter or granular blankets.	
33'-48' very dense silt			
48'-52' very dense silty sand			
<u>Groundwater</u> Elev. 520 <u>+</u>			
), 1		ž *

W.P. _____ 25-69-00 _____ AREA _____ AREA _____ LOCATION _____ Existing CNR Subway at Steeles Ave.

*****	RECOMMENDATIONS		
SUBSURFACE CONDITIONS	STRUCTURE	APPROACHES	REMARKS
Reference Boreholes BH 9B1, 9B2, 9B3 3 to 8 feet of silt and sand overlying very dense glacial till	Existing structure supported by spread fooitngs.		Structure is in a good condition.
Groundwater not established		· ·	
i, i,	÷. ÷,		

25-69-00 AREA 9C LOCATION EMF Over Tributary of Little Rouge River N. P. ORIGINAL GROUND ELEV. 496+ ------

SUBSURFACE CONDITIONS	RECOMMENDATIONS		DEMADUC
	STRUCTURE	APPROACHES	REMARKS
Reference Boreholes BH 9C O'-46' very dense glacial till	Structure can be a CSP or a single span CRF supported by spread footings placed within the glacial till with an allowable pressure of 3 tsf.	The proposed 10 foot fills will be stable with 2:1 slopes.	
<u>Groundwater</u> Not established			

1

W. P25-69-00	AREA 10 LOCATION CPR Over	head at EMF	
ORIGINAL GROUND ELEV.		· ·	Mananan mananan metalapata ananana anananan anananan darakaran dare
))			
SUBSURFACE CONDITION	RECOMMENDATION	S .	
	STRUCTURE	APPROACHES	REMARKS
Reference Boreholes BH	10		
0'-9' hard clayey sil to silt, some c	lay forced earth or perched within the fills	Fill heights up to 35 feet will be stable with forward	Because of a water bearing sandy stratum
9'-21' very dense sand silt to silty s		and side slopes of 2:1.	and a sand stratum under subartesian conditions, it is
21'-31' very dense glacial till		· · ·	preferable to have EMF go over the existing CPR.
31'-47' fine to medium under subartesi conditions		· · · ·	
47'-52' hard glacial ti	11		
<u>Groundwater</u> Elev. 571 <u>+</u>	-		, ,
• ,			
۴ ۱ ۲۴ ۲	i de la companya de l	***************************************	t

i. i.

W.P. ______ AREA _____ LOCATION _____ EMF and Hwy. 407 ______ ORIGINAL GROUND ELEV. ______ 633 ______

RECOMMENDATIONS REMARKS SUBSURFACE CONDITIONS STRUCTURE APPROACHES Reference Boreholes BH 11 0'-46' hard glacial till The proposed cuts and fills Spread footings placed within the glacial will be stable with 2:1 till stratum with an allowable pressure of slopes. 3 tsf. Groundwater Borehole was dry

Ministry of Transportation and Communications Ontario

÷.

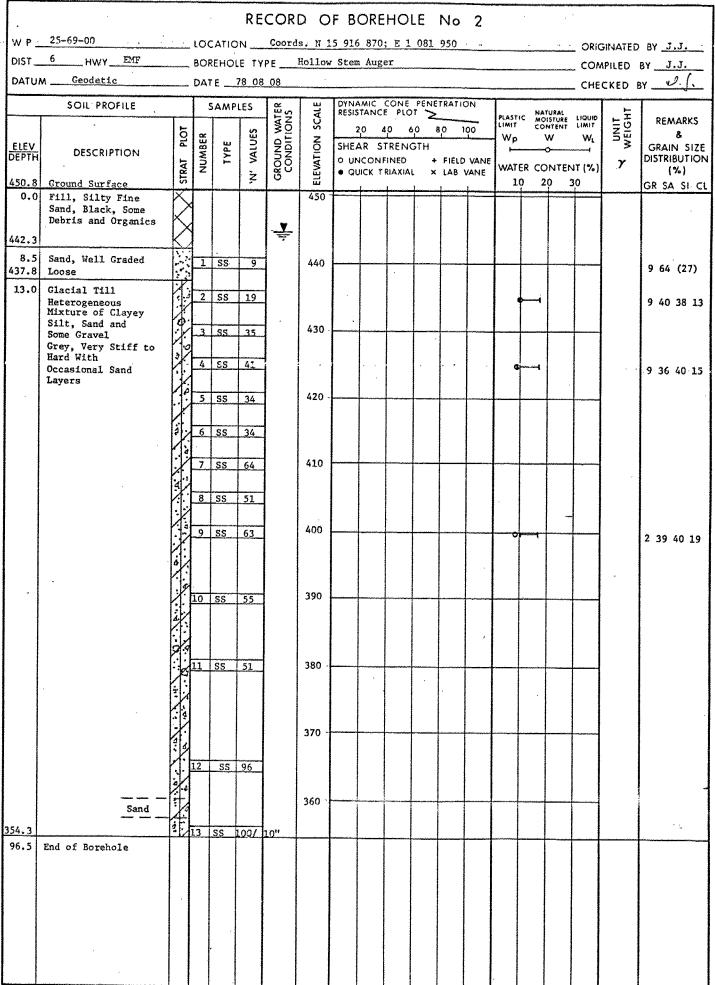
. *

HIGHWAY ENGINEERING DIVISION-ENGINEERING MATERIALS OFFICE-SOIL MECHANICS SECTION

. National States and the second se

en se se se se se se

	25-69-00 6 HWY EMF A Geodetic		BÖR	ЕНОГ	N E TYI	PE	3. N 1	<u>5,914</u>	<u>,615</u> ,	<u>e 1</u>	.083.	<u> 280 -</u>	st				COM	PILED	
<u>ELEV</u> DEPTH 433.1	SOIL PROFILE DESCRIPTION Ground Surface	STRAT PLOT	NUMBER	AMPI	N, AIUES	GROUND WATER CONDITIONS	ELEVATION SCALE	RESIS 2 SHEA 0 UN	IANCE 0 4 NR ST	PLO P 6 RENC	т <u>></u> ор а стн +	10 1				URAL STURE STENT N NTEN	LIQUID LIMIT WL IT (%)	WEIGHT	REMARKS & GRAIN SIZ DISTRIBUTIO {%} GR SA SI C
0.0	Sand and Gravel Very Dense Brown,		-1	<u>SS</u> SS	44 63	<u> </u>	430 -	R				5	<u>.</u> <u>0/7</u> "						49 45 (67)
420.1 13.0	Silt to Silty Sand With Trace of Clay and Gravel, Very Dense	A Charles and the	4		43 120	_ 14	420							c	(N.P	.)			5 44 41 1
406.1 27.0		t.]	5		60/ 87 60/		400.								81			•,	0 11 (89)
<u>390.1</u> 43.0	Silty Clay, Grey Trace of Fine Gravel Hard		9	<u>SS</u> SS	<u>60/</u> 50/		390 -			-		· · · · ·			to				
51.5	End of Borehole																		
	, ,												4						
																			*
																-			

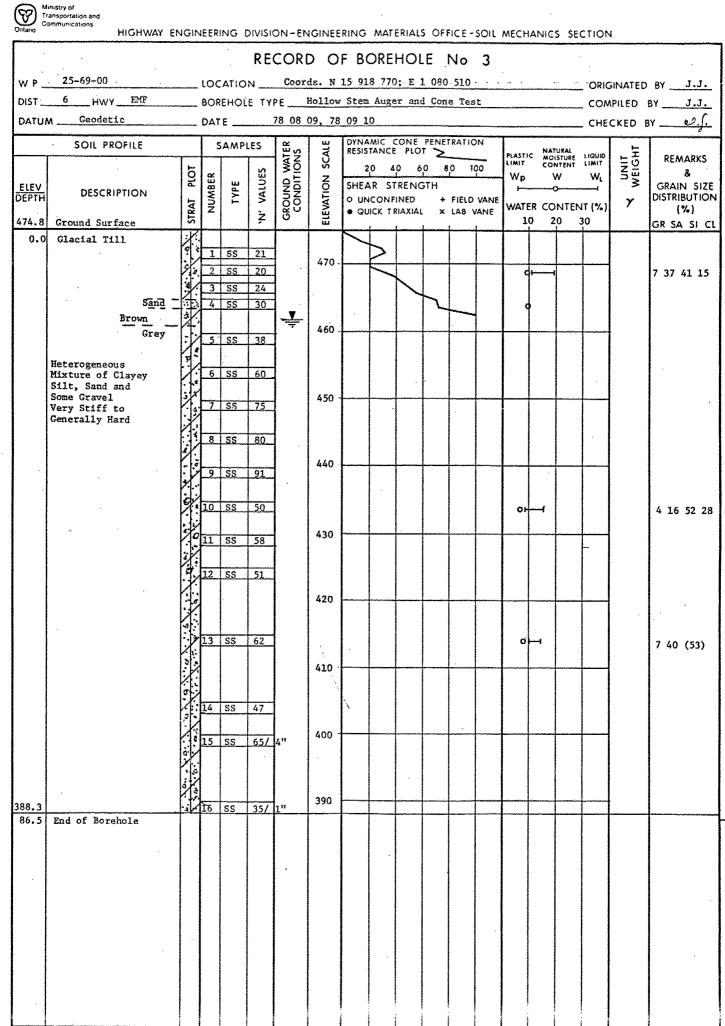

OFFICE REPORT ON SCH, EXPLORATION

و ^{ين} و

~ x

Ministry of Transportation and Communications

HIGHWAY ENGINEERING DIVISION-ENGINEERING MATERIALS OFFICE-SOIL MECHANICS SECTION



+³, x⁵ : Numbers refer to Sensitivity 20 15 - 5 (%) STRAIN AT FAILURE

1. 2. P. .

KEPUKE UN SUIL EXPLORATION

OFFICE

+3. x5 - Numbers refer to

(∇)	Ainistry of Transportation and Communications
------------	---

" ځ*

OFFICE REPORT ON SOIL, EXPLORATION

HIGHWAY ENGINEERING DIVISION-ENGINEERING MATERIALS OFFICE-SOIL MECHANICS SECTION

6.

					RE	CORI	D-O	F B	ORE	HÒI	LE	No	3A					٩	•
WP_			ιος	ATIO	N(Cocrds.	<u>N 15</u>	919	380;	E 1 (080 1	<u> 30 ·</u>						GINATED	БҮ <u>Ј.ј.</u>
DIST_	6 HWY EMF		BOR	EHOL	E TYI	P E	Hollo	w Ste	m Aug	er a	nd_Co	ne Te	st			,	CON	APILED	BY <u>J.J.</u>
DATUA	A <u>Geodetic</u>								<u></u>										iy
	SOIL PROFILE		S	AMPI	ES	S ER	SCALE	DYNA	TANCE	CONE PLO		TRATIC	0N	I	NA	TURAL	, (m	F ⊨	
<u>ELEV</u> DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	N' VALUES	GROUND WATER CONDITIONS	ELEVATION SCA	SHEA	O 4	O E	о е этн +	10 1	VANE	- ₩p WAT	ER CC	W 0 0NTEN	LIQUID LIMIT WL JT (%)	59 X	REMARKS & GRAIN SIZE DISTRIBUTION (%)
444.3	Ground Surface Silty Fine Sand to	5			<u> </u>		ដ		}	<u> </u>		+	<u> </u>		10 2	0 3	30 	ļ	GR SA SI CL
0.0	Medium Sand Dense to Very Dense Brown Grey		1	SS SS	33 57	. /	440 -					~							3 54 33 10
	With Occasional Seams of Clay		3	SS SS	108 91/	10 ¹⁷	430 ·							, , , , , , , , , , , , , , , , , , ,				-	
419.3			Ļ	SS	134		420 -	 	<u> </u>	.	ļ'		<u> </u>	 	 	ļ	ļ		17 21 120
25.0	Glacial Till Heterogeneous Mixture of Sand, Silt, Some Gravel and Trace of Clay Very Dense	0. 0. 0. 0. 0. 10 . 0.	6	SS	<u>.62/</u> 92	6 "	410								N.P				17 64 (19)
406.3	-	¢¢»																	
38.0	Silty Fine Sand Very Dense	0.12	8	SS	108														0 56 (44)
401.3	Silty Clay						400 -												
	Grey '' Hard		10	SS SS	70/ 87														
389.3 55.0	Silty Sand With Seams of Silt and Clay Very Dense		11	SS	1007	6"	390 - 380 -	,	×										1 65 19 15
373.8			12	SS	100/	5"													
70.5	End of Borehole																		

+³, x⁵ : Numbers refer to 20 Sensitivity 15 - 5 (%) STRAIN AT FAILURE

	-				RE	COR	DO	FΒ	ORE	но	LE	No	4						
NР	25-69-00		ιοα													×	<u>A</u>	NATED	
DIST	6 HWY EMF																		
DATU	MGeodétic		DA1	TE	78 08	10													зү_ <u>ıl.f.</u>
	SOIL PROFILE	<u></u>		SAMP	LES	œ	щ	DYNA	AMIC	CONE	PENE	TRATI		т —					1
LEV EPTH	DESCRIPTION	AT PLOT		T	VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	SHE	20 AR S	IO FREN INED	стн +	FIELC	VANE	Wp F	co	NTENT W 0	LIQUID LIMIT WL		REMARKS & GRAIN SIZ DISTRIBUTIC
72.2	Ground Surface	STRAT	Z		Ż	ŝ	ELEV	• QI	лскт	RIAXIA	L×	LAB	VANE	ł	ER CC 10 2		NT (%) 30		(%) GR SA 51 (
0.0	Silty Clay, Brownish	$\overline{\mathcal{V}}$	Γ	Ī			470								 	1			
	Grey, Very Stiff to Hard	$ \rangle$		SS	30	·	470	2											
		r,	┢┷	1.00	1.30					—		\vdash	1			^		4	
	,	И.	2	SS	24					l			Í.,						
		¥				•	460				+	<u> </u>	 .			<u> </u>			,
55.2	Grey and Stiff	LZ.	3	SS	7	-													
17.0	Glacial Till Heterogeneous Mixture of Clayey		4	SS	43														
	Silt, Sand and Gravel				<u> </u>		450	<u> </u>		ļ	ļ	<u> </u>	<u> </u>	°	}i				
	With Occasional Boulders and Silt	ľk	5	SS	98														9 40 (51)
	Seams								·										
	Hard	Ľ,	6	SS	83		440								⊷	-			ļ
		/. 	7	SS	75/	511													
	· .	1			······································	^													
			8	SS	92/	6"													
							430												
		0	9	SS	94/	6"													
1.2	,	X	10	SS	132														
1.0	End of Borehole														•				
	۰. ۲																		
								:											
	<i>,</i>																		
					· ·														
	х			1	l														
	<i>i</i>																		
						l	l								and the second			1	
					1														
	<u>.</u>			1								1	1	1		1			

<u>ت</u> و

* 1

Í

OFFICE REPORT DN SOIL EXPLORATION

Ontario	Ministry of Transportation and Communications
---------	---

ζ, a

OFFICE REPORT ON SOIL EXPLORATION

÷200

1

						,	x X
					, •	, 1	۰. ۱
nđ	HIGHWAY	FNGINEERING	DIVISION - ENGINEERING	MATERIALS	OFFICE - SOIL	MECHANICS	SECTION

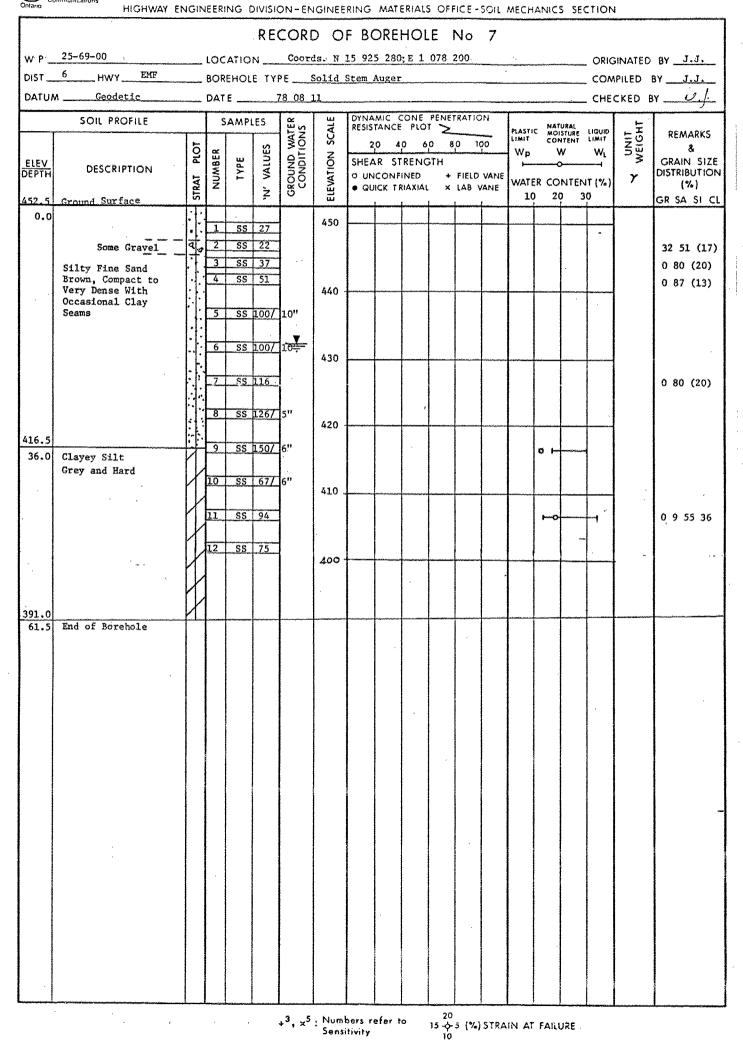
	yan yanan karan ang ang ang dikin kanang makan karan na karan karan karan karan karan karan karan karan karan k				REG		0	= 80	DREF	IOL	Εľ	٩٥	5				·.		
	25-69-00																		3
DIST	6 HWY EMF		BORE	HOLI	E TYF	EE	lollow	Stem	Auget	<u> </u>									
DATUM	Geodetic		DATI	E	7	8 08 1	.0										CHE	CKED B	х <u></u>]
	SOIL PROFILE		S.	AMPL	.ES	GROUND WATER CONDITIONS	SCALE	RESI51		PLOT	\geq			PLASTIC		URAL		UNIT WEIGHT	REMARKS
	a, a	PLOT	æ		JES	N0 10 20		2 SHEA	0 4(D 57			0 10	0	Wp		V	WL	NE, UN	& GRAIN SIZE
ELEV DEPTH	DESCRIPTION		NUMBER	ŢΥΡΕ	VALUES		ELEVATION	O UN	CONFI	NED	+			WATE	C		T (%)	~	DISTRIBUTION
379 6	Ground Surface	STRAT	Ī		Ņ	30	ELEV	 QU 	CK TR	IAXIAL	×	LAB V	ANE						GR SA SI CL
0.0	Sand and Gravel	Q.^?																	
	Very Dense Uniform Fine Sand		I	SS	50	Ţ							,						·
	Some Silt, Grey Compact to Very	đ	2	SS SS	5 8 40	Ŧ	370												
	Dense	Ø,	4	SS			570												,
•		:2																	
360.6	With Occasional Clay Seams	× ~	5	SS	36		360							ς.		ö		,	
18.0	Silty Sand to Sandy Silt With		6	SS	55 .														
	Occasional Boulders		7	SS	0											×			0 78 (22)
]	350	 								<u> </u>			
			8	SS	0														
		[. [.;	9	SS	9					1									0 39 (61)
	,			0.2	1	1	340					 	ļ	_			ļ		
		ŀŀ	10	SS	0	1										ŀ			
		<u> </u>	L									ļ							
	Trace of Clay		11	SS	11		330												
	,	-	12	SS	10		550												
						1													
	•		13	SS	18	1													0 51 (49)
			.				320	 								<u> </u>			
	Probable Shale Bedrock End of Borehole	71.51	14	SS	102/	2"		+					`				1		
	Note: Auger Refusal					1													
	at 61.5 feet																		
																			,
	ť																		
	, ,						1						ŀ					1	
																			1
								1											
				1												1			
																			-
						1				1									
			Į															1.	
l																			
														1				1	
	, ,																ŀ		
																		ł	
																		l	
				ļ															
کست		<u></u>	· • • · · · · ·	<u></u>		ن 3	5 - Nur San	nbers	refer	to	2	0	1 6 7 0	A 16.1 A	T E				
						- , ^	San	eitivity			,o -Q	-3 1%	1218	AIN A	I FAS	LUKE			

					RE	COR	DO	FΒ	ORE	но	LE	No	6					
	25-69-00														•		GINATEC	BY <u>J. J.</u>
	6 HWY EMF												ч. 					8Υ <u>J.J.</u>
DATUN	A <u>Geodetic</u>		DAT	ΓE	78 0	8 11	-			1			, 	 		_ CHE	CKED	BY
	SOIL PROFILE			SAMP	LES	IS R	SCALE	DYNA	AMIC	CONE E PLC		TRATI	ON	 NA	TURAL		1	T
EEV EPTH	DESCRIPTION	STRAT PLOT	$ \leq $	TYPE	'N' VALUES	GROUND WATER CONDITIONS		SHE	20 - AR S NCONI	TREN	60 GTH +	s,o		ER CC	W 0 DNTER	LIQUID LIMIT 	5	REMARKS & GRAIN SIZ DISTRIBUTIO (%)
0.0		2. 	a de comercia de la c		<u> </u>			1	1	+	+		+	0 2	20 	30		GR SA SI C
14.5	Compact	 	1	SS	20	- <u>-</u> -	420											52 42 (6)
8.0	Seams ofSand	Ĥ		<u>\$\$</u>	80		410 -	ļ 						ю	 	4		
	Clayey Silt, Grey Hard	K	3	SS	41.		. 410	r.						•		+		
	•		4	55	30		400				 	ļ .						
			•5	SS	25													
	Trace of Gravel	0.0	6	SS	53		390			ļ	 			 ****				
	With Thin Layers of Brown Sand and Silt	K	7	SS	82/	6"								ю	H			
9.5	Silty Sand, Brown	K.	.8		132		380			<u> </u>	<u> </u>	<u> </u>		 				,
	Very Dense		9		74/	6"									_			0 58 (42)
			10				370			 								
				- 33	13471	1											:	
6.5	Seams of Silt & Clay	X	12	SS	100/	6"	360					 		 				
6.0	End of Borehole																	
							<i>'</i>											
																		,
															-			
																,		
va wie z z z z z z z z z z z z z z z z z z z			,		ľ													
															,			
	, ·																	,
				,														

¢⊳≉

* _____

.....


OFFICE REPORT ON SOIL EXPLORATION

 $\sim^{2^{2}2}$

+³, x⁵ Numbers refer to Sensitivity 15 - 5 (%) STRAIN AT FAILURE

Ministry of Transportation and Communications

 \mathfrak{B}

OFFICE REPORT ON SOTI EXPLORATION

و کلی۔

Ministry of Transportation and Communications

P

OFFICE REPORT ON SOIL EXPLORATION

HIGHWAY ENGINEERING DIVISION-ENGINEERING MATERIALS OFFICE-SOIL MECHANICS SECTION -RECORD OF BOREHOLE No 8 LOCATION Coords. N 15 926 140; E 1 077 940 _ ORIGINATED BY _____ DIST 6 EMF ___HWY___ BOREHOLE TYPE ____ Hollow Stem Auger _ COMPILED BY _____. ap. Geodetic 78 08 14 DATUM __ __ DATE ___ _ CHECKED BY . DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE WATER ш SAMPLES UNIT WEIGHT NATURAL MOISTURE LIQUID CONTENT LIMIT SCALI PLASTIC LIMIT REMARKS 20 40 60 80 100 PLOT VALUES Wp & W WL GROUND V CONDITIO NUMBER ELEVATION TYPE SHEAR STRENGTH GRAIN SIZE ELEV į., \circ -----DESCRIPTION DISTRIBUTION DEPTH O UNCONFINED + FIELD VANE STRAT Y WATER CONTENT (%) (%) · QUICK TRIAXIAL Ż × LAB VANE 30 10 20 505.5 GR SA SI CL Ground Surface et. 0.0 Glacial Till Heterogeneous Mixture of Sand, 1 | SS 74 500 Silt, Some Clay and Gravel (N.P.) 2 55 49 ol 9 39 37 15 Very Dense k SS 85 490 3 4 SS 45 Brown Grey 5 SS 92 480 6 SS 113 0 (N.P.) 15 41 34 10 Occasional Fine 7 SS 154 5 39 (56) Sand Seams 470 8 SS 100/ 5" 9 SS 35 460 457.5 48.0 Glacial Till 10 SS 59 1 Heterogeneous Mixture of Clayey Silt, Sand and SS 62 450 13 Some Gravel, Grey Hard 12 SS 83 1 22 49 28 13 SS 440 117 -1 Occasional Pockets 4 14 SS of Sand 96 7 91 15 | SS 430 424.5 ·16 SS 93 81.0 End of Borehole

> +³, x⁵ : Numbers refer to Sensitivity

20 15 - 5 (%) STRAIN AT FORL 12

		,																	
W P	5-69-00		ιο	CATIC	N	Co	oords.	N-15	931	210;	E 1	076	930	*		c.	<u>ne</u> r	GINATE	T.T. VAC
0131	HWY LEFE	••••••••••••••••••••••••••••••••••••••	BOI	REHOI	LE ŤY	PE	Solid	Stem	Aug	er							 		ev J.J
DATUM	AGeodetic		DA	r E	78	08 1	5												BY
	SOIL PROFILE		T	SAMP				DYN		CON	E PEN	ETRAT	ION	T				1	
1		Τ.	+	T	T	ATE NS	GI	RES	ISTAN	CE PI	or	<u>></u>		PLAST	IC MO	TURAL	LIQUID	E L	REMAR
ELEV		PLOT	E E	u u	N' VALUES	GROUND WATER CONDITIONS	ELEVATION 5	-	20	40	60	80	10N 100	Wp		W W	WL		&
DEPTH	DESCRIPTION	1	NUMBER	TYPE	M	N N N	ATIC			SI KE P AFINED	IGIH	+ FIEI	D VANE	~		~			GRAIN S
522.7	Ground Surface	STRAT	Z		Ż	80	ELEV	• 9				X LAB	VANE	WAT			NT (%)	7	(%)
0.0	Silt to Silt With	77					<u> </u>	+	+		-			10	, 	20	30	<u> </u>	GR SA SI
	Clay, Brown Very Stiff	ÍV	<u>L</u>	SS	11	ŕ	520			_	+			 	<u> </u>		<u> </u>		
515.7		1	2	SS	12							1	1					ļ	
7.0	Glacial Till	N.	<u> </u>		97	,								0	(N.F	5		3	6 43 37
•	Heterogeneous	i.	4	SS	507			1								ſ			
ł	Mixture of Sand, Silt, Some Clay	à 1	<u> </u>			-	510		1	1	1		+	<u> </u>	†	1			
	and Gravel Non-Plastic to	3	5	55	50/	3"				1				•	H				1
	Slightly Plastic Grey	1.10	6	55	100/	ğ11													· ·
	-	X				2	500		<u> </u>				- 	ļ	ļ				
	Very Dense		7	55	607	3"						.			N.P.	ļ			0
														ľ	ſ	ſ			8 54 28
		Ŧ	8	SS	50/	2"		1											
							490	 	1	1	+	1	+				<u>├</u> ┃		1
		K.	9	SS	25/	2''									,				l
			10		507	. 17													
				- 22	<u></u>	•	480	Ļ	_	<u> </u>		<u> </u>							
76.2		X	11	SS	507 2	211													
+0.5	End of Borehole	[Ī	T	T			``	[1	1	1			-			danı, <u>1999</u>	
											1								
													 . 			,			
																			i I
												ľ							
											l						1		
																			1
	-			ļ															
											l								
																		ļ	
	,																	l	
																			· *
											`								
									ł									ļ	
																		I	
															f i				
i			1	1		1	1	1	1	1		1	1	1	1		1	1	

OFFICE REPORT ON SOIL EXPLORATION


24

•

: 2-2

a summer of a second

Ministry of ¥

OFFICE REPORT ON SOIL EXPLORATION

· · ·	HIGHWAY	-			in a second s	CORI												-	
	25-69-00																		
-	<u> 6 </u>			•				Info	rmati	on Fi	rom C	.N.R.							BY 3Y
	SOIL PROFILE		.	AMPL				DYNA	MIC	ONE	PENE	TRATIC	DN	1				r	s, <u> </u>
		5				WATE	SCALE		TANCE 0 4	ΡιΟ 0 6		0 1	<u>.</u>				LIQUID	UNIT	REMAR
EPTH	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	VALUES	GROUND WATER CONDITIONS	ELEVATION	OUN		RENC	+		VANE			W D DINTEN	WL 		GRAIN S DISTRIBUT (%)
06.4		STE STE			ž	ច ⁻	ELE		+		. ^ 	LAB ,			I	<u> </u>	1		GR SA SI
<u>03.4</u> 3.0	Brown																		· ·
	Till Very Dense	8					500-									 			
		Ţ,																	
)1.8 4.6	End of Borehole				,														
	Line of astenoite						490												
	,					,	,												
		2 F																	
	,																		,
																		· ·	
	· ,											•							
					,														
	, , , , , , , , , , , , , , , , , , ,																		,
	19																		
								ι.		х.									
										<i>.</i>									
																	Ň	`	
												,							
	<i>,</i>																		
																		,	
	,																		

OFFICE REPORT ON SOIL EXPLORATION

.*<u>*</u>

÷

. ***

	HIGHWAY E						DO								MAINI			N .	
W·P·_	25-69-90	• .	LOC	ATIC)N	Coor	ds. N	15 9	31_80	ю; е	1 07	<u>6 010</u>	<u>, </u>			,	^ ORIC	GINATED	SBY_
DIST_	6 HWY EMF	· · · · · ·	BOR	EHO	LE TY	PE	Soils	Inf	ormat	ion 1	rom	<u>C.N.R</u>		~ 			_ CON	APILED	BY
DATU		······					1	LOVA		<u></u>	0555	ETRATI					CHE	CKED	BY
	SOIL PROFILE		-	SAMP	1	MATER DNS	SCALE	RESI	STANC	E PLO	ר זכ	•		PLAST		TURAL		UNIT WEIGHT	RE
ELEV	DESCRIPTION	PLOT	NUMBER	ц.	IL UES		NO	_		TREN		80	100	- w _p		W	WL	NEI ON	GR
DEPTH		STRAT	NUN	TYPE	'N' VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	0 U • Q	NCON LICK T	FINED	+ 4. x	FIEL(⊂LAB) VANE VANE	WAT	ER CO	ONTE	NT (%)	7	DIST
	Ground Surface Silt and Sand	15			<u> </u>	Ľ				+	+	+			+				GR :
505.0	Brown Fine Sand With																		
501.0	Gravel, Brown					1	500												
0.0	Sandy Silt Till Grey, Very Dense						500.						1		1				
	· · · ·	i.										.							
	, ,						490		ļ		ļ	<u> </u>	ļ	<u> </u>	ļ	<u> </u>			
	· · ·														· .			•	
481.4	·	-																	
27.6	End of Borehole						480					+	<u> </u>	<u> </u>		1			
	,										. '								
						v				ļ,									
	,																	:	
	,																		ĺ
	÷																		
											<i></i>		-						
																			,
							7												
								,											
																		ł	
1			1	1	1		1	1			1		1		1	1	1		

OFFICE REPORT ON SOIL EXPLORATION

.*<u>.</u>

all and a second second second

Solu PROFILE SAMPLES and of Borehole SAMPLES and of Borehole and of Borehole <th></th> <th>ds. N Infor</th> <th>E <u>Soils</u></th> <th>LOCATION BOREHOLE TYP DATE64</th> <th></th> <th>TUM <u>Geodetic</u></th>		ds. N Infor	E <u>Soils</u>	LOCATION BOREHOLE TYP DATE64		TUM <u>Geodetic</u>
0.0 Silt and Sand, Some Fine Gravel, Grey- Brown 500 7.0 Sandy Silt Till Grey, Very Dense	V RESISTANCE PLOT PLOT PLASTIC NATURAL MOISTURE LIQUD LIMIT I Z 20 40 60 80 100 Vp V O SHEAR STRENGTH Vp W Vp Vp V O UNCONFINED + FIELD VANE WATER CONTENT (%) Y	RES	MATE ONS SCAL	NUMBER TYPE 'N' VALUES		TH DESCRIPTION
14.5 End of Borehole		00				Fine Gravel, Grey- Brown .0 Sandy Silt Till Grey, Very Dense
	490	00	490		•	.5 End of Borehole
		· ·		·		
						• · · · · · · · · · · · · · · · · · · ·

J.,

•

Ż

OFFICE REPORT ON SOIL EXPLORATION

..., ---

> +³, x⁵ : Numbers r Sensitivity refer to

15 4 5 (%) STRAIN AT FAILURE

	-
$\overline{\mathbf{a}}$	Ministry of
IYYI	Transportation and
Ś	Communications
Ontano	

ſ

OFFICE REPORT ON SOIL EXPLORATION

*.

						COR													
W P _	25-69-00		100	TATIC	N	Ccord	<u>s. N 1</u>	5 93() 100	; E 1	. 077	260	,			•		GINATE) BY <u>J.J</u>
	6 HWY EMF							w Ste	em Au	ger	-						_ co	MPILED	BY
DATU	M <u>Geodetic</u>		DAT	ΓΕ	7	8 08 1	5							·····			_ CH	ECKED	вү <i>ø.f.</i> _
	SOIL PROFILE	<u> </u>	<u> </u>	SAMP	LES	ATER NS	SCALE	DYNA	TANC	CONE E PLC		TRATI	ON	PLAST		TURAL		L H	REMARK
<u>ELEV</u> DEPTH		STRAT PLOT	NUMBER	TYPE	N' VALUES	GROUND WATER CONDITIONS	ELEVATION S	SHE/ O UN	AR 5 ICONI			FIEL	VANE		ER CC	W O DNTEP	WL 	× C	& GRAIN SI DISTRIBUTIO (%)
196.9 0.0	Ground Surface Glacial Till			<u> </u>	<u> </u>		ш		1	1	+	1		+	0	20 :	30	<u> </u>	GR SA SI
	Heterogeneous Mixture of Sand, Silt, Some Clay			SS	9		490				ļ				(N.F	· .)			15 42 (43)
	and Gravel Very Dense	16 b ;		 35 	39	,													
	, , , , , , , , , , , , , , , , , , ,	1 		SS	44.		480 .						<u> </u>	-					13 49 28
	Fine to Medium Sand Fine Sand				46														
	Wet Sand			SS SS	73/	6"	470					<u> </u>		 		 			8 22 (70
	Seam = = =		7	SS	90 74/	6"	460												9 31 44 :
			9	SS	110/	6"									:				
50.9			10	SS	607	7"													
46.0	End of Borehole . Note: Groundwater Not Established					-					- '							-	
	· · · ·						-												
	ν.																		
				,															×
																	, , , , , , , , , , , , , , , , , , ,		
						r.													

20 15 - 5 (%) STRAIN AT FAILURE 10 +³, x⁵ : Numbers refer to Sensitivity

-

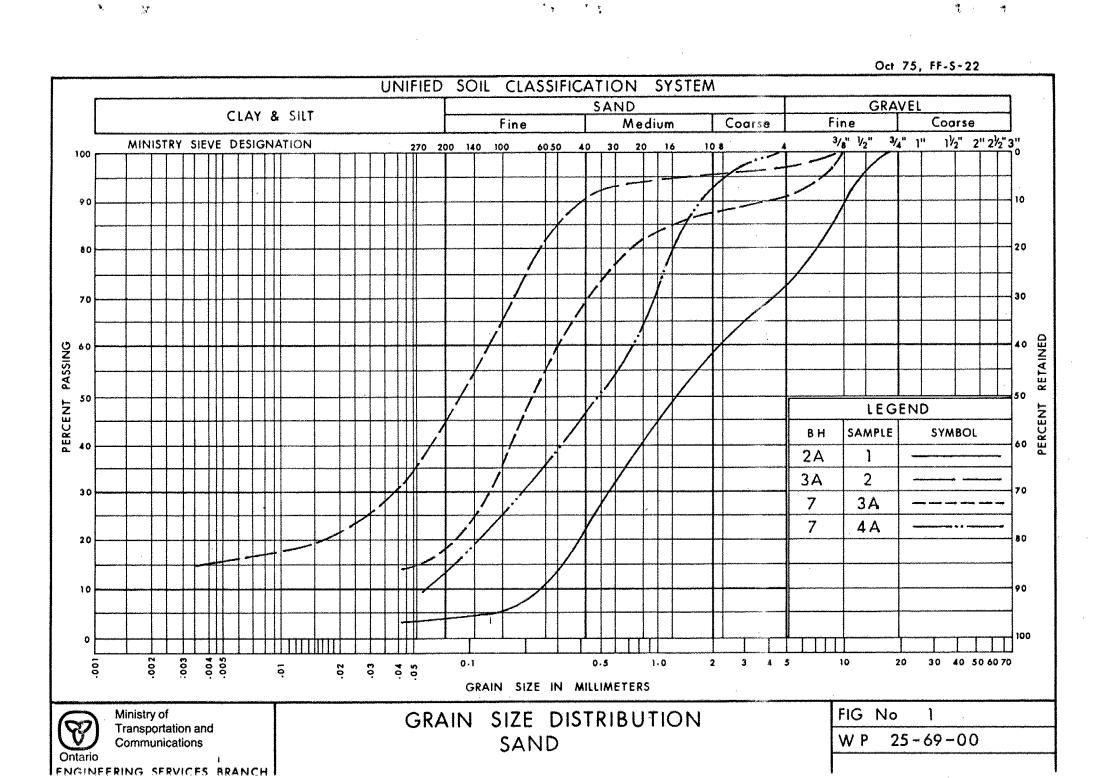
	· .												E-SOIL						
W P _	25-69-00	,	10	ሮልተነሳ		Coord						141	5 10						
DIST_	25-69-00 6 HWY EMF			REHO	LE TY	PF	50114	5 <u>7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</u>	100	<u> </u>	<u>c 07:</u>	5 270						GINATE	D BY J.J.
	MGeodetic						78 08							·····	······			APILED	BY <u>J.J.</u> BY <u>2</u>
	SOIL PROFILE			SAMP				DYN	AMIC	CON	E 96	NETRA		T				1	· · · · · · · · · · · · · · · · · · ·
		Τ.		T		GROUND WATER CONDITIONS	ELEVATION SCALE	RESI	STAN	CE PI	.07	≥ 80		PLAST	TIC M	ATURAL OISTURE	LIQUID	UNIT WEIGHT	REMARK
ELEV	DESCRIPTION	PLOT	NUMBER	TYPE	VALUES	2 I	S	SHE.						Wp	,	W	WL	N CN	& CRAIN 51
PEPTH		STRAT	Ŋ	1		Ĩ200	MII	0 01	NCON	FINE	,	+ FIE	LD VANE VANE	WAT	FR (1		NT (%)		DISTRIBUTIO
588.9	Ground Surface	5	<u> </u>	ļ	Ż	0				I KIAAI	AL	× [A]			10		30		(%) GR SA SI
0.0	Some Organics		1	SS	31	- I									Ι		1.		
	Clayey Silt to Silt Some Clay, Hard With	Y		SS	88	1									PF		+4 -		
79.9 9.0	Seams	+k	3	SS	1	10"	580		Į,	\bot									
9.0	Sand With Gravel.	-	4	SS	64	6"											<i>·</i> .		
	Grey, Very Dense		Ľ																
			· - 5	SS	50/	2" 									(3.1				21 35 (44)
67.9 21.0	Glacial Till	ł.	6	SS	50/		570 -			\top	+	+					┼──┨		
	TT	ľ.									1								45 43 (12)
f (Mixture of Sand, Silt Gravel and Clay	1	7	SS	50/	2"													· •
57.9	Grey, Very Dense	1		ee	957	611	560			<u> </u>						ļ		·	
31.0	Fine to Medium Sand										1	1		0	(N.F			-1-	21 52 25 2
	Under Subartesian Pressure																		
	· .						550 -			ļ									
·																			`
1.9																		•	
7.0	Glacial Till	ي اد			·		540 -		i										
7.4	waa na maa ka na maa ka maa	4	9	SS	100/4	μ.,		T			T	\top		8					
1.5	End of Borehole										Γ	Ť							8 42 35 15
				·															
				•															
	. • •			-															
							[
	· · · · · · · · · · · · · · · · · · ·										,						ŀ		
															ļ				
																			,
						ľ													
	,																		
			-															l	
	,														la secondaria de la second	ļ	ļ		,
								- 1		ŕ	3	;	á	ĩ	j.	ł	1	1	

·

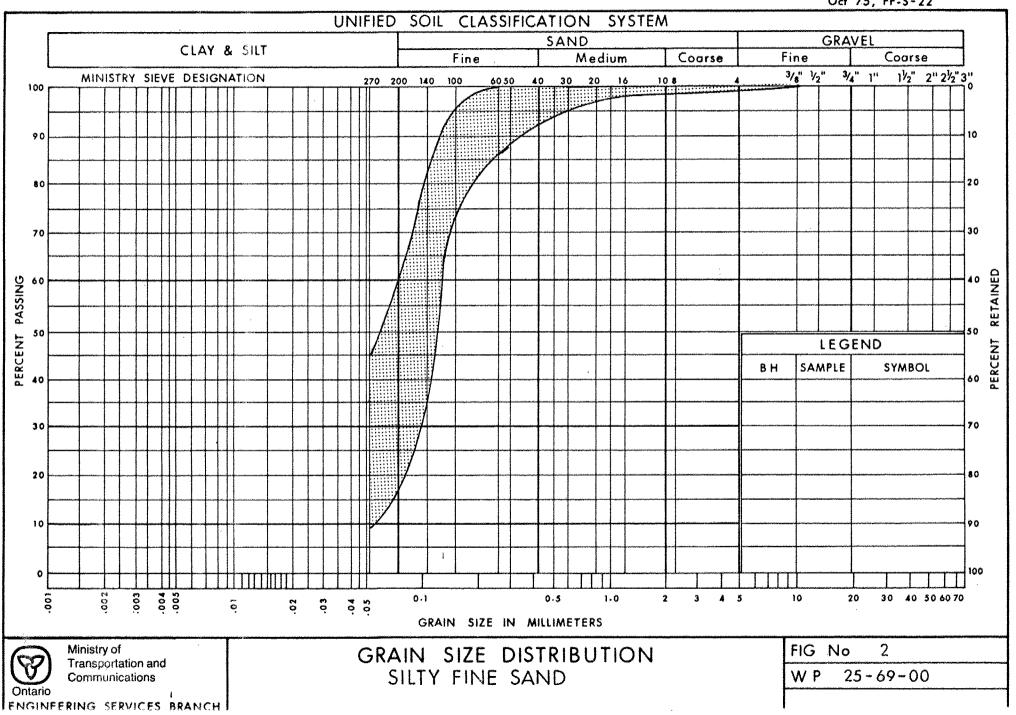
OFFICE REPORT ON SOL "EXPLORATION

÷.,

(+³, x⁵ : Numbers refer to Sensitivity


					REG		0	FBC	DRE	HOL	EI	No	11						
	25-69-00	,																	
	6 HWY EMF		,								· · ·								
DATUN	Geodetic		DAŢ	ε		78											CHE	CKED E	зү <u>/.</u>
*	SOIL PROFILE		S	AMPL	.ES	TER 45	SCALE	DYNA RESIS	MIC C	ONE PLO		RATIO	N	PLASTIC		URAL		H	REMARK
		PLOT	œ		ES	TION A	20	2	04	0 6	0 8	0 10		Limit Wp	CON	ITENT N	LIMIT WL	UNIT WEIGHT	8
ELEV EPTH	DESCRIPTION	STRAT PL	NUMBER	TYPE	N' VALUES	GROUND WATER CONDITIONS	ELEVATION	O UN	R ST	NED	+	FIELD		WATE				~	GRAIN S DISTRIBUT (%)
33.0		S			Ż	Ů	Ë	ļ	<u>.</u>					10) 2	o :	80		GR SA SI
0.0	Glacial Till Heterogeneous	1				No	630										ļ.,		
	Mixture of Clayey Silt, Sand and	1	1	SS	30	W.L.	050												
	Grave1	1																	
	Hard Brown		2	SS	60/	5"													
	Grey	K	3	SS	130		620									L			6 25 (69
			<u>-</u>	*	-1-20									Ĩ				-	0 25 (05
			4	SS	657	6"													
	••						610 -	ļ	ļ										
			5	SS	70/	4"													9 35 (55
	· · · ·								•.										
			6	SS	108									01					
		X	<u> </u>	SS	60/	7.11	600										\vdash		
			ا	35	607	4													
			8	SS	60/	5"													18 37 (4
	,	1		ļ,		-	590		L										
87.5		\$ Z	9	SS	90/	6"		ļ											<u> </u>
15.5	End of Borehole							ŀ							,				
						· .								17					
			ł			ļ			1										
				1		l					ļ	·							
	, ,				ł .			1											
													•						
	•							[
								1											
						ł		1											
					ł														
	, ,					1]
						l													
							l												
	· · ·																		
			ł																
						ľ													1
																			1
				1	1	1			1							•	1		1

OFFICE REPORT ON SOIL EXPLORATION


4

-

* *

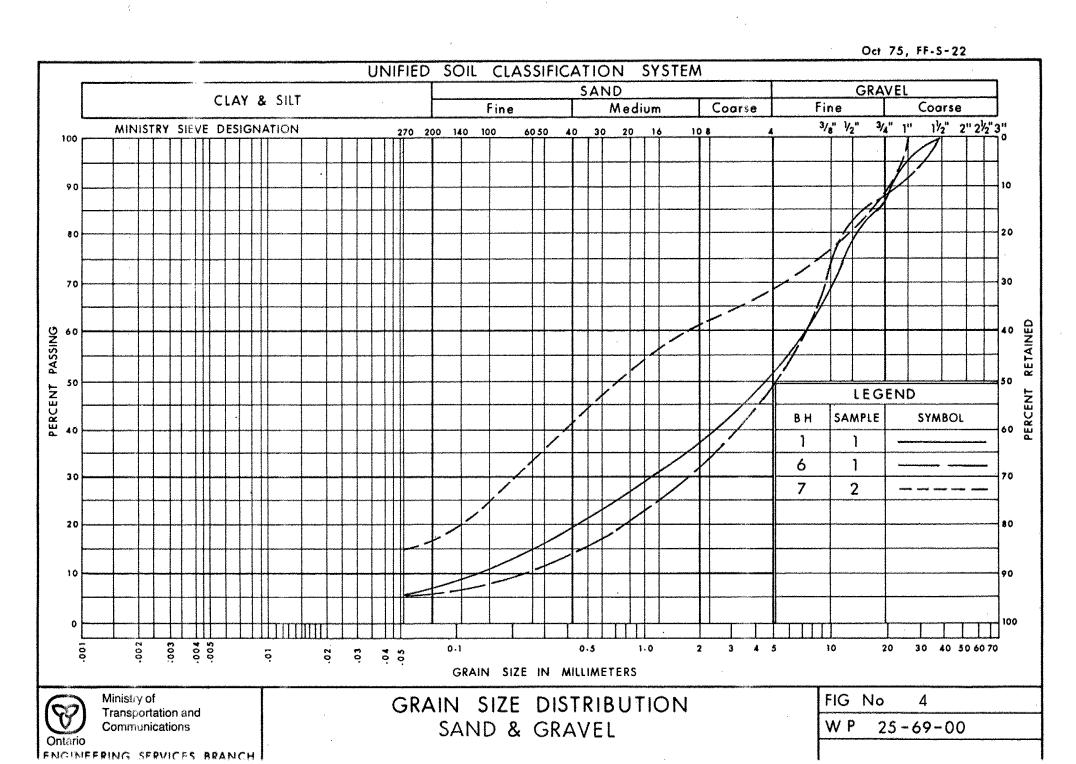
٩,

۰.

(n.y.

٠4

ŝ

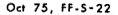

*r*i

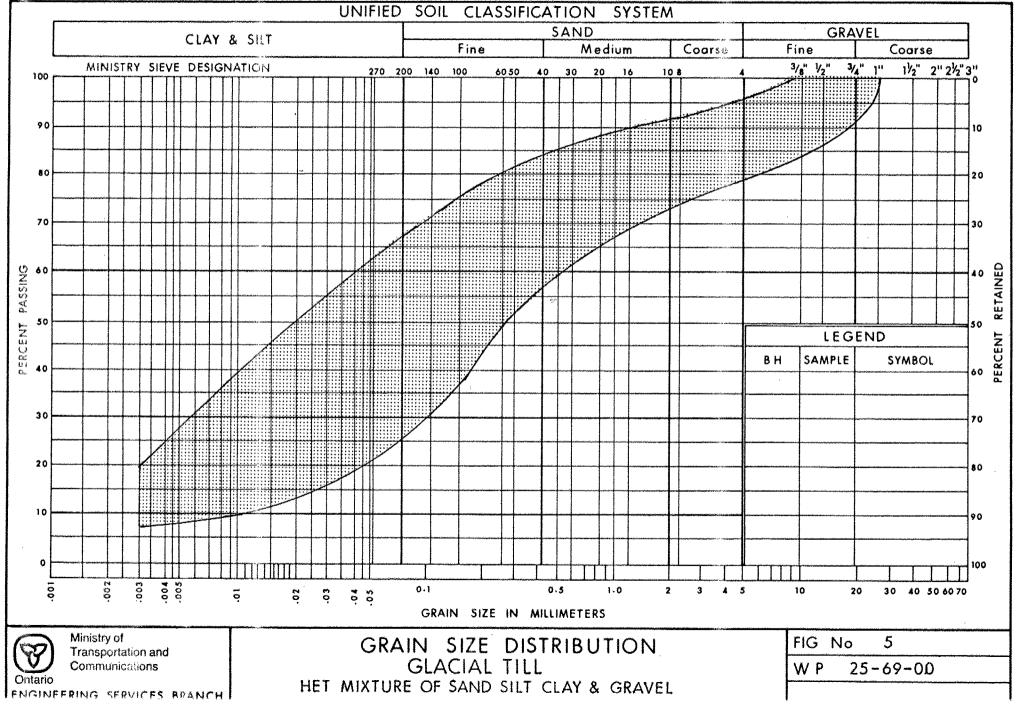
* ŗ

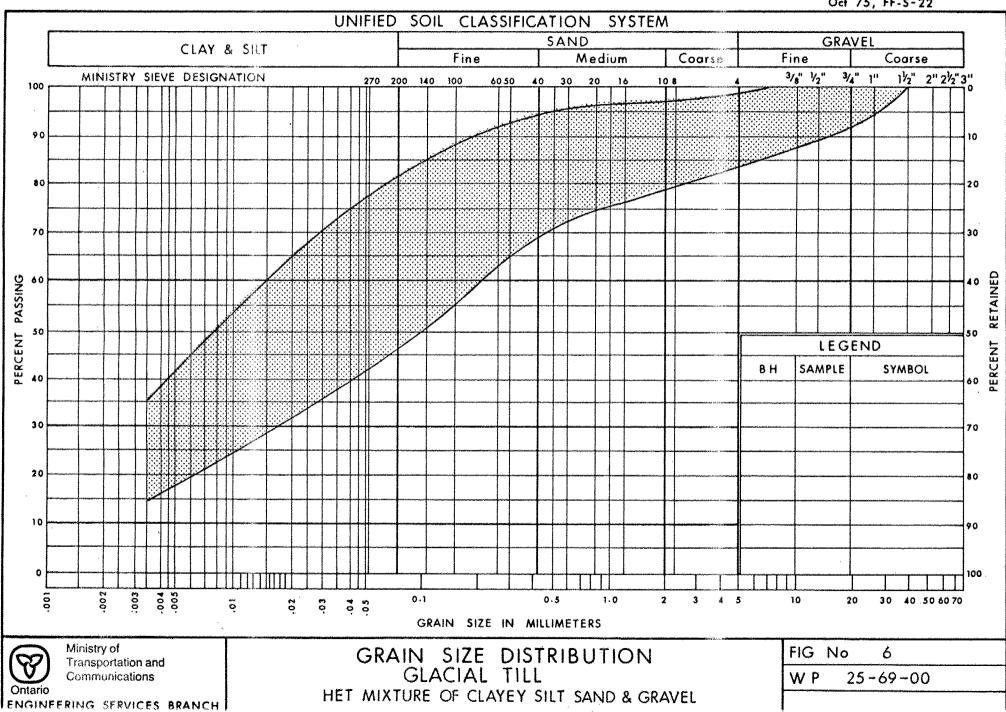
1

Oct 75, FF-5-22

٠.

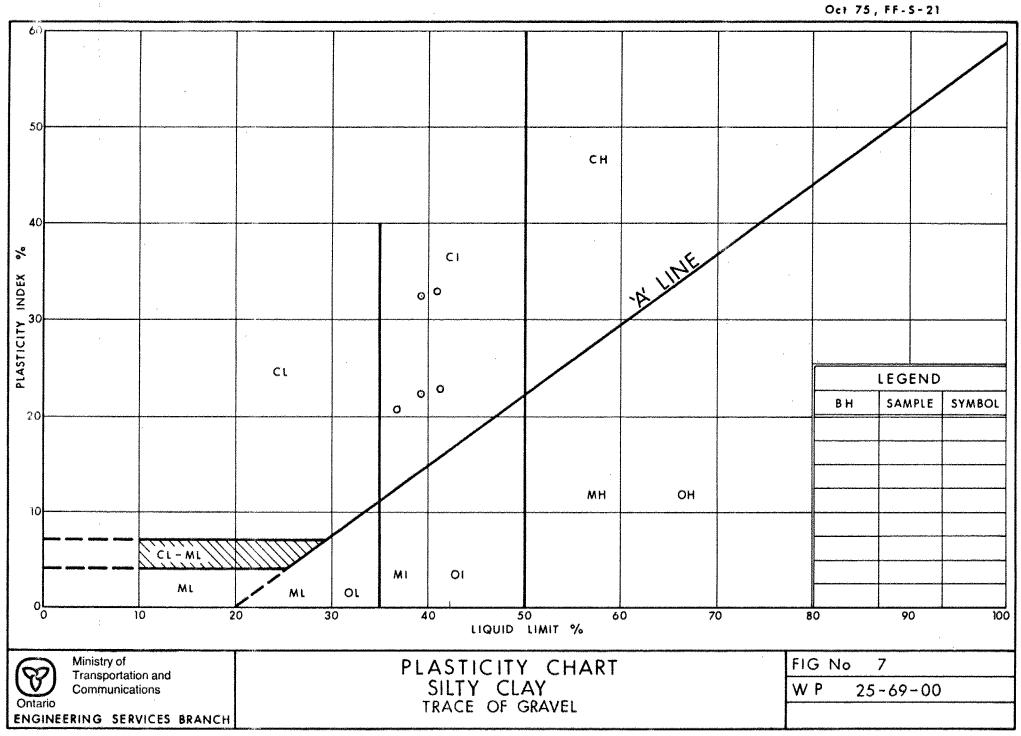

* *


3.9


1. · 4

,3**.9**

٩.

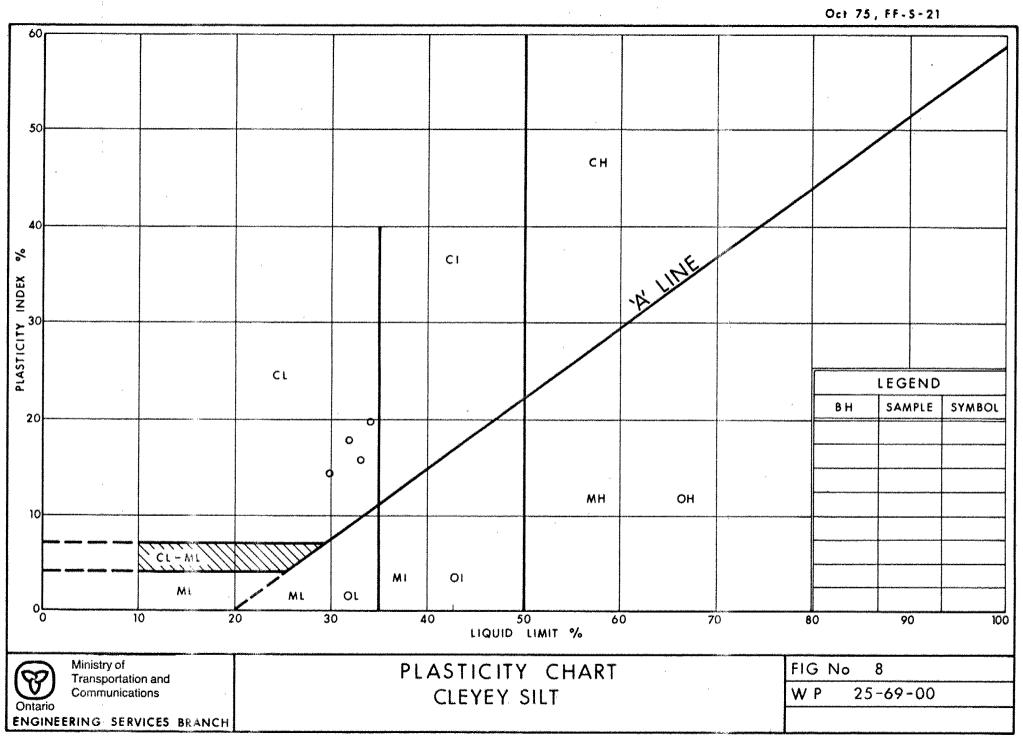

**; **;

V

٠

* . 4

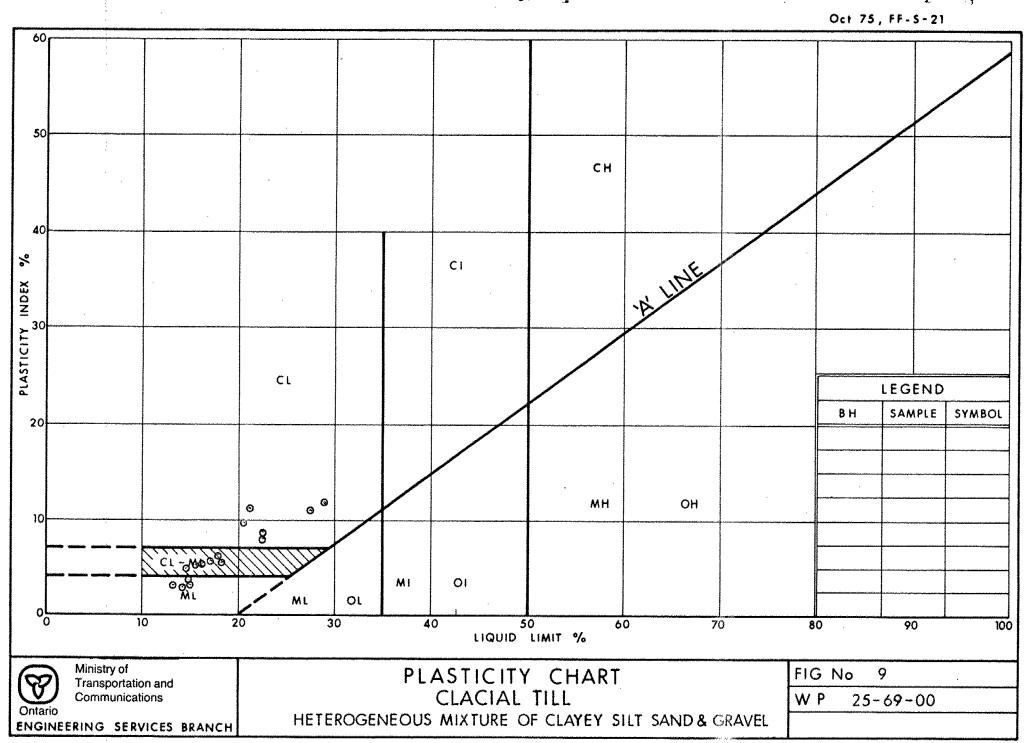
Oct 75, FF-5-22



. Seat

4

1 m. 1 m.


1. * 3. → 76 EE C-01

(4.**)***

Ł

2 + 3

1967 F.S.

*

'N' VALUE: AN INDICATOR OF SUBSOIL QUALITY. IT IS OBTAINED FROM THE STANDARD PENETRATION TEST (CSA 5TD. A119.1). SPT 'N' VALUE IS THE NUMBER OF BLOWS REQUIRED TO CAUSE A STANDARD 2 INCH G.D. SPLIT-BARREL SAMPLER TO PENETRATE 12 INCHES INTO UNDISTURBED GROUND IN A BORHOLE WHEN DRIVEN BY A HAMMER WEIGHING 140 POUNDS, FALLING FREELY A DISTANCE OF 30 INCHES. FOR PENETRATIONS OF LESS THAN 12 INCHES 'N' VALUES ARE INDICATED AS THE NUMBER OF BLOWS FOR THE PENETRATION ACHIEVED. 'N' VALUES CORRECTED FOR OVERBURDEN PRESSURE ARE DENOTED THUS N.

DYNAMIC CONE PENETRATION TEST (CSA STD. A119.3): CONTINUOUS PENETRATION OF A CONICAL STEEL POINT (2" 0.D. 60 CONE ANGLE) DRIVEN BY 350 FT-LE IMPACTS ON 'A' SIZE DRILL RODS. THE RESISTANCE TO CONE PENETRATION IS MEASURED AS THE NUMBER OF BLOWS FOR EACH 12 INCH ADVANCE OF THE CUNICAL POINT INTO THE UNDISTURBED GROUND.

SOIL QUALITY: SOILS ARE DESCRIBED BY THEIR COMPOSITION AND CONSISTENCY OR DENSITY.

ſ

CONSISTENCY: COMESIVE SOILS ARE DESCRIBED ON THE BASIS OF THEIR UNDRAINED SHEAR STRENGTH AS FOLLOWS:

S _U (PSF)	0 - 250	250 - 500	500 - 1000	1000 - 2000	2000 - 4000	> 4000
	VERY SOFT	SOFT	FIRM	STIFF	VERY STIFF	HAED

DENSENESS: COMESIONLESS SOILS ARE DESCRIBED ON THE BASIS OF SPT 'N' VALUES AS FOLLOWS:

(BLOW/FT)	0~5	5 - 10	1 0 - 30	30 - 50	> 50
	VERY LOOSE	LOOSE	COMPACT	DEN 38	VERY DENSE

ROCK QUALITY: ROCKS ARE DESCRIBED BY THEIR COMPOSITION AND STRUCTURAL FEATURES AND/OR STRENGTH.

RECOVERY: SUM OF ALL RECOVERED ROCK CORE PIECES FROM A CORING RUN EXPRESSED AS A PERCENT OF THE TOTAL LENGTH DRILLED IN THAT CORING RUN.

MODIFIED RECOVERY: SUM OF THOSE NATURALLY FRACTURED CORE PIECES, 4"+ IN LENGTH EXPRESSED AS A PERCENT OF THE LENGTH OF THE CORING RUN. THE ROCK QUALITY DESIGNATION (RQD), FOR MODIFIED RECOVERY, IS:

RQD (%)	0 - 25	25 ~ 50	50 - 75	75 - 90	90 - 100
	VERY FOOR	POUR	žAIN	300 <u>0</u>	EXCELLENT

JOINTING AND BEDDING:

SPACING	2"	2" - 12"	1' - 3'	3' - 10'	> 10'
JOINTING	VERY CLOSE	CLOSE	MOD. CLOSF:	WIDE	VERY WIDE
BEDDING	VERY THIN	THIN	MEDIUM	THICK	VERY THICK

ABBREVIATIONS & SYMBOLS

LABORATORY TESTING

TRIAXIAL TESTS ARE DESCRIBED IN TERMS OF WHETHER THEY ARE CONSOLIDATED (C) OR NOT (U) ISOTROPICALLY (I) OR NOT (A) AND SHEARED DRAINED (D) OR UNDRAINED (U) WITH PORE PRESSURE MEASUREMENTS (BAR OVER SYMBOLS) EG. CTU ~ CONSOLIDATED ISOTROPIC UNDRAINED TRIAXIAL WITH PORE PRESSURE MEASUREMENTS

UNLESS OTHERWISE SPECIFIED IN REPORT ALL TESTS ARE IN COMPRESSION

INDEX PROPERTIES

Y UNIT WEIGHT OF SOIL (BULK DENSITY)

 γ_w UNIT WEIGHT OF WATER

- γ_d UNIT DRY WEIGHT OF SOIL (DRY DENSITY)
- Y' UNIT WEICHT OF SUBMERGED SOIL
- G SPECIFIC CRAVITY OF SOLIDS
- e VOIDS RATIO
- e. INITIAL VOIDS RATIO
- e IN LOOSEST STATE
- e_{min} e IN DENSEST STATE
- ". Artistry roverny (most f
- n POROSITY
- W WATER CONTENT
- wL LIQUID LIMIT
- wp PLASTIC LIMIT
- WS SHRINKAGE LIMIT
- I PLASTICITY INDEX = "L- "P
- IL LIQUIDITY INDEX W- WP
- I CONSISTENCY INDEX * WL-
- A ACTIVITY = 10 of soil ip
- Om ORGANIC HATTER CONTRAT
- Om ORGANIC MATTER CONTENT
- S SENSITIVITY = Su (undisturbed) Su (undisturbed) Su (remoulded)

FIELD SAMPLING

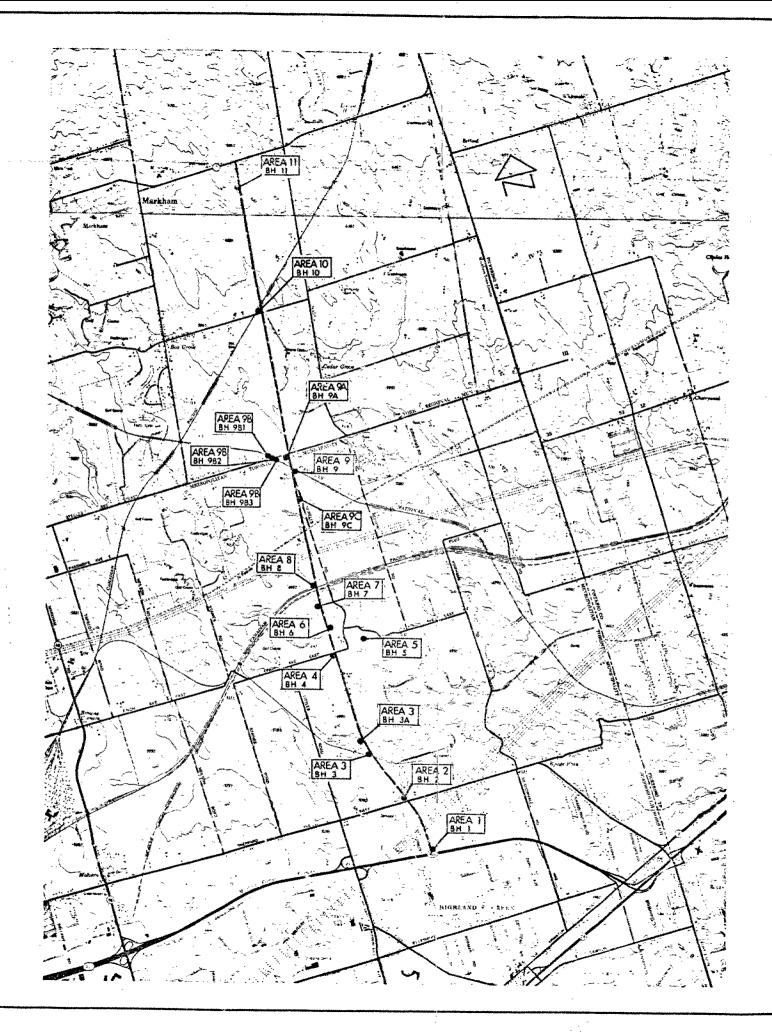
S S SPLIT SPOON WS WASH SAMPLE S T SLOTTED TUBE SAMPLE вs BLOCK SAMPLE C S CHUNK SAMPLE тW THINWALL OPEN T P THINWALL PISTON O S OSTERBERG SAMPLE F S FOIL SAMPLE RC ROCK CORE P H T.W. ADVANCED HYDRAULICALLY P M T.W. ADVANCED MANUALLY

STRENGTH PARAMETERS

ø	ANGLE OF SHEARING RESISTANCE
$\tau_{\rm f}$	FEAR SHEAR STRENGTH
$\tau_{\rm R}$	RESIDUAL SHEAR STRENCTH
c	COMESION INTERCEPT
$\sigma_1, \sigma_2, \sigma_3$	NORMAL PRINCIPAL STRESSES
u	PORE WATER FRESSURE
`u _e	EXCESS 4
⁷ น	PORE PRESSURE RATIO
۹ _u	UNCONFINED COMPRESSIVE STRENGTH
su.	1999-1991 N. 11 (1997)
€	LINEAR STRAIN
r	SHEAR STRAIN
ν	POISSON'S RATIO
Е	MODULUS OF ELASTICITY
G	MODULUS OF SHEAR DEFORMATION
k s	MODULUS OF SUBGRADE REACTION
m,n	STABILITY COEFFICIENTS
À, B	PORE PRESSURE COEFFICIENTS
	NOTE: EFFECTIVE STRESS PARAMETERS ARE DENOTED BY USE OF APOSTROPHE ABOVE THE SYMBOL, TRIES

O" = EFFECTIVE NORMAL STRESS

Second a

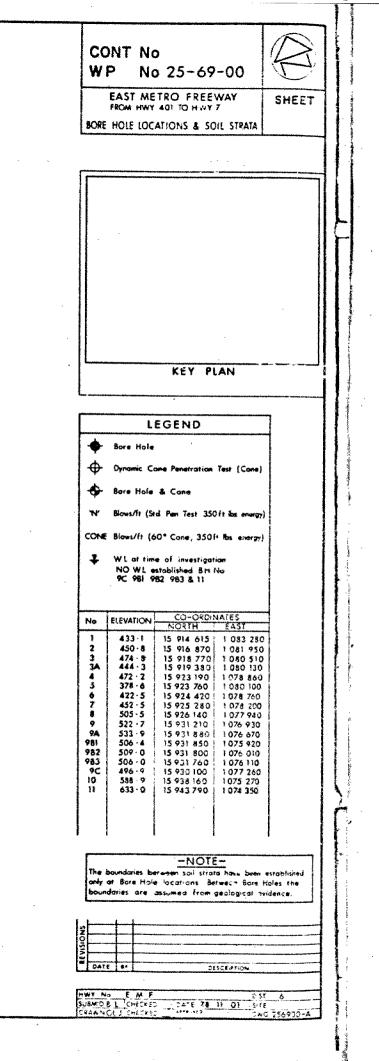

EARTH PRESSURE TERMS

μ	COEFFICIENT OF FRICTION
δ	ANGLE OF WALL FRICTION
k _o	COEFFICIENT OF EARTH PRESSURE AT REST
^к л	COEFFICIENT OF ACTIVE FARTP PRESSURE
k _p	COEFFICIENT OF PASSIVE FARTH PRESSURE
1	ANCLE OF INCLINATION OF SURCHARGE
w	SLOPE ANGLE-BACKFACE OF MALL
β	ANGLE OF SLOPE
$^{N}\gamma$, $^{N}{}^{q}$, $^{N}{}_{c}$	BEARING CAPACITY FACTORS
D _f	SEPTH OF FOOTING
B,L	FOOTING DIMENSIONS

Н	YDRAU	.iC)	TERMS	

- h HYDRAULIC HEAD OR POTENTIAL CATE OF DISCHARGE G. VILOCITY OF FLOW HYDRAULIC CEADIENT í SEEPAGE FORCE PER UNIT VOLUME t ALCONTER. COEFFICIENT OF HYDRAULIC CONDUCTIVITY k. K IN HORIGOUTAL DIRECTION k, k in VERTICAL DIRECTION COEFFICIENT OF VOLUME CHANGE ಷ್ಟ COEFFICIENT OF CONSOLIDATION c_v COMPRESSION INDEX ເຼ C RECOMPRESSION INDEX DRAINAGE FATH DISTANCE d T TIME PACTOR
 - v
 - U DEGREE OF CONSOLIDATION

1 1 1 June - A 1 American

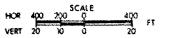


PROPOSED STRUCTURE AREAS

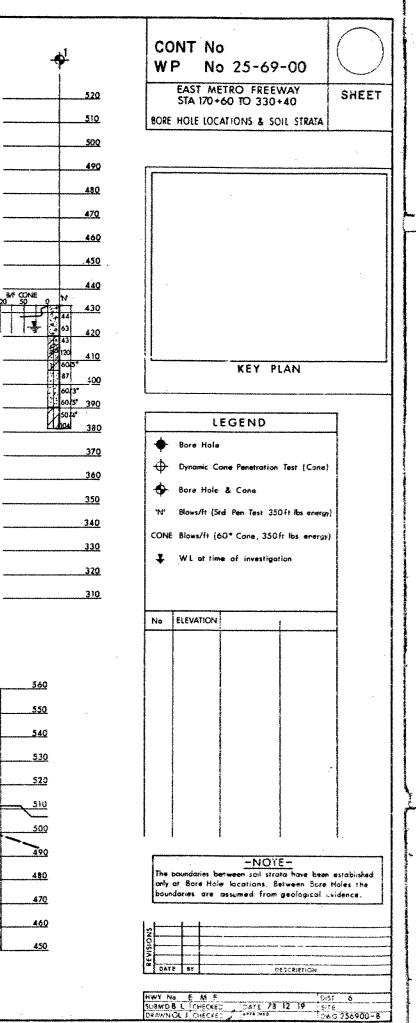
- 1 Hwy 401 & Proposed E M F
- 2 CPR Spur (South Crossing) & EMF
- 3 CPR Spur (North Crossing) & EMF
- 3A Tributary of Rouge River & E M F
- Finch Ave E & E M F 4
- 5 Relocated Finch Ave Crossing of Rouge River
- 6 Crossing Rouge River & E M F
- 7 Crossing of a Relocated Finch Ave & E.M.F.
- 1 8 Subway at C F R & E M F
- 9 CNR at EMF
- 9A Crossing of Steeles Ave & EM F
- 9B Existing Steeles Ave Subway at C N R
- 9C Tributary to Little Rouge River & E M F

a har e de

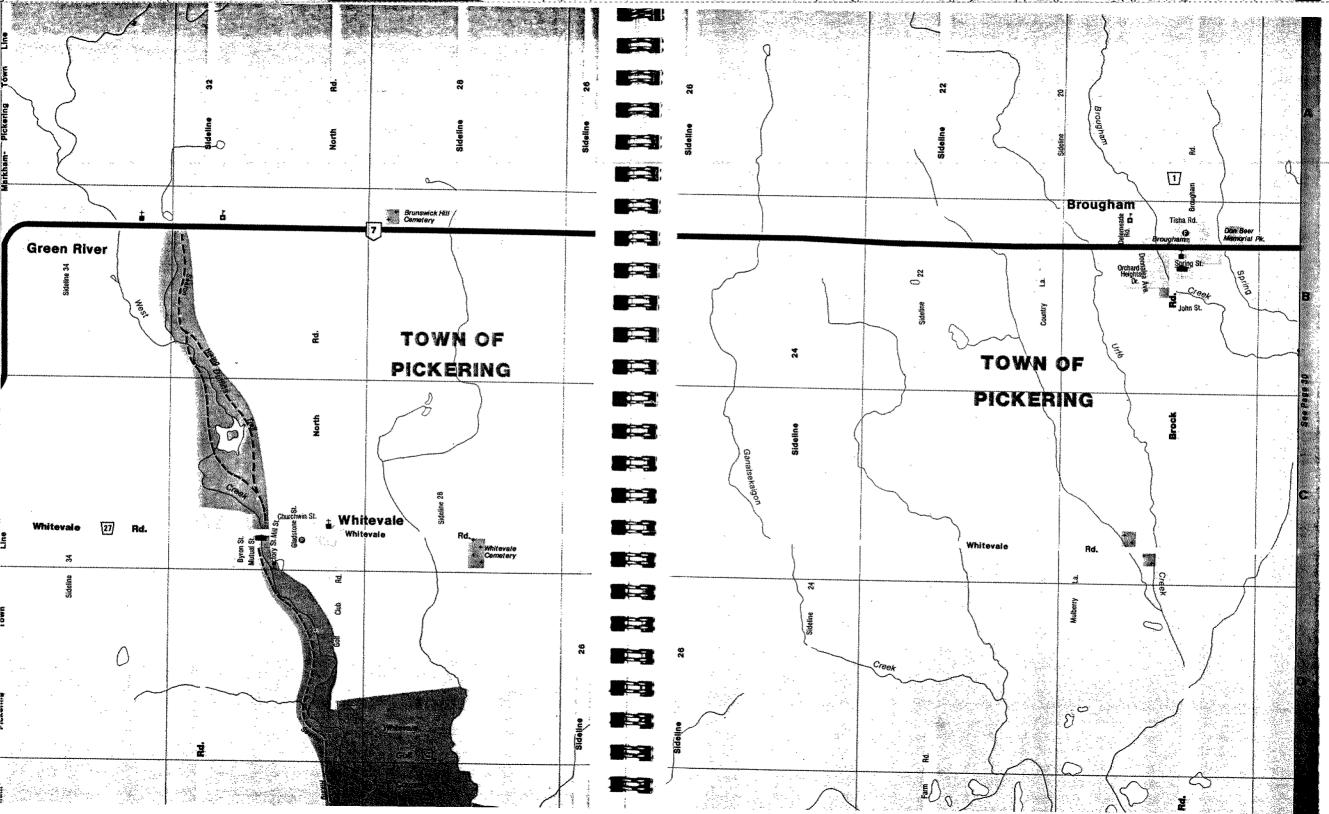
- 10 Overhead at CPR & EMF
- 11 Hwy 407 Interchange & E M F

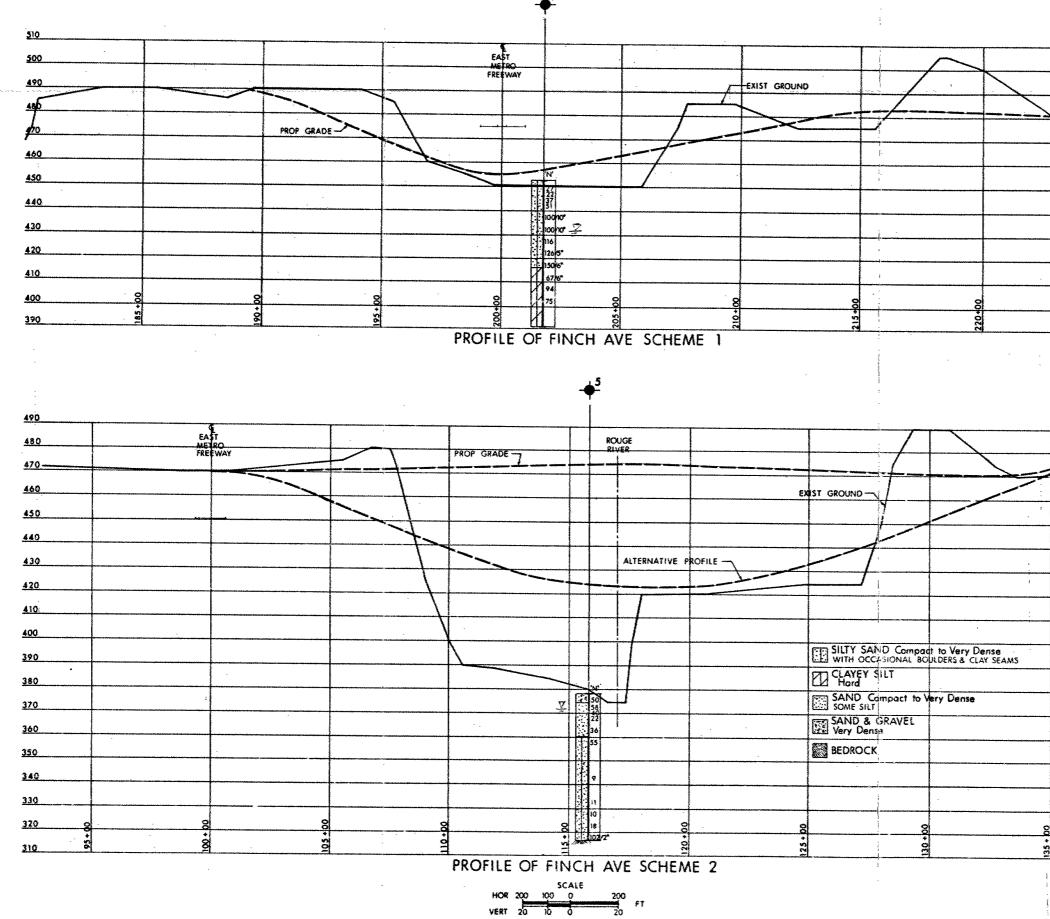

20 1 20 1<	l				
All Control of Control		6 5 ∳ ∲ ⁴		∳ ^{3∧} ∳	- \$ ²
Ad a bar bar bar bar bar bar bar bar bar b	TINCH AVE CIPR FINCH AVE ROUGE				
400 400 <td>490 480 480</td> <td></td> <td></td> <td></td> <td></td>	490 480 480				
200 200 <td>470 460 450 450 450 42 450 42 450 42 450 450 450 450 450 450 450 450</td> <td></td> <td></td> <td></td> <td></td>	470 460 450 450 450 42 450 42 450 42 450 450 450 450 450 450 450 450				
410 410 411 <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td></td> <td></td> <td></td> <td></td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
380 380 370 370 370 370 370 370 370 374 370 370 370 370 370 370 360 374 370 370 370 370 370 370 360 374 370 370 370 370 370 370 360 374 370 370 370 370 370 360 374 370 370 370 370 370 360 374 370 370 370 370 370 360 370 370 370 370 370 370 360 370 370 370 370 370 370 360 370 370 370 370 370 370 360 370 370 370 370 370 370 360 370 370 370 370 370 370 320 370 370 370 370 370 370 320 370 370 370 370 370 370 320 370 370 370 370	▲10 57/6* T + 10/20	0	FILL SILTY SAND SOME DEBRIS & ORGANICS		
350 351 Image: Strain of the	180	2 64	SAND Dense to Very Dense SOME SILT SILTY SAND OR SANDY SILT Compact to V SOME GRAVEL OCC CLAY SEAMS		
$\frac{330}{320} \times \frac{11}{320} \times $	<u>350</u>	S264* SS5	SILTY CLAY Very Stiff to Hard TRACE OF GRAVEL SILT TO CLAYEY SILT Very Stiff to Hard		e 96
PROPOSED E M F PROFILE FROM STA 170+60 TO 260+60 4^{10} 4^{90	330 320 <u>8</u> 8 3 8		GLACIAL TILL Stiff to Hard HETEROGENEOUS MIXTURE OF CLAYEY SILT SAND	8 00	
	<u>310 N N</u>			70+60 TO 260+60	1 1 1 1
					5
630 N 590 S40 620 1 30 1 30 610 1 30 610 570	630 N 590 620 60/3 580	540 530 530			

sobr

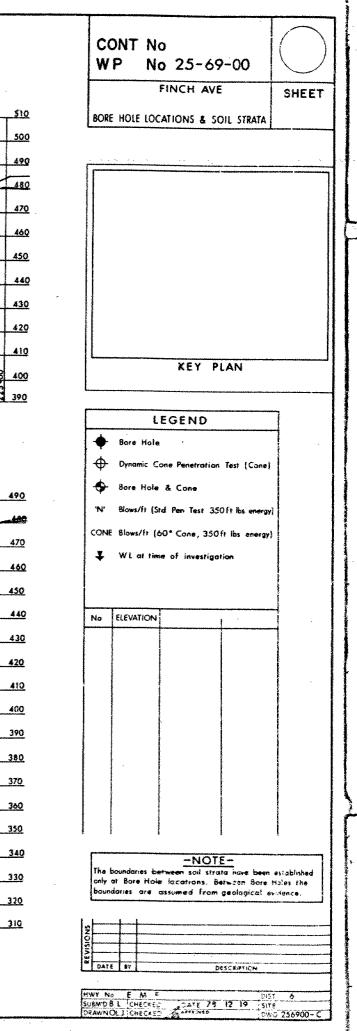

L

22555 5 1 b <u>500</u> 11 5074 11 5074 1 0073* 1 5072* 490 _ Ear 4 25/2* 1 50/4* 48 C 1000 B ò


PROPOSED E M F PROFILE FROM STA 260+60 TO STA 330+40



PROP GRADE ----



|

Ministry of Transportation

FOUNDATION DESIGN SECTION

FILE COPY

ENGINEERING MATERIALS OFFICE FOUNDATION DESIGN SECTION

WP 326-88-01 HWY 407

DIST 6 STR SITE -

Feasibility Study for Hwy 407 From Whitby/Oshawa Boundary to Hwy 35/115

foundation investigation and design report

ENGINEERING MATERIALS OFFICE FOUNDATION DESIGN SECTION

WP	326-88-01	DIST	6
HWY	407	STR SITE -	

Feasibility Study for Hwy 407 From Whitby/Oshawa Boundary to Hwy 35/115

DISTRIBUTION

V.F. Boehnke (3) D. Billings B. Shaw (5) M. Holowka J. Robinson E.A. Joseph F. Bacchus (Cover Only) File

GEOCRES 30M15-85

DATE CCT 0 3 1994

FOUNDATION INVESTIGATION REPORT

For

Feasibility Study For Hwy 407 From Whitby/Oshawa Boundary to Hwy 35/115 W.P. 326-88-01, Central Region

INTRODUCTION

This report summarizes the results of a foundation investigation for the preliminary design study of the proposed Hwy 407 from Whitby/Oshawa boundary easterly to Hwy 35/115 in the City of Oshawa and Newcastle, Region of Durham. The investigation was carried out at the request of Central Region Structural Section.

Several routes were proposed for Hwy 407 between Whitby/Oshawa boundary and Hwy 35/115. All proposed routes were within the City of Oshawa and Town of Newcastle, except for one northerly route which extended into the Township of Manvers. However, the technically preferred route, where this foundation investigation took place, was the most southerly one, within the City of Oshawa and Town of Newcastle in the Region of Durham. The proposed technically preferred route originates at the intersection of Winchester Road and Whitby/Oshawa boundary. From that point it runs in a southeast direction, intersects Conlin Road just east of Oshawa and Newcastle boundary and then runs more or less parallel to Concession Road 6 in a zigzag manner towards the east, until it intersects Regional Road No. 42. The proposed route then runs in a northeast direction and connects to Hwy 35/115 intersection. The details of the proposed technically preferred route and structures are illustrated on Drawing No. 3268801-A.

This Foundation investigation was intended for initial assessment of the feasibility of the proposed alignment from a foundation point of view, with a general coverage of the area by limited number of boreholes.

Before initiating the Foundation investigation, a Preliminary Geotechnical Conditions report by Geocon Inc., dated July 10, 1990 was reviewed by this office (Geocon Report T11547/53425, Highway 407 Route Planning and Environmental Assessment Study, Hwy 48 to Hwy 35-115).

SITE DESCRIPTION

The site for the proposed Hwy 407 from Whitby/Oshawa boundary to Hwy 35/115 is located within the City of Oshawa and Town of Newcastle in the Region of Durham. Residential properties are primarily located along the major streets which the proposed highway would cross.

The existing ground elevation varies from 166.3m (BH P23) to 345.0m (east of BH P41, near Hwy 35/115 intersection). The proposed route is about 30.5 kilometre long (from station 9+500 to station 40+000). Between stations 31+000 and 40+000 the ground slopes down sharply from east to west at about 2.4 per cent slope (elevation drops from 345.0m to 163m). Further west of station 31+000 the ground surface is undulating, the slope ranges from 0.3 per cent to 2 per cent and the ground elevation varies from 155m and 225m.

Physiographically, the area is located in a region referred to as the "South Slope and Iroquois Plain" (Reference: Chapman and Putnam "The Physiography of Southern Ontario; 3rd Edition, 1984). This is the low land bordering Lake Ontario which was inundated in the Pleistocene time by Lake Iroquois. Subsoils in these areas generally are characterized by a mosaic of till plains, drumlins and areas of Glaciolacustrine deposits of silt, sand and clayey silt.

INVESTIGATION PROCEDURES

The field work for the investigation was carried out between 94 05 25 and 94 05 30. The investigation consisted of twenty one (21) sampled boreholes (BH P21 through P41). In general, at least one borehole was put down at each proposed major interchange. The boreholes were advanced to depths of 9.3 (BH P29) to 16.9 (BH P26).

The boreholes were advanced with three track mounted machines equipped with continuous flight augers. Conventional solid and hollow stem augers were used. The sampling program consisted of split spoon samples collected in the overburden. Soil samples were retrieved by split spoon sampler in accordance with Standard Penetration Test (ASTM D1586). Standard Penetration 'N' values were recorded for assessment of the strength of the materials encountered. All subsoil samples were identified in the field and returned to the laboratory for further visual examination and testing. Groundwater levels were measured in each borehole and all boreholes were backfilled upon completion of the field work.

Surveying required to ascertain borehole locations and elevations was carried out by the Central Region Surveys and Plans Section.

SUBSURFACE CONDITIONS

The record of Borehole sheets in the Appendix illustrate the subsurface conditions at the borehole locations. The location and elevation of the boreholes are shown on Drawing No. 3268801-A.

Since the investigation was spread over a large area of 30.5 kilometre (station 9+500 to 40+000), individual borehole logs should be referred to for information on soil conditions at any structure location. However, the predominant soil strata encountered at the site consisted of glacial till (made up primarily of silty clay to clayey silt and silt to silty sand). The surficial deposit at the site was generally a glacial till.

The Standard Penetration test in cohesive glacial till recorded 'N' values from 8 blows to more than 100 blows. Based on the 'N' values, the cohesive glacial till has a stiff to hard consistency. In non-cohesive glacial till the 'N' value ranged from 9 to more than 100 blows indicating the material to be loose to very dense.

GROUNDWATER CONDITIONS

Individual boreholes should be referred to for groundwater elevation at any proposed structure locations. Groundwater level was recorded in all boreholes except for Boreholes P27, P28, P39, and P41 where either the boreholes remained dry or water level couldn't be measured due to borehole collapse. The groundwater table stabilized at depths ranging from 0.7m (BH P24) to 9.1m (BH P34) below ground surface. The groundwater elevation ranged from 157.7m (BH P23) to 252.6m (BH P40). Groundwater levels are subject to seasonal fluctuations and may vary from the values provided in this report.

DISCUSSION AND RECOMMENDATIONS

General

This report contains recommendations pertaining to the structure foundations, approach embankments, cuts and hydrogeological aspects for various structures for the proposed Hwy 407 from Whitby/Oshawa boundary easterly to Hwy 35/115 in the City of Oshawa and Newcastle, Region of Durham. The recommendations given in the report are tentative based on the limited information available and should definitely be reviewed based on supplementary investigations. The site location is shown on Drawing No. 3268801-A.

Total 66 bridge structures (Structure 3 through 68) are proposed along the proposed Hwy 407 from Whitby/Oshawa boundary easterly to Hwy 35/115 in the City of Oshawa and Newcastle, Region of Durham. This includes 22 watercourse structure sites (W), 28 grade separated structure sites (GS) and 16 interchange structure sites (I).

In general, the geotechnical conditions within the proposed route corridors are favourable. There are no foundation concerns that would require realignment of the proposed Hwy 407 route from Whitby/Oshawa boundary easterly to Hwy 35/115. Subsurface conditions over the site are uniform and competent for structure foundation and embankment loadings. The glacial till is expected to provide adequate bearing for most structures and may be able to sustain low to medium loads on shallow spread footings. However, deep foundations such as caissons and piles may be required to transfer heavier loads to greater depths and to more competent bearing material. Our comments from the feasibility, design and construction of the various structures are given on the Foundation Data Sheets included in the Appendix. Twenty one data sheets (Area 21 through 41) are provided for the 66 structures; the area locations are also shown on Drawing No. 3268801-A. An explanation of information provided on the data sheet is outlined below:

1. The structure number (i.e. 03, 04, 05 etc.) are the numbers assigned to the structures for the purpose of the feasibility study. The area number such as 21, 22, 23, etc is based on the borehole numbers P21, P22, P23, etc drilled in those areas. The actual location is shown on Drawing No. 3268801-A

2. The original ground elevation is based on the survey results of the borehole locations along the proposed Hwy 407 from Whitby/Oshawa boundary easterly to Hwy 35/115 in the City of Oshawa and Newcastle, Region of Durham.

- 3. The grades of roadway given is based on the proposed grades of proposed Hwy 407 at the respective sites, obtained from a profile of the Technically Preferred Route supplied to us (no reference no).
- 4. Subsurface conditions are described very briefly and are based on generally one borehole per area.

5. <u>Structure Foundations</u>

 \mathfrak{D}

The recommendations are for pier and abutment foundations. The options for structure foundations are given in preferential order based on geotechnical/economical considerations. Further elaboration of structure recommendations made on the data sheets are given below:

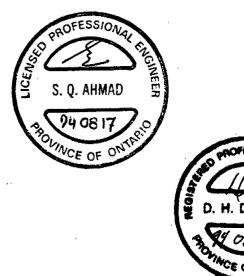
Compacted Granular 'A' Core (Engineered Fill) - This option is generally for abutments where subsurface conditions are competent. The minimum requirements of a compacted granular 'A' core are shown on Figure No. 1 (attached). Furthermore, the footing for this scheme could be designed using the following parameters:

Factored Bearing Capacity at U.L.S. = 900 kPa Bearing Capacity at S.L.S. Type II = 350 kPa

<u>Spread Footings</u>: This option is given for abutments and piers where subsurface conditions are competent. The highest elevation and corresponding maximum design load is given. It is to be noted the spread footing should be provided with a minimum of 1.2m of earth cover for frost protection purposes. In addition, where the spread footing is to be founded on a cohesive deposit, subject to softening upon exposure to construction or weather conditions, it would be necessary to protect the base of the footing excavation from softening by placing a working slab of lean concrete immediately upon completion of the footing excavation. Also, where the footing is located in a non cohesive deposit and the water table is at or above the footing founding level, it will be necessary to prevent the base of the footing from "boiling" due to an unbalanced excess hydrostatic head. In this case a dewatering scheme would be required. If the structure is to be designed as a rigid frame then the coefficient of earth pressure at rest (Ko) will be used.

All foundation elements should have a minimum of 1.2m earth cover for frost protection. The concrete for the footings should be placed 'in the dry'. Consequently a dewatering scheme will be required if the concrete is poured below the prevailing water level

8. <u>Remarks</u>


In this column comments are made about any construction difficulties, dewatering and hydrogeological concerns at any given site.

MISCELLANEOUS

The tentative foundation recommendations outlined in this report are for feasibility study or preliminary planning purposes only as they are based on very limited subsurface information. It will be necessary to carry out a detailed foundation investigation at each of the structure sites when the design details and geometries are finalized and approved. In some areas, groundwater studies and special in-situ field testing may be warranted.

The field work for this investigation was carried out under the supervision of Todd Barlow, Lori O'Malley and Tanya Cross Engineering students, using equipment owned and operated by Master Soil Investigation and Atcost Soil Drilling.

The report was prepared by K.S.Q. Ahmad, P. Eng. Foundation Engineer and reviewed and approved by D. Dundas, P. Eng. Acting Chief Foundation Engineer.

notin (limad

K.S.Q. Ahmad, P. Eng. Foundation Engineer

D.H. Dundas, P. Eng. Chief Foundation Engineer (Acting)

APPENDIX

` n

W.P. 326 - 88 - 01 AREA 21 STRUCTURE Nos. 03, 04, 05, 06 LOCATION Oshawa Creek Bridges, Thornton Road Overpasses

ORIGINAL GROUND ELEV. <u>172.0 m</u> PROPOSED HWY <u>407</u> GRADE ELEV. <u>173.0 m</u>, <u>177.0 m</u> Reference:

SUBSURFACE RECOMMENDATIONS REMARKS **CONDITIONS STRUCTURE APPROACHES REFERENCE BOREHOLE** 1.) For pier and abutments, spread footings placed within hard Fill up to 8 m high can be 1.) No serious glacial till below elevation 171.0 m and below a frost depth of constructed at 2 H : 1 V foundation problems <u>P 21</u> 1.2 m may be designed for: side slopes. A mid height are anticipated. berm would be required for 0.0 - 9.4 m Clayey Silt - Factored Bearing Capacity at U.L.S. = 500 kPa higher fill. Hard - Bearing Capacity at S.L.S. Type II = 300 kPa 2.) No major (Glacial Till) dewatering problems are anticipated. 2.) For foundations at higher elevations, spread footings can be placed on a well compacted granular 'A' pad designed for: 3.) This is not a - Factored Bearing Capacity at U.L.S. = 900 kPa suitable site for an - Bearing Capacity at S.L.S. Type II = 350 kPa infiltration pond. The soil is of low Groundwater Elevation permeability. 3.) Higher Bearing Capacities can be utilized at a lower depth 169.2 m below elevation 166.0 m.

W.P. <u>326 - 88 - 01</u> AREA <u>22</u> STRUCTURE Nos <u>07</u> LOCATION <u>Simcoe Road Underpass</u>

_ PROPOSED HWY _____ GRADE ELEV. _____ 182.0 m Reference: ORIGINAL GROUND ELEV. 184.9 m

SUBSURFACE	RECOMMENDATIONS		REMARKS	
CONDITIONS	STRUCTURE	APPROACHES		
REFERENCE BOREHOLE P 22 0.0 - 5.5 m Clayey Silt Hard (Glacial Till) 5.5 - 12.6 m Silty Sand to Sandy Silt Dense to V. Dense (Glacial Till) Groundwater Elevation	 I.) For abutments and piers, spread footings placed within hard glacial till below elevation 182.0 m and below a frost depth of 1.2 m may be designed for: Factored Bearing Capacity at U.L.S. = 600 kPa Bearing Capacity at S.L.S. Type II = 400 kPa 2.) Higher Bearing Capacities can be utilized at a lower depth below elevation 176.0 m. 	Cuts up to 6 m deep will be stable at 2 H : 1 V side slope. A berm would be required for deeper cuts.	 No serious foundation problems are anticipated. No major dewatering problems are anticipated. This is not a suitable site for an infiltration pond. The soil is of low permeability. 	
181.8 m				

W.P. 326 - 88 - 01 AREA 23 STRUCTURE Nos. 08, 09, 10,11 LOCATION Oshawa Creek Bridges, Ritson Road Overpasses

f

ORIGINAL GROUND ELEV. 166.3 m PROPOSED HWY 407

GRADE ELEV. <u>177.0 m</u> Reference:

SUBSURFACE	RECOMMENDATIONS		REMARKS
CONDITIONS	STRUCTURE	APPROACHES	
REFERENCE BOREHOLE P 23 0.0 - 5.5 m Silty Clay to Clayey Silt V. Stiff to Hard (Glacial Till) 5.5 - 9.6 m Silty Sand to Sandy Silt Dense to V. Dense (Glacial Till) Groundwater Elevation 157.7 m	 For pier and abutment foundations, spread footings can be placed on a well compacted granular 'A' pad designed for: Factored Bearing Capacity at U.L.S. = 900 kPa Bearing Capacity at S.L.S. Type II = 350 kPa Piles and caissons are also feasible, but should be selected on a cost comparison basis. 	Fill up to 8 m high can be constructed at 2 H : 1 V side slopes. A mid height berm would be required for higher fill.	 No serious foundation problems are anticipated. No major dewatering problems are anticipated. This is not a suitable site for an infiltration pond. The soil is of low permeability.

W.P. 326 - 88 - 01 AREA 24 STRUCTURE Nos. 12, 13, 14 LOCATION Wilson Road, Harmony Road, Grandview Road Underpasses

ORIGINAL GROUND ELEV. 203.2 m PROPOSED HWY 407 GRADE ELEV. _____183.0 m, 200.0 m, 196.0 m Respectively .

Reference:

SUBSURFACE RECOMMENDATIONS			REMARKS
CONDITIONS	STRUCTURE	APPROACHES	, s
REFERENCE BOREHOLE P 24 0.0 - 9.6 m Clayey Silt	 1.) For pier and abutment foundations, spread footings placed within hard glacial till below elevation 200.0 m and below frost depth of 1.2 m may be designed for: - Factored Bearing Capacity at U.L.S. = 800 kPa 	Cuts up to 6 m deep will be stable at 2 H : 1 V side slope. A berm would be required for deeper cuts.	1.) No serious foundation problems are anticipated.
Hard (Glacial Till)	- Bearing Capacity at S.L.S. Type II = Not Governed		2.) No major dewatering problems are anticipated.
			3.) This is not a suitable site for an infiltration pond. The soil is of low permeability.
Groundwater Elevation			,
202.5 m			
		, ,	

W.P. 326 - 88 - 01 AREA 25 STRUCTURE Nos. 15 LOCATION West Townline Road Underpass

ORIGINAL GROUND ELEV. 212.3 m PROPOSED HWY 407

_ GRADE ELEV. _____ 202.0 m

Reference:

SUBSURFACE	RECOMMENDATIONS		REMARKS
CONDITIONS	STRUCTURE	APPROACHES	
REFERENCE BOREHOLE P 25 0.0 - 13.8 m Sandy Silt to Silt V. Dense	 1.) For abutment and pier foundations, spread footings placed within V. Dense glacial till below elevation 202.0 m and below frost depth of 1.2 m may be designed for: - Factored Bearing Capacity at U.L.S. = 1000 kPa - Bearing Capacity at S.L.S. Type II = Not Governed 	Cuts up to 6 m deep will be stable at 2 H : 1 V side slope. A berm would be required for deeper cuts.	 No serious foundation problems are anticipated. Dewatering will
(Glacial Till)			be required for excavation below water table. Dewatering may be limited to oversize excavation.
Groundwater Elevation 211.9 m		· · ·	3.) This is not a suitable site for an infiltration pond. Due to possible high water table after construction.

A

W.P. 326 - 88 - 01 AREA 26 STRUCTURE Nos. 16, 17 LOCATION Conlin Road, Langmaid Road Underpasses

ORIGINAL GROUND ELEV. 210.6 m PROPOSED HWY 407 GRADE ELEV. 198.0 m, 202.0 m Reference:

ŝ,

SUBSURFACE		RECOMMENDATIONS		REMARKS
CO	NDITIONS	STRUCTURE	APPROACHES	
0.0 - 9.8 m	ENCE BOREHOLE <u>P 26</u> Silty Sand to Sandy Silt V. Dense (Glacial Till) Clayey Silt Hard (Glacial Till)	 1.) For abutment and pier foundations, spread footings placed within V. Dense or Hard glacial till below elevation 202.0 m and below frost depth of 1.2 m may be designed for: Factored Bearing Capacity at U.L.S. = 1000 kPa Bearing Capacity at S.L.S. Type II = Not Governed 	Cuts up to 6 m deep will be stable at 2 H : 1 V side slope. A berm would be required for deeper cuts.	 No serious foundation problems are anticipated. No major dewatering problems are anticipated. This is not a
<u>Grow</u> 203.6 m	ndwater Elevation			suitable site for an infiltration pond. The soil is of low permeability.

....

W.P. 326-88-01 AREA 27 STRUCTURE Nos. 18, 19 LOCATION Regional Road 34 Overpasses

ORIGINAL GROUND ELEV. 205.4 m PROPOSED HWY 407 GRADE ELEV. 213.0 m Reference:

SUBSURFACE	RECOMMENDATIONS		REMARKS
CONDITIONS	STRUCTURE	APPROACHES	,
REFERENCE BOREHOLE P 27 0.0 - 9.6 m Silty Sand to Sandy Silt Dense to V. Dense (Glacial Till) Groundwater Elevation Dry	 For pier foundations, spread footings placed within Dense to V. Dense glacial till below elevation 204.0 m and below frost depth of 1.2 m may be designed for: Factored Bearing Capacity at U.L.S. = 500 kPa Bearing Capacity at S.L.S. Type II = 300 kPa For abutment foundations, spread footings can be placed on a well compacted granular 'A' pad designed for: Factored Bearing Capacity at U.L.S. = 900 kPa Bearing Capacity at S.L.S. Type II = 350 kPa Bearing Capacity at S.L.S. Type II = 350 kPa Higher bearing capacities can be utilized at a lower depth below elevation 202.0 m. Piles and caissons are also feasible, but should be selected on a cost comparison basis. 	Fill up to 8 m high can be constructed at 2 H : 1 V side slopes. A mid height berm would be required for higher fill.	 No serious foundation problems are anticipated. No major dewatering problems are anticipated. This may be a potential site for an infiltration pond, but should be verified by further investigation.

. **'***

3

W.P. 326 - 88 - 01 AREA 28 STRUCTURE Nos. 20, 21 LOCATION Farewell Creek Bridge, Solina Road Underpass

ORIGINAL GROUND ELEV. 211.1 m PROPOSED HWY 407 GRADE ELEV. 190.0 m Reference:

SUBSURFACE	RECOMMENDATIONS		REMARKS
CONDITIONS	STRUCTURE	APPROACHES	
REFERENCE BOREHOLE P 28 0.0 - 12.4 m Silty Sand to Sandy Silt V. Dense (Glacial Till) Groundwater Elevation Hole Collapsed	 1.) For pier and abutment, spread footings placed within V. Dense glacial till below elevation 190.0 m and below frost depth of 1.2 m may be designed for: Factored Bearing Capacity at U.L.S. = 1000 kPa Bearing Capacity at S.L.S. Type II = Not Governed 	Cuts up to 6 m deep will be stable at 2 H : 1 V side slope. A berm would be required for deeper cuts.	 No serious foundation problems are anticipated. No major dewatering problems are anticipated. This is not a suitable site for an infiltration pond. The soil is of low permeability.

W.P. 326-88-01 AREA 29 STRUCTURE Nos. 22, 23, 24 LOCATION Solina Road Underpass, Rundle Road Overpasses

ORIGINAL GROUND ELEV. 188.5 m PROPOSED HWY 407 GRADE ELEV. <u>187.0 m , 184.0 m</u>

,

	RECOMMENDATIONS		REMARKS
CONDITIONS	STRUCTURE	APPROACHES	
P 29 6.0 - 4.9 m Silty Sand V. Dense 4.9 - 9.3 m Clayey Silt Hard (Classic Frith) 2	 For Abutment and pier, spread footings placed within V. Dense Silty Sand or Hard glacial till below elevation 187.0 m and below frost depth of 1.2 m may be designed for: Factored Bearing Capacity at U.L.S. = 1000 kPa Bearing Capacity at S.L.S. Type II = Not Applicable Piles and caissons are also feasible, but should be selected on a cost comparison basis. 	Fill up to 8 m high can be constructed at 2 H : 1 V side slopes. A mid height berm would be required for higher fill. Cuts up to 6 m deep will be stable at 2 H : 1 V side slope. A berm would be required for deeper cuts.	 No serious foundation problems are anticipated. No major dewatering problems are anticipated. This is not a suitable site for an infiltration pond. The soil is of low permeability.

4

W.P. 326-88-01 AREA 30 STRUCTURE Nos. 25 LOCATION Holt Road Underpass

ORIGINAL GROUND ELEV. <u>192.6 m</u> PROPOSED HWY <u>407</u> GRADE ELEV.

Reference:

182.0 m

SUBSURFACE	RECOMMENDATIONS		REMARKS
CONDITIONS	STRUCTURE	APPROACHES	,
REFERENCE BOREHOLE <u>P 30</u> 0.0 - 12.3 m Silty Sand to Sandy Silt	1.) For abutment and pier, spread footings placed within V. Dense glacial till below elevation 182.0 m and below frost depth of 1.2 m may be designed for:	Cuts up to 6 m deep will be stable at 2 H : 1 V side slope. A berm would be required for deeper cuts.	1.) No serious foundation problems are anticipated.
V. Dense (Glacial Till)	 Factored Bearing Capacity at U.L.S. = 1000 kPa Bearing Capacity at S.L.S. Type II = Not Governed 		2.) No major dewatering problems are anticipated.
Groundwater Elevation			3.) This is not a suitable site for an infiltration pond. The soil is of low permeability.
186.5 m			

W.P. 326 - 88 - 01 AREA 31 STRUCTURE Nos. 26, 27, 28, 29 LOCATION Bowmanville Creek Bridges, Old Scugog Road Overpass

ORIGINAL GROUND ELEV. <u>174.4 m</u> PROPOSED HWY <u>407</u> GRADE ELEV. <u>180.0 m</u>

SUBSURFACE	RECOMMENDATIONS		REMARKS
CONDITIONS	STRUCTURE	APPROACHES	, ,
REFERENCE BOREHOLE P 31 0.0 - 9.8 m Silty Clay to Clayey Silt V. Stiff to Hard (Glacial Till)	 For abutment and pier foundations, spread footings can be placed on a well compacted granular 'A' pad designed for: Factored Bearing Capacity at U.L.S. = 900 kPa Bearing Capacity at S.L.S. Type II = 350 kPa Higher bearing capacities can be utilized at a lower depth below elevation 170.0 m. Piles and caissons are also feasible, but should be selected on a cost comparison basis. 	Fill up to 8 m high can be constructed at 2 H : 1 V side slopes. A mid height berm would be required for higher fill.	 No serious foundation problems are anticipated. No major dewatering problems are anticipated. This is not a suitable site for an infiltration pond. The soil is of low permeability.
Groundwater Elevation			
173.9 m			

W.P. 326-88-01 AREA 32 STRUCTURE Nos. 30, 31, 32, 33, 34, 35, 36, 37 LOCATION Regional Road 57, Cedar Park Road and Creek Structures

ORIGINAL GROUND ELEV. <u>172.9 m</u> PROPOSED HWY <u>407</u> GRADE ELEV. <u>182.0 m, 184.0 m, 187.0 m</u> Reference:

SUBSURFACE	RECOMMENDATIONS		REMARKS
CONDITIONS	STRUCTURE	APPROACHES	
REFERENCE BOREHOLE P 32 0.0 - 9.6 m Silty Clay Firm to Hard	 For abutment and pier foundations, spread footings can be placed on a well compacted granular 'A' pad designed for: Factored Bearing Capacity at U.L.S. = 900 kPa Bearing Capacity at S.L.S. Type II = 350 kPa For higher bearing capacities this structure can be supported on deep foundations. If deep foundations are considered, further investigation will be required. 	Fill up to 8 m high can be constructed at 2 H : 1 V side slopes. A mid height berm would be required for higher fill.	 No serious foundation problems are anticipated. No major dewatering problems are anticipated. This is not a suitable site for an infiltration pond. The soil is of low permeability.
Groundwater Elevation	· ·		
168.5 m		· · · · · · · · · · · · · · · · · · ·	

W.P. 326 - 88 - 01 AREA 33 STRUCTURE Nos. 38, 39, 40, 41 LOCATION Middle Road and Creek East of Middle Road Structures

ORIGINAL GROUND ELEV. <u>178.2 m</u> PROPOSED HWY <u>407</u> GRADE ELEV. <u>187.0 m</u> Reference:

SUBSURFACE	RECOMMENDATIONS		REMARKS
CONDITIONS	STRUCTURE	APPROACHES	
REFERENCE BOREHOLE P 33 0.0 - 2.4 m Silty Sand Loose 2.4 - 9.8 m Silty Clay to Clayey Silt V. Stiff to Hard (Glacial Till) Groundwater Elevation 177.9 m	 For abutment and pier foundations, spread footings can be placed on a well compacted granular 'A' pad designed for: Factored Bearing Capacity at U.L.S. = 900 kPa Bearing Capacity at S.L.S. Type II = 350 kPa For higher bearing capacity, piles and caissons are also feasible, but should be selected on a cost comparison basis. 	Fill up to 8 m high can be constructed at 2 H : 1 V side slopes. A mid height berm would be required for higher fill.	 No serious foundation problems are anticipated. No major dewatering problems are anticipated. This is not a suitable site for an infiltration pond. The soil is of low permeability and the water table is high.

W.P. 326 - 88 - 01 AREA 34 STRUCTURE Nos. 42 LOCATION Regional Road 14 Underpass

ORIGINAL GROUND ELEV. 188.4 m PROPOSED HWY 407 GRADE ELEV. 186.0 m Reference:

SUBSURFACE	RECOMMENDATIONS		REMARKS
CONDITIONS	STRUCTURE	APPROACHES	
REFERENCE BOREHOLE <u>P 34</u> 0.0 - 4.0 m Clayey Silt	 1.) For pier foundations, spread footings placed within V. Stiff to Hard glacial till below elevation 186.0 m and below frost depth of 1.2 m may be designed for: Factored Bearing Capacity at U.L.S. = 650 kPa 	Cuts up to 6 m deep will be stable at 2 H : 1 V side slope. A berm would be required for deeper cuts.	 No serious foundation problems are anticipated.
V. Stiff to Hard (Glacial Till)	- Bearing Capacity at S.L.S. Type II = 400 kPa		2.) No major dewatering problems are anticipated.
4.0 - 7.0 m Silty Sand to Sandy Silt V. Dense (Glacial Till)	2.) For abutment foundation, spread footings can be placed on a well compacted granular 'A' pad designed for:		3.) This is not a
7.0 - 12.6 m Silty Clay to Clayey Silt V. Stiff to Hard (Glacial Till)	 Factored Bearing Capacity at U.L.S. = 900 kPa Bearing Capacity at S.L.S. Type II = 350 kPa 		suitable site for an infiltration pond. The soil is of low permeability.
	3.) Piles and caissons are also feasible, but should be selected on a cost comparison basis.		
Groundwater Elevation			
179.3 m			

W.P. 326-88-01 AREA 35 STRUCTURE Nos. 43, 44, 45, 46, 47, 48 LOCATION Clemens Road, Mackie Creek and Bethesda Road Structures

ORIGINAL GROUND ELEV. 184.4 m PROPOSED HWY 407

____ GRADE ELEV. ____ 185.0 m, 189.0 m

SUBSURFACE	RECOMMENDATIONS		REMARKS
CONDITIONS	STRUCTURE	APPROACHES	· ·
REFERENCE BOREHOLE P 35 0.0 - 9.8 m Silty Sand to Sandy Silt V. Dense (Glacial Till)	 For pier foundations, spread footings placed within V. Dense glacial till below elevation 183.0 m and below frost depth of 1.2 m may be designed for: Factored Bearing Capacity at U.L.S. = 750 kPa Bearing Capacity at S.L.S. Type II = 500 kPa For abutment foundations, spread footings can be placed on a well compacted granular 'A' pad designed for: Factored Bearing Capacity at U.L.S. = 900 kPa Bearing Capacity at S.L.S. Type II = 350 kPa For higher bearing capacities, piles and caissons are also feasible, but should be selected on a cost comparison basis. 	Fill up to 8 m high can be constructed at 2 H : 1 V side slopes. A mid height berm would be required for higher fill.	 No serious foundation problems are anticipated. No major dewatering problems are anticipated. This is not a suitable site for an infiltration pond. The soil is of low permeability.
Groundwater Elevation			
182.0 m			
· ·			

W.P. 326-88-01 AREA 36 STRUCTURE Nos. 49, 50, 51, 52, 53 LOCATION Acres Road, Cole Road and Soper Creek Structures

ORIGINAL GROUND ELEV. <u>171.9 m</u> PROPOSED HWY <u>407</u> _ GRADE ELEV. <u>188.0 m, 180.0 m</u> Reference:

SUBSURFACE RECOMMENDATIONS			REMARKS
CONDITIONS	STRUCTURE	APPROACHES	
REFERENCE BOREHOLE P 36 0.0 - 9.6 m Silty Sand Compact to V. Dense (Glacial Till)	 For abutment and pier foundations, spread footings can be placed on a well compacted granular 'A' pad designed for: Factored Bearing Capacity at U.L.S. = 900 kPa Bearing Capacity at S.L.S. Type II = 350 kPa Piles and caissons are also feasible, but should be selected on a cost comparison basis. If this option is selected, further investigation would be required. 	Fill up to 8 m high can be constructed at 2 H : 1 V side slopes. A mid height berm would be required for higher fill.	 No serious foundation problems are anticipated. No major dewatering problems are anticipated. This may be a potential site for an infiltration pond. Further investigation will be required to prove this site to be suitable for an infiltration pond.
166.2 m	Э		
	J		

W.P. <u>326 - 88 - 01</u> AREA <u>37</u> STRUCTURE Nos. <u>54, 55</u> LOCATION Darlington Town Line Road and Brown Road Structures

ORIGINAL GROUND ELEV. 191.0 m PROPOSED HWY GRADE ELEV. <u>187.0 m, 197.0 m</u> 407

SUBSURFACE RECOMMENDATIONS REMARKS CONDITIONS **STRUCTURE APPROACHES REFERENCE BOREHOLE** 1.) For pier and abutment foundations, spread footings placed Fill up to 8 m high can be 1.) No serious within V. Dense glacial till below elevation 187.0 m and below constructed at 2 H : 1 V foundation problems P 37 frost depth of 1.2 m may be designed for: side slopes. A mid height are anticipated. berm would be required for 0.0 - 7.0 m Silty Sand to Sandy Silt - Factored Bearing Capacity at U.L.S. = 1000 kPa higher fill. V. Dense - Bearing Capacity at S.L.S. Type II = 500 kPa 2.) No major dewatering problems 7.0 - 10.8 m Clayey Silt Cuts up to 6 m deep will be are anticipated. Hard 2.) For pier and abutment foundations at higher elevations, spread stable at 2 H : 1 V side (Glacial Till) footings can be placed on a well compacted granular 'A' pad slope. A berm would be designed for: required for deeper cuts. 3.) This may be a potential site for an - Factored Bearing Capacity at U.L.S. = 900 kPa infiltration pond. - Bearing Capacity at S.L.S. Type II = 350 kPa The permeability of the soil is low to medium. Further 3.) For Higher bearing capacities, piles and caissons are also study will be feasible, but should be selected on a cost comparison basis. required to determine if the site is suitable **Groundwater Elevation** for an infiltration pond. 184.0 m

W.P. 326 - 88 - 01 AREA 38 STRUCTURE Nos. 56, 57, 58, 59, 60, 61 LOCATION Mosport Road, Wilmot Creek and Leskard Road Structures

ORIGINAL GROUND ELEV. 202.3 m PROPOSED HWY 407 GRADE ELEV. _____ 204.0 m, 209.0 m

SUBSURFACE	RECOMMENDATIONS		REMARKS
CONDITIONS	STRUCTURE	APPROACHES	
REFERENCE BOREHOLE P 38 0.0 - 9.5 m Silty Sand Compact to V. Dense (Glacial Till)	 For pier foundations, spread footings placed within Compact to V. Dense glacial till below elevation 201.0 m and below frost depth of 1.2 m may be designed for: Factored Bearing Capacity at U.L.S. = 500 kPa Bearing Capacity at S.L.S. Type II = 300 kPa For pier and abutment foundations, spread footings can be placed on a well compacted granular 'A' pad designed for: Factored Bearing Capacity at U.L.S. = 900 kPa Bearing Capacity at S.L.S. Type II = 350 kPa For higher bearing capacities, piles and caissons are also feasible, but should be selected on a cost comparison basis. 	Fill up to 8 m high can be constructed at 2 H : 1 V side slopes. A mid height berm would be required for higher fill.	 No serious foundation problems are anticipated. No major dewatering problems are anticipated. This may be a potential site for an infiltration pond. Further investigation would be required to confirm this.
Groundwater Elevation 195.1 m			

W.P. 326 - 88 - 01 AREA 39 STRUCTURE Nos. 62 LOCATION Best Road Structures

ORIGINAL GROUND ELEV. 244.4 m PROPOSED HWY 407 GRADE ELEV. 238.5 m

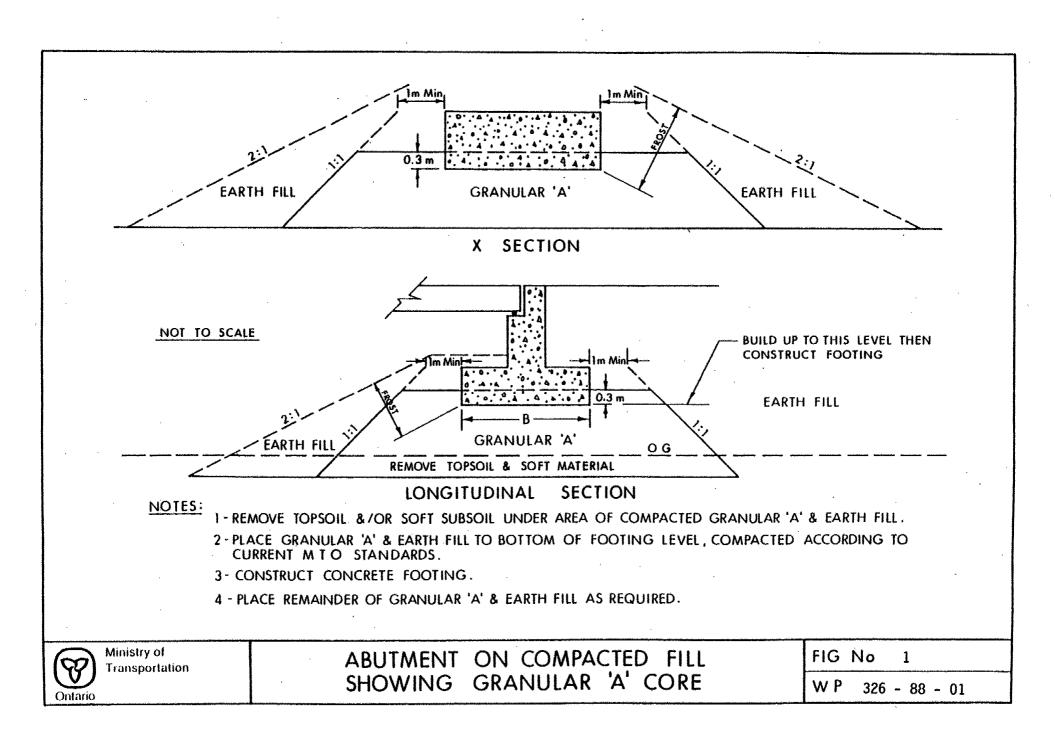
SUBSURFACE	RECOMMENDATIONS		REMARKS
CONDITIONS	STRUCTURE	APPROACHES	
REFERENCE BOREHOLE P 39 0.0 - 12.3 m Silty Sand to Sandy Silt Compact to V. Dense	 1.) For pier and abutment foundations, spread footings placed within Dense to V. Dense glacial till below elevation 238.0 m and below frost depth of 1.2 m may be designed for: Factored Bearing Capacity at U.L.S. = 650 kPa Bearing Capacity at S.L.S. Type II = 400 kPa 	Cuts up to 6 m deep will be stable at 2 H : 1 V side slopes. A berm would be required for deeper cuts.	 No serious foundation problems are anticipated. No major
(Glacial Till)	 2.) Higher bearing capacities can be utilized at a lower depth below elevation 237.0 m. 3.) Piles and caissons are also feasible, but should be selected on a 	·	 2.) No major dewatering problems are anticipated. 3.) May be a candidate site for an infiltration pond.
	cost comparison basis.		Further investigation will be required to prove this.
Groundwater Elevation			
Not Established	, ,		

W.P. 326 - 88 - 01 AREA 40 STRUCTURE Nos. 63, 64, 65, 66 LOCATION A Creek East of Best Road and Concession Road 8 Structures

ORIGINAL GROUND ELEV. 255.9 m PROPOSED HWY 407 GRADE ELEV. 250.0 m, 259.0 m

٩,

SUBSURFACE	RECOMMENDATIONS		REMARKS
CONDITIONS	STRUCTURE	APPROACHES	· .
REFERENCE BOREHOLE P 40 0.0 - 4.0 m Clayey Silt Stiff (Glacial Till) 4.0 - 9.6 m Silt to Silty Sand V. Dense V. Dense	 For pier foundations, spread footings placed within V. Dense Silt to Silty Sand below elevation 250.0 m and below frost depth of 1.2 m may be designed for: Factored Bearing Capacity at U.L.S. = 900 kPa Bearing Capacity at S.L.S. Type II = 300 kPa For pier and abutment foundations at higher elevations, spread footings can be placed on a well compacted granular 'A' pad designed for: 	Fill up to 8 m high can be constructed at 2 H : 1 V side slopes. A mid height berm would be required for higher fill. Cuts up to 6 m deep will be stable at 2 H : 1 V side slopes. A berm would be required for deeper cuts.	 No serious foundation problems are anticipated. Dewatering will be required for excavation below water table in non cohesive material
<u>Groundwater Elevation</u> 252.6 m	- Factored Bearing Capacity at U.L.S. = 900 kPa - Bearing Capacity at S.L.S. Type II = 350 kPa		3.) This is not a suitable site for an infiltration pond. The soil is of low permeability and the water table is likely to remain high after construction.


ŝ,

W.P. 326 - 88 - 01 AREA 41 STRUCTURE Nos. 67, 68 LOCATION Skelding Road Structure, Hwy 35/115 Underpass

ORIGINAL GROUND ELEV. <u>319.0 m</u> PROPOSED HWY <u>407</u> GRADE ELEV. <u>310.0 m</u>, <u>337.0 m</u> Reference:

٩.,

SUBSURFACE	RECOMMENDATIONS		REMARKS
CONDITIONS	STRUCTURE	APPROACHES	
REFERENCE BOREHOLE P.41 0.0 - 5.5 m Silty Clay to Clayey Silt V. Stiff to Hard 5.5 - 9.8 m Silt to Silty Sand V. Dense	 For abutment and pier foundations, spread footings can be placed on a well compacted granular 'A' pad designed for: Factored Bearing Capacity at U.L.S. = 900 kPa Bearing Capacity at S.L.S. Type II = 350 kPa For higher bearing capacities, piles and caissons are also feasible, but should be selected on a cost comparison basis. 	 Fill up to 8 m high can be constructed at 2 H : 1 V side slopes. A mid height berm would be required for higher fill. Cuts up to 6 m deep will be stable at 2 H : 1 V side slopes. A berm would be required for decper cuts. 	 No serious foundation problems are anticipated. No major dewatering problems are anticipated. This is not a suitable site for an infiltration pond. The soil is of low permeability.
Groundwater Elevation			
Not Established			÷

				REC	OR	O OF	BO	RE	IOL	ΕN	10	P21		1	OF	1	MI	ETRI	С
W.P.	326-88-01	LOO																	-
DIST.	<u>6</u> HWY 407	BOR	EHC	DLE T		Solid St	em / 1	iollow	Stem									PILED E	IY
DATU	M Geodetic	DAT	Έ			1994_0	5 30												<u>ү ка</u>
	SOIL PROFILE			SAMPI	£S	E	H ا	DYN	MIC C		ENETR	ATION				URAL.			
		5		T	S	WATER	SCALE				-	80 1		PLASTIC LIMIT		STLIKE. GTENT	LIQUIC	UNIT WEIGHT	REMARK
LEV	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	VALUES	GROUND	NO		AR S		STH k	Pa	1	* <u>P</u>		w ¢	L	⋽₩	à: Grain si
EPTH		IRAT	1	≿	N. A	2 S S S S	EVATION		CONFI			FIELD		WATE	RCC	NTEN	T (X)	1	DISTRIBUT
172.0	Ground Surface	0 0	<u> </u>		ļ.÷	Ľ_		- 2	20 4	ю е 	50 1	<u>50 1</u>	po"	1	0 2	20 3	50	kN/m ³	GR SA SI
0.0	Clayey Silt Some Sand, Trace Gravel																		
	Hard (Glacial Till)		Ļ	SS	31	4													
		_ 14	<u> </u>	1 33			170	·····			+	+	┢──	 					
	Sandy Silt	Į		55	31	Ţ	ļ												
			È		1	1	168												
			3	SS	41	ł						1							
			Ť	- 33	<u> </u>	1				ļ									
		14		SS	57	1	166	┣──			┞					<u> </u>	ļ		
			Ť			1													
			5	SS	104														
			Ť				164				1	1							
62.5			8	SS	120														
9,4	End of Sorehole											T				Ī			
																1			
																ŀ			
						4													
	•																		
									, i										
																	•		
																ł			
- 1		1									I I	1				1		1	

+³, x⁵ ; Numbers refer to Sensitivity 20 15\$5 (%) STRAIN AT FAILURE 10

				REC	ORE) OF	во	REI	HOL	ΕN	10	P22		1	OF	1	M	TRI	С
W.P.	326-88-01	LOO															ORIC		RY LO
	6 HWY_407																		
DATU	M _Geodetic																		YKA
	SOIL PROFILE		T	SAMPL	£S	ä	Ч	DYN		ONE P		ATION		Γ	***	URVE.			
		5		1	5	GROUND WATER CONDITIONS	SCALE	1		шл ю и	-	80 1	<u></u>	PLASTIC	MOR	TENT	LIQUID	UNIT WEIGHT	REMARK
LEV	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	N' VALUES	2Ē	NO	-			STH k	Pa		۳ <u>p</u>	1	W 0		۶₩	& Grain s
EPTH		TRAT	13	≿		88	EVATION	• 9			. *	FIELD	ANE	WATE	RCC	NTEN	T (Z)		DISTRIBUT
84.9 0.0	Ground Surface	N N	_		<i>₹</i>	Ľ	<u> </u>		20 4	ю е	50 8 	BO 1	00	1	0 2	20 3	50	kN/m	GR SA SI
0.0			1			ļ	184	L											
	Claver Silt																		
	Clayey Silt Some Sand, Trace Gravel Hard	13]																
	(Glacial Till)		1.	SS	74	Ţ	182	<u> </u>	<u> </u>	<u> </u>						┠───			
		1	Ť		- 														
		K	_	55	100														
9.4		1					180		 		1	1	1				İ d		
5.5			3	SS	39														
			ľ	33	-38		178			L	ļ		ļ					`	
		[e						ŀ											
	Silty Sond to Sandy Silt Trace of Clay, Trace of Gravel Dense to V. Dense		4	SS	41														
		6		<u> </u>			176				<u> </u>	ł				ļ	<u> </u>		
	(Glacial Till)	9.0	5	SS	108				ŀ										
		E e	6	SS	100		174					1							
2.3															:	}			
	End of Borehole		7	SS	101						<u> </u>								
																	-		
																ł			
			1													, ·			
														-					
	· ,																		
	,					·													
				ŀ															
											1		1				1		

2

+³, x⁵ : Numbers refer to Sensitivity 20 1545 (%) STRAIN AT FAILURE

	326-88-01		CATIO	DN		Coords.	<u>: N4</u>	869	724.6.	<u>E 35</u>	4 258	1.5					ORI		BY_LO
	<u>6</u> HWY <u>407</u>																		
UAIU	M _Geodetic										-	100						CKED B	і <u>ү ка</u>
	SOIL PROFILE		-	SAMPI	7	IS A	SCALE			one p E plot				PLASTK	NOT	ural Iture Itent	UQUID	בֿב	REMARKS
elev Depth	DESCRIPTION	STRAT PLOT		TYPE	N, VALUĘS	GROUND WATER CONDITIONS	EVATION S	SHE o ui	AR S	TRENG	тн к +	Pa FIELD	VANE	₩ _₽		~	т (я)	4 UNIT WEIGHT	는 GRAIN SIZ DISTRIBUTIO (ス)
	Ground Surface			ļ	Ŧ	<u> </u>	뷥		20	40 E	50 1	30 1		I		20 3		kN/m ³	GR SA SI
0.0							166		İ										
	Silty Clay to Clayey Silt Some Sand, Trace Gravel V. Stiff to Hard		Ţ	55	16		164												
	V. Stiff to Hand (Glacial Till)		12	SS	52	}													
							162	<u> </u>		<u> </u>	ļ	<u> </u>	<u> </u>		<u> </u>	ļ	ļ		
160.8 5.5			3	SS	27														
	Silty Sand to Sandy Silt Trace of Clay, Trace of Gravel Dense to V. Dense		4	55	78		160						<u> </u>						
	Glacial Till)	9 P 1	5	SS	48		180												
156.7		9 - N	6	SS	53	¥	158	F											
9.6	End of Borehole		T		 						1	İ				Î			
			x.																
			ľ																
:																			
	,					-													
	•					·													
												ļ	İ						

Ø

+3, x^5 : Numbers refer to Sensitivity 20 1545 (%) STRAIN AT FAILURE 10 **Foundation Design**

	***																	ETRI	
W.P.	<u>326-88-01</u> 6 HWY <u>407</u>	LO		DN		Coords.:	<u>N 4</u>												
	M Geodetic																		1Y <u>LO</u> Y <u>KA</u>
								DYNA		WE PE	NETRA	TION		1					r <u></u>
	SOIL PROFILE			SAMPL	<u> </u>	GROUND WATER CONDITIONS	SCALE	RESIS	TANCE	PLOT	2			PLASTIC	NOT	RAL IVRE	LIQUID LIMIT	ьĦ	REMARKS
ELEV		STRAT PLOT	E	ш	N. VALUES		E .	<u> </u>	-	O 6		30 1(0	Wp	¥		w _L	UNIT	*
DEPTH	DESCRIPTION	I	NUMBER	TYPE	X		ELEVATION	O UN	CONFI	NED	+	RELD		WATE		NTEN	 ⊺ (≭)	7	GRAIN SIZ
203.2	Ground Surface				ż	80	19	• 00	O 4	TAXAL 0 6	οŧ	LAB V 30 1 (1	0 2			kN/m ³	(7%) GR SA SI (
0.0		Į,	8			Ţ													
		Į.	1			Ŧ	202	<u> </u>											
			Ţ	SS	44												ŀ		
	Al		2	SS	78		200						 						
	Clayey Silt Some Sand, Trace Gravel Hard																		
	(Glaciat Till)		₽	SS	120		198	ļ					L						
			1																
			<u>} •</u>	55	85														
				<u> </u>			196												
			1.5	\$5	104														
							194												
93.6 9.6	End of Borehole	<u>na</u>	4 8	SS	105														
																		`	
									•										
	•					•													
														,					
						. ч.						. -							
												· ·							
																•			
			- ·								l								
		• .										1							
			1																
		1																	
																		· *	
			ŀ																

+3, ×⁵ : Numbers refer to Sensitivity 20 15-05 (%) STRAIN AT FAILURE 10

	· · · ·		F	REC	ORE) OF	BO	REH	IOL	EN	lo F	°25		1	OF	1	M	ETRI	С
	<u>326-88-01 ·</u>							869 4	<u>27.6.</u>	357	821.1					·		INATED	8Y_L0
	8 HWY _407	. 808	REHO	LE T	YPE _	Solid Ste											- COM	PILED E	3Y <u>LO</u>
DATUI	M Geodetic	DAT	Έ			1994 05										<u></u>	_ CHE	CKED B	Y <u>KA</u>
	SOIL PROFILE		5	SAMPL	£S	S	SCALE	DYNA	MIC CX	DNE PI		TION		PLASTIC	NON	HAL. TURE	uouo	. =	REMARKS
	•	101	æ		JES	GROUND WATER CONDITIONS		-		·	ķο ē		<u>,</u>	UMIT W _P	CON	TENT	w _L	UNIT WEIGHT	&
EPTH	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	VALUES	NON	ELEVATION		AR ST ICONFII		TH ki +	Pa FIELD	VANE		(<u> </u>			GRAIN SIZ
213.2	Ground Surface	STR	ž		ż	έö	ELEV			RIAXIAL O E	ю ^ж	LAB V		WATE 1		NTEN	T (73) 50	-	(%) Gr sa si (
0.0		LP.						İ		1		İ							
	,	Į f	1			¥	212							- 1000 - 100 - 10		ļ			Į .
		ŧ																	
			1																
		e a	1	SS	58		210			<u> </u>									
	Sandy Silt to Silt Trace Clay, Trace Gravel	[H																	
	V. Dense (Glacial Till)	[H					208		<u> </u>	ļ	ļ	ļ				L			
			ľ	55	150	/8cm				ł						×.			ľ
		24					206										·		
		扮																	
	Cloyey Silt						204												
		14	F	-55	150	/ðcm	204												l
		45	-	ce	160	/18cm													
		FE		- 23			202			<u> </u>	 						ļ		
		[H	5	SS	111		_												
99.3		le F	5	- 55	150	/10cm	200												
13.8	End of Borehole																		
	,																		
ł	•																		
						, .													
					•	ŕ									,				
																			I .
							ĸ.												l
			•																
																			ļ
			. 1	1															[
																			1

Ť

۲

¢

+3, x^3 . Numbers refer to Sensitivity

20 1545 (X) STRAIN AT FAILURE 10

			F	REC	ORE) OF	BO	REH	IOLI	E N	o F	26		1	OF 1	1	M	ETRI	С
W.P.	326-88-01	100																	
	6 HWY 407																		17 <u>LO</u>
	d Geodetic																		Y <u>KA</u>
			T :					DYNA	MIC CC	NE PE	NETRA	TION							
	SOIL PROFILE		⊢	T	r'''	GROUND WATER CONDITIONS	SCALE	RESIS	TANCE	PLOT	2		_	PLASTIC LIMIT	MORT.	IURE -	LIQUID	UNIT	REMARK
LEV		STRAT PLOT	ä	ш	N' VALUES	20 0 E		<u> </u>		RENG	L	0 10		۳p	¥		۳L	NEI N	*
PTH	DESCRIPTION	AT 1	NUMBER	TYPE	N N	NR	ELEVATION	OUN	CONFI	Ð	+	RE.D					 ग (द्र)	7	GRAIN SI
10.6	Ground Surface	STR	Ż		Ż	80	E	• ou 2	ICK 17	O 6	ູ້	UAB V/		1		0 3			(%) Grsasi
0.0							210												
			1																
			ł						۰										
		1	1				208	ļ									<u> </u>		
		e l	-	SS	135														
	Silty Sand to Sandy Silt Trace of Clay, Trace of Gravel V. Dense	-				_													
	(Glocial Till)	ŧ	1				206	ļ									<u> </u>	1	
	Canadran : my		1																
		1			180		:												
				SS.	130	Ţ	204	 				ļ			-		 		
		Êþ	L			Ŧ												 '	
		ĨH	3	SS	138														
		[H	L			/15cm	202										†	1	
x.8			ŀ	33	150	/15cm													
9.8																			
			5	<u>\$\$</u>	150	/18cm	200											1	
	Clayey Silt Same Sand, Some Gravel Hard		<u>ه</u>	SS	150	/18cm	198												
							130					·							
1	(Glocial Till)		7	SS	138														
			۲́-				196										L	Į	
		12		SS	150	/15cm													
						-													
93.6		14	L		125	/15cm	194										<u> </u>		
-	End of Borehole	- 44	۲-	-33	130	Zisem											+		
						х. -									:				
												1						[·	
																1			
																		1	
			Į																
1											Į								
1																			
																			l
																	1		
																	1	1	
						I .												1	
																	1		
	·																1	1	1
			ľ			[.											1	1	
						[1		
			1	ł	1	1	1	1	1	ł	1	ł	1	1	I I	1	1	1	1

 $+^3$, \times^5 ; Numbers refer to Sensitivity

20 15-55 (%) STRAIN AT FAILURE 10

W.P. 326-88-01 LOCATION Coords.: N 4 869 259.2. E 360 032.5 ORIGINATED BY_LO_ DIST_6				1	REC	OR	D OF	BO	REH	IOL	ΕN	10 1	P27		1	OF	1	M	ETRI	С
DIST 9. HWY 1402 BOREHOLE TYPE _Solid Stam / Hollow Stam COMPILED BY _L0 DATUM .5. oddita DATE 1994. 05 30 CHECKED BY _KA SOLL PROFILE SAMPLES 137 V/L (S) V/L	W.P.		LOC																	
DATUM G. oddtic DATE 1994 05 30 CHECKED BY Ka SOIL PROFILE SAMPLES Support	DIST_	<u>6</u> HWY <u>407</u>	BOI	REHC	DLE T	YPE	Solid St	em / 1	Hollow	Stem									PILED E	IY
Let V EPTH EPTH DESCRIPTION Los and bit is is is is is Los and is is Los and is is Los and is is Los and is is Los and is is Los and is	DATU	M <u>G</u> odetic	DA1	ΓE			1994 0	5 30												
LLEV LEPTH (EFTH) DESCRIPTION Distribution (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		SOIL PROFILE			SAMPI	ES	18	Ш	DYN	MIC C	ONE P	ENETR	ATION				-			<u> </u>
Use Use <td></td> <td></td> <td>5</td> <td></td> <td>T</td> <td>l vi</td> <td>TXS:</td> <td>SC </td> <td></td> <td></td> <td></td> <td></td> <td>80 1</td> <td>00</td> <td>UNIT</td> <td>MOB</td> <td>TURE</td> <td></td> <td>L HU</td> <td>REMARKS</td>			5		T	l vi	TXS:	SC					80 1	00	UNIT	MOB	TURE		L HU	REMARKS
20.4 Ground Surface 0 -		AFCABIOTION	PLC	BER	w l	LUE	2Ĕ	8	-	<u> </u>			1	<u>.</u>	₩ _P	'	W 0	L	ME	& GRAIN SIZ
200.4 Ground Surrace 0	EPTH	DESCRIPTION	RAT	I ₹	١Ē	\$	28 28	١ş	1						WATE	RCC	- NTEN	T (Z)	7	DISTRIBUTI
U.0 BRY 204 Silty Send to Sondy Silt 1 35 1 35 105 2 35 105.5 2 105.5 5 105.6 16 105.6 16 105.6 16		Ground Surface	5			Ž	0								1					GR SA SI
Sily Sond to Sondy Silt Trace of Clay, Trace of Gravel Dense to V. Dense (Glacial Till) 2 SS 105 4 55 89 200 200 200 5 5 55 70 196 196 95.8 End of Borehole 1 1 196 196	0.0				· ·										Γ		T			
Silty Sond to Sondy Silt Dense of Crowel Dense of V. Dense (Glacial Till) 2 35 105 202 2 35 150 /27cm 202 200 200 2 5 55 89 198 198 198 198 95.8 End of Borehole 6 55 116 198 198 198			F				J	204		L	ļ	<u> </u>	<u> </u>		<u> </u>		L			
Sily Sand to Sandy Silt Dense 3 55 150 /27cm (Glacial Till) 4 55 89 200 4 55 89 198 5 55 70 198 98.8 6 55 116 196 9.6 End of Borehole 1			10	1	\$\$	33]													
Sily Sand to Sandy Silt Dense 1																				
(Glacial Till) -		Cally Court in Frank Cou	ť,	2	SS	105]	202	 	<u> </u>			+	<u> </u>			<u> </u>			
(Glacial Till) -		Trace of Clay, Trace of Gravel Dense to V. Dense	Ĩ,		1			l						ł						
95.8 128 96.6 End of Borehole			٦	F	SS	150	/27cm													
95.8 195 95.8 196 9.6 End of Borehole			2			Ì		200	 					1						
195.8 1 5 55 70 95.8 1 6 SS 116 196 9.6 End of Borehole 1 1 1 1		,	ŀ	1	SS	89	1													
195.8 1 5 55 70 95.8 1 6 SS 116 196 9.6 End of Borehole 1 1 1 1			÷.	1				198												
9.6 End of Borshole			2	5	55	70	1													
9.6 End of Borehole			ľ	ł																
		The state of the second s	TH	- 6	SS	116		196				ļ	<u></u>							

+³, x⁵ : Numbers refer to Sensitivity 20 15-65 (X) STRAIN AT FAILURE 10

w =	326-88-01	1.64																ETRI	
	6 HWY 407								, <u>,,,,</u>		1_241	·							BY <u>TC</u> IY <u>LO</u>
DATU	M Geodetic		Ε			1994 0	5 25										_ CHE	CKED B	<u>ү ка</u>
	SOIL PROFILE		Š	SAMPL	ES	S ER	SCALE	DYN/ RESK	MIC C	DNE PLOT		TION		PLASTIC		URVEL.	Uguto		DEMADVE
<u>ELEV</u> EPTH	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	N. VALUES	GROUND WATER CONDITIONS	EVATION SC	SHE. • UN • QL	AR ST ICONFI	RENG	TH k + *	FIELD LAB V	VANE	WATE	RCO	INTEN	₩L ₩L T (%)		REMARKS & GRAIN SIZE DISTRIBUTIO (%)
211.1 0.0	Ground Surface	S I H			-	•	<u> </u>	2	0 4			30 10	00			10· 3		kN/m	GR SA SI C
	· ·	0.0.0.0.0.0.0 0.0.0.0.0.0		SS	107		210 208												
	Silty Sand to Sandy Silt Trace of Clay, Trace of Grave! V. Dense (Glacial Till)	9.9.9.9 9.9.9	x	SS	96	/15em	206												
		10-0-0- 10-0-0-0-					204												
			3	SS	150	/20cm	202												, '
198.7	End of Borehole			55		<u>/18cm</u>	200		·										
	 Unable to Measure Ground Water Due to the Hole Collopsing 															,			
																	-		
								-											,
																		:	
									ŀ										

Transportati

+3, x^{5} ; Numbers refer to 15 +5 (%) STRAIN AT FAILURE 10

itan Bentan

Orteria	amportellon																	,	oundation Design
			F	REC	ORE	OF	во	REH	IOL	E N	o F	29		1	OF 1	l	M		C
W.P.	326-88-01	LOC)N		Coords.:	<u>N 4</u>	869 (97.3.	E 362	491.	.2						INATED	8Y_TC
	<u>6</u> HWY <u>407</u>																_ CON	PILED B	Y
DATU	N <u>Geodetic</u>	DAT	E														_ CHE	CKED B	Y <u>KA</u>
	SOIL PROFILE		5	SAMPL	ES	S	SCALE	DYNA	MIC CO	PLOT		TION		PLASTIC	NAT.	RAL TUNE		느토	REMARKS
elev Depth	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	VALUES	GROUND WATER CONDITIONS	ELEVATION SC	SHE/	AR ST	RENG	TH K	Po FIELD	VANE	WATT	CON V	19741. A January	₩Т ₩L Т Т (%)	 ✓ UNIT ✓ WEIGHT 	& GRAIN SIZE DISTRIBUTIO
188.5	Ground Surface	STR	Z		ż	50	ELEY					UAB V		1			50	kN/m ³	(7%) Gr sa si ci
0.0	Silty Sand Trace of Clay, Trace of Gravel V. Dense				185	Ţ	188 186												
						Ŧ													
183.6				55	190		184												
	Cloyey Silt Some Sond, Trace Gravel Hard (Glacial Till)		Ţ	SS	140		182												
		K					. 180					ļ	L						
179.2 8.3	End of Borehole	BZ	ł	SS	128		ļ	ļ					<u> </u>	ļ			ļ		

Wintery +

+³, x⁵: Numbers refer to 20 Sensitivity 15-0-5 (%) STRAIN AT FAILURE

W.P. <u>326-88-01</u> DIST <u>6</u> HWY 407 DATUM <u>Geodetic</u>	BORE	TION_	TYPE_	Coords. Solid Sl	: N 4	870 f	50.8.	<u>e 36</u>	<u>3 911</u>	.5				_ ORIC _ COM	PILED I	-
SOIL PROFILE	Τ		PLES		SCALE	DYNA		DNE PI		TION		PLASTIC	NAT			
CLEV DESCRIPTION	STRAT PLOT	NUMBER	N* VALUES	GROUND WATER CONDITIONS	ELEVATION SC	SHE.	AR ST	RENG	тн к +	BO 11 Pa FIELD LAB V 30 11	VANE	WATE	RCO	т (≭)		REMARKS & GRAIN SIZ DISTRIBUTIC (%)
0.0		1_5	5 120	/15cm	192										KNY M	GR SA SI (
Silty Sand to Sandy Silt Trace of Clay, Trace of Gravel Packets of Gravely Sand V. Dense (Glacial Till)	1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	2 5	5 120	¥	188											
80.3			<u>90</u> 160	/15cm	182											
12.3 End of Borehole																
			-													

Transportatio

	· · · · · · · · · · · · · · · · · · ·		1	DEC	OP		BC	DEI	101	C •	-	071			~~	4	14	TRI	~
	700 00 04																		-
	<u>326-88-01</u> <u>6</u> HWY <u>407</u>																		
	M Geodetic																		ry <u>Lo</u> y Ka
	SOIL PROFILE							DYN	MIC C	ONE P	ENETR	ATION		1				UNED B	
-	SUL PROFILE			SAMPL	1	GROUND WATER CONDITIONS	SCALE	RESI	STANCE	PLOT	2			PLASTIC		ARAL TURE TENT	LIQUID	UNIT	REMARKS
ELEV		STRAT PLOT	E	Ψ	VALUES	P	•		AR ST	1	1	80 1	<u>, , , , , , , , , , , , , , , , , , , </u>	۳p	۷		۳L	ΞĮ.	& GRAIN SIZI
DEPTH	DESCRIPTION	¥1	NUMBER	TYPE		B <u>S</u>	EVATION	o u	CONFI	NED	4	FIELD		WATE	R CO	NTEN	п (%)	7	DISTRIBUTIO
174.4	Ground Surface	SI			ż	5	EE		JICK 11 20 4			BO 1		1			50	kN/m ³	(⊼) GRSASIC
0.0			1			Y	174	<u> </u>		[ļ			
			1			Ŧ				İ			- x-						
			1	SS	25														
	Silty Clay to Clayey Silt Some Sand, Trace Gravel V. Stiff to Hard	Z				l	172	<u> </u>				1							
	V. Stiff to Hard (Glocial Till)	19	2	SS	42		1												
:			1	<u> </u>			170	ļ	ļ	ļ	<u> </u>								
			13	SS	55														
																			κ.
			l-	55	55		168	 			<u> </u> .	1				<u> </u>			
	Lacustrine		<u> </u>																
			5	SS	128		166	_	ļ		ļ		ļ						
164.8			6	SS	122														
after the stand	End of Borshole	- 027	ŀ	33	122		<u> </u>	<u> </u>				1				-			
												1						,	:
														·					
	х х																		
	· · · · · · · · · · · · · · · · · · ·																		
											ľ								
	·																		
			ľ										ļ						
1							t i	ł	1	l	I	1	ł			1			

2

ž

+3, \times^5 ; Numbers refer to Sensitivity

20 15-0-5 (%) STRAIN AT FAILURE

			F	REC	ORE) OF	во	REH	łOL	EN	lo I	P32		1	OF	1	M	ETRI	С
	326-88-01										431.()							BY_TC
	6 HWY 407									•							_ COM	PILED E	IY <u>LÓ</u>
DATU	M Geodetic	DA1	-					Imai									CHE	CKED B	YKA
	SOIL PROFILE	Τ.	1	SAMPL	7	42 EB	SCALE	ŧ		one pi Plot				PLASTIC	2408			ъĦ	REMARKS
ELEV	DESCRIPTION	PLOT	NUMBER	TYPE	VALUES	GROUND WATER CONDITIONS	ION		£	io e IRENG	1		00	Wp_	-	(19)() W O		UNIT WEIGHT	A GRAIN SIZ
EPTH	Ground Surface	STRAT	NN	Σ	N.	COU	LEVATION	• a		NED Raxial O E	×		ANE	1			π (≭)		DISTRIBUTI (%) GR SA SI
0.0	Ground Sundce	12					<u> </u>		Ĭ	Ť	Ť		Ť	<u> </u> '	Ť			KN/m	GR SA SI
		K	2				172					+				+	<u> </u>		
	The stars		1	55	19	1								ľ	l	ŀ			
	Silty Clay Trace of Sand, Trace of Gravel	Ð					170	ļ	ļ	ļ	L		ļ		ļ	ļ			
		K	<u>]</u> 2	SS	43														
			1_			Ţ					1								
	Stiff to Hord		3	SS	13		168	┢──				1		┢──					
	Firm	19	1-	SS	6														
		h	Ť				166			 		<u> </u>	 	 		<u> </u>	 		
			5	SS	5														
							164		· ·										
63.3		12	8	SS	8		164	·										defendit onder solution	
9.6	End of Borehole									· .									
										,									
							•												
								ł					1						
																1			
							l							· ·					
	,																		
																			· .
	•															1			
																1	.		
													1						
																1			
		1	1								1		1	I	1	1	1	1	i

Ξ

¥

.

. ! . .

Ľ

Ŧ

+³, x⁵ Numbers refer to Sensitivity 20 15-\$-5 (%) STRAIN AT FAILURE 10

											_								
																		ETRI	
W.P.		LOC	CATIC	ÓN		Coords.:	N 4	871 (573.1.	<u>E 36</u>	7 022	.7					_ ORIC	SINATED	BY TC & VE
	<u>6</u> HWY <u>407</u> M <u>Geodetic</u>										·								IY <u>LO</u>
UAIO		UAI						I may	W0 0					t in the second se			_ CHE	CKED B	Y <u>KA</u>
	SOIL PROFILE	<u> </u>	-	SAMPL	T	2 E	SCALE	REST	STANCE	ONE PLOT	\geq	·		PLASTIC	NO	TURE	LIGUIO	-7	REMARKS
	DESCRIPTION	T PLOT	NUMBER	TYPE	VALUES	GROUND WATER CONDITIONS	EVATION S	SHE		TRENC	TH K	BO 1 Pa FIELD	1	* _P		(19)1. # 0	w L	UNIT WEIGHT	& GRAIN SIZE DISTRIBUTIO
	Ground Surface	STRAT	E			88		• qi	ACK T	RIAXIAL	×	UAB V 30 1	ANE			NTEN	IT (%)		191
0.0	Ground Sendle		┿		<u> </u>	+	<u>ដ</u> 178	1		Ě—	È		<u> </u>	<u> </u>	Ĕ	Ť	1	KN/ m	GR SA SI C
.	Silty Sand Trace of Clay, With Some Gravel		1																
175.8	(Glacial Till)		Þ	55	9	1				•									
2.4							176					1	1				\uparrow		
		12	2	SS	47	1													
		1			l		174	<u> </u>	<u> </u>	<u> </u>	 	 	 	 		ļ	_		
	Silty Clay to Clayey Silt Some Sond, Trace Gravel V. Stiff to Hard	19	3	SS	37	1													
	(Glocial Till)	K									ļ								
			•	SS	23		172			<u> </u>		t -							
		12																	
		1	3	SS	36		170	ļ	ļ		<u> </u>	<u> </u>				ļ			
			1	L															
68.6 9.8	End of Borehole	- 12	6	55	21			 	<u> </u>			1						·	
									Ì							l			
											ĺ								<i>.</i>
								ľ											
											·		ŀ						
	·																		
															ľ	l			
																			-
									-										
												ľ				l			
				,															
					ſ														
																	ľ		
			1. I	1		. 1		E.	1	1	1	1	1	E I	1	1	1	. 1	

*

¥

+³, x⁵ : Numbers refer to Sensitivity 20 1545 (%) STRAIN AT FAILURE 10

Orntearte	inishry of ransportation																	. 1	Foundation Davis
			I	REC	ORE) OF	во	REH	IOL	ΕN	lo	P34		1	OF	1	MI	ETRI	C .
W.P.	326-88-01	LOC	ATIC)N		Coords.:	<u>N4</u>	871 7	786.0.	E 36	7 844	.0		•			ORIC		BY_TC
	<u> </u>													`					
DATU	M Geodetic		E			1994 0	5_30										_ CHE	CKED B	<u>ү ка</u>
	SOIL PROFILE			SAMPL	ES.	ä	Ч	DYN			ENETR	TION			NAT	RAL .		_	
ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	N' VALUES	GROUND WATER CONDITIONS	EVATION SCALE	SHE O UI	AR S	IRENG	50 I 5TH k +	FIELD	VANE	Wp		TURE TOT V	ייני ער רד (דג)	4 UNIT WEIGHT	REMARKS
188.4	Ground Surface	SIR	Z		Ż	60	13					UAB 1				0 3		kN/m ³	(%) GRSASIO
0.0	Clayey Silt Some Sand, Trace of Gravel V. Stiff to Hard (Glacial Till)		1	SS	19		188												
							186		1				1						
184.4		14	2	SS	41]				l									
4.0	Silty Send to Sandy Silt Trace of Clay, Trace of Gravel V. Dense	19-19-19-19-19-19-19-19-19-19-19-19-19-1	3	SS	55		184												
	(Glacial Till)	p f	1	SS	90	1	182		ļ	ļ	ļ	ļ	<u> </u>				Ļ		
181.4 7.0			5	55	38		180											,	
	Silty Clay to Clayey Silt Some Sand, Trace of Gravel V. Stiff to Hard		6	SS	29	¥												v	
	(Glacial Till)		7	55	42		178												
175.8	End of Decemain	12	8	SS	154	/25cm	176				<u> </u>								
12.6	End of Borehole																		

+³, x⁵ Numbers refer to Sensitivity 20 15-0-5 (X) STRAIN AT FAILURE 10

				RFC	0.BL) ೧೯		RFI	101	F 1	No.	pzs		•	05	4	N 41	ETRI	<u>ہ</u>
W.P.		100																	
	6 HWY 407																		
DATU	M Geodetic	DAT	E			1994 0	5 25												YKA
	SOIL PROFILE			SAMP	.ES	ER	١IJ	DYN	MIC C	ONE F		ATION		I	NAT	URAL			Ī
		10	1_	1	ß	CROUND WATER CONDITIONS	SCALE					80 1	<u>00</u>	PLASTIC UNIT WD		TURE MENT	LIGUID LIMIT	UNIT	
ELEV	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	VALUES	S	EVATION		AR S		GTH I	Po FIELD] –		~			GRAIN SIZI
184.4	Ground Surface	STR	ž		Ż	88	E	• 0	лск т	RIAXIA		60 1	ANE				NT (%) 30	7 kN/m ³	(%) Grsasic
0.0		Į.	T	1			184		 		1	1	1		È	1	-		UK SA SI (
]													
		ŕ,	1	55	66	I I	182	L											
				SS	77	Ŧ													
	Silty Sand to Sandy Silt Trace of Clay, Trace of Gravel	j	Ļ			1													
	V. Dense (Glociol Till)		3	SS	81		180	<u> </u>		<u>†</u>	1	+				\mathbf{t}			
	Concerns starty		1																
			4	SS	83		178	┣──			+								
		P.																	
			5	55	152		176					<u> </u>							
174.8			6	SS	125									·					
9.6	End of Borehole		Ť							1	+					<u> </u>			
	•																		
1					1														
																	*		
	· .																		
ł														•					
															•				
	· ·											ŀ							
														-					
								:											5
																			*
		ŀ																	
	,																		
																		.	

 ξg_{μ}

 \pm ³, \times ⁵ : Numbers refer to Sensitivity

20 15:0-5 (%) STRAIN AT FAILURE 10

			1	REC	OKL) OF	E BC	RE	HOL	E N	10	P36		1	OF	1	M	ETRI	C
W.P.	326-88-01		CATIC	ON		Coords.:	<u>N4</u>	873	30.2	E 37	0 875	.9						GINATED	8Y 18
DIST_	6 HWY _407	801	REHC	LE T	YPE 🚅	Solid_St													BYO
DATUN	M <u>Geodetic</u>	DA1	TE			1994 0	5 25			········						•	_ CHE	CKED B	YKA
	SOIL PROFILE		1	SAMP	ES	Ĩ.	SCALE	DYN/ RESI	MIC C	ONE P		TION		PLASTIC	NAT	URAL		–	
		Б	1 ~	1	E	ROUND WATER CONDITIONS				40 i	_		00		00	iture Tent		UNIT	REMARKS
ELEV	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	VALUES	NN	EVATION	1	AR S	TRENC							L	•	GRAIN SIZ
	A	TRA	Ī	i i-	1 z	88	N A	• QL	JICK T	RIAXIAL	. x	LAB V	VANE	WATE			T (%)		DISTRIBUTI (ズ)
0.0	Ground Surface		-			 	<u> </u>	-		40 e	so a	so 1	00 †	1	0 2	20 3 		kN/m	GR SA SI
		5																	
-		Į P	-	SS	18		170												
		Ĩ				1	170		1	Ī				Γ		1			
			2	SS	48														
	Silty Sand Trace of Clay, Trace of Gravet Compact to V. Dense	F				1	168	ļ		ļ	<u> </u>		ļ	ļ	ļ		ļ		
1		ŧΕ	3	SS	63	4													
	(Glacial Till)					1_													
		Ĕ	-	SS	63	¥	166	<u> </u>		<u>†</u>	<u> </u>	1	<u> </u>			<u> </u>	\mid		- - -
		ΙH				1													
	,		5	SS	25		164	L											
		÷																	
162.3			8	SS	20														
9.6	End of Borehole							*****											and an an an an an an an an an an an an an
]	·								
										·									
	·										с.	ł							
											ļ								
						·													
	۰ ۲																		×.
		1								1	l I	I	r I				1		i

2%

+3, x^5 : Numbers refer to Sensitivity

20 15\$5 (%) STRAIN AT FAILURE

				REC	OR	D OI	F BC	RE	HOL	E I	No	P37	7	1	OF	1	M	ETRI	С
	326-88-01	LO	CATI	ON		Coords.	: N 4	873	565.4,	E 37	1 610).1		in the second second				INATED	BY_10
	6 HWY 407	BO	REHO	DLE T	YPE_	Solid S	tem												IYLO
DATU	M <u>Geodetic</u>	DA	TE			1994 C											CHE	CKED B	Y <u> KA</u>
	SOIL PROFILE	<u> </u>		SAMPI	LES	STER	SCALE	RES	AMIC C STANC	E PLOT		ATION		PLASTIC	MOR	URAL STURE		н	REMARKS
LEV		STRAT PLOT	Ľ	u	VALUES	GROUND WATER CONDITIONS	N S	}	_	- I	ео стни	80 1	<u> </u>	wp		W W	ΨL	UNIT	æ
PTH	DESCRIPTION	RAT	NUMBER	TYPE	N' VA	N	EVATION	οu	NCONF		+	FIELD		WATE	RCC	ONTER	ग (द्र)	7	GRAIN SIZE DISTRIBUTION (ス)
0.0	Ground Surface				, ž	0						80 1					30	kN/m ³	GR SA SI C
							190	<u> </u>	<u> </u>	<u> </u>	<u> </u>								
		[·				.													
	Silty Sand to Sandy Silt Trace of Clay, Trace of Gravel V. Dense	[]-	1	55	195	1	188						1		İ				
	V. Monallana	ţ.				[
		÷۱.	-				186	 	+	$\frac{1}{1}$	1	╉╼╼╼				<u> </u>			
		[]	2	SS	54														
.0 .0						Ŧ	184	 								<u> </u>			
	Clayey Silt Some Sand, Trace of Gravel		J	SS	185	/28cm		ĺ											
	(Glocial Till)			55	120	/13cm	182		ļ	<u> </u>	ļ	ļ	<u> </u>			<u> </u>			
	Conserved control															ŀ			
2	End of Borehole	- 13	15	SS	117	/15cm	ļ			ļ	<u> </u>		ļ			ļ			
].								
											[
																ľ			
																			×.
														•					
												,							
														ŕ					
						•													
							,												
						,													
	1																		

2

+³, x⁵ Numbers refer to Sensitivity 20 15-5-5 (X) STRAIN AT FAILURE 10

Onterio			N																•
			l	REC	ORI) OF	BC	REI	HOL	EN	10	P38		1	OF	1	M	ETRI	C
W.P.								874	706.1.	E 37	<u>3 460</u>	.3					ORI(SINATED	8Y_18
	<u>6</u> HWY 407										•••••••						_ CON	IPILED E	1Y <u>LO</u>
DATU	M <u>Geodetic</u>	. DAT	Έ			1994 0											_ CHE	CKED 9	Y <u>KA</u>
	SOIL PROFILE			SAMPI	ËS	GROUND WATER CONDITIONS	SCALE	RESI	MIC C STANCE	ONE PLOT				PLASTIC	NO	URAL.	LIQUID	T HT	REMARKS
ELEV		PLOT	æ	1.4	VALUES	¥õ		-	1	1		<u>50</u> 1	oo	wp		NEME W	w	UNIT	æ
DEPTH	DESCRIPTION	STRAT 1	NUMBER	TYPE	×.	NNN	ELEVATION	o u	AR S	NED	+	FIELD					 π (x)	~	GRAIN SIZE
202.3	Ground Surface				Ż	50	S.					100 1		1			50 50		(ズ) GR SA SI CL
0.0		Į.					202		<u> </u>		1	-		 					
			Ļ																
		Ľa	ŀ	55	30		200		ļ	ļ	ļ								
		ΓH		SS	28			ľ											
	Silty Sand Trace of Clay, Trace of Gravel Occasional Pockets of Gravel	μđ	Ê																
	Compact to V. Dense (Glacial Till)	HD	3	SS	35		198	<u> </u>	<u>†</u>										
	(olaciai (m)	[H								ļ									
			Ŧ	SS	45		196	┣					<u> </u>						
		μÛ				T													
			5	SS	33	Ī													-
192.8		Ē f					194		Γ		1								
	End of Borehole		8	SS	92	/18cm				[
															:				
	,										Ì								
									ĺ										
																	·		
									:										
	·																		
												·							
													:						
	,																	<i>,</i>	
							4												
	· · .		,						·									,	
	•																		
	۰.																		

Wintery of Transportet

4

÷

20 15-0-5 (%) STRAIN AT FAILURE 10 Foundation Design

	indetry of romportation																	. 1	Foundation Deal
			l	REC	OR	D OF	BC	REI	HOL	ΕN	lo	P39		1	OF	1	M	ETRI	С
W.P.	326-88-01	_ LOC	CATH	ON		Coords.	<u>. N.4</u>	875	562.9.	E 37	4 279	.7						GINATED	BY TO
1	6HWY_407	_ 901	RÉHO	DLE T	YPE _	Solid_SI	em								• • • • • •		- CON	IPILED E	IY <u>LO</u>
DATU	M <u>Geodetic</u>	DA1	ΓΕ														CHE	CKED B	Y <u>KA</u>
ļ	SOIL PROFILE			SAMPL	ES	GROUND WATER CONDITIONS	SCALE	REST	STANCE	ONE P E PLOT		ATION		PLASTIC	NOR	URAL.		노토	REMARKS
		PLOT	l 🖁		VALUES	NOL			20		ير من الم	80 1	ọo	w _p		ITENI W	w _L	UNIT	&`
ELEV DEPTH	DESCRIPTION	STRAT I	NUMBER	TYPE		NO	ELEVATION	o u	CONFI		+	FIELD							GRAIN SIZ
244.4	Ground Surface				ż	80	ELEY			RIAXIAL 40 (LAB 1 50 1					Π (≭) 30		(%) Grsasi
0.0		6]		•	244			-						-	-		
		J.																	
		÷.					242	L											
ŀ	Silty Sand to Sandy Silt Trace of Clay, Trace of Gravel Decosional Lovers of Gravely Sand Compact to V. Dense	ľ,				Į										Γ			
	Compact to V. Dense (Glacial Till)	9.9		SS	18			ļ											
							240	┝───	<u> </u>			┼───	┢──						
		1																	
		ľ	2	SS	37	ł	238												
						1													
·	,			55	120														
		- 45					236	┣								<u>.</u>			
		2	Ī	SS	99	ł													
	Sandy Grovel	0	4				234												
		0.0		55	120	/12cm													
232.0						/15cm													
12.3	End of Borehole			SS	125	/15cm						<u> </u>							
	 Ground Water Not Established 																		
	· ·																		
								,											
																			•
					,						ļ								
						ŀ													
																	· .		
							l												
	_																		
			1									1							
						ł													
L			1	I	<u> </u>				1	1	1						1		

s.

+3, x⁵ : Numbers refer to Sensitivity 20 15-0-5 (%) STRAIN AT FAILURE 10

			Ę	REC	OR) OF	' BO	RFL	101	FN	10	PAO		4	OF	4	M	ETRI	C
W.P.	326-88-01																		-
DIST.	6HWY_407	BOR	EHO	LET	YPE _	Solid St	9m												BY_10
DATU	M _Geodetic	DAT	E			1994 0	5 26												<u>у ка</u>
	SOIL PROFILE		s		ES	Ĕ.	SCALE	OYN	MIC C	ONE P		ATION		PLASTIC	NAT	UPURL		-	
		PLOT	æ		JES	GROUND WATER CONDITIONS			io 4	io (50	<u>80</u> 1	,	w _p	CON	iture Itent W	uque WL	UNIT	REMARKS
ELEV DEPTH	DESCRIPTION	AT P	NUMBER	TYPE	VALUES	N N N	EVATION	1	AR 5'	TRENC		(Pa FIELD	VANE	<u> </u>		•			GRAIN SIZE
255.9	Ground Surface	STRAT	Ż		Ż	80	ELEV	• 0	иск ті 20 4	riaxial 10 e	;o '	ELABIN 80 1		1		NTEN	IT (%) 30	· .	(%) Grsasic
0.0		1.			'	[1	\top		1		1			
	Clayey Silt Some Sand, Traces of Grovel Stiff								ļ,										
	(Glociol Till)			\$5	11	1	. 254	┝──		┼──	+	+					<u> </u>		
	· · ·		ļ_,	SS	8	Ţ]
52.0 4.0	,		Ē			Ŧ	252	<u> </u>	ļ	ļ	<u> </u>	-	ļ	ļ	[<u> </u>			
4. 0		• [•	3	SS	49														
		<u>ן</u> -ן																	
	Silt to Silty Sand V. Dense	• - •	4	SS	94		250					1				†	1		
			5	S \$	25		248	 			┣	+				<u> </u>			
		<u>ו</u> ין																	
46.3 9.6	End of Borehole	<u> • </u>	8	SS	57														
								ŀ											
	· · · · · · · · · · · · · · · · · · ·																		
		·						l	l										
							·												
							,												
													l						
										,									*
	•																		
													ľ						

æ,

+³, ×⁵ : Numbers refer to Sensitivity

,

20 15-5-5 (%) STRAIN AT FAILURE 10

Ontaria																	(Foundation Deek
							во					·						ETRI	-
	326-88-01							878 (82.4.	E_374	4 56:	2.7					_ ORIC	SINATED	BY_TB
	6 HWY <u>407</u> M <u>Geodetic</u>										d								ry <u>LO</u>
JAIO			1			1994 O				ONE PI	NETO	ATION		r				CKED B	YKA
	SOIL PROFILE			SAMPL	T	WATER	SCALE	RES	STANCE	: PLOT	\geq			PLASTIC	MOR	TUNE TUNE		UNIT WEIGHT	REMARKS
ELEV		PLOT	ER.	ų		2 E	1			IN E	L	80 1 (Po	0	w _p		N 3	<u></u> L	WEI	at Grain Sizi
DEPTH	DESCRIPTION	STRAT	NUMBER	TYPE	N, VALUES	GROUND	EVATION	• a		NED BLAXIAL	ж	- FIELD LAB V 80 11	ANE				T (Z)		
0.0		14				•	<u> </u>		ř–	Ť			ř–					KN/m	GR SA SI C
	Silty Clay to Clayey Silt Some Sand, Traces of Gravel V. Stiff to Hard	1]	ĺ			318	<u> </u>	ļ	ļ	ļ	<u> </u>	Ļ						
	· •		Ţ	SS	26														
															·				
	Silty Sond	[ŀ]	2	SS	17	[.	316		1							 			
	-																		
313.6			3	SS	24		314			<u> </u>	<u> </u>								
5.5		- 1 .			,														
	Silt to Silty Sand	ţŀ!	1	SS	49														
	Silt to Silty Sand V. Dense		<u> </u>				312			1	<u> </u>								
		ţŀ.	5	SS	46														
309.4		h l h	-	55	144		310				ļ	+	ļ						
9.5	End of Borehols		Γ					Ī											
	 Ground Water Not Established 						ŀ												
									·										
ł																			
												ŀ							
							· ·												
				,															
										·									
							l	1											
		a m damai	1	L		L	L	1	L	I	I	<u> </u>	1	I	L	1	<u></u>		

Ð

+3, \times ⁵ : Numbers refer to Sensitivity 20 15-0-5 (%) STRAIN AT FAILURE 10

EXPLANATION OF TERMS USED IN REPORT

N VALUE: THE STANDARD PENETRATION TEST (SPT) N VALUE IS THE NUMBER OF BLOWS REQUIRED TO CAUSE A STANDARD SIMM O.D. SPLIT BARREL SAMPLER TO PENETRATE 0.3m INTO UNDISTURBED GROUND IN A BOREHOLE WHEN DRIVEN BY A HAMMER WITH A MASS OF 63.5kg, FALLING FREELY A DISTANCE OF 0.76m. FOR PENETRATIONS OF LESS THAN 0.3m N VALUES ARE INDICATED AS THE NUMBER OF BLOWS FOR THE PENETRATION ACHIEVED. AVERAGE N VALUE IS DENOTED THUS N.

DYNAMIC CONE PENETRATION TEST: CONTINUOUS PENETRATION OF A CONICAL STEEL POINT (SIMM O.D. 60° CONE ANGLE) DRIVEN BY 475 J IMPACT ENERGY ON 'A' SIZE DRILL RODS. THE RESISTANCE TO CONE PENETRATION IS MEASURED AS THE NUMBER OF BLOWS FOR EACH 0.3m ADVANCE OF THE CONICAL POINT INTO THE UNDISTURBED GROUND.

SOILS ARE DESCRIBED BY THEIR COMPOSITION AND CONSISTENCY OR DENSENESS.

CONSISTENCY: COHESIVE SOILS ARE DESCRIBED ON THE BASIS OF THEIR UNDRAINED SHEAR STRENGTH (C) AS FOLLOWS:

c _u (kPa)	0 - 12	12 - 25	25 - 50	50 - 100	100 - 200	>200
	VERY SOFT	SOFT	FIRM	ST I FF	VERY STIFF	HARD

DENSENESS : CONESIONLESS SOILS ARE DESCRIBED ON THE BASIS OF DENSENESS AS INDICATED BY SPT N VALUES AS FOLLOWS :

N (8LOW5/0.3 m)	0 - 5	5 - 10	10 - 30	30 - 50	> 50
	VERY LOOSE	LOOSE	COMPACT	DENSE	VERY DENSE

ROCKS ARE DESCRIBED BY THEIR COMPOSITION AND STRUCTURAL FEATURES AND / OR STRENGTH.

RECOVERY: SUM OF ALL RECOVERED ROCK CORE PIECES FROM A CORING RUN EXPRESSED AS A PERCENT OF THE TOTAL LENGTH OF THE CORING RUN.

MODIFIED RECOVERY: SUM OF THOSE INTACT CORE PIECES, 100mm+ IN LENGTH EXPRESSED AS A PERCENT OF THE LENGTH OF THE CORING RUN. THE ROCK QUALITY DESIGNATION (R O D), FOR MODIFIED RECOVERY, IS :

RQD (%)	0.	- 25	25 - 50	50 - 75	75 - 90	90 - 100
	VERY	POOR	POOR	FAIR	600D	EXCELLENT

JOINTING AND BEDDING :

FIELD SAMPLING

SPACING	50 mm	50 - 300mm	0.3m ~ 1m	lm - 3m	>3m
JOINTING	VERY CLOSE	CLOSE	MOD. CLOSE	WIDE	VERY WIDE
BEDDING	VERY THIN	THIN	MEDIUM	THICK	VERY THICK

ABBREVIATIONS AND SYMBOLS

MECHANICAL PROPERTIES OF SOIL

						MECH	ANICAL PROPERTIES OF SUIL
\$\$	SPLIT SPO	ON	TP	THINWALL PISTON	m,	kPa ⁻¹	COEFFICIENT OF VOLUME CHANGE
W S	WASH SAN	PLE	05	OSTERBERG SAMPLE	¢,	1 .	COMPRESSION INDEX
5 T :	SLOTTED TO	UBE SAMPLE	RC	ROCK CORE	c,	1	SWELLING INDEX
8 S I	BLOCK SAA	WPLE	РН	T W ADVANCED HYDRAULICALLY	¢,	1	RATE OF SECONDARY CONSOLIDATION
cs d	CHUNK SA	MPLE	РМ	T W ADVANCED MANUALLY	ເູັ	m²/s	COEFFICIENT OF CONSOLIDATION
TW.	THINWALL	OPEN	F S	FOIL SAMPLE	н	m	DRAINAGE PATH
					T _v	1	TIME FACTOR
	51	RESS AND	STRAIN	<u>v</u>	ບັ	%	DEGREE OF CONSOLIDATION
wu	kPa	PORE WATER	PRESSUR	£	σío	k Pa	EFFECTIVE OVERBURDEN PRESSURE
r _u	1	PORE PRESSU	RE RATIO		o '	kPa	PRECONSOLIDATION PRESSURE
σ	kPa	TOTAL NORA	AL STRES	s	τ_{f}	kpa	SHEAR STRENGTH
σ'	kPa	EFFECTIVE N	ORMAL S	TRESS	c'	kPa	EFFECTIVE COHESION INTERCEPT -
T	kPa	SHEAR STRES	5		¢	_*	EFFECTIVE ANGLE OF INTERNAL FRICTION
$\sigma_1, \sigma_2, \sigma_1$	σ ₃ kPα	PRINCIPAL	STRESSES		c _u	kPa	APPARENT COHESION INTERCEPT
€	*	LINEAR STR	AIN		φ _υ	_*	APPARENT ANGLE OF INTERNAL FRICTION
$\epsilon_1, \epsilon_2, \epsilon_2$	€3 %	PRINCIPAL S	TRAINS		τ _R	kPa	RESIDUAL SHEAR STRENGTH
E	kPa	MODULUS OF	LINEAR	DEFORMATION	τŗ	kPa	REMOULDED SHEAR STRENGTH
G	kPa	MODULUS O	F SHEAR	DEFORMATION	-	•	SENSITIVITY = Cu
μ	1	COEFFICIEN	OF FRIC	TION	5 _t	,	Tr

PHYSICAL PROPERTIES OF SOIL

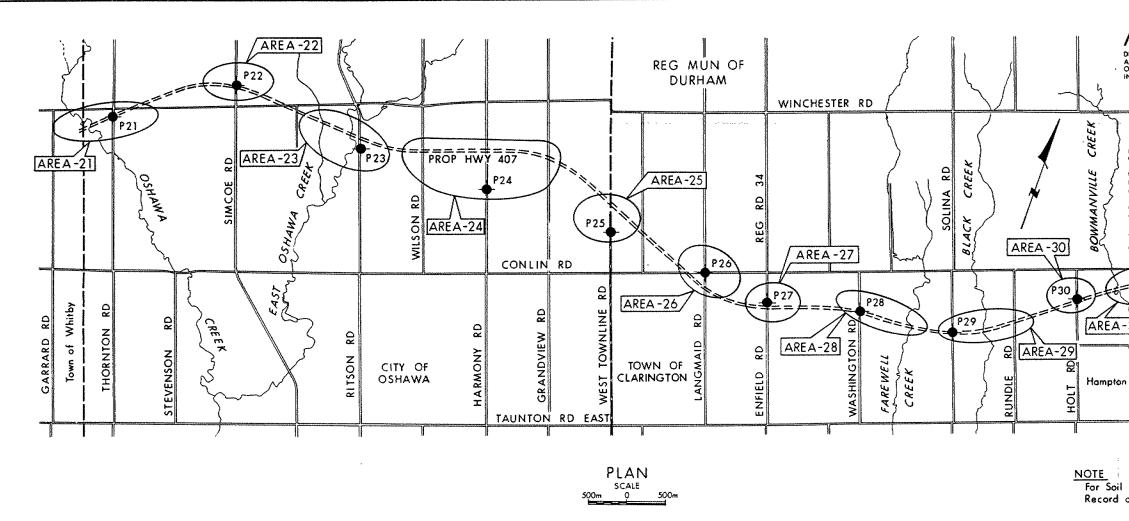
kg/m	BENSITY OF SOLID PARTICLES	e	1,%	VOID RATIO
kN/m	3 UNIT WEIGHT OF SOLID PARTICLES	ň	1 %	POROSITY
kg/m	B DENSITY OF WATER	' w	1, %	WATER CONTENT
kN/m	UNIT WEIGHT OF WATER	s,	%	DEGREE OF SATURATION
kg/m	3 DENSITY OF SOIL	w,	%	LIQUID LIMIT
kN/m	UNIT WEIGHT OF SOIL	w,	%	PLASTIC LIMIT
kg/m	BENSITY OF DRY SOIL	ws	%	SHRINKAGE LIMIT
kN/m	UNIT WEIGHT OF DRY SOIL	1 ₁	2	PLASTICITY INDEX = WI - Wp
	3 DENSITY OF SATURATED SOIL	г.	,	LIQUIDITY INDEX - W- Wp
kN/m	3 UNIT WEIGHT OF SATURATED SOIL	1		'P
	DENSITY OF SUBMERGED SOIL	۲c	1	CONSISTENCY INDEX = WL - W
kN/m	UNIT WEIGHT OF SUBMERGED SOIL	e _{max}	1,%	VOID RATIO IN LOOSEST STATE

e _{min}	1,%	VOID RATIO IN DENSEST STATE
'D	1	DENSITY INDEX = Emox - Emin
D	៣៣	GRAIN DIAMETER
D _n	mm	n PERCENT - DIAMETER
cυ	ĩ	UNIFORMITY COEFFICIENT
h	m	HYDRAULIC HEAD OR POTENTIAL
q	m³/s	RATE OF DISCHARGE
v	m/s	DISCHARGE VELOCITY
i	1	HYDRAULIC- GRADIENT
k	m/s	HYDRAULIC CONDUCTIVITY
j	kN/m ³	SEEPAGE FORCE

P, k

γ _s _P

γ,,,


p

γ

pdydeso

 γ_{sat}

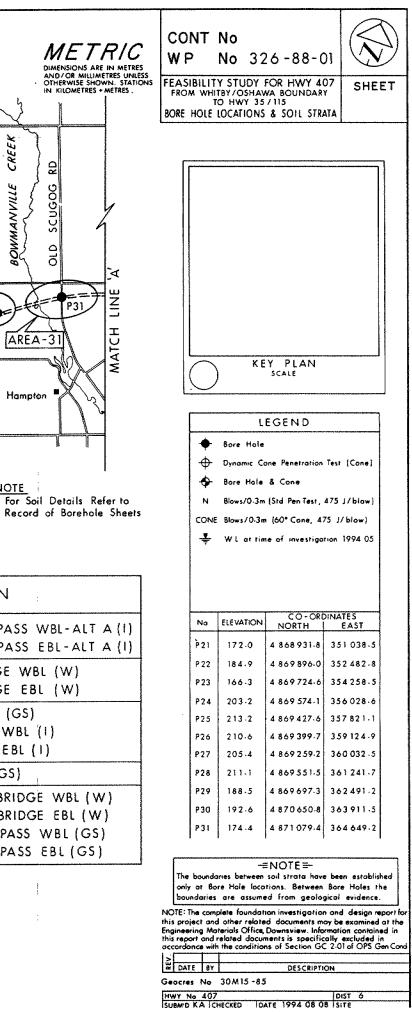
p' k Y'

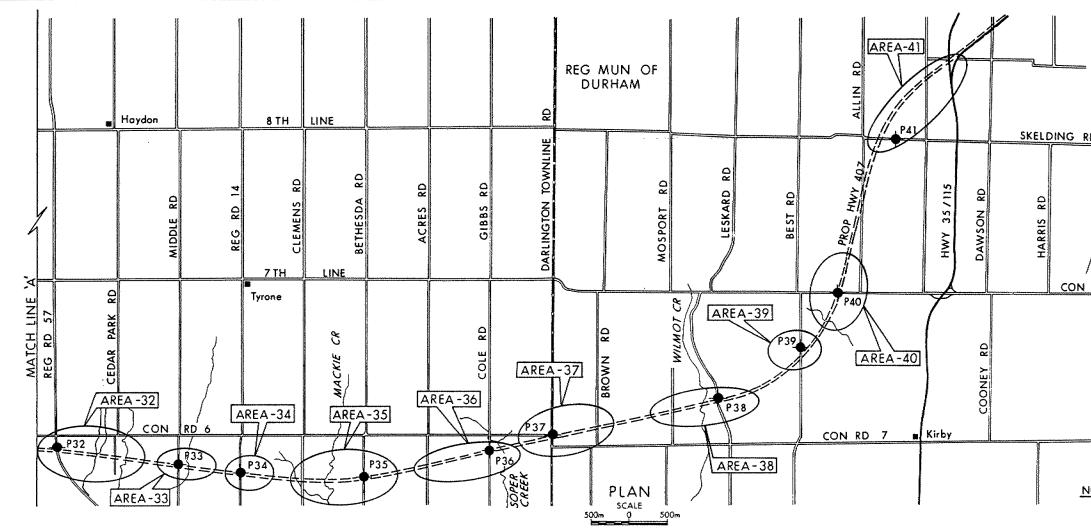
AREA	BOREHOLE No	STRUCT REF No	DESCRIPTION
		3	OSHAWA CREEK BRIDGE WBL (W)
0.1	0.01	4	OSHAWA CREEK BRIDGE EBL (W)
21	P21	5	THORNTON RD OVERPASS WBL (1)
		6	THORNTON RD OVERPASS EBL (1)
22	P22	7	SIMCOE RD UNDERPASS (I)
All Cart II		8	EAST OSHAWA CREEK BRIDGE WBL (W)
	000	9	EAST OSHAWA CREEK BRIDGE EBL (W)
23	P23	10	RITSON RD OVERPASS - ALT A (GS)
		11	RITSON RD OVERPASS-ALT A (GS)
		12	WILSON RD UNDERPASS-ALT A (GS)
24	P24	13	HARMONY RD UNDERPASS-ALT A (I)
		14	GRANDVIEW RD UNDERPASS-ALT A (GS)
25	P25	15	WEST TOWNLINE RD UNDERPASS - ALT A (I)
	201	16	CONLIN RD UNDERPASS - ALT A (GS)
26	P26	17	LANGMAID RD UNDERPASS - ALT A (GS)

AREA	BOREHOLE No	STRUCT REF No	DESCRIPTION
27	P 2 7	18 19	REGIONAL RD 34 OVERPAS REGIONAL RD 34 OVERPAS
28	P 2 8	20 21	FAREWELL CREEK BRIDGE V FAREWELL CREEK BRIDGE
29	P 2 9	22 23 24	SOLINA RD UNDERPASS (G RUNDLE RD OVERPASS WB RUNDLE RD OVERPASS EBL
30	P30	25	HOLT RD UNDERPASS (GS)
31	P31	26 27 28 29	BOWMANVILLE CREEK BRID BOWMANVILLE CREEK BRID OLD SCUGOG RD OVERPAS OLD SCUGOG RD OVERPAS

<u>LEGEND</u>

à.


₫.


 \cdot, \mathcal{L}

W - WATERCOURSE STRUCTURE SITES

GS - GRADE SEPARATED STRUCTURE SITES

I - INTERCHANGE STRUCTURE SITES

AREA	BOREHOLE No	STRUCT REF No	DESCRIPTION
		30 31	REGIONAL RD 57 OVERPASS WBL (I)
		31	REGIONAL RD 57 OVERPASS EBL (1) CREEK EAST OF REG RD 57 BRIDGE WBL (W)
		33	CREEK EAST OF REG RD 57 BRIDGE WBL (W)
32	P32	34	CEDAR PARK RD OVERPASS WBL (GS)
		35	CEDAR PARK RD OVERPASS EBL (GS)
		36 ⁻	CREEK EAST OF CEDAR PARK RD BRIDGE WBL (W)
		37	CREEK EAST OF CEDAR PARK RD BRIDGE EBL (W)
		38	MIDDLE RD OVERPASS WBL (GS)
		39	MIDDLE RD OVERPASS EBL (GS)
33	P33	40	CREEK EAST OF MIDDLE RD BRIDGE WBL (W)
		41	CREEK EAST OF MIDDLE RD BRIDGE EBL (W)
34	P34	42	REGIONAL RD 14 UNDERPASS (1)
		43	CLEMENS RD OVERPASS WBL (GS)
		44	CLEMENS RD OVERPASS EBL (GS)
35	P35	45	MACKIE CREEK BRIDGE WBL (W)
35	35 435	46	MACKIE CREEK BRIDGE EBL (W)
		47	BETHESDA RD OVERPASS WBL (I)
		48	BETHESDA RD OVERPASS EBL (1)

		AREA-41	METRIC DIMENSIONS ARE IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE SHOWN, STATIONS IN KILOMETRES + METRES.	ONT NO P No 326-88-01 SIBILITY STUDY FOR HWY 407 M WHITBY/OSHAWA BOUNDARY TO HWY 35/115 HOLE LOCATIONS & SOIL STRATA
LESKARD RD	BEST RD		HARRIS RD DAWSON RD DAWSON RD HARRIS	
AREA-39	P39 CON 1	AREA-40	a X V OOD V irby	KEY PLAN SCALE
AREA-38	BOREHOLE	STRUCT REF No	<u>NOTE</u> for Soil Details Refer to Record of Borehole Sheets DESCRIPTION	 Dynamic Cone Penetration Test (Cone) Bare Hole & Cone N Blows/0.3m (Std Pen Test, 475 J/blow) CONE Blaws/0.3m (60° Cone, 475 J/blow) W L at time of investigation 1994 05
36	P36	49 50 51 52 53	ACRES RD UNDERPASS (GS) COLE RD OVERPASS WBL (GS) COLE RD OVERPASS EBL (GS) SOPER CREEK BRIDGE WBL (W) SOPER CREEK BRIDGE EBL (W)	No ELEVATION CO-ORDINATES NORTH EAST P32 172.9 4 871 347.3 365 431.0 P33 178.2 4 871673.1 367 022.7 P34 188.4 4 871786.0 367 844.0
37	P37	54 55	DARLINGTON TOWNLINE RD U'PASS (1) BROWN RD UNDERPASS (GS)	P35 184.4 4 872244.1 369 422.3 P36 171.9 4 873 130.2 370 875.9
38	P38	56 57 58 59 60 61	MOSPORT RD OVERPASS WBL (GS) MOSPORT RD OVERPASS EBL (GS) WILMOT CREEK BRIDGE WBL (W) WILMOT CREEK BRIDGE EBL (W) LESKARD RD OVERPASS WBL (GS) LESKARD RD OVERPASS EBL (GS)	P37 191.0 4 873 565.4 371 610.1 P38 202.3 4 874 706.1 373 460.3 P39 244.4 4 875 662.9 374 279.7 P40 255.9 4 876 521.2 374 481.4 P41 319.0 4 878 682.4 374 562.7
39	P39	62	BEST RD UNDERPASS (GS)	
40	P40 P41	63 64 65 66 67 68	CREEK EAST OF BEST RD BRIDGE WBL (W) CREEK EAST OF BEST RD BRIDGE EBL (W) CON RD 8 OVERPASS WBL (GS) CON RD 8 OVERPASS EBL (GS) SKELDING RD UNDERPASS (GS) HWY 35/115 UNDERPASS (1)	-=NOTE =- e boundaries between soil strata have been established ly at Bore Hole locations. Between Bore Holes the undaries are assumed from geological evidence. The complete foundation investigation and design report for oject and other related documents may be examined at the ering Materials Office, Downsview. Information contained in bort and related documents in specifically excluded in lance with the conditions of Section GC 2:01 of OPS Gen Cond LTE BY
				es No. 30M15-85 No. 407 DIST 6 D.K.A. [CHECKED [DATE 1994-08-08 SITE N.D.T. [CHECKED @[Arresoved] DWG 326-8801-8

LEGEND

ŧ

đ,

¢

1

۲**4** ع

.....

.

W - WATERCOURSE STRUCTURE SITES

GS - GRADE SEPARATED STRUCTURE SITES

I - INTERCHANGE STRUCTURE SITES

FILE LOPY

ĵ

3

÷

FOUNDATION DESIGN SECTION

ENGINEERING MATERIALS OFFICE FOUNDATION DESIGN SECTION

WP 282-86-01 DIST 6

HWY 407 STR SITE

Preliminary Design Study for Proposed Hwy. 407 From Hwy. 48 to Whitby/Oshawa Boundary

foundation investigation and design report

ENGINEERING MATERIALS OFFICE FOUNDATION DESIGN SECTION

WP	282-86-01				DIST	6	
HWY	407	x	STR	SITE			

Preliminary Design Study for Proposed Hwy. 407 From Hwy. 48 to Whitby/Oshawa Boundary

> DISTRIBUTION V.F. Boehnke (3) D. Billings W. Peck (2) B. Peltier (3) M. Holowka J. Robinson E.A. Joseph F. Bacchus (Cover Only File

GEOCRES 30M14-227

DATE AUG 0 4 1994

FOUNDATION INVESTIGATION REPORT For Preliminary Design Study For Proposed Hwy 407 From Hwy 48 to Whitby/Oshawa Boundary W.P. 282-86-01, District 6, Toronto

INTRODUCTION

This report summarizes the results of our foundation investigation carried out for the preliminary design study of the proposed Hwy 407 at the above location. This investigation is intended for initial assessment of the feasibility of the proposed alignment from a foundation point of view, with a general coverage of the area by limited number of boreholes. The recommendations given in the report are tentative based on the limited information available and should definitely be reviewed based on supplementary investigations.

Fieldwork was carried out during the period of 93 12 06 to 94 01 12 and is consisted of a total of fifteen (15) sampled boreholes advanced to depths ranging from 10.8 to 27.9 m below ground surface. A desk study carried out before the commencement of the fieldwork has revealed borehole information from existing reports that are relevant to the current design alignment. This information has been extracted and incorporated in this report.

SITE DESCRIPTION

The area investigated extends from the east end of the Town of Markham through the Town of Pickering to the east boundary of the Town of Whitby. The alignment of the proposed Hwy 407 in this area runs more or less in an east-west direction in the vicinity of Hwy 7. It is located within one km south of the existing Hwy 7 from Hwy 48 to around Sideline 16 in Pickering where it cuts across Hwy 7. From there on, it is located within one km approximately north of Hwy 7. It then runs south and intersects Hwy 7 again just east of Cochrane St. in Whitby. From this point on, it stays within one km south of Hwy 7/Winchester Road through the east end of Whitby. The proposed route is illustrated in Drawing Nos. 2828601-A & B.

The existing ground elevation varies from $180 \pm m$ at Hwy 48 to $225 \pm m$ just east of Sideline 24 and dips from there to $140 \pm m$ at Duffins Creek. The grade elevation then goes up easterly to $200 \pm m$ just east of Kinsale Road and smooths off gently to $170 \pm m$ at the east end of Whitby. The topography of the terrain is generally flat to undulating, except at major river or creek locations where relatively deep valleys can be found.

Most of the land along the proposed highway alignment has been cleared and cultivated. Other land use such as residential and commercial developments may be found in towns and along major roads.

Physiographically, the area is located in two regions known as the Peel Plain and South Slope (after Chapman & Putnam, 1984). These regions generally comprise glacial till deposits containing shale and limestone, with lacustrine clay and silt probably reworked by the glacier.

INVESTIGATION PROCEDURES

Soil data and inherent properties were obtained by in-situ and laboratory testing. The procedures employed are discussed below.

Field

The field work for the investigation was carried out between 93 12 06 and 94 01 12 and consisted of fifteen (15) sampled boreholes with dynamic cone penetration tests. The boreholes were advanced to depths of 10.8 - 27.9 m.

The boreholes were advanced with a truck mounted machine equipped with continuous flight augers. Conventional hollow stem or solid stem augers were used supplemented by washboring with BW size casings in some boreholes. The sampling program consisted of split spoon samples collected in the overburden. Disturbed subsoil samples were retrieved by split spoon sampler in accordance with Standard Penetration Test (ASTM D1586). Standard Penetration ('N') values were recorded for assessment of the strength of the materials encountered. All subsoil samples were identified in the field and returned to the laboratory for further examination and appropriate testing. Dynamic Cone Penetration tests were carried out adjacent to each borehole. Groundwater levels were measured in each borehole and all boreholes were backfilled upon completion of the field work.

Surveying required to ascertain borehole locations and elevations was carried out by the Central Region Surveys and Plans Section.

Laboratory

The laboratory testing on selected soil samples consisted of the following:

- Atterberg Limit Test
- Grain Size Distribution
- Natural Moisture Content Determination

Laboratory test results are illustrated on Record of Borehole sheets included in the Appendix.

SUBSURFACE CONDITIONS

Reference should be made to the Record of Borehole sheets contained in the Appendix for subsurface conditions at a particular location. The locations and elevations of the borings are shown on Dwg. Nos. 2828601-A & B.

The predominant soil strata encountered in the boreholes consisted of glacial till with occasional sand layers and silt zones. Silty clay was contacted at two of the boreholes (BH P7 and P8) in the valley with the lowest ground elevations of the area investigated. A surficial layer of granular fill was generally found in all the boreholes as the holes were advanced from existing roads. Bedrock was not encountered at the termination depth of the boreholes.

The glacial till encountered is a heterogeneous mixture of clayey silt, sand and gravel for cohesive tills and a heterogeneous mixture of silt, sand and gravel for non-cohesive tills. Based on the 'N' values of the Standard Penetration test, the glacial till has a hard consistency in the case of a cohesive matrix and a very dense relative density in the case of a non-cohesive matrix. The sand layers or silt zones encountered are also competent with dense to very dense relative density according to the 'N' values obtained. The consistency of silty clay varies widely from hard in BH P8 to soft to stiff in BH P7.

Groundwater level was measured in the open boreholes during the investigation and is given in the Record of Borehole sheet for each borehole. Groundwater levels are subject to seasonal fluctuations and may vary from the values provided in this report.

DISCUSSION AND RECOMMENDATIONS

This report covers the proposed Hwy 407 alignment from Hwy 48 to the Whitby/Oshawa boundary over a distance of about 25 km. The current investigation is intended to collect minimum subsoil information to allow an initial assessment of the feasibility of the proposed route from a foundation point of view. Additional data collected from existing reports are also incorporated.

The subsurface conditions at the various structure sites and the corresponding tentative foundation recommendations are summarized in tabular form on the following pages.

It should be noted that the tentative foundation recommendations provided are for feasibility study or preliminary planning purposes only as they are based on very limited subsurface information. It will be necessary to carry out a detailed investigation at each structure site location when a structure scheme and a profile grade have been decided on.

MISCELLANEOUS

The fieldwork for this investigation was carried out under the supervision of D. Kwok, Project Foundation Engineer. The equipment was owned and operated by Master Soils Investigation Ltd.

The project was carried out by D. Kwok under the supervision of B. Iyer, Senior Foundation Engineer. This report was prepared by D. Kwok, reviewed by P. Payer, Senior Foundation Engineer and approved by D. Dundas, Acting Chief Foundation Engineer.

D. Kwok, P. Eng. Project Foundation Engineer

D. Dundes

D. Dundas, P. Eng. Acting Chief Foundation Engineer

-5-

FOUNDATION DATA SHEET

W.P. 282-86-01

Area: 1

Struct. No. 01 : Markham Rd Underpass

Ground Elevation : 180.8 m Proposed Hwy 407 Grade Elevation : 175 ± m at BH Location

SUBSURFACE CONDITIONS	RECOMMENDATIONS	REMARKS
Ref. Boreholes (W.P. 90-78-00) BH C12 - 0-1.8m Roadway Fill 1.8-15.7 m V. Stiff glacial till	 Spread footings placed within the very stiff glacial till stratum below the frost depth (1.2 m) may be designed with Factored Bearing Capacity at ULS=500kPa Bearing Capacity at SLS Type II=300kPa Alternatively, spread footings can be placed on a well compacted Granular 'A' pad and designed with Factored Bearing Capacity at ULS=900kPa Bearing Capacity at SLS Type II=350kPa Cuts up to 8 m can be constructed with side slopes of 2H:1V Major subsoil deposit is of low permeability and ground water table is close to proposed Hwy 407 grade. It is not a feasible site for infiltration ponds. 	
Groundwater -		
173 <u>+</u> m		

W.P. 282-86-01

Area : 2 Struct. No. 02 : Rouge River Bridge WBL No. 03 : Rouge River Bridge EBL

Ground Elevation : C13 178.7m Proposed Hwy 407 Grade Elevation : 178 \pm m at BH Location C14 178.6m

SUBSURFACE CONDITIONS	RECOMMENDATIONS	REMARKS
Ref. Boreholes (W.P.90-78-00) BH C13 (WBL)	1. Spread footings placed within the very stiff glacial till stratum below the frost depth (1.2 m) may be designed with Factored Bearing Capacity at ULS=500kPa Bearing Capacity at SLS Type II=300kPa	
0-0.3m Topsoil 0.3-22.9m V. stiff glacial till 22.9-27.6m V. dense glacial till	 Alternatively, spread footings can be placed on a well compacted Granular 'A' pad and designed with Factored Bearing Capacity at ULS=900kPa Bearing Capacity at SLS Type II=350kPa End bearing piles to an elevation of 153<u>+</u>m 	
BH C13B (EBL)	 Fills up to 8 m can be constructed with side slopes of 2H:1V 	
0-15.7m Stiff to V. stiff glacial till Groundwater -	5. Base groundwater table at 10 \pm m below proposed Hwy 407 grade. Subsoil is of low permeability at this depth. The site is not ideal for infiltration ponds.	
BH C13 168 m BH C13B not established		-

W.P. 282-86-01

Area : 3 Structure No. 4 : 9th Line Underpass

Ground Elevation : 182.4 m Proposed Hwy 407 Grade Elevation : 183.6 ± m at BH Location

SUBSURFACE CONDITIONS	RECOMMENDATIONS	REMARKS
Ref Borehole (W.P.90-78-00) BH C14 0-1.5 m Roadway Fill 1.5-15.7 m Hard glacial till	 Spread footings placed within the hard glacial till stratum below the frost depth (1.2 m) may be designed with Factored Bearing Capacity at ULS=1000kPa Bearing Capacity at SLS Type II does not control Fills up to 8 m can be constructed with side slopes of 2H:1V Subsoil is generally of low permeability. It is not an ideal site for infiltration ponds. 	
Groundwater -		
Not established		

W.P. 282-86-01

Area: 4

Structure No. 5 : N-S Arterial Road Underpass

Ground Elevation : 192.9 m Proposed Hwy 407 Grade Elevation : 195.6 ± m at BH Location

SUBSURFACE CONDITIONS	RECOMMENDATIONS	REMARKS
Ref. Borehole (W.P. 25-69-00) BH 11 0-13.9 m Hard glacial till	 Spread footings placed within the hard glacial till stratum below the frost depth (1.2 m) may be designed with Factored Bearing Capacity at ULS=1000kPa Bearing Capacity at SLS Type II does not control Fills up to 8 m can be constructed with side slopes of 2H:1V Subsoil is generally of low permeability. It is not an ideal site for infiltration ponds. 	
Groundwater -		
Not established		

-8-

-9-

FOUNDATION DATA SHEET

W.P. 282-86-01

Area : 5 Struct Nos. 06/07 : 10th Line Overpass 08/09 : CPR Overhead 10/11 : Little Rouge River Bridge

Ground Elevation :	193.4 m	Proposed Hwy 407 Grade Elevation :	196.2 <u>+</u> m
at BH Location			200.8 <u>+</u> m
			199.6 <u>+</u> m

SUBSURFACE CONDITIONS	RECOMMENDATIONS	REMARKS
Ref. Borehole (W.P.282-86-01) BH P1 0-0.6 m Granular Fill 0.6-10.8 m Hard glacial till Groundwater -	 Spread footings placed within the hard glacial till stratum below the frost depth (1.2 m) may be designed with Factored Bearing Capacity at ULS=700 kPa Bearing Capacity at SLS Type II does not govern. Abutment footings may be placed on a well compacted Granular 'A' pad and designed with Factored Bearing Capacity at ULS=900kPa Bearing Capacity at SLS Type II=350kPa Fills up to 12 m can be constructed at 2H:1V with a 2 m wide mid-height berm Major subsoil deposit is of low permeability and the sites are not recommended for infiltration ponds. 	
186.6 m		

-10-

FOUNDATION DATA SHEET

W.P. 282-86-01

Area: 6

Struct. No.20 : Regional Road #30 Underpass

Proposed Hwy 407 Grade Elevation : 212 ± m Ground Elevation : 205.3 m at BH Location

SUBSURFACE CONDITIONS	RECOMMENDATIONS	REMARKS
Ref. Borehole (W.P. 282-86-01) BH P2 0-0.8m Granular Fill 0.8-12.4m V. Stiff to Hard glacial till Groundwater - 195.4 m	 Spread footings placed within the hard glacial till stratum below the frost depth (1.2 m) may be designed with Factored Bearing Capacity at ULS=700 kPa Bearing Capacity at SLS Type II does not govern Abutment footings may be placed on a well compacted Granular 'A' pad and designed with Factored Bearing Capacity at ULS=900kPa Bearing Capacity at SLS Type II=350kPa Fills up to 8 m can be constructed at side slopes of 2H:1V. Subsoil is generally of low permeability. It is not an ideal site for infiltration ponds. 	

W.P. 282-86-01

Area: 7 Struct. Nos. 21/22 : West Duffin Creek Bridge

Ground Elevation : 176.2 m Proposed Hwy 407 Grade Elevation : 186 \pm m at BH Location

SUBSURFACE CONDITIONS	RECOMMENDATIONS	REMARKS
Ref. Borehole (W.P. 69-65-02) BH 3 0-1m Firm Clayey Silt	 Spread footings placed within dense to very dense sand and gravel material below the frost depth (1.2 m) may be designed with Factored Bearing Capacity at ULS=700kPa Bearing Capacity at SLS Type II does not govern. 	Prior dewatering is required for footing construction on sand and gravel
1-11.1m Dense to V.Dense Sand and Gravel	 Alternatively, footings can be placed on a well compacted Granular 'A' pad built on the sand and gravel stratum and designed with Factored Bearing Capacity at ULS=900kPa Bearing Capacity at SLS Type II=350kPa Fills up to 12 m can be constructed at 2H:1V with a 2 m wide mid-height berm. High groundwater table with local artesian conditions. The site is not recommended for infiltration ponds. 	Artesian conditions were found in boreholes south of West Duffin Creek @170 m. Water came up to 300 mm above ground
Groundwater -		ground level
175.4 m		

W.P. 282-86-01

Area: 9

Struct. No. 24 : Sideline 24 Underpass

Ground Elevation: 215.6 m

Proposed Hwy 407 Grade Elevation : 216 \pm m

SUBSURFACE CONDITIONS	RECOMMENDATIONS	REMARKS
Ref. Borehole (W.P. 282-86-01) BH P4 0-1.5m Fill 1.5-10.8m Hard glacial till	 Spread footings placed within the hard glacial till stratum below El. 216 m and the frost depth (1.2 m) may be designed with Factored Bearing Capacity at ULS=1000kPa Bearing Capacity at SLS Type II does not govern. Abutment footings may be placed on a well compacted Granular 'A' pad and designed with Factored Bearing Capacity at ULS=900kPa Bearing Capacity at SLS Type II=350kPa Subsoil is generally of low permeability. The site is not recommended for infiltration ponds. 	
Groundwater -		
dry		

W.P. 282-86-01

Area : 10 Struct. No. 25 : Brock Road Underpass No. 26 : Sideline 16 Underpass No. 27&28 : Hwy 7 Overpass WBL/EBL

Ground Elevation : 192.4 m at BH Location

Proposed Hwy 407 Grade Elevation : 189 <u>+</u> m 179 <u>+</u> m 174 <u>+</u> m

SUBSURFACE CONDITIONS	RECOMMENDATIONS	REMARKS
Ref. Borehole (W.P. 282-86-01) BH P5 0-0.9m Granular Fill 0.9-5.3 m Stiff to Hard Till	 Spread footings placed within the hard glacial till stratum below the frost depth (1.2 m) may be designed with Factored Bearing Capacity at ULS=700kPa Bearing Capacity at SLS Type II does not govern. Alternatively, footings may be placed on a well compacted Granular 'A' pad and designed with Factored Bearing Capacity at ULS=900kPa 	
5.3-9.9m V. Dense Sand/Silt 9.9-10.8m Hard glacial till	 Bearing Capacity at SLS Type II =350kPa 3. Cuts/Fills up to 10 m may be constructed at 2H:1V with a 2 m wide mid-height berm for fill heights or cut depths over 8 m. 	
	4. Groundwater table generally close to proposed Hwy 407 grade. The site is not recommended for infiltration ponds.	
Groundwater -		
186.1 m		

-14-

W.P. 282-86-01

Area : 11 Structure No. 31 : Sideline 14 Underpass Nos.40&41 : Structures @ Sideline 14 I/C

Ground Elevation : 167.1 m at BH Location Proposed Hwy 407 Grade Elevation : $164 \pm m$

SUBSURFACE CONDITIONS	RECOMMENDATIONS	REMARKS
Ref. Borehole (W.P.282-86-01) BH P6 0-3.4 m Fill 3.4-6.9 m V. Stiff to Hard Till 6.9-15.7m Compact to Dense Silty Sand	 Spread footings placed within the glacial till stratum below the frost depth (1.2 m) may be designed with Factored Bearing Capacity at ULS=600kPa Bearing Capacity at SLS Type II=350kPa Abutment footings may be placed on a well compacted Granular 'A' pad and designed with Factored Bearing Capacity at ULS=900kPa Bearing Capacity at SLS Type II=350kPa Cut slopes may be formed at 2H:1V with a 2 m berm every 8 m up to a maximum height of 25 m. Groundwater table close to proposed Hwy 407 grade. The site is not recommended for infiltration ponds. 	Cuts up to 25 <u>+</u> m high may be required west of the structure
Groundwater -		
165.3 m		

W.P. 282-86-01

Area : 12 Struct. No.32 : Paddock Road Underpass Nos.33&34 : East Duffin Creek Bridge No.35 : Westney Road Underpass

Ground Elevation : 145.4 m at BH Location

Proposed Hwy 407 Grade Elevation : 154 \pm m 157 \pm m

153 <u>+</u> m

SUBSURFACE CONDITIONS	RECOMMENDATIONS	REMARKS
Ref. Borehole (W.P.282-86-01)BH P70-2.3m Granular Fill2.3-3.5m Peat3.5-5.3m Dense Alluvial Sand5.3-11.4m Soft to Stiff Silty Clay11.4-15.2m Compact 	 Footings elements can be supported by piles driven to an end bearing stratum below El. 131 m, to be determined by additional investigation. All organic material has to be removed prior to placement of fill Stability and geometry of fill embankment has to be determined by additional investigation at structure locations. Permeable sand layers are intercepted by clay strata of low permeability. The sites are not recommended for infiltration ponds. 	Additional investigation is required to determine the pile founding stratum and stability of embankment

-16-

W.P. 282-86-01

Area : 13

Structure 36 : Salem Road Underpass

Ground Elevation : 170.7 m Proposed Hwy 407 Grade Elevation : 166 \pm m at BH Location

SUBSURFACE CONDITIONS	RECOMMENDATIONS	REMARKS
Ref. Borehole (W.P.282-86-01)BH P80-0.5m Granular Fill0.5-7.6m V. Stiff to Hard Till7.6-10.7m Dense 	 Spread footings placed within the hard glacial till below the frost depth (1.2m) can be designed with Factored Bearing Capacity at ULS=700kPa Bearing Capacity at SLS Type II does not govern. Alternatively, footings may be placed on a well compacted Granular 'A' pad and be designed with Factored Bearing Capacity at ULS=900kPa Bearing Capacity at SLS Type II=350kPa Cut slopes may be formed at 2H:1V up to a maximum depth of 8 m. Groundwater table close to proposed Hwy 407 grade. Not recommended for infiltration ponds. 	
Groundwater - 168.8 m		

W.P. 282-86-01

ŝ,

Area: 14

Struct. No.37 : Side Road #4 Underpass No.38 : Kinsale Road Underpass

Ground Elevation : 181.1 m Proposed Hwy 407 Grade Elevation : $177 \pm m$ at BH Location $192 \pm m$

SUBSURFACE CONDITIONS	RECOMMENDATIONS	REMARKS
Ref Borehole (W.P. 282-86-01)BH P90-0.5m0-0.5mGranular Fill0.5-1.5mClayey Silt Fill1.5-23.3mV. Stiff 	 Spread footings placed within hard glacial till below the frost depth (1.2 m) may be designed with Factored Bearing Capacity at ULS=1000kPa Bearing Capacity at SLS Type II does not govern Abutment footings may be placed on a well compacted Granular 'A' pad and designed with Factored Bearing Capacity at ULS =900kPa Bearing Capacity at SLS Type II=350kPa Cut slopes may be formed at 2H:1V up to 10 m deep with a 2m wide mid-height berm for cuts deeper than 8 m. Subsoil generally of low permeability. Not an ideal site for infiltration ponds. 	Cuts up to 10 m deep may be required between the two structures
Groundwater -		
177.7 m		

.

W.P. 282-86-01 Area : 15

Struct No. 39 : Regional Road 23 Underpass No. 50 : Halls Road Underpass

Ground Elevation : 191.4 m at BH Location

Proposed Hwy 407 Grade Elevation : 194 \pm m 186 \pm m

SUBSURFACE CONDITIONS	RECOMMENDATIONS	REMARKS
Ref. Borehole (W.P. 282-86-01)BH P100-0.8 m Granular Fill0.8-7.0m Hard glacial till7.0-9.1m Very 	 Spread footings placed within hard glacial till below the frost depth (1.2 m) may be designed with Factored Bearing Capacity at ULS=1000kPa Bearing Capacity at SLS Type II does not govern Cut/fill slopes may be formed at 2H:1V up to 8 m maximum. Groundwater table close to proposed Hwy 407 grade. The site is not recommended for infiltration ponds. 	
Groundwater - 192 m		

-20-

FOUNDATION DATA SHEET

W.P. 282-86-01	Area : 16	Structure No.51 : Coronation Road Underpass
		Nos.52&53 : West Lynde Creek Bridge
		No.54 : Country Lane Road Underpass

Ground Elevation : 167.2 m	Proposed Hwy 407 Grade Elevation :	168	<u>+</u> m
at BH Location		161	<u>+</u> m
		157	1. 100

157 <u>+</u> m

SUBSURFACE CONDITIONS	RECOMMENDATIONS	REMARKS
Ref. Borehole (W.P. 282-86-01) BH P11 0-0.3m Granular Fill 0.3-1.5m Fill 1.5-21.8m Stiff to Hard glacial till Groundwater - dry	 Spread footings placed within hard glacial till below 163 ± m and the frost depth (1.2 m) may be designed with Factored Bearing Capacity at ULS=1000kPa Bearing Capacity at SLS Type II does not govern Alternatively, footings may be placed on a well compacted Granular 'A' pad built over native glacial till material and be designed with Factored Bearing Capacity at ULS=900kPa Bearing Capacity at SLS Type II=350kPa Cut/fill slopes may be formed at 2H:1V to 10 m maximum with a mid-height berm for slopes more than 8 m high. No aquifer encountered during the investigation. Subsoil generally dry and of low permeability. The site is not recommended for infiltration ponds. 	Cuts up to $10 \pm m$ may be required in the vicinity of the structures.

W.P. 282-86-01 Area: 17

Struct No.55 : Cochrane Street Underpass No.56 : Hwy 7 Underpass No.57 : Regional Road #41 Underpass

Ground Elevation : 161.5 m at BH Location

Proposed Hwy 407 Grade Elevation :		<u>+</u> m + m	
	164	<u>+</u> m	

164 <u>+</u> m

SUBSURFACE CONDITIONS	RECOMMENDATIONS	REMARKS
Ref. Borehole (W.P.282-86-01)BH P120-0.8mGranular Fill0.8-3.8mVery Stiff to hard till3.8-20.4mCompact 	 Spread footings placed within the upper very stiff to hard glacial till stratum below the frost depth (1.2 m) may be designed with Factored Bearing Capacity at ULS=500kPa Bearing Capacity at SLS Type II=300kPa Alternatively, footings may be placed on a well compacted Granular 'A' pad built over native soils and be designed with Factored Bearing Capacity at ULS=900kPa Bearing Capacity at SLS Type II=350kPa End bearing piles may be founded within the lower hard till stratum at 137.5 ± m. 	
Groundwater - 159.3 m	 Cut/fill slopes may be formed at 2H:1V up to 8 m maximum. Major aquifer in non-cohesive till with sand layers. The sites may be feasible for construction of infiltration ponds. 	, ,

-21-

W.P. 282-86-01 Area : 18

Structure No.58 : Hwy 12 Underpass

Ground Elevation : 158.8 m Proposed Hwy 407 Grade Elevation : 157 \pm m

SUBSURFACE CONDITIONS	RECOMMENDATIONS	REMARKS
Ref. Borehole (W.P.282-86-01)BH P130-0.5m Granular Fill0.5-1.4m Fill1.4-2.1m Very Stiff Till2.1-6.1m Dense to 	 Spread footings placed within dense to very dense till below the frost depth (1.2 m) may be designed with Factored Bearing Capacity at ULS=700kPa Bearing Capacity at SLS Type II does not govern Abutment footings may be placed on a well compacted Granular 'A' pad built over native soils and be designed with Factored Bearing Capacity at ULS=900kPa Bearing Capacity at SLS Type II=350kPa Cut/fill slopes may be formed at 2H:1V up to 8m maximum. Groundwater level close to proposed Hwy 407 grade. The site is not recommended for infiltration ponds. 	
Groundwater -		
157.3 m		

W.P. 282-86-01

Area : 19

Struct. Nos. 59 & 60 : Lynde Creek Bridge 61 : Anderson Road Underpass

Ground Elevation : 156.8 m

Proposed Hwy 407 Grade Elevation : 156 \pm m 156 \pm m

SUBSURFACE CONDITIONS	RECOMMENDATIONS	REMARKS
Ref. Borehole (W.P.282-86-01)BH P140-0.8m Granular Fill0.8-1.5m Fill1.5-11.4m Hard till11.4-20.6m Very dense silty sand 	 Spread footings placed within the hard glacial till below the frost depth (1.2 m) may be designed with Factored Bearing Capacity at ULS=500kPa Bearing Capacity at SLS Type II=300kPa Abutment footings may be placed on a well compacted Granular 'A' pad built over native soils and be designed with Factored Bearing Capacity at ULS=900kPa Bearing Capacity at SLS Type II=350kPa Cut/fill slopes may be formed at 2H:1V up to 8 m maximum. Aquifer in silty sand stratum some 10 m below proposed Hwy 407 grade. Site No. 61 may be feasible for the construction of infiltration ponds. Site Nos. 59 & 60 are located next to Main Lynde Creek and are therefore environmentally sensitive. 	
Groundwater -		
152.6 m		

W.P. 282-86-01 A

Area : 20

Struct. No.62 : Thickson Road Underpass No.63 : Garrard Road Underpass

Ground Elevation : 172.2 m at BH Location

Proposed Hwy 407 Grade Elevation : 164 \pm m 173 \pm m

SUBSURFACE CONDITIONS	RECOMMENDATIONS	REMARKS
Ref. Borehole (W.P.282-86-01) BH P15 0-0.8m Granular Fill 0.8-8.4m Hard Till 8.4-17.0m Very dense till	 Spread footings placed within hard glacial till below the frost depth (1.2 m) may be designed with Factored Bearing Capacity at ULS=650kPa Bearing Capacity at SLS Type II=400kPa Abutment footings may be placed on a well compacted Granular 'A' pad built over native soils and be designed with Factored Bearing Capacity at ULS=900kPa Bearing Capacity at SLS Type II=350kPa Cut/fill slopes may be formed at 2H:1V up to 8 m maximum. Aquifer in non-cohesive till stratum some 10 m below the proposed Hwy 407 grade at Struct. No. 63. Groundwater level is at about 5 m below Hwy 407 grade. The site may be feasible for the construction of infiltration ponds. 	
Groundwater -		,
168.2 m		

-24-

APPENDIX

EXPLANATION OF TERMS USED IN REPORT

N VALUET THE STANDARD PENETRATION TEST (SPT) N VALUE IS THE NUMBER OF BLOWS REQUIRED TO CAUSE A STANDARD SIMM O D SPUT BARREL SAMPLER TO PENETRATE 0.3m 'NTO UNDISTURBED GROUND 'N A BOREHOLE WHEN DRIVEN BY A HAMMER WITH A MASS OF 63 Skg, FALLING FREELY A DISTANCE OF 0.76m FOR PENETRATIONS OF LESS THAN 0.3m N VALUES ARE INDICATED AS THE NUMBER OF BLOWS FOR THE PENETRATION ACHIEVED AVERAGE N VALUE IS DENOTED THUS N

DYNAMIC CONE PENETRATION TEST CONTINUOUS PENETRATION OF A CONICAL STEEL POINT (SIMM O.D. 60° CONE ANGLE) DRIVEN BY 475 J IMPACT ENERGY ON 'A' SIZE DRILL RODS. THE RESISTANCE TO CONE PENETRATION 'S MEASURED AS THE NUMBER OF BLOWS FOR EACH 0.3m ADVANCE OF THE CONICAL POINT INTO THE UNDISTURBED GROUND

SOILS ARE DESCRIBED BY THEIR COMPOSITION AND CONSISTENCY OR DENSENESS.

CONSISTENCY: COHESIVE SOLLS, ARE DESCRIBED ON THE BASIS OF THEIR UNDRAINED SHEAR STPENGTH (C) AS FOLLOWS:

	T					U,	
ς _υ (kPa)	0 - 12	12 - 25	25-50	50 - 100	100 - 200	>200	1
	VERY SOFT	SOFT	FIRM	STIFF	VERY STIFF	HARD	

DENSENESS: COHESIONLESS SOILS ARE DESCRIBED ON THE BASIS OF DENSENESS AS INDICATED BY SPT N VALUES AS FOLLOWS:

.3 m)	0 - 5	5 - 10	05 - 01	30 - 50	> 50	
	VERY LOOSE	100\$E	COMPACT	DENSE	VEPY DENSE	

ROCKS ARE DESCRIBED BY THEIR COMPOSITION AND STRUCTURAL FEATURES AND / OR STRENGTH.

RECOVERY : SUM OF ALL RECOVERED ROCK CORE PIECES FROM A CORING RUN EXPRESSED AS A PERCENT OF THE TOTAL LENGTH OF THE CORING RUN.

MODIFIED RECOVERY: SUM OF THOSE INTACT CORE PIECES, 100mm+ IN LENGTH EXPRESSED AS A PERCENT OF THE LENGTH OF THE CORING RUN. THE ROCK QUALITY DESIGNATION (R Q D), FOR MODIFIED RECOVERY, IS :

RQD (%)	0 - 25	25 - 50	50 - 75	75 - 90	90 - 100
	VERY POOR	POOR	FAIR	600D	EXCELLENT

JOINTING AND BEDDING :

£ 0 4 6		Y			
SPACING	50 mm	50 - 300mm	0.3m - 1m	im - 3m	>3m
JOINTING	VERY CLOSE	CLOSE	MOD. CLOSE	WIDE	VERY WIDE
BEDDING	VERY THIN	THIN	MEDIUM	THICK	VERY THICK

ABBREVIATIONS AND SYMBOLS

FIELD	SAMPLING		MECH	ANICAL PROPERTIES OF SOIL
S S SPLIT SPOON WS WASH SAMPLE S T SLOTTED TUBE SAMPLE B S BLOCK SAMPLE C S CHUNK SAMPLE T W THINWALL OPEN	T P THINWALL PISTON O S OSTERBERG SAMPLE R C ROCK CORE P H T W ADVANCED HYDRAULICALLY P M T W ADVANCED MANUALLY F S FOIL SAMPLE	mv Cs Cs cu H	k Pa ⁻¹ 1 1 m ² /s	COEFFICIENT OF VOLUME CHANGE COMPRESSION INDEX SWELLING INDEX RATE OF SECONDARY CONSOLIDATION COEFFICIENT OF CONSOLIDATION DRAINAGE PATH
τ kPo SHEAR STRE $σ_1, σ_2, σ_3$ kPo PRINCIPAL ε % LINEAR STR $ε_1, ε_2, ε_3$ % PRINCIPAL S E kPo MODULUS O G kPo MODULUS O	PRESSURE IRE RATIO MAL STRESS JORMAL STRESS SS SS STRESSES AIN	۲ ∪ ۍ کې لو کې کې د کې کې کې کې کې کې کې کې کې کې کې کې کې) KPa KPa KPa LP KPa KPa KPa KPa KPa	TIME FACTOR DEGREE OF CONSOLIDATION EFFECTIVE OVERBURDEN PRESSURE PRECONSOLIDATION PRESSURE SHEAR STRENGTH EFFECTIVE COHESION INTERCEPT EFFECTIVE ANGLE OF INTERNAL FRICTION APPARENT COHESION INTERCEPT APPARENT ANGLE OF INTERNAL FRICTION RESIDUAL SHEAR STRENGTH REMOULDED SHEAR STRENGTH SENSITIVITY = $\frac{C_U}{T_r}$

PHYSICAL PROPERTIES OF SOIL

1,% VOID RATIO

~			
Ps		DENSITY OF SOLID PARTICLES	e
Ϋ́	kN/m³	UNIT WE THE OF SOUD PARTICLES	n
P,	kg/m³	DENSITE OF WATER	w
γ	kN/m ³	UNIT WEIGHT OF WATER	s,
ρ		DENSITY OF SOIL	w,
7	kN/m ³	UNIT WEIGHT OF SOIL	w _c
Pd	kg/m³	DENSITY OF DRY SOIL	wę
γ d p sot	kN/m ³	UNIT WEIGHT OF DRY SOIL	
Sat	kg /m³	DENSITY OF SATURATED SOIL	ť,
γ_{sat}	kN/m ³	UNIT WEIGHT OF SATURATED SOIL	Ϋ́L
P'	kg/m ³	DENSITY OF SUBMERGED SOIL	¹ c
γ'	kN/m³	UNIT WEIGHT OF SUBMERGED SOIL	e

'n	1.%	POROSITY
w	1, %	WATER CONTENT
5 ₇	2	DEGREE OF SATURATION
wį	%	LIQUID LIMIT
wp	%	PLASTIC LIMIT
w _s	ž	SHRINKAGE LIMIT
I _P	×	PLASTICITY INDEX = WL + Wp
٤	1	LIQUIDITY INDEX = $\frac{w - w_P}{l_P}$
۰,c	1	CONSISTENCY INDEX = WL - W
e _{max}	1,%	VOID RATIO IN LOOSEST STATE

emin	1,%	VOID RATIO IN DENSEST STATE
¹ D	1	DENSITY INDEX = $\frac{e_{max} - e}{e_{max} - e_{min}}$
D	тm	GRAIN DIAMETER
D _n	ជាពា	n PERCENT - DIAMETER
cυ	1	UNIFORMITY COEFFICIENT
h	m	HYDRAULIC HEAD OR POTENTIAL
q	m³/s	RATE OF DISCHARGE
۷	m/s	DISCHARGE VELOCITY
i	1	HYDRAULIC GRADIENT
k	m∕s	HYDRAULIC CONDUCTIVITY
j	kN/m ³	SEEPAGE FORCE

			Ē	SECI	npn	OF	po	DEU		. NI	~ *	21			<u>-</u>		N A T	ETRI	~
_																			
	282-86-01																		
	6 HWY 407							Test									COM	PILED B	Y
11UM	<u>Geodetic</u>	_ DAT	ΞΞ		9	14 01 1				· · · · · · · · · · · · · · · · · · ·							CHE	CKED B	Y <u>51</u>
	SOIL PROFILE		s	SAMPL	ES	GROUND WATER CONDITIONS	SCALE	OTNA RESIS	HC CO	NE PE		TION		PLASTIC UMIT	NATU	RAL	iloun	. =	
		PLOT	~		ES	NO NO		Z	0 4	o e	o e	0 10	õ	υwπ ₩p	NOIS' CONT		UQUO DATT WL	UNIT WEIGHT	REMARK &
EV TH	DESCRIPTION	Ы	NUMBER	TYPE	'N' VALUES	UND	ELEVATION			RENG					c				GRAIN S
	1	STRAT	19	1	>	COS	EVA.	• ou	CONFIN	AXIAL	×	FIELD LAS V	ANF	WATE					DISTRIBU (ズ)
3.4	Ground Surface	- Nor			÷	-	73	2				0 10	l	1() 2	03	0	kN/m	GR SA SI
0.6	Granular Fill	-X2							Preci			nm of ground							
		1					192					<u> </u>							
	Very Sti	12		SS	28				\sim		. .								
	Har																		
	Heterogeneous Mixture of	14	2	SS	80	Ţ	190												
	Clayey Silt, Trace Gravel	R.															· .	ĺ	
	Occosional Sand Layers, Cobbles	14	上	55	100		,												
	and Boulders Brown	. Pr			/25cr		188					<u>}</u>					ļ		
	Grey	-11/2	扛	SS	100														
	(Glocial Till)	1 A			/18cm														
		1	12	<u>S5</u>	100		186					<u> </u>							
					/13cm														
		2	1-	55	100										•				
				1	/13cm		184					<u> </u>					i		
2.6		1	1_																
	End of Borenoie	-	f		_100 /15cr	7					danatan di ta		<u> </u>				<u> </u>		
	- Hara-Paras conservations																l		
	 Unstabilized water level measured upon completion of drilling on 94 01 12 																		
												-				l			
																		1	
·																		1	
											,								
	· .												1					1	
													ł						
													-						
																ł		1	
																		1	
													ł					l	
												1							
																		1	

ن

2

z

-

+³, x⁵ : Numbers refer to Sensitivity 20 15:05 (%) STRAIN AT FAILURE 10

			I	REC	ORE	OF	во	REH	IOL	ΞN	lo F	22		1	OF	1	M	ETRI	2
₩.P	282-86-01	LOC																	
	<u>6</u> HWY_407																		8Y <u>DK</u>
	Geodetic																	CKED 8	
	SOIL PROFILE		1	SAMPI					NIC CO	NE PE	NETRA	TION							•
		PL.0T		T	T	N WATH	N SCALE		TANCE	0 e	io e	÷	20	PLASTIC UMT Wp	CON	JRAL TURE TENT	uquio UMT WL	UNIT WEIGHT	REMARK:
EPTH	DESCRIPTION	STRAT P	NUMBER	TYPE	N. VALUES	GROUND WATER CONDITIONS	EVATION	O UN	AR ST ICONFI	NED.	+	FIELD		,	R CO	NTEN	' ĭ (%)	γ	GRAIN SI DISTRIBUTI (%)
205.3	Ground Surface	12	<u> </u>	<u> </u>	₹	<u> </u>	1	2	0 4	0 6	0 8	0 10	0	1	0 2	0 3	so .	kN/m ³	GR SA SI
204:3	Granular Fill	<u>K</u>]					L Pr	augeri frazer	d 600 grou		pf							
0.8	1		1		ļ]	204	トイ	<u> </u>		<u> </u>								
	Very Stiff	12	1-	SS	21														
	Hard	K.	1										_						
	Heterogeneous Mixture of Clayey Silt, Trace Sand	Và	2	SS	100 /26cm		202												
	Trace Gravel Brown	T.A.	1		/2000	I													
	Occasional Grey	112:	5	55	100 /28cm														
	Cabbles and Boulders		1		2001		200								·				
		1		55	114									ò	H				5 43 42
	(Glacial Till)																		
		62	5	SS	61		198	<u> </u>	1										
	Silty Sand	þř	Ť																
	with Gravel Very Dense		6	55	108]		
	فالمريبين البراري برسنة متعلم ملعنه فليسل والا	1%	1		/18cm	*	196									Í			
			1_		L	÷		[
		i'y		1	/5cm		194									ļ			
92.9		K					1 :34												
	Ind of Borehole	<u>را کمل</u>	r s	55	/18cm		ļ					<u></u>		<u> </u>		 	<u> </u>		
	 Unstabilized water level measured upon completion 																		
	of critting on 94 01 12					1	l												
l																			
				1		-													
	·																		
													· · · ·						
			l																
					•														
			1																
ļ																			
				ļ															
		1		ł															
							2										f 1		
			,																

3

J

+3, \times^5 : Numbers refer to Sensitivity 20 15-0-5 (%) STRAIN AT FAILURE 10

			Ŕ	ECO	ORD	OF	BO	REH	OLE	E N	o F	°3		1	OF 1		ME	ETRIC	0	
Y.P.	282-86-01	LOC	ATIO	N	<u>N</u>	4 862	074.3	<u>E 33</u>	1845.	5								INATED	8Y_ <u></u>	•
	6 HWY 407																			
ATUN	Geodetic	. DAT	ε		9	4 01 1	<u>0 - 9</u>	4 01	11								CHE	CKED B	YƏI	.,
	SOIL PROFILE		s,	AMPL	ES	ER	E	DYNA		NE PE PLOT	NETRA	TION			NATU	RÅ.	1	_		
	a an ann an an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an	LOT	æ		UES	TIONS	N SCALE	z	o 4	၁ န	0 8	0 10	×	Ризтіс Цит Фр	LICHST CONT W	'URE ENT	uouo uwr ∀L	UNIT		k
LEV PTH	DESCRIPTION	STRAT PLOT	NUMBER	түре	N" VALUES	GROUND WATER CONDITIONS	ELEVATION	O UN	CONFIN			Pa FIELD LAS V		WATE	 ۲ COI	NTEN		7	GRAIN DISTRI (3	ודטפ גי
10.0	Ground Surface				÷							0 10	20	10) 2	0 3	0	.kN/m ³	GR SA	51
0.0	Somm Asonalt over Granular Fill	Ŕ				DRY *		<u> </u>	reauge froi	red 60 en gr	10 mm ound	of								
								< ◄			:									
		12		SS	27		208		\geq	\sim										
		1/a	2	SS	30							K								
	Brown	A.					206						120/	25cm						
	Grey	1/2	日		120 /8cm															
	<i></i> ,																			
		14			100		204							0	H				2 42	42
	Heterogeneous Mixture of	1 d			/10cm															
	Clayey Silt, Some Sand	1		55	103															
	only on, come auto				/15cm		202													
	Trace Gravel, Hard							ļ												
			10		100 /28cm															
	Occasional Cabbles and Boulders				7 2001		200				<u> </u>									
		T.	7	SS	101															
	(Glocial Till)	67																		
				- 55	100		198	 						 		 	1			
		2			/23cm															
		de la																		
		6%			/10cm	с. С.	196	 				<u> </u>					<u>.</u> 			
94.6											l									
	End of Borehole	10	10	and the second	100 /15cm			 			}	<u> </u>	1	o		[1	l	6 15	- 38
	* Borehole dry upon completion					·														
	of drilling on 94 01 11										1									
]		
1															•					
																ł				
											ł		1							
		Į														,				
																			1	
																			1	
											1									
									4				ŀ							
													1							
								1												
							1	ł				1		1		1				
					4															

 $+\frac{3}{2}$ \times $\frac{5}{2}$. Numbers refer to Sensitivity

20 15-\$-5 (%) STRAIN AT FAILURE 10

•

.*

ž

4

Ľ

tario																				
			R	REC	ORD	OF	BO	REH	OLE	ΪN	o F	' 4		1	OF 1		ME	ETRI	0	
₩.P.		LOC	ATIO	N N		4 862	2825.5	<u>E 33</u>	4219.0	>							ORIC	SINATED	ey_C	×
	<u>6</u> HWY <u>407</u>							e Test		·····							. CON	PILED 8	<u>ي ۲</u>	×
DATUN	(<u>Geodetic</u>	DAT	ε		9												CHE	CKED B	YE	31
	SOIL PROFILE		SAMPLES			ATER NS	SCALE	DYNAMIC CONE PENETRATION RESISTANCE PLOT				PLASTIC NOTURAL PLASTIC NOSTURE UNIT CONTENT				REMARKS				
EPTH	DESCRIPTION	STRAT PLOT	NUMBER	түре	· VALUES	GROUND WATER CONDITIONS	ELEVATION S	SHEA O UN	CONFIN	RENG	TH kP		VANE			/ /		7	DISTR	(22)
215.6	Ground Surface	- territoria			. N ,		ELE	Z	0 4	06	08	0 10		1	0 2	03	0	kN/m ³	GR S.	A SI
0.0	300mm of Granular Fill over Claysy Silt Fill with Organic Inclusions, Brown (Fill)	Ŕ				DRY ¥			izen g		mm	of								
1.5	Süff	Ê	1	SS	14		214	$\overline{}$												
	Hard	-7 X							\sim					0					14 7	6 33
	Brown				/23cm		212						120/	<u>10cm</u>						
	Grey		T	55	/100 /10cn															
	Heterogeneous Mixture of	10			-120- /8cm		210							<u> </u>						
	Clayey Silt, Trace Gravel				7 061															
	Some Sand, Occasional Cobbles		Ē	SS	<u>120</u> /10сп		208							_						
	and Boulders		6	\$3	120									0					18 3	2 32
	(Glacial Till)	Ye/			/18en		205	,												
10.8	End of Barehole	K/	7	ŝS	100 /18cm													 	<u> </u>	
	 Borehole dry upon completion of drifting on 94 C1 10 																			
	. ·												an an an an an an an an an an an an an a							

Ż

.

X

Ľ

 \pm^3 , \times^5 : Numbers refer to Sensitivity

20 15-5-5 (%) STRAIN AT FAILURE 10

			F	REC	ORD) OF	BO	REH	OL	ΞN	o F	°5		1	OF 1		ME	ETRI	3
N .P.	282-86-01	. Loc	ATIC	N	}	N 4 86;	3709.4	<u>E 33</u>	6527.(5							_ ORIG	INATED	BY_DK
	<u>6</u> HWY <u>407</u>							e Test									_ COM	PILED B	Y <u> </u>
DATUN	Geodetic	. DAT	Ξ		······································												_ CHE	CKED B.	Y <u>Bi</u>
	SOIL PROFILE		Ś	AMPL	ES	GROUND WATER CONDITIONS	SCALE	OYNA	HIC CO TANCE	PLOT		TICN		PLASTIC		RAL		r HT	REMARKS
		PLOT	æ		UES	NOT 0					08		x	uwn ₩p	CONT	ENT	wL	UNIT WEIGHT	ð
EPTH	DESCRIPTION	AT P	NUMBER	ТҮРЕ	N" VALUES	Inno	ELEVATION	OUN	CONFIN	ED		FIELD							GRAIN SIZE
92.4	Ground Surface	STRAT	Ē		ż	30	CLEV	• QU Z	ICK TR 0 4	iaxial 0	0 8	148 W	- 2 F		R CO D, 2		T (%)		(%) GR SA SI C
0.0	Gronulor Fill	R	1					Pred	ugered	600 1702	rhm a n groi	f Und	186			•••••	due to		
0.9		Ŕ					:								n grot				
		ł.	<u> </u>	SS	12				5										
	Heterogeneous Mixture of Stiff						190		\uparrow				/						
	Clayey Silt, Trace Gravel Hard	14	2	SS	31				L										
	Cocasional Silt Zones, Brown		1				188			$\overline{7}$									<i>,</i>
187.1	(Glocial Till)	1	13	\$\$	60					_			120/	28cm					
5.3		•	<u> </u>			Ţ													
	Sandy Silt to Silty Send	•	<u> </u> ▲	SS	66	-	186												1 27 58 -
	Brown	_ ! .																	
	Very Dense Grey	•	<u>_</u>	55	85		184												
]																
82.5			6	SS	53														
9.9 81.6	Heterogeneous Mixture of Clayey Silt, Trace Grovel, Grey, Hard	1	-	SS	110		182												
10.8	End of Borehole		Γ		/18cn												1		
											,								
	 Unstabilized water level measured upon completion of drilling on 94 01 10 																		
	drilling on 94 01 10																		
						• •						,							
																			ļ
												ł							
		ł						,					•						
										·									
													ł						
]								
1				,	1	:				4	1	1	1				1		
																		ł	

ž

3

3

+³, x⁵: Numbers refer to Sensitivity 20 15-0-5 (%) STRAIN AT FAILURE 10

			R	EC	ORD	OF	BO	REH	OLE	: N	o P	6		I	OF 1		ME	TRI	5	
.P.	282-85-01	LOC																		ж
	<u>6</u>																			
	Geodetic																			
	SOIL PROFILE		Ś	AMPL	ES	ER	ILE	DYNAN			NETRAT	ION	ſ		NATU	RAL		F		
	*****	01			ŝŝ	WA					_		- 1	UMT			UMT	INIT	REN	AARK &
<u>EV</u>	DESCRIPTION	pL	ABER	ΡE	ALUI		NOL							"₽	0		L		GRAI	N SI
		TRAT	12	ĩ		CO!	EVAI	• oui	CK TR	AXIAL	×	LAB VA	WE I							12)
	Ground Surface	-S			÷		<u> </u>	20) 4	0 6	8 0	0 10	0			à	+··	kN/m	GR S	A 51
	Clayey Silt, Trace Gravel	\sim					(20	اسر ا						High froze	biowcę n groi	unt d ind	iue to			
	Some Organic Inclusions		1,	55	6		160	$\langle $									1			
					<u> </u>	*		$ \setminus $												
1.7	(1111)	K		ce	17	÷	164	<u> </u>									ļ			
187.1 Graund Surface 0 - - - - 20 40 60 10 20 30 kN/m GR SA 0.0 Clayey Silt, Trace Gravel Some Organic Inclusions -																				
87.1 Ground Surface 0 - </td <td></td>																				
	Image: Constraint of the second sec																			
_	(Glacial Till)			55	30															
.a		•					160													
				55	17															
		[•]•].					158													
			6	SS	23										0				0 4	2 52
	~																			
	Silty Sond		7	SS	34		156	 												
	Trace Gravei	- . -																	ł	
	Reev Composi to Dense	t -	8	SS	20															
		[]•].					154										1			
			9	SS	37											o			0 9	1 5
		[ŀ]					157													
		<u> </u>	10	SS	68												1		ļ	
	measured upon completion								,										[
	,						1								,					
	·																			
							l													
	·																			
														,						
						1														
			1				1	1			}		1					1	1	

ŝ

۳

ŝ

7

鍌

۲

+³, x⁵ : Numbers refer to Sensitivity 20 15:45 (%) STRAIN AT FAILURE 10

ELEW OPERATION DESCRIPTION Total and the standard strength and the streng strength and the strength and the streng strength and the stre															·····		····			~	
CIIST 9 HWY 407 BORKHOLE TYPE LIS. Aver. Gara Test COMPILE 9 COMPILE 9 COMPILE 9 CHECKE BY CHECKE BY CHECKE BY CHECKE BY EXAMPLES CHECKE POLYTANICH CHECKE BY EXAMPLES CHECKE POLYTANICH CHECKE POLYTANICH CHECKE BY EXAMPLES CHECKE POLYTANICH CHECKE P																					
DATUM_Statistic DATE 34.01 05 CHECOKED BY_EIL CHECOKED BY_EIL SOIL PROFILE SAMPLES State and st	V.P	282-86-01	LOC	ATIO	N		4 86	5854.8	<u>E 33</u>	8570.	2		·			<u></u>			INATED	8Y_0	×
SOIL PROFILE SAMPLES Bit Market Part Description >DIST</td> <td><u>6</u> HWY <u>407</u></td> <td>308</td> <td>EHO</td> <td>LE 'n</td> <td>PE</td> <td>1.S. Auc</td> <td>er, Cor</td> <td>e Tes</td> <td>t</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	DIST	<u>6</u> HWY <u>407</u>	308	EHO	LE 'n	PE	1.S. Auc	er, Cor	e Tes	t											
ELLY DESCRIPTION ELLY Stress Stres Stress Stres </td <td>MUTAC</td> <td>Geodetic</td> <td>DAT</td> <td>ε</td> <td></td> <td><u> </u></td> <td>94 01 0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- CHE</td> <td>CKED B</td> <td>Y3</td> <td><u>I</u></td>	MUTAC	Geodetic	DAT	ε		<u> </u>	94 01 0											- CHE	CKED B	Y3	<u>I</u>
ELEV DESCRIPTION R M model el<="" th=""> <thr model<="" th=""> R M mod</thr></thr>		SOIL PROFILE		' s	AMPL	ES	TER	ALE	DYNA	MIC CO	PLOT	NETRA	NON			NATI	RAL,				
182.4 Cyrain Surface 0			Б	~		ES	AW	sc						x					EIGH		ARKS &
142.4 Organia Surface 10 I III y Sould, Trace Group III y Sould, Trace Group III y Sould (Trace Group) III y Sould (Trace		DESCRIPTION	Ы	BE	μE	ALU		NOI							<u>_</u>	·····		<u> </u>		GRAI	N SIZ
142.4 Organia Surface 10 I III y Sould, Trace Group III y Sould, Trace Group III y Sould (Trace Group) III y Sould (Trace			TRAT	2 Z	Ê	> ÷	1020	EVA.	● QU ● QU	ICONFI!	NED RIAXIAL	+	FIELD LAS V.	VANE ANE					/	ſ	ሟነ
Sity Sind, Tree Greet I <td< td=""><td></td><td></td><td>- Annual constants</td><td>A</td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0 10</td><td>20</td><td>1</td><td>0 2</td><td>0 3</td><td>Ň.</td><td>kN/m</td><td>GR SA</td><td>SIC</td></td<>			- Annual constants	A		*							0 10	20	1	0 2	0 3	Ň.	kN/m	GR SA	SIC
141.1 (Fill) 1 98 27 2.3 Organics with Wood Flows 2 88 6 141.9 Birck, Lacse (Pert) 2 88 6 3.5 Sord with Cover, I rose Sitt 2 88 6 Gray, Dense 2 85 6 140.1 (Aluviel Densit) 3 58 32 3.3 Sitty Clay 1 55 4 Sorre wilt zones 5 55 4 Gray 6 55 11 Sort to Stiff 5 55 4 Sitty Sond 8 55 4* Gray 6 55 11 Soft to Stiff 2 85 15 136 8 55 4* Gray 6 55 11 136 1 25 5 Soft to Stiff 1 35 17 136 1 35 17 137 Sity Sond 8 55 3* 138 1 32 139 Cray, Very Stiff 120 1 10 58 24 127.9 more with 11 35 17 128 1 20 25 cm 129 1 20 25 cm 120 1 20 25 cm 127.9 more with 11 35 17 128 1 20 25 cm		•	18X						Preou	C											
23 Organics with Wood Flores 141.9 Block, Laose (Pert) 33 Sand with Growi, Tree Sitt 120.1 (Aluviel Desoit) 33 Sity Clay 53 Sity Clay 53 Sity Sand 6 Sity 1 53 Sity Sand 6 Sity 1 54.6 Sity Sand 6 Sity 1 53 Sity Sand 6 Sity 1 126.0 Trey 136 Sity Sand 137 Sity Sand 138 Sity Sand 139 Sity Sand 130 Sity Sand 131 Sity Sand 132 Sity Clay 133 Sity Sand 134 Sity Sand 135 Sity Sand 136 Sity Sand 137 Sity Sand, Grey, Compact 138 Sity Sand, Grey, Compact 139 Sity Sand of Berenoie 130 Sity Sand of Sit Zanes 131 Sity Sand of Sit Zanes <td></td> <td></td> <td>X</td> <td></td> <td></td> <td></td> <td></td> <td>144</td> <td></td> <td>\rightarrow</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			X					144		\rightarrow											
141.9 Block, Laose (Pert) - 2 SS 8 3.5 Sond with Growe, Trees Sitt Core, Neres 2 3 3 3 3 14.2 140.1 (Aluvie) Deposit) - 3 3 5 3 14.2 14.2 5.3 - - 3 5 4 5 4 14.2 5.3 - - - 3 5 5 6 138 5.3 - - - - - - 138 - - 138 5.3 - - - - - - - - - 138 - <td></td> <td></td> <td>£¥</td> <td></td> <td>22</td> <td>27</td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			£¥		22	27	*														
3.3 Sond with Gravel, Trees Sitt 2 3 5 2 10.1 (Aluvie) Deposit () 3 5 3 5.3 - - - - 5.3 - - - - 5.3 - - - - 5.3 - - - - Sity Cley - - - - Sorte silt zones - - - - Grey - - - - Soft to SUff - - - - 14.0 - - - - 15.2 Sity Sond, Grey, Compact - - 15.2 Sity Sond, Grey, Compact - - 15.2 Sity Sond, Grey, Compact - - 17.4 Sity Sond, Grey, Compact - - 17.5 Sity Sond, Grey, Compact - - 17.6 Considered Sit Zones - - 18.7 End of Boremote - - 18.7 End of Boremote - - 18.7 End of Boremote - - 18.7 End of Boremote -		•	+				÷		$\left \right $												
Grey, Dense (Aluviel Decesit) 2 3 55 0 5.3 4 55 4 Sity Cley 5 55 6 Grey 5 55 6 Grey 6 55 11 Soft to Stiff 7 55 136 34.0 7 55 13 34.0 7 55 13 Sity Send 9 55 3" Grey 9 55 3" Sity Send 9 55 3" 13.2 Sity Cley 10 55 30.2 510 10 55 24 13.2 Sity Send 10 55 24 13.2 Sity Cley 10 55 24 13.2 Sity Cley 11 55 12 13.2 Sity Send, Grey, Compact 12 128 120 12.8 120 120 25cm 0 2 13.7 Sity Send, Grey, Compact 12 12 128 120 2 13.7 End of Berehole 11 55 6" 12 12 13.7 End of Berehole 12 <t< td=""><td></td><td></td><td>+</td><td>2</td><td>SS</td><td>8</td><td></td><td>142</td><td></td><td>5</td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			+	2	SS	8		142		5											
140.1 (Allvviel Depenit) 0 3 95 32 5.3 5.3 1 1 1 1 1 Some silt zones 5 55 6 1 1 1 Some silt zones 5 55 6 1 1 1 1 Soft to Suff 6 55 11 <	1		2.2							\leq											
3.0 Sity Cley 6 55 56 138 Some silt zones 5 55 56 138 Grey 6 55 11 Soft to Stiff 7 55 136 34.0 7 75 15 Sity Sond 8 55 4************************************	40.1		1.0	3	SS	32				\searrow											
Sity Clay 5 55 6 Grey 6 55 11 Soft to Stiff 7 55 15 11.4 Sity Sand 7 55 14 Sity Sand 8 55 4** Grey 9 55 3** Compact 9 55 3** 30.2 Sity Clay 10 55 24 13.2 Sity Clay 10 55 24 13.2 Sity Sand, Grey, Compact 11 35 17 13.2 Sity Sand, Grey, Compact 12 55 8** 13.7 End of Berehole 11 25 8** 13.7 End of Berehole 12 55 8** 13.7 End of Berehole 12 12 8 - Unrepresentative Somourband - - - - - Unrepresentative Somourband - - - - - - Unrepresentative Somo	5.3		P					140	\Box												
Some silt zones 5 5 6 Grey 6 55 11 Soft to Stiff 7 55 15 34.0 7 55 15 11.4 Silty Sond 7 55 15 11.4 Silty Sond 8 55 4** Grey 9 35 3** 134 13.2 Silty Sond 9 35 3** 13.2 Silty Clay 10 35 24 13.2 Silty Sond, Grey, Compact 11 35 17 17.5 Silty Sond, Grey, Compact 12 35 8** 12.7.9 more silty 11 35 17 12.8 12 35 8** 128 120 25cm 18.7 End of Berenole 12 35 8** 128 120 25cm 0 2 18.7 End of Berenole 12 12 12 12 12			H	4	SS	4										Ηd					
Some silt zones 5 55 6 Grey 6 55 11 Soft to SUff 6 55 11 Soft to SUff 7 55 15 11.4 7 55 15 Campact 8 55 4** Grey 10 55 24 13.2 Silty Sond 10 55 24 13.2 Silty Clay 10 55 24 13.2 Silty Clay 10 55 24 13.2 Silty Sond, Grey, Compact 12 13 130 27.9 more silty 11 55 12 130 13.2 Silty Sond, Grey, Compact 12 12 128 120 120 25 25.7 Occessional Sit Zones 12 25 8** 12 12 128 120 120 12 128 120 120 128 120 120 120 128		Silty Cley	R					170													
Soft to Stiff 6 SS 11 34.0 7 SS 15 7 SS 15 11.4 Silty Sand 8 SS Grey 9 SS 3* Grey 9 SS 3* Sol.2 Silty Clay 10 SS 24 T2.5 Silty Clay 11 SS 12 T2.5 Silty Sand, Grey, Compact 11 SS 12 27.9 10 SS 2* 120 25cm 18.7 End of Borehole 12 SS 8** 128 120.25cm ** Unrepresentative bloecounts due to possible distrobance completion of dritting on 94 01 05 1 1 1		Some ailt zones	H	5	SS	6		1.00		\mathbf{n}										Į	
Soft to Stiff 6 SS 11 34.0 7 SS 15 7 SS 15 11.4 Silty Sand 8 SS Grey 9 SS 3* Grey 9 SS 3* Sol.2 Silty Clay 10 SS 24 T2.5 Silty Clay 11 SS 12 T2.5 Silty Sand, Grey, Compact 11 SS 12 27.9 10 SS 2* 120 25cm 18.7 End of Borehole 12 SS 8** 128 120.25cm ** Unrepresentative bloecounts due to possible distrobance completion of dritting on 94 01 05 1 1 1			K							1											
34.0 7 55 15 11.4 Silty Sond 8 55 4** Grey 1 134 Sold 9 55 3** Compact 10 55 24 13.2 Silty Clay 10 55 Crey, Very Stiff 10 55 24 13.2 Silty Clay 10 55 27.9 more silty 11 55 7.5 Silty Sond, Grey, Compact 12 55 25.7 Coccessional Silt Zones 12 55 18.7 End of Borehole 12 55 • Unstabilized water level taken upon completion of drilling on 34 01 05 12 • Unstabilized water level coreased by upble disturbance coursed by upble model 1		Grey	H	6	SS	11		136		4											
33.0		Soft to Stiff	H							1											
34.0 Image: state			H	7	SS	15													1 A A		
Grey 132 30.2 10 15.2 Sity Clay Grey, Very Stiff 27.3 more sity 11 25.7 Occessional Silt Zones 12 25.8 8 12 12 12 12 12 12 12 13 14.7 End of Borehole •			H4					134			\rightarrow						1	_			
Grey 132 30.2 10 15.2 Sity Clay Grey, Very Stiff 27.3 more sity 11 25.7 Occessional Silt Zones 12 25.8 8 12 12 12 12 12 12 12 13 14.7 End of Borehole •		Contra di ancia		8	SS	4**															
Compact 9 55 3* 30.2 15.2 Silty Clay Grey, Very Stiff 27.9 17.5 Silty Sand, Grey, Compact 26.7 Cocosional Silt Zones 18.7 End of Barehole • • • • • • • • 18.7 End of Barehole • • • • • • • • <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>]</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>			-]						-			
30.2 Compact 10 SS 24 15.2 Sity Clay 10 SS 24 15.2 Sity Clay 10 SS 24 17.5 Sity Sand, Grey, Compact 11 SS 17 17.5 Sity Sand, Grey, Compact 12 128 120,25cm 18.7 End of Borehole 12 SS 8** * Unrepresentative blowcounts 100 SS 128 128		Grey	 . ⁺		66	7/*		132			5						<u>.</u> 	<u>f</u>			
15.2 Sity Clay 10 SS 24 130 Grey, Very Stiff 111 SS 12 27.9 more silty 111 SS 17 17.5 Silty Sand, Grey, Compact 12 12 26.7 Occasionel Silt Zones 12 SS 18.7 End of Borehole 12 SS • Unstabilized water level 10 S taken upon completion of drilling on 34 01 05 12 12 *= Unrepresentative blowcounts due to possible disturbance 1		Compact			33						{							-			
Silty Clay Grey, Very Stiff 11 Silty Clay 11 Silty Clay 27.9 more silty 11 SS 17 17.5 Silty Sand, Grey, Compact 12 12 128 26.7 Occossional Silt Zones 12 12 8** 18.7 End of Borehole 12 12 8** • Unstabilized water level taken upon completion of drilling on 34 01 05 1 1 *= Unrepresentative blowcounts due to possible disturbance coused by unboindened 1 1																					
27.9 more silty 11 SS 17 17.5 Silty Sand, Grey, Compact . . . 26.7 Occosional Silt Zones . . . 18.7 End of Borehole . . . • Unstabilized water level token upon completion of drilling on 34 01 05 . . *= Unrepresentative blowcounts due to possible disturbance coused by unbolanced . .	15.2	Sitty Clay	H	10	SS	24		1.30			$\overline{\langle}$						<u> </u>	1			
17.5 Silty Sand, Grey, Compact 12 </td <td></td> <td>Grey, Very Stiff</td> <td>K</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>]</td> <td></td>		Grey, Very Stiff	K									-]	
17.5 Silty Sand, Grey, Compact - 25.7 Occosional Silt Zones - 18.7 End of Borehole • Unstabilized water level token upon completion of drilling on 94 01 05 *** Unrepresentative blowcounts due to possible disturbance coused by unbolanced	27.9	more silty	Hł.	11	SS	17		128		ļ				1207	25cm	Н	0	<u> </u>		0 2	85
18.7 End of Borehole	17.5	Silty Sand, Grey, Compact	1.1																		
Unstabilized water level taken upon completion of drilling on 94 01 05 Unrepresentative blowcounts due to possible disturbance caused by unbolanced			<u> </u>	12	SS	8**					<u> </u>							ļ	 	ļ	
taken upon completion of drilling on 34 01 05 ** Unrepresentative blowcounts due to possible disturbance caused by unbelanced	- E	ic of perenole						:													
drilling on 94 01 05		 Unstabilized water level taken upon completion of 																			
due to possible disturbance caused by unbalanced																					
caused by unbalanced		** Unrepresentative blowcounts																			
		due to possible disturbance caused by unbalanced																			
		nyorostatic heads																			
																				ļ	
																				ł	
																				1	

Transportation

\$2

 \pm^3 , \times^5 : Numbers refer to Sensitivity

20 15-9-5 (%) STRAIN AT FAILURE 10

	• 93 12 24														1					
A	End of Borehole	14	19	<u>\$5</u>	58			ľ	<u> </u>		1	· [<u> </u>				<u> </u>	 	
42.8		R					¯													
		H					144						-							
		K																	l	
	(Locustrine)	H	18	SS	70		146				ļ	ļ	<u> </u>	 	ļ	4	<u> </u>			
	,	H				ĺ			HOUKI	10				1						
	Grey, Hard	H					148	Wat	HBORI	-				 			+			
	Siity Clay	Y	16	55	48					-					+	+	-			
		H					150					1	+	1	+	-				
		H	15	SS	76									1						
9.1	<u>, , , , , , , , , , , , , , , , , , , </u>	Ŕ																		
1.6		H	14	SS	100		152	<u> </u>		ļ	 			 						
	Cityey	H	1		/23en	1								l						
	Becaming more Clayey	R		55	100	·	154			<u> </u>			<u> </u>		P	+-			0 :	5 79
) dyer	₩			†	İ						,								
	Silty Sand	.		55	40	ļ	156				-	1		T		1	1			
	Cense to Very Dénsé	Щ			100 /18cm															
	-																			
	Trace Clay, Some Sand Grey		10	SS	91	1	158			<u> </u>			1	ļ		-				
	Silt																			
2.7			9	SS	46		150			<u> </u>		+	+	┟───		0			0 2	1 7
0.0	Brown and Grey		\square																	
	Dense to Very Dense		8	SS	74	ł		AUG	ER											
	Silty Sand			÷		1	162			<u> </u>	ļ	<u> </u>			<u> </u>					
3.1 7.6		10	7	SS	33	1														
					/23cm		164			<u> </u>	<u> </u>				<u> </u>					
		10		_55_	100															
	Grey Some Sand Layers (Glacial Till)		5	55	45		100													
	Brown]	166													
	Trace Gravel, Occasional Cobbles and Boulders	(A	-	55	100 /25cm															
	Clay Silt, Trace Sand	K	3	'SS	51]	168						<u> </u>							
	Hard Heterogeneous Mixture of	K	2	55	31						<u> </u>									
0.5	Very Stiff	3		SS	17	Ť .	170	T			Ì	+		 	†		1			
0.0	Grenuler Fill	8			<u> </u>		ū	ľ,	•		1	<u> </u>	1	· · · ·	Ť-			kN/m ³	GR S.	4 S
0.7	Ground Surface	STRA	l ₹	}		888	EVA	• OU	ICK TR	HAVIA		(AB) 30 1	/A 3.12"				IT (%) 30	7 1.51 (1.3		(21)
EV TH	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	VALUES	GROUND' WATER CONDITIONS	ELEVATION		CONFI			Po PaD	VANE] "			<u>"</u> L			N S
		Б	~		ES	WA						BO 1	õõ			TURAL STURE NTENT	UQUID UMIT	UNIT WEIGHT	REN	4AR) &
	SOIL PROFILE		s	AMPL	٤S	ER	SCALE	DYNA	HIC CO	NE P		TION			HA	TURAL				
	M <u>Geodetic</u>						21 - 9;											CKED B		
	6 HWY 407																			
.Р.		. LOC																INATED		×
	•		h	REC	ORE) OF	. BO	REH	IOLI	ΞŇ	lo –	P8		1	OF	1	M	ETRI	0	

 \pm^3 , x⁵, Numbers refer to Sensitivity

ZC 1545 (%) STRAIN AT FAILURE 10

RECORD OF BOREHOLE No P9 10F1 METRIC W.P.		ini stry of ensportation																	1	foundation Cesign
W.P.				F	REC	ORE	OF	во	REH	IOL	E N	0 F	·9		1	OF 1		ME	TRI	C
DIST	W.P.	282-86-01	LOC																	
DATUM Descention DATE 33.12.20 - 23.12.21 CHECKED CHECKED Py Bit SOLL PROFILE SAMPLES The second secon	DIST	<u>6</u> HWY <u>407</u>		ЕНО	LE T	rpe _l	H.S. Auc	ier, Cor	e Tes	t									PILED E	
LELY DESCRIPTION USAN End of Serence: USAN End of S																				
LELY DESCRIPTION USAN End of Serence: USAN End of S		SOIL PROFILE		∏ s	AMPL	.ES	TER	Å LE	OYNA RESIS		ONE PE		TION			NATU	RAL			
18.11 Greated Surface 10 - <t< td=""><td></td><td></td><td>10</td><td>1~</td><td></td><td>ES</td><td>MAN</td><td></td><td>f</td><td></td><td></td><td></td><td></td><td>x</td><td>UMIT</td><td>CON</td><td>EXC</td><td></td><td>UNIT</td><td></td></t<>			10	1~		ES	MAN		f					x	UMIT	CON	EXC		UNIT	
18.11 Greated Surface 10 - <t< td=""><td>ELEV</td><td>DESCRIPTION</td><td>I PL</td><td>NBE</td><td>γPE</td><td>ALU</td><td>Na la</td><td>TION</td><td></td><td></td><td></td><td></td><td></td><td>VANE</td><td>••••••••••••••••••••••••••••••••••••••</td><td>(</td><td>)</td><td></td><td></td><td>GRAIN SIZE</td></t<>	ELEV	DESCRIPTION	I PL	NBE	γPE	ALU	Na la	TION						VANE	••••••••••••••••••••••••••••••••••••••	()			GRAIN SIZE
USA Control			TRA	I.	-		88	EVA	• OL	ICK T	RIAXIAL	×	LAS V	ANE					'	(2)
6.5. Devry Sit, Irace Growt and Channels 13 1 1.8.		Granular Fill	- <u></u>		<u> </u>		<u> </u>	<u> </u>			+0 0)U 		<u> </u>			KN/m	GR SA SI CI
1.5 Vary 507 2 25 21 Hers 4 55 66 4 55 57 176 176 176 176 176 176 176 176 176 176 176 176 177 176 178 176 179 176 176 176 177 176 178 176 179 176 170 176 171 176 172 176 174 176 175 176 176 177 177 176 178 177 179 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 171 15 172 166 173 174 174 175 175 176 176 170 </td <td></td> <td>Clayey Sitt, Trace Grovel and Organics, Greenish Grey, Soft</td> <td>X</td> <td>]</td> <td>SS</td> <td>4</td> <td></td> <td>180</td> <td>$\lfloor 2 \rfloor$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Clayey Sitt, Trace Grovel and Organics, Greenish Grey, Soft	X]	SS	4		180	$\lfloor 2 \rfloor$											
			X	2		21	1.	,00	Γ											
Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Heterogeneous Mixture of Clayery Site, Trace Gravel Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Decessional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Occessional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market Park Image: Non-Sectional Cability of Market P			-19		SS		Ţ					,								
Heterogeneous Mixture of 5 58 72 Diegey Silt, Trece Gravel 6 55 65 Decesional Sand Layer 7 58 64 0 0 55 65 10 55 65 10 55 65 10 55 65 10 55 65 11 55 65 12 10 10 13 55 72 13 55 72 13 55 72 13 55 72 14 55 72 156 11 15 13 55 72 14 55 72 156 11 15 12 10 15 13 55 120 14 55 120 15 120 156 15 120 156 15 120 156 15 120 156 15 120 156 15 120 156 15 120 156					55	100	1	178		ļ				1207	18cm					
Heterogeneous Miture of Clayery Sit, Trace Gravel 1 1 1 1 Occasional Cobles and Boulders, Crey (Clacelol Til) 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 10 1 1 1 1 1 12 1 1 1 1 1 12 1 1 1 1 1 13 15 12 1 1 1 15 12 12 1 1 1 15 12 1 1 1 1 15 12 1 1						/20cn														
Heterogeneous Miture of Clayery Sit, Trace Gravel 1 1 1 1 Occasional Cobles and Boulders, Crey (Clacelol Til) 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 10 1 1 1 1 1 12 1 1 1 1 1 12 1 1 1 1 1 13 15 12 1 1 1 15 12 12 1 1 1 15 12 1 1 1 1 15 12 1 1				5	SS	79	-													
Cloyey Sit, Trace Gravel 1 6 55 65 Occasienal Coobles and 1 1 1 Boulders, Crey 1 1 1 (Gacial Til) 1 1 1 Occasional Sond Layer 1 1 1 11 15 1 1 12 1 1 1 13 14 55 122 14 55 122 15 12 12 15 12 12 15 12 12 15 12 12 15 12 12		х 					1	176			1									
Clayery Sit, Troce Gravel 17 17 17 Decessional Cabbles and 17 17 Boulders, Crey 1 1 (Gaecial Till) 10 10 10 10 10 11 15 12 10 13 11 13 12 14 15 12 16 11 15 12 16 13 15 14 15 15 12 15 12 164 164 170 164 164 164 170 164 170 164 170 164 171 155 172 164 155 165 164 164 165 165 166 160 172 150		Heterogeneous Mixture of	1/s	6	SS	65					1									
Decessional Cabbles end 7 95 64 Boulders, Crey 8 55 66 (Glacial T/li) 9 55 43 Occessional Cabbles end 10 55 43 Occessional Sand Layers 10 55 51 Occessional Sand Layers 10 55 72 11 55 72 166 166 12 55 124 166 166 12 55 126 166 166 14 55 122 166 166 14 55 122 166 166 14 55 122 166 166 14 55 122 160 160 123.3 End of Berehole 153 159 159		Clayey Silt, Trace Gravel					1	174		<u> </u>										
Decessional Cabbles and 172 Boulders, Gray 185 (Guecial Till) 19 Decessional Solution 10 Decessional Solution 10 Coccessional Solution 10 Decessional Solution 11 Decessional Solution 1158 Dec			de la	7	SS	64														
Boulders, Grey 8 55 66 (Glecial Till) 9 55 43		Occasional Cabbles and					1													
Boulders, Grey (Glecial Till) 0 55 43 170 Ocressional 10 55 61 158 Ocressional 11 55 72 11 55 72 166 12 55 100 166 12 55 114 166 13 55 114 166 14 55 122 166 14 55 122 166 15 55 120 155 15 115 160 15 115 160 160 162 155 160 15 55 120 155			X		82	55		172	<u> </u>	[+		ļ							
Occreational Sand Layers 10 SS 61 10 SS 61 11 SS 72 11 SS 72 11 SS 72 11 SS 72 12 SS 100 12 SS 100 13 SS 114 14 SS 122 14 SS 122 14 SS 122 14 SS 122 15 12 15 15 SS 120		Boulders, Grey	12																	
Occusional Send Layers 10 SS 61 11 SS 72 11 SS 72 11 SS 72 12 SS 100 12 SS 100 12 SS 100 13 SS 114 14 SS 114 15 SS 114 13 SS 114 14 SS 122 14 SS 122 160 164 164 152 160 164 152 160 160 153 120 158		(Glacial Till)	1	1_	55	17														
Unstabilized woter toble - Unstabilized woter toble 15 12 15 120 158 197.8 10 15 55 120 158 166 166								170	 											
Unstabilized woter toble - Unstabilized woter toble 15 12 15 120 158 197.8 10 15 55 120 158 166 166			-64	1		61														
111 SS 72 12 SS 100 12 SS 100 13 SS 114 14 SS 122 14 SS 122 15 SS 120 15 SS 120 15 SS 120 15 SS 120 15 SS 120 15 SS 120 15 SS 120			1		22		1	158										1		
12 35 100 12 35 100 13 55 114 13 55 114 14 35 122 14 35 122 157.8 15 55 23.3 End of Borehole 15 • Unstabilized water table 15 120	·	Soud fakeus	e e	1		<u> </u>														
13 55 100 13 55 114 13 55 114 14 55 122 14 55 122 15 55 120 15 55 120 15 55 120 15 55 120 15 55 120			1		>>	12														
13 55 114 13 55 114 120em 164 162 162 14 55 14 55 15 55 160 162 161 162 162 162 163 162 164 162 165 155 120 158			1/6	1		100	1	166				<u> </u>		<u> </u>			[<u> </u>		
157.8 15 SS 120 158 23.3 End of Borehole 15 SS 120			(A)														ł			
157.8 15 SS 120 158 23.3 End of Borehole 15 SS 120	ļ		6	13	SS	114														
14 55 122 14 55 122 15 15 15 15 15 15 15 15 158							1	164	<u> </u>	<u> </u>										
14 55 122 14 55 122 15 15 15 15 15 15 15 15 158																				
14 55 122 14 55 122 15 15 15 15 15 15 15 15 158			P.					162		<u> </u>										1
157.8 23.3 End of Borehole • Unstabilized water table measured upon completion of			19	1	<u> </u>		1													
157.8 15 SS 120 158 23.3 End of Borehole 158 • Unstabilized water table measured upon completion of 158				14	SS		4	1												
23.3 End of Berehole • Unstabilized water table measured upon completion of			19]				160	 			ļ		· · · ·			<u> </u>	<u> </u>	-	
23.3 End of Borehole • Unstabilized water table measured upon completion of			1					1										ļ		
23.3 End of Borehole • Unstabilized water table measured upon completion of			1	1																
Unstabilized water table measured upon completion of		End of Borehole	400	15	SS	120	<u> </u>	158			1								 	
measured upon completion of							1													
drilling on 93 12 21																				
		drilling on 93 12 21													ļ					
							1	ļ											ļ	
		•													1					
																	ŀ		·	

 $+\frac{3}{2}$, \times^{5} : Numbers refer to Sensitivity 20 15-0-5 (%) STRAIN AT FAILURE 10

			F	REC	ORD) OF	во	REH	OLE	ΞN	o F	210		1	OF 1		ME	ETRI	2		
₩.P.	282-66-01	LOC																INATED		рĸ	
	6 HWY 407																				•
	Geodetic						17 - 9											CKED 8			
	SOIL PROFILE		7	SAMPL		α.	ц щ.	OYNA		NE PE	NETRA	TION	-						·		-
T	SOIL PROFILE		╞	AMPL	·	WATE	SCALE	RESIS				0 10	~	PUASTIC UMIT	NOT	URE	UQUID UMIT	UNIT WEIGHT	REI	MARI	K
EPTH	DESCRIPTION	STRAT PLOT	NUMBER	түре	N. VALUES	▲GROUND WÅTER ◆CONDITIONS	ELEVATION	SHEA • UN		RENG	TH KF		VANE	WATE			₩L T (ズ)	γ	DISTI	(**)	T
in the second second second second second second second second second second second second second second second	Ground Surface	-	L	L	ž	¥.	<u> </u>	2			08	0 10	0	1(2	0 3	<u>0</u>	kN/m ³	GR S	A S	1
98:8	Grenuler' Fil	X	1	<u> </u>	<u> </u>	~	1			- H	igh Ble rozen	- Ground	t due	to							
0.8	Heterogeneous Mixture of	29	1	SS	33		190											,			
	Clayey Silt, Trace Gravel	1	2	SS	82					-											
1	Occasional Sand Seams, Cobbles	1	3	55	110								1207	28cm	н				5 3	57 4	5
	and Boulders, Hard	X	<u>⊨</u>	55	/28cm		188						1207	2,00111		· ·					
	(Glacial 刊l) Brown	a a			/23cm		,														
	Grey	12	5	SS	59																
		المركبة	1		1		186														
		à	<u>ع</u> ار	55	120 /13cm	1															
7.0		P#	1																		
	Silty Sand with Gravel	6	7	SS	100		184														
	Grey, Very Dense	ر پر ج	1		/25cm																
9.1		1.e	<u>+</u>	SS	100	ł	182												5 •	56 3:	,
3.1	Heterogeneous Mixture of	P L			/23cm		102												· .		4
	Silt, Sand and Gravel	10	9	SS	100			l													
	Occasional Sond Layers Grey, Very Dense	14			/18cm	1	180					L	L.								
79.2	(Glacial Till)		1_	<u> </u>	L.,]	1,00														
2.2	Heterogeneous Mixture of	14	10	SS	106 /18cm														1		
	Clayey Silt, Trace Gravel	1 de]				178						ļ				1		l		
	Occosional Sand Layers, Cobbles and Boulders	1/2	<u>}</u>	SS	138 1/15cm	1									1						
1	Grey, Hard	1	1		1																
76.0	(CLocial Till)	1/2	12	SS	1.20	ļ	 	L													
15,4	End of Borehole				/15cm	1															
	• 93 12 20																				
															,						
								1													
		1						1													
1																					
							1	.													
		1		1	1																
					1			1											1		
	, ,																				
	· · ·																				
5 8 6 6 4 5 5 - 0 7 5 5 5 4 5 4 5 4 5 4 5 4 5 4 5 6 6 6 6 7 5 6 7 5 6 7 5 7 5 7 5 7 5 7	· · · · · · · · · · · · · · · · · · ·																				
												n men da da da da da da da da da da da da da									
a na an an an an an an an an an an an an																					

 ± 3 , $\times 5$: Numbers refer to Sensitivity 20 15-0-5 (%) STRAIN AT FAILURE 10

			F	REC	ORD	OF	BO	REH	IOLI	ΞN	lo F	711		1	OF 1		M	ETRI	0	
.P.	282-86-01	100																		
	<u>6</u> HWY <u>407</u> I <u>Geodetic</u>	508	(£AU	12 1	نے۔ ۲۰ د د		er, cor	1 <u>e (es</u>) 1 (7)	• =											
			<u>ب</u> مب	·····														CKED B	YE	
	SOIL PROFILE		s	AMPL	ES	STER S	SCALE	RESIS	HIC CO TANCE	PLOT	NETRA	TION		PLASTIC	HAT	RAL.		1	-	
		PLOT	~		ES	GROUND WATE CONDITIONS		2	0 4	0 6	0 8	0 11	x	PLASTIC LIMIT Wip	905 001	ENT		UNIT WEIGHT	REM	AK Ł
<u>EV</u>	DESCRIPTION	٩	NUMBER	ТҮРЕ	VALUES		ELEVATION				TH K			" <u>p</u>			<u> </u>		GRAIN	(5
TH	besonn non	STRAT	NNN	בׂ		20L CON	VAT	● UN	CONFIN	NED RIAXIAL	+	FIELD LAS V		WATE	र co	NTEN	T (Z)	1	DISTRI	Z)
	Ground Surface	SI			ż	с -	EE	2	0 4	06	o îs	0 1		1		03		kN/m ³	GR SA	5
8.5 8.3	Asphalt and Granular Fill Cloyey Silt with Organic	R				DRY				-										
5.7	Inclusions, Firm, Brown (Fill)	ĸ	1	SS	6		165													
1.5		Ŕ	2	SS	14															
	Stiff ta	1	-	SS	25															
	Very_Stiff	-1X)					164			\geq	 									
	Hard	1ª	4	SS	52					~										
	· · · · · · · · · · · · · · · · · · ·									1			120/	25cm						
	Some Wet Sand Seams	19			/8cm		162													
	Brown	X					102													
	Grey	S.	1	SS	_100` ∕13cm															
					/ i Serr		100													
	Heterogeneous Mixture of	X2		55			150													
	Cloyey Silt, Some Sond				/10em															
		67	1 8	SS																
	Trace Gravel	1A	<u> </u>	33	110 /20cm		158													
	Occasional Cobbles and Boulders	2																		
	· · · · · · · · · · · · · · · · · · ·	1	þr		110 /13cm															
		1			/		156				1			Í						
	(Glocial Till)		10	\$5	115															
		1			/15cn															
			<u> </u>	55	170		154													
		1			/20cm									° H					5 40	3
1		6%	12	SS	110 /20cm		152										1			
		1			/ 2001															
		6%																		
							150													
		1º		55	100															
		82			/15cm															
		1					148					<u> </u>								
		12																		
		1											1							
5.4		87	14	SS	115		146				l		!							
1.8 8	Ind of Sarehole			and the second second second second second second second second second second second second second second second	/28cm								1							
	• 93 12 16																			
	• 55 (2, 16														·					
•																				
																		ł		
(a				ł			1	1	1	ł	1		{	3	1	1	
																			[

+³, x⁵ : Numbers refer to Sensitivity 20 15-\$5 (%) STRAIN AT FAILURE 10

			R	FCO	JPL) ೧೯	٩A	pri	101		<u>^</u>	DIO			~~		<u>k 4 f</u>	TRI		
wp	282-86-01																			
דבות	<u>282-86-01</u> 5 www.407			(- ~~		4 <u>4 00</u> /	<u>-570.7</u>	<u> </u>	6/95	<u>/</u>			·				_ ORIC	INATED	87 <u>.0k</u>	
DATU	<u>6</u> HWY <u>407</u> M Geodetic	BURE	HUL	E. IT	7E_0	1.3. AUG	er, cor	<u>18 (89</u> 4 •••	<u>.</u>											
										de la con				······			- CHE	CKED B	Y <u> </u>	
· · · · · ,	SOIL PROFILE	<u> </u>	SA	MPL	25	ATE5 S	SCALE	RESI	MIC C STANCE	ONE PE				PLASTIC	NAT	RAL TURE	uquio	<u> </u>	REMA	GV
		101	œ		JES	GROUND WATER CONDITIONS					L	80 10	xõ	uwn ₩p	CON		ύώπ ∙₩L	UNIT	8	
EPTH	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	N' VALUES	IDNO	EVATION		AR 5' ICONFI	TRENG NED		кРа н пер	VANE			······································			GRAIN	
161 5	Ground Surface	STRA	2	-		80	EVA	• ci	eck to			LAB V/	ANC.				T (Z)	1	1 / **	×۲.
1 60:9	Granular Fill	- L	<u> </u>				<u>.</u>	<u> </u>			Ĕ=		10140		0 2		4	kN/m	GR SA	51
0.8	Heterogeneous Mixture			SS	25				5	1					blowco ozen o					
	of Clayey Silt, Trace	121		SS	33	Ţ	160		K	<u> </u>										
	Sond and Gravel Brown	1/4				-													1	
[Very Stiff to Hard Grey	1A		SS	21					5										
157.7	(Glacial Till)	14	4	SS	25		158	ļ				-		ļ						
3.8		[A																		
		[F	5	SS	36										,				5 47	36
		Ţ:1					156	<u> </u>		1						<u> </u>				
	Silty Sond		6	55	5**															
	Grey			1																
	Loose	1.1-	7	SS	6**		154	 	<u> </u>			+								
		14	í 	33	0															
	Heterogeneous Mixture of	15FL																		
	Silt, Sand and Gravel	10	8	SS	24		152													
	Occasional Cobbles and Boulders	4E																	-	
	Grey, Compact to Very Dense	Laft	9	S \$	120															
	(Glacial Till)	15 FT		ŀ	/23cn		150									<u> </u>	<u> </u>			
		\$F]-	10	SS	5Z															
		LLEF								ļ										
Ì	Trace Clay	19					148	<u> </u>		<u> </u>		+								
		∦ ∏ +	11	35	80						Ì			0					29 37	26
		i I																		
			12	SS	40		146	ļ		1		-								
		FT .																		
	Clay		13	SS																
		4ET					144			<u> </u>							<u> </u>			
																				
			14	SS	113															
	Some Sond						142	ļ		<u> </u>							<u> </u>			
41.1	Layers	- معتبا	5	SS	42														ł	
20.4						. 1														
	Heterogeneous Mixture of	Top	5	<u>55.</u>	<u></u>	ļ	140													
	Clayey Silt, Trace Gravel	14		1	23cm															
	Occasional Cobbles and Boulders	T.																		
	Grey, Hard	X					138	h				+					┿┷┥			
36.9	(Glocial Till)	1A	7	55	120										:					
24.8	End of Borehole			, and the second second	/20em							1			:					
	*		1																	
	 Unstabilized water level measured upon completion 																			
	of drilling on 93 12 15				l															
	** Unrepresentative blowcounts				1			ĺ											ļ	
	due to possible disturbance coused by unbolanced hydrostatic heads		l					:												
	avaratour peods			f								s 1	i				1 1			

· +³, x⁵ Numbers refer to Sensitivity 20 1505 (%) STRAIN AT FAILURE

		_	F	REC	ORE) OF	BO	REH	OL	E N	o F	°13		1	OF 1		ME	ETRI	2	
N.P.	282-86-01									_										
	6 HWY 407																			
	Geodetic																	CKED 8		
	SOIL PROFILE		Τ.	SAMPL	~~	æ	L LLL	OYNA		NE PE	NETRA	TION	1			••••••••				
	SVIL FROFILE		<u> </u>	T	1	GROUND WATER CONDITIONS	SCALE	RESIS	TANCE	PLOT	2	·····	- 1	PLASTIC UMT	NATU NOIST CONT	URE	UQUID LINIT	UNIT WEIGHT	REM.	ARI
LEV		STRAT PLOT	83	ш	N' VALUES	20E		in named			o s TH kF	0 10		٧p	W	1	w _L	WEI		&
PTH	DESCRIPTION	AT 1	NUMBER	TYPE	VAL	Nag	EVATION		CONFIN			reld '	VANE					7	GRAIN DISTRI	80
58.8	Ground Surface	STR	Ī		ž	80	E		іск тя 0 4			UAB V/ 0 10	V*C 1	WAI5: 11			T (ズ) O	kN/m ³		%) ¢
0.0	Granular Fill	X		1	1				•					Ì					UN DA	
0.5	Clayey Silt, Trace Sand, with Organic Inclusions (Fill)	K		SS	3		158	H												
56.7	Heterogeneous Mixture of Clayey Silt, Gravel, Brown, Very Stiff	1Å	2	SS	20			4												
2.1	· · · · · · · · · · · · · · · · · · ·	1P	3	SS	37	Ť.									0				3 63	2.
	Brown, Dense Grey,Very Dense		4	I SS	123		156						\leq							-
	Heterogeneous Mixture of Silt,	67			1															
	Sand and Gravel, Occasional Cobbles and Soulders	e.	5	55	120	ł														
	(Glacial Till)	4			/18cm	}	154													
2.7		14	-	55	103		1													
6.1	1		T		/15cm	l	152													
		12	1																	
	Heterogeneous Mixture of	P	F	55	/23cm															
	Cloyey Silt, Trace Gravel	14					150													
	Occasional Sana layers, Cobbles	EA.	Ē	55	120 /20ст	1														
	and Boulders, Grey, Hord				2001		ł													
	(Glacial Till)	1	╞═	55	1. 120.		148				ļ.,									
		1	1		/23cm	1	ł										1			
46.4		12	1	<u></u>	100		L										1			
2.4	End of Borehole				√23cπ	1														
	• Unstabilized water level																			
	measured upon completion of drilling on 93 12 13			1							, ·							r.		
]	ļ							:						
				1																
	,		1				l													
																		1		
			1				l													
	١													'					l	
Ì	,		1	1																
						1]		
																		l		
ļ		1		1																
1							1			.										
			[ł	1	
		1	1				1													
			1		1	1	1												1	
																			1	
		a na na mana ana ang ang ang ang ang ang ang ang																		
		n na na na na na managana ing na na na na na na na na na na na na na																		
		n rannan a' a' a' annan an ann a' a' ann a' a' ann a' a' ann a' a' a' a' ann a' a' a' a' a' a' a' a' a' a' a' a																		

ť

1

*

 ± 3 , $\times 5$; Numbers refer to Sensitivity 20 15-\$-5 (%) STRAIN AT FAILURE 10

EV Trian DESCRIPTION End by triangle back of the product of the produ				F	REC	ORD) OF	ВО	REI	HOL	ΕN	lo F	P14		1	OF '	1	M	ETRI	C		
ST	Ρ.	282-85-01	LOC	ATIO	N	4	4 4 86	7482.6	ЕJ	48937.	8							0810	INATED	BY D	ж	
VIUM _Geodetic DATE 23,12,28, -23, 12, 00 CHECKED BY ELA SOLL PROFILE SAMPLES SAMPLES South PROFILE SAMPLES South PROFILE												q										
SOIL PROFILE SAMPLES Big of the second seco																						
No. DESCRIPTION iption< th=""> <thdes< td=""><td></td><td>SOIL PROFILE</td><td></td><td></td><td></td><td>55</td><td>[≃</td><td>ш</td><td>DYN</td><td>WIC CO</td><td>ONE PI</td><td>ENETRA</td><td>TION</td><td><u> </u></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td></thdes<></thdescription<>		SOIL PROFILE				55	[≃	ш	DYN	WIC CO	ONE PI	ENETRA	TION	<u> </u>					<u> </u>			
DESCRIPTION U B B V F F F F F F F F F F F F F F F F F			,			1	NS	SCAI	1						PLASTIC UMIT	140/5	TURE	Liguio Liguit	41T GHT	REM	AAF	F
B.B. Ground Sufficience U - <	EY	s.	PLO	ER	w	i an	99				÷		å		۳ <u>P</u>	1	N	<u>"</u> L	NG A		Åť. N	
B.B. Ground Sufficience U - <		DESCRIPTION	WI	IUME	TΥP	٧A	NO2	(ATH	00	NCONFI	NED	+	FIELD		WATER	2 00	NTEN	τ (Z)	7	DISTR	1B	ł
000 Convert Fill 20 1 55 6 025 Carport Fill 1 55 6 026 Carport Fill 1 55 6 15 Heterogenous Mixture of Carport Fill 1 55 6 15 Heterogenous Mixture of Carport Fill 1 55 6 15 Heterogenous Mixture of Carport Fill 1 55 10 15 Heterogenous Mixture of Carport Fill 1 55 10 15 Georgenous Mixture of Carport Fill 1 55 10 15 Georgenous Mixture of Carport Fill 1 57 100 16 16 53 100 152 150 16 10 1 55 100 16 10 1 50 100 16 10 1 50 100 16 10 1 50 100 16 10 1 50 100 16 10 10 10 100 16 10 10 10 100 16 10 10 10 100 16 10 10 10 <	6.8	Ground Surface	STF	Z		ż	30	ELE	• •	UICK TI ZO 4	RIAXIAL 10 E	50 E	148 V 30 1	ANE QO	1			• •	kN/m ³	GR SA	(≁, A ∶	4
03 Charge Sitt, Tree Bread 1 55 4 2 55 4 13 Interrogeneous Mixture of Grays Sitt Tree Sand and Gravel 2 55 33 35 33 4 15 14 2 55 30 35 33 4 154 120/230m 0 53 Cocceland Grays Sitt Tree Sand and Gravel 5 5 30 54 120/230m 0 53 Societ and Boulders Occeland Grays Sitt create 6 53 72 152 142 142 142 142 142 142 144 145 152 152 152	0.0	Granular Fill	B		1				\mathbf{b}			1	1	1			}					
1-5 Heterogeneous Mixture of Coresional Grey Site 2 2 53 33 Trace Sond on Grove Site and Sond Core Sond Ore S	3:3		∇	1	55	6		156	大	1		† –	†				<u> </u>	†				
Troce Sond one Grevel Sit and Sond • 55 33 Coccesional Grey, Dense 120,220m 0.53 Boulders Occessional 6 55 72 152 0.53 Brown, Hard Sond layers 6 55 72 150 152 0.53 Clockial Till Oressional 6 55 72 150 140 152 150 Audot R Sond layers 57 72 120,220m 0.53 53 Sond Sond Sond Song 57 72 120,220m 0.53 53 Song Sond Song 57 72 120,220m 0.53 53 Song Song Song Song Song Song Song Song	1.5		K.	2	SS	30	_+															
Trees Sond and Grevel Sit on Sord			67	3	SS	33	Ť	154			\mathbb{N}											
Occessional Cobbles and Boulders Grees ind Consistent Grees ind Brewn, Hord Grees ind Southers 152 152 0 53 Boulders Grees ind Grees ind Grees ind Cobbles and Sit zones Grey Grey Grey 152 152 152 152 152 Autock Grey		Troce Sand and Gravel	i.	4	55	39						\sim	ļ		•					8 39	g.	•
Cobbles and - 5 85 30 152 - - 0 53 Boulders Occessional 6 55 72 - - - 0 53 Brown, Herd Sond layers 6 55 72 - - - 0 53 Cobelation Gray - 5 55 72 - - - - 0 53 Cobelation Gray - - - - - - - 0 53 Stay -		* **		1										120,	23cm							
Occessional Breen, Hard Sond loyen and Sitz cetes (Glocial Til) Occessional of Sitz cetes (Glocial Til) Image: Sitz cetes (Glocial				5	SS	30		152	<u> </u>	+	<u> </u>		ļ			6				0 5	3	
Breen, Herd Sand loyers 3 5 57 (Geold TH) Grey Grey Auck 3 55 Auck 3 55 Auck 3 55 Auck 3 55 Auck 3 55 Auck 3 55 Auck 3 55 Auck 3 55 Auck 3 55 Auck 4 11 WS 54 To SS 58 54 To SS 58 54 To SS 58 55 To SS 58 56 Frage To SS 67 To SS 136 74 To SS 136 74 To SS 136 75 Heterogeneous Mixture of Closed TH) To Ce Too 74 To SS 150 75 Heterogeneous Mixture of Closed TH) To Ce Too 76 To SS 150 76 To SS 150																						
(Gleciel Til) ord Silt zame 1 Grey 1 1 3 35 00 3 35 00 3 35 00 3 35 00 3 35 00 3 35 00 3 35 00 3 35 00 3 10 10 3 11 WS 4 11 WS 14 11 15 11 14 11 15 11 15 11 16 11 17 74 14 14 14 14 15 11 15 12 16 15 17 74 18 11 19 11 10 11 11 15 12 11 13 13 14 13 15 14 15 15 16 14 17 12 18 11 19 11			1	6	SS	72		l														
Grey Grey Image: second secon		and Silt zones	1 A.				<i>,</i>	150	╟──	<u> </u>			1				<u> </u>					
3.4 148 3.5 150 3.5 100 3.6 118 m 3.7 118 m 3.8 111 m 3.9 111 m 3.13 111 m 3.5 113 m 3.6 114 m 3.7 118 m 3.8 113 m 114 114 m 12 118 m 138 118 m 138 118 m 139 118 m 130 119 m 131 119 m 139 119 m 130 131 m		(Glecial Hill) Grey	1		- 55 -	100																
5.4 3 3 5.5 1.00 1.46 5.4 1 1.00 1.46 1.46 1.46 5.4 100 1.10 1.46 1.46 1.46 5.1 11 WS 1.46 1.46 1.46 1.46 5.1 11 WS 1.46 1.46 1.46 1.46 Coccasional Cobbies and Baulders 1.13 35 113 1.46 1.44 Crey, Very Dense 1.13 35 1.13 1.40 0 0 1.2 1.35 1.13 1.35 1.13 1.40 0 0 1.40 1.40 0 0 1.40 0 0 1.7 1.2 1.3 35 1.13 1.40 0 0 1.17 1.18 1.2 1.14 WS 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36						/ 23cm				1												
5.4 718cm 14 Silty Sand with Grovel 11 WS - Occasional Cobbles and Baulders 12 SS Coo Grey, Very Danse 11 WS - 11 US - 14 12 SS Coo 142 13 SS 113 140 14 WS - 138 138 WsSHBORING 138 WsSHBORING 138 138 138 138 138 138 138 138 138 138 139 130 130 130 131 130 138 138 139 130 130 130 131 130 131 130 139 130 130 130 131 130 132 130					SS	65		148		1	1	1					1		1			
5.4 10 5.5 5.8 1.4 11 WS - Silty Sand with Grovel 11 WS - Coccasional Cobbles and Bouiders 11 11 WS - Grey, Very Dense 11 13 55 113 12 55 700 14 142 - 12 55 700 140 - - 12 55 700 140 - - 12 55 700 140 - - 12 55 700 140 - - 140 12 55 700 - - 12 55 700 140 - - 136 - - - - - 137 14 WS - - - 138 - - - - - - 138 - - - - - - - 138 - <td></td> <td></td> <td>14</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			14																			
5.4 / 18en 1.4 10 53 59 1.4 11 WS - 144 Sity Send with Grovel 11 WS - 144 Coccasional Cobbles and Bouldars 12 55 100 142 Coccasional Cobbles and Bouldars 12 55 100 142 12 13 55 113 140 - - 13 55 113 140 - - - 14 WS - 138 WASHBORING - 17 74 138 -				9	SS	100		146	Ц	<u> </u>			ļ	ļ			 					
Sitty Sand with Grovel 10 35 58 Sitty Sand with Grovel 11 WS - 144 Occasional Cobbles and Boulders 12 55 100 142 Grey, Very Dense 12 55 100 142 142 12 55 100 142 142 142 12 55 100 142 142 142 12 55 100 140 142 142 13 55 113 140 0 0 17 74 140 13 135 113 140 0 0 17 74 150 114 WS - 138 WxSH80RINC 138 136 136 136 136 136 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134														ł								
Silty Send with Grovel 11 WS - 144 -			119		55	58													·			
Sity Sond with Gravel 0 12 55 100 Occasional Cobbles and Baulders 12 55 100 Grey, Vary Dense 112 55 100 13 55 113 13 55 113 140 0 0 13 55 113 140 0 0 13 55 113 140 0 0 13 55 113 140 0 0 13 140 0 140 0 0 17 74 138 WASHBORING 138 WASHBORING 138 (Gaccial Till) 139 134		· .	90	-	1	1		144	\parallel			-		1			<u> </u>		1			
6.2 14 WS 140 0 17 74 6.2 14 WS 14 13 15 113 140 0 17 74 6.2 14 WS 14 WS 13 140 138 140 17 74 6.2 14 WS 14 WS 138 140 138 140 17 74 6.2 14 WS 14 WS 138 138 136 136 136 1.5 1.6 15 150 136 136 136 136 136 3.8 (Glocial Till) 17 17 134 134 134 134		Slity Sand with Gravel		ļ				1														
Grey, Very Dense 12 55 100 17 74 13 13 13 13 140 0 17 74 140 13 140 0 17 74 150 14 WS 138 138 114 WS 1138 138 138 6.2 14 WS 138 138 0.6 Heterogeneous Mixture of Grey, Hard 16 150 136 138 (Goodel Thill) 17 55 150 3.8 (Goodel Thill) 17 55 150 3.0 End of Barehole (110m) 134		Occasional Cobbles and Revideor	2	1																		
Grey, Very Dense 13 55 113 140 0 17 74 13 13 55 113 140 0 17 74 14 WS - 138 WASHBORING 138 6.2 14 WS - 138 0.6 Heterogeneous Mixture of Cloyer Silt, Trace Sand & Gravel Grey, Hard 15 55 136 3.8 (Glacial Till) 17 cs 150 3.0 End of Borehole (11cm) 134				12	SS	100		142		1		Ť	1					1	1			
6.2 13 55 113 140 0 17 74 6.2 14 WS - 138 WASHBORING 138 138 6.2 14 WS - 138 138 138 138 0.6 Heterogeneous Mixture of Clayey Silt, Trace Sond & Gravel Gra		Grey, Very Dense	E d	2					K													
6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2			50					140	1	<u> </u>	1			<u> </u>								
6.2 0.6 Heterogeneous Mixture of Clayey Silt, Trace Sand & Gravel Grey, Hard 3.8 (Glacial Till) 3.0 End of Borehole • Unstabilized water level - megaured 1.5 hours after				13				_								0				17 74	4	
6.2 0.6 Heterogeneous Mixture of Clayey Silt, Trace Sand & Gravel Grey, Hard 3.8 (Glacial Till) 3.0 End of Borehole • Unstabilized water level - megaured 1.5 hours after			4				1	1										Î				
6.2 136 0.6 Heterogeneous Mixture of Cloyey Silt, Trace Sand & Gravel Grey, Hord 16 3.8 (Glacial Till) 17 55 134			6	14	ws			138	\parallel		1	+	+				+	+	ł			
0.6 Heterogeneous Mixture of 16 15 160 Clayey Silt, Trace Sand & Gravel 16 15 160 Grey, Hard 15cm 134 3.8 (Glacial Till) 17 55 134 3.0 End of Borehole (11cm) 134			10	!					WA	SHBORI	G		ł									
Heterogeneous Mixture of Cidayey Silt, Trace Sand & Gravel Grey, Hard 3.8 (Glacial Till) 3.0 End of Borehole • Unstabilized water level - megaured 1.5 hours after	6.2		Fa	1																		
Clayey Silt, Trace Sand & Gravel Grey, Hard 3.8 (Glacial Till) 3.0 End of Borehole • Unstabilized water level - megaured 1.5 hours after	0.6	Heterogeneous Mixture of	1	15	्द	150		136	Ħ		1	1	1	1				1		ŀ		
3.8 (Glocial Till) 3.0 End of Borehole • Unstabilized water level measured 1.5 hours after			6%																			,
3.0 End of Borehole Viscon Viscon measured 1.5 hours ofter	3.8	-	1		- 24-			134					ļ									
measured 1.5 hours ofter	3.0	End of Borehole				/11cm			Ť			1	1				İ		<u> </u>	1		
measured 1.5 hours ofter																						
escreptering on drilling on 33 12 10																						
		measured 1.5 hours offer completion of drilling on 93 12 10																				
																			1			
		•																				
	- 1		1 1						1		1	4	1	1	1		1		1			

 ± 3 , $\times 5$: Numbers refer to Sensitivity

20 15-0-5 (%) STRAIN AT FAILURE 10

			R	ECC	DRD	OF	BOI	REH	OLE	No	o P	15		1 0)F 1		ME	TRI	2	
.P.	282-86-01	LOC	ATION	٠		4 868	335.2	<u>E 350</u>	382.7			·					ORIG	INATED	BY_2	×
57_	<u>6</u>	BOR	EHOL	E TY	PE <u>H</u>	.S. Aug	er <u>, Con</u>	e_Test												
ATUN	Geodetic	DAT	Ε		9	3 12 0	6 - 93	12.0	7					- <u></u>			CHEC	KED BI	·	31
	SOIL PROFILE		5/			8	ш.	OTNAM		NE PER PLOT	ETRAT	ON	Т							
			 	T		GROUND WATER CONDITIONS	SCALE	20				100	11	AASTIC JMIT	NATURI NOISTU CONTEI	NT "	DOUD TIME	UNIT WEIGHT	REN	
EV		PLOT	ER	ш	N' VALUES	Ş				RENG				* <u>p</u>			<u>"</u> L	ז¥⊂	GRAI	卷 N :
HT	DESCRIPTION	STRAT	NUMBER	ТҮРЕ	X	D Z Z	ELEVATION	O UNC	ONFIN	ED	- + ŝ	AB VAN		ATER	CON	TENT	(\mathbf{z})		DISTR	(2) (2)
2.2	Ground Surface	STF	Z		z	20	ELE:		CK TRI	2 <u>6</u> (2 1 Q	·	10				kN/m ³	GR S	Δ. 5
9.9	Grenular Fill	X		1			172	\sim				+	-+		1			·····	<u></u>	
2.8	Heterogeneous Mixture of	T?	1	55	31			4												
	Clayey Silt, Trace Sand & Gravei		2	SS	38					$ \rightarrow $				0			1		7 3	7 4
	Occasional Sand layers, Cobbles	1	3	SS	37		170						\rightarrow							
	and Boulders, Hord															1		P.		
		19	4	SS	48	₹ *														
	Brown					~	168													
	Grey		S	SS	40															
				-							Í									
		12	6	SS	89		166													
													ł							
5.8		1×	17	SS	70		164													
1.4	Heterogeneous Mixture of	6																		
	Silt, Sand and Gravel	Į,	8	SS	71									•					28 4	¥1
	Occasional Cobbles and Boulders	Ī					162													
		[]H	9	SS	58														·	
	Grey, Very Dense	_[A																		
	Occasional	13-a L 1					160													
	Sandy and Graveily layer	- 11 FM	10	55	50															
	oravery loyer		l																	
		[p	<u>rn</u>	55	/13cm		158													
							1 .~~					Į	1							
		[P		55	TTO:							.		•					45 4	12
		Į,			/2 3 cm															
5.2		Ĩ,					156													
	End of Borehole			<u>द्रष</u>	/25cm		<u> </u>	<u> </u>											1	
			1																	
	41																			
	 Unstabilized water level measured 5 hours after 																	1		
	completion of crilling on 93-12-07																			
							1													
								· ·												
						l											· .			
					1	1				1									1.	
								1												
ļ								1										l		
											ł									
										ľ										
								1		ļ										
								1												
										ł										
						1												ŀ		
							1	1		1									1	
		i	1	5	1		1	1									1	1		

€

7

÷ -

 $\pm \frac{3}{5} \times \frac{5}{5}$: Numbers, refer to Sensitivity

20 15-5-5 (%) STRAIN AT FAILURE 10

				REC	ORE) OF	вс	RE	HOL	E I	No	3		1	OF	1	М	ETRI	С	
₩.P.	69-65-02	LO																		
лът <u> </u>	6 HWY 7	80	REHO	DLE T	YPE _	NX cosi	ng and	wash	boring	L							_ COM	APILED	3YY	
DATUM	Geodetic	DA'	ΤΕ			68 05	16											CKED B		
	SOIL PROFILE		T	SAMPL	ES.	E	SCALE	RES	MIC C	ONE PLO		ATION			NAT				[
LEV		PLOT	BER	ų	VALUES	GROUND WATER CONDITIONS			20	40	60 GTH k	adam an a	çõ	PLASTIC UMIT	CON	TURE	USOD UMT	UNIT	REMA	:
PTH 76.2	DESCRIPTION Ground Surface	STRAT PLOT	NUMBER	TYPE	N' VA	GROUI	ELEVATION	0 U • Q	NCONF UICK T	INED RIAXIA	+ L ×	FIELD	ANE				(T (%)		GRAIN DISTRIB (%	iuti D
0.0	Clayev Silt with Sond and a	-hi	1-	+		<u> </u>	<u>176</u>		1	40 †	60 I	+	+		J 2	0;	30	kN/m	GR SA	SI
75.1	trace of Organic matter Grey, Firm	_12	1-	Ť₩		Ţ		k											3.295	ž
1.1		2.2	}	SS	25	1										ł	°		Organie (oz se	
		6		SS	44	1	174		2	Z		+	+	-				ļ	27 55	
		e.		SS	84	1					Z			ľ		{			51 43	()
	Sandy Gravel to	0	Ţ	SS	157	1	ł						1							
	.	é.	·				172	<u> </u>	1	+							+	1		
	Gravelly Sand with a		1	SS	77									q					22 55	17
	Terrer of Still and Ob	0. 0. 0.	<u> </u>																	
	Trace of Silt and Clay	0	1	SS	93		170			1	1	1	1				+			
	Grey	20																		
		<u>с</u> , 2	8	SS	154		168													
	Compact to Very Dense	6.0															1			
		1.2	<u>r</u> e	SS	100 /15cm															
		0	4				166		ļ				ļ							
65.1		jo.	10	SS	700 713cm															
11.1 E	nd of Borehole										1									
				·					l l				ł							
										,										
									ĺ											
									.											
												1								
																		<i>.</i>		
İ	,				- 1															
														.						
					ł															
1					- 1		1		. 1	1	1				1		1			

: S

\$

Š.

¥.

۴

Ľ

 $+\frac{3}{2}$, x^5 ; Numbers refer to Sensitivity 20 15-0-5 (%) STRAIN AT FAILURE 10

											-											
_																		ETRI				
Р ст	<u>90-78-00</u>	LOC	ATIC)N		Coods.	N 4 85	7926.	<u>3</u>	3243	07.2						ORIGINATED BY BL					
TUM.	6 HWY _407 Geodetic		REHO	ILE T	YPE_	H.S. AU	ders 10															
	SOIL PROFILE		T		and the			DYNA	MIC C	ONE P	FNETR	ATION						CHECKED BY OJ				
<u> </u>	JUL FROME			AMPL	7	WATE NS	SCALE			ONE PLO				PLASTIC	NAT	UNAL STURE	uquið Úmit	=	REN	AR		
.v	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PLOT	E	ш	N' VALUES	GROUND WATER CONDITIONS	N		L	40 TREN	1	80 1 (Pa	00	₩p		₩	wL	UNIT		& 		
ТН	DESCRIPTION	STRAT	NUMBER	TYPE	5		ELEVATION	O UN	CONF	INED RIAXIAI	+	FIELD	VANE	WATE	8 00		 τ (\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7	GRAI DISTR	180		
.a	Ground Surface	سرد دیا ده			z	60	LLE LLE	2	0	40	60 1	BO 1	00			IO E		kN∕m³	GR SA	(%) \S		
.0	Sandy Roadway Fill	() 0/	1				180	<u> </u>														
.0	Loose	0]																
8		14		S5	5	1																
			2	SS	24		178					-				<u> </u>						
						1								어					16 36	13		
			3	SS	74																	
			Ť	-33		1	176						1				<u> </u>					
	Heterogeneous Mixture of	19		SS	25	-																
	Cloyey Silt, Sand and						174			+			ļ	۰H					18 40	- 3		
			5	SS	30	¥																
	Some Gravel																					
	Very Stiff		6	SS	30		172				1		1	۰н					10 41			
	(Glacial Till)					1								-11					10 41	•		
			7	SS	17		170				ļ	ļ										
									,													
			8	55	17																	
							168			1		†										
			9	SS	21																	
							166				ļ											
1		19	10	SS	11																	
7 En	d of Borehole											1										
	<i>i</i> (
			,				ľ															
				ļ																		
							1															
	<u>,</u>	.		ŀ				1														
							Í															
1								1						1		1		1				

+3, x^3 ; Numbers refer to Sensitivity

20 15-5-5 (%) STRAIN AT FAILURE 10

			F	REC	ORE) OF	BO	RE	101	E 1	0V	C :	13	1	0F	1	M	ETRI	C			
V.P.	90-78-00	LOC																		.		
NST_	<u> </u>	. 30R	EHO	ILE T	YPE 🛄	H.S. Auk	jers															
ATU	<u>Geodetic</u>	DAT	Ε			79 02	19										CONPILED BY					
	SOIL PROFILE		5	SAMPL	ES	TER	SCALE	DYN	WIC C	ONE P		ATION		Τ	N.47	TURAL,		r				
		Б	æ		ES	GROUND WATER CONDITIONS	SC	1			_	80	100	PLASTIC UMIT W_D		sture Ntent W	UOUID UMIT	UNIT	RE	MARK &		
LEV PTH	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	VALUES	UNN	1 ON		AR S							.	* L		GRA	IN SI		
78.7	Ground Surface	STR	l₹	-	z	88	ELEVATION	• 0	лск т	RIAXIA		60 1	VANE			ONTER 40	NT (%)		1	/ማነ		
0.3	Торяої	J.					178		1	1	1	Ť	Ť	<u> </u>		1	Ť	kN/m ³	GR S	A SI		
							176					1	1	1				1				
		14	1	SS	24																	
			2	SS	18		176	 								+		1				
			~											4-					19 3	18 35		
	6	1	3	SS	45		174		ļ	ļ	<u> </u>			ļ			ļ					
	Brown Grey																					
	5129	19	4	SS	19		172							⊶ ⊣					12 3	4 39		
											1	1				1						
			5	SS	24																	
	Heterogeneous Mixture of						170				+		+									
	,	14	6	SS	30	, , , , , , , , , , , , , , , , , , ,								∘H					15 3	7 37		
	Clayey Silt, Sand and Grave!		7	SS	25	Ť	168		 	ļ			-			ļ						
						÷																
	Very Stiff		8	SS	23		156															
	(Glacial Till)	14					,00				Ι											
			9	SS	39																	
							164				<u> </u>	+	+									
		12	10	SS	32		162			ļ	<u> </u>		ļ			ļ						
		1																				
		1																				
		19				l	160				1					İ						
			11	SS	14																	
		14					158				<u> </u>	ļ										
.8							156				ļ	<u> </u>					ļ					
.9	Heterogeneous Mixture of	12																				
	Sand, Silt, Some Clay	Ĩ	12	SS	101																	
	and Gravel, Very Dense		-				154									· ·						
	(Glacial Till)																					
1.1		F H					152				ļ						┝┨					
and second second	nd of Borchole	Let	13	55	60 10cm					-	<u> </u>						┝──┨					

+³, x⁵ : Numbers refer to Sensitivity 20 1545 (%) STRAIN AT FAILURE

Interlo																			Foundation D
	60 70 Kr																	ETRI	
	<u>90-78-00</u>	_ LOC	ATIC	DN		Coords.	N 4 8	58048	<u>1.7 E</u>	3247	27.8						_ ORI	GINATED	BY <u>BL</u>
DATUN	6 HWY 407	BOF -	т Т	DLE T	YPE	H.S. Aug 79 07 7	ers	,											3Y <u>8L</u>
	SOIL PROFILE	- 043		SAMPI				DYN		ONE F	ENETR	ATION						CKED B	Y <u>OJ</u>
T		TF	<u> </u>		·	NATE	SCALE	RES	STANC	E PLO	r >_	80 1		PLASTIC UNIT	- 105	TURAL STURE NIENT	UQUID UMIT	느붕	REMAR
ELEV	DESCRIPTION	PLO	BER	щ	TUE	0N DEIO	S		-d	and states a second	GTH V		<u>v</u>	۳ <u>e</u>		*	۳L	UNIT	& GRAIN S
EPTH	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	N' VALUES	CROUND WATER CONDITIONS	EVATION	00	NCONF	INED	4			WATE	R CC	ONTEN	IT (%)	1 /	DISTRIBU
178.6	Ground Surface	138	<u> </u>		?		ELE		20	40	60	BÕ 1	00			40 1		kN/m ³	GR SA S
		14					178	┣	+	+		+				+		4	
			1	SS	23														
							176			<u> </u>		<u> </u>	-	ļ	<u> </u>		ļ		
		14	2	SS	45														
	Brown						174	ļ											
	Grey	1						Γ			1	1	1		1		-	1	
		12	3	SS															
	Hatarogeneous Mixture of				31		172		+					<u> </u>	 				
	Clayey Silt, Sand and Gravel						170		ļ			ļ	ļ		ļ	ļ	<u> </u>		
			4	SS	11														_
	Very Stiff	1					168												
	(Glacial Till)						100				1	1	1			1			
																			1
		1	5	SS	13		166				<u> </u>	<u> </u>							
	,																		
							164	 	ļ	<u> </u>									
62.9		1.					-												
15.7 E	ind of Borehole															l			
	 Groundwater level nat established 																		
																			•/
						ł					Ĺ								
ł	,			1															
																۰.			

+³, x³ ; Numbers refer to Sensitivity

20 1545 (%) STRAIN AT FAILURE 10

1

Miniatry of Transportation

â

	4 ×																	ETRI			
N.P	90-78-00	LOC	CATIC	אכ		Coords.	N 4 8	5921(<u>) E 3</u>	326206	5.1						- 081	GINATED	BY <u>BL</u>		
JIST	<u>6</u> HWY <u>407</u>	_ 90F	REHO	DLE T	YPE 🔟	H.S. Au	qers											IPILED I	3Y <u>- 8L</u>	materian	
MUTAL	<u>Geodetic</u>	_ DAT	Έ														CHECKED BY				
	SOIL PROFILE	- <u>-</u>	4	SAMPL	·	ATER	SCALE	1		ONE P				PLASTIC	NAT NOT	URAL STURE	LIQUID	- H	REMA	 	
	DESCRIPTION	T PLOT	NUMBER	TYPE	SENTRA .N.	GROUND WATER CONDITIONS		SHE	- <u> </u>	TREN	GTH P	80 1 Pa FIELD		• • • •		атент ₩	¥L	UNIT WEIGHT	& GRAIN DISTRIBU	SI	
82.4	Ground Surface	STRAT	Ξ	-	.1.	80	ELEVATION	• 0	UIČK T	RIAXIAL	. ×	LAB V	ANE			NTEN	IT (%) 60	/	GR SA	١.	
0.0	Roodway Fill Material	X				*	182	-			-										
1.5	99-1	E.	1	SS	20																
	Brown		2	SS	50 /13en		180			1				∘⊢	4				19 38 3	52	
	Grey	-6/		55	60		178	ļ											11 35 3	34	
					/1.3cn									-,							
	Heterogeneous Mixture of			SS	 /10en		176							 .							
	Clayey Silt, Sand and Gravel		5	55	101		174							4	9				6 28 4	6،	
	Hard		6	SS	40																
	(Glocial Till)		7	SS	48		172	┣			<u> </u>				. <u></u>	<u> </u>					
										-											
			8	SS	60		170						1								
			9	SS	83		168		<u> </u>	<u> </u>											
56.7			10	<u>55</u>	50 713en																
15.7 E	nd of Borehole																				
	 Groundwater level not established 														,						
															-						
	·																				

+3, x⁵ Numbers refer to Sensitivity

20 1545 (%) STRAIN AT FAILURE 10

Bilniatry of

Ŷ

ř,

? . .

																		ETRI		
	25-69-00	. LOC	CATI	ON		Coords.	N 4 8	59667	7 <u>2</u> E	3274	61.9							GINATED	8Y	J
	6 HWY EMF	. 80	REHO	DLE T	YPE_	H.S. Aud	<u>er</u>											PILED	3Y	J
DATUM	Geodetic	DA1	ΓĒ			78 08 '								<u></u>			CHE	CKED E	Y0.	J
	SOIL PROFILE			SAMP	LES	S	SCALE	DYN RES	AMIC (STANC	ONE PLO		ATION		PLASTR	NA	URAL		=		
		LOI	a		ES	GROUND WATER CONDITIONS			20	40	6 0	80 1	<u>ço</u>	UMT Wg	čõ	STURE TENT	UQUID UMIT Wi	UNIT	REM	ARK: &
EPTH	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	VALUES	UNN N	EVATION		AR S		GTH F	Pa FIELD	VANC	-		o			GRAIN	I SI
192.9	Ground Surface	STR/	Ĭ	_	,z	80	LEV.	• 0	UICK 1	RIAXIA		LAB	ANE				IT (Z) 50	7	1 (72)
0.0		R		1		DRY	<u> </u>		1	Ť	1	1	†	┼──		+0 (1	KN/m	GR SA	SI
		1					192		+			+			<u> </u>	+		ł		
			1	SS	30															
							190													
	Brown	14	12	- 55	60 /13cr		130									T		1		
	Grey	j.																		
		1	3	SS	130		188	<u> </u>		+				┝╺╾	_			ł	6 25	(6
	Heterogeneous Mixture of		1	SS	65															
	Clayey Silt, Sand and Gravel				/15cr		186													
				55	70											Τ				
	Hord				/10cm														9 36	(5
	(Glacial Till)		6	SS	108		184	<u> </u>	+											
		10	Ļ											╡╃┥						
				SS	60		182													
			1		/10cm															
		2	3	SS	60 /13cn														18 37	(4)
		14			,		180					+								
79.0 13.9 Er	nd of Borehole	12	<u>م</u>		90 /15cm														- to a set	
	r							·												
	,						1				Ì									
	, ,																			
											[
													,							
	•																		•	
										,										
1		i			1	1		1			ŧ		- 1	1		-		1		

+³, x⁵ : Numbers refer to Sensitivity


20 15-\$5 (%) STRAIN AT FAILURE 10

Winistry of Transportation

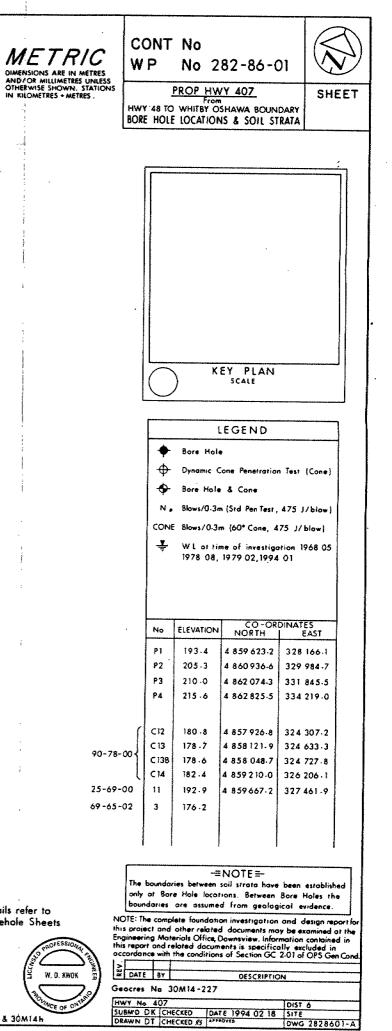
-

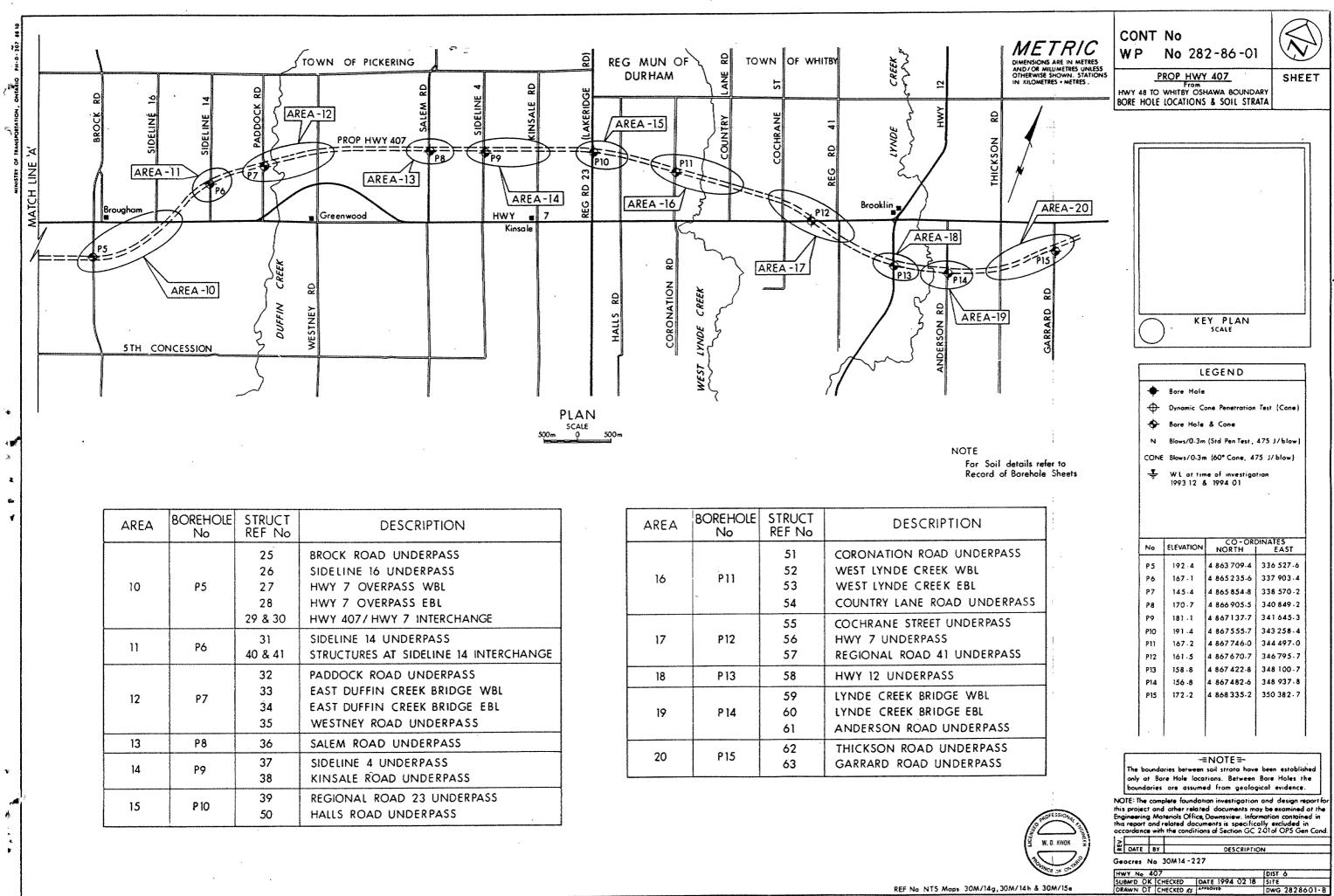
9

Ê

Ì

A.v.


1


a 28

施

AREA	BOREHOLE No	STRUCT REF No	DESCRIPTION
1	C 12 (WP 90-78-00)	1	MARKHAM ROAD UNDERPASS
2	C13	2	ROUGE RIVER BRIDGE WBL
	C13B (WP 90-78-00)	3	ROUGE RIVER BRIDGE EBL
3	C14 (WP 90-78-00)	4	9TH LINE UNDERPASS
4	1] (WP 25-69-00)	5	N-S ARTERIAL ROAD UNDERPASS
		6	10 TH LINE OVERPASS WBL
- - -		7	10 TH LINE OVERPASS EBL
5	Pl	·8	CPR OVERHEAD WBL
		9	CPR OVERHEAD EBL
		10	LITTLE ROUGE RIVER BRIDGE WBL
		11	LITTLE ROUGE RIVER BRIDGE EBL
6	P2	20	REGIONAL ROAD 30 UNDERPASS
7	3	21	WEST DUFFIN CREEK BRIDGE WBL
/	(WP 69-65-02)	22	WEST DUFFIN CREEK BRIDGE EBL
8	P3	23	NORTH ROAD UNDERPASS
9	P4	24	SIDELINE 24 UNDERPASS

NOTE For Soil details refer to **Record of Borehole Sheets**

AREA	BOREHOLE No	STRUCT REF No	DESCRIPTION
10	P5	25 26 27 28 29 & 30	BROCK ROAD UNDERPASS SIDELINE 16 UNDERPASS HWY 7 OVERPASS WBL HWY 7 OVERPASS EBL HWY 407/HWY 7 INTERCHANGE
11	P6	31 40 & 41	SIDELINE 14 UNDERPASS STRUCTURES AT SIDELINE 14 INTERCHANGE
12	P7	32 33 34 35	PADDOCK ROAD UNDERPASS EAST DUFFIN CREEK BRIDGE WBL EAST DUFFIN CREEK BRIDGE EBL WESTNEY ROAD UNDERPASS
13	P8	36	SALEM ROAD UNDERPASS
14	P9	37 38	SIDELINE 4 UNDERPASS KINSALE ROAD UNDERPASS
15	P 10	39 50	REGIONAL ROAD 23 UNDERPASS HALLS ROAD UNDERPASS

AREA	BOREHOLE No	STRUCT REF No	DESCRIPTION
16	P11	51 52 53 54	CORONATION ROAD UNDERPASS WEST LYNDE CREEK WBL WEST LYNDE CREEK EBL COUNTRY LANE ROAD UNDERPASS
17	P12	55 56 57	COCHRANE STREET UNDERPASS HWY 7 UNDERPASS REGIONAL ROAD 41 UNDERPASS
18	P13	58	HWY 12 UNDERPASS
19	P 14	59 60 61	LYNDE CREEK BRIDGE WBL LYNDE CREEK BRIDGE EBL ANDERSON ROAD UNDERPASS
20	P15	62 63	THICKSON ROAD UNDERPASS GARRARD ROAD UNDERPASS

TABLE OF CONTENTS

HEADING

INTRODUCTION

SOIL CONDITIONS

FOUNDATION CONSIDERATIONS

PILE CONSIDERATIONS

EROSION AND SCOUR CONSIDERATIONS

· ţ

SETTLEMENT CONSIDERATIONS

LOCATION PLAN & INFERRED SOIL STRATIGRAPHY

¶

BOREHOLE SUMMARIES

EXPLANATION OF SYMBOLS & TERMINOLOGY

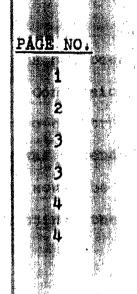


FIGURE 1

APPENDIX

FIGURES 2 and 3

(1)

INTRODUCTION

An investigation of foundation soil conditions has been carried out at the Nesbitt Bridge site on Lots 16 and 17, Concession 5 of East Whitby Township. The County of Ontario proposes to construct a new bridge at the site of the existing crossing. It was intended that either a prestressed beam or a rigid frame design would be used for the new structure and that, soil conditions permitting, the abutments would be founded on concrete spread footings.

Authorization to proceed with the investigation was redeived on September 9th and the field work was subsequently done on September 14, 1970. A truck-mounted, hollow stem auger drill was used to advance 2 boreholes, one in each abutment area as shown off figure 1. Samples were obtained at 2 to 5-ft. intervals with a 2-inch open-end drive sampler while recording standard penetration resistances (N-Values). A summary of the borehole data and test results will be found on figures 2 and 3 at the end of this report. An inferred sub-soil stratigraphy as well as the location plan is outlined on figure 1 and an explanation of some of the symbols and terminology used in this report is given in Appendix "A".

SOIL CONDITIONS

The bridge site is located in the physiographic region known as the "South Slope" of the Oak Ridges inter-lobate kame morraine. The area has been eroded by streams draining toward Lake Onterio, leaving recent alluvial deposits overlying the till soils in the eroded valleys:

The soils profiles obtained in the two boreholes at this site support the geological data for the area, revealing that under the existing approach embankment fill material there are loose fine-grained river deposits (silty sand, sand silt, clayey silt and clay) which in turn overlie relatively compact sandy till soils.

The river-deposited sediment extends approximately from elevation 88 feet down to elevation 78 feet and consists of irregularly stratified sand, silty sand, sandy silt and silty clay. Standard penetration resistances in this soft, loose material varied from 1 to 11 blows/ft.

Below elevation 78 feet, approximately, the Subsoils are relatively compact and sandy in texture, consisting mainly of very fine to medium sand. Standard penetration resistances in this underlying sand till zone varied from 16 to over 30 blows/ft., there being a general increase in density with depth.

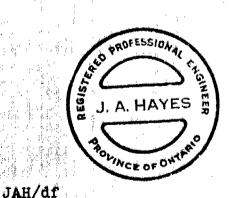
FOUNDATION CONSIDERATIONS

If spread footings are considered for supporting the abutments of the structure, the base of the footings will have to be at least as low as elevation 77 feet in order to reach the compact sand zone. At this level, the footings will be about 8 feet below the present creek bottom under 9 to 10 feet of water. The allowable load for such footings is estimated to be 4000 lbs per sq. ft. provided that the soils below the footing are not disturbed.

It should be noted that dewatering the excavation for these spread footings could be troublesome unless the water table is lowered in advance with a well-point system. Conventional pumping of the excavations will result in "piping" at the footing level which will seriously reduce the bearing capacity of these fine sand subscils.

PILE FOUNDATION CONSIDERATIONS

As an alternative to spread footings, it is recommended that piles be considered for supporting the abutment loads on this project. Adequate pile capacity can be obtained by driving displacement type piles (wood, steel or concrete) to elevation 60 feet approximately. Timber piles will likely be the most economically reasible for this structure (although concrete or steel-tube piles are not ruled out) and the full allowable capacity, for the timber size selected, can be used.

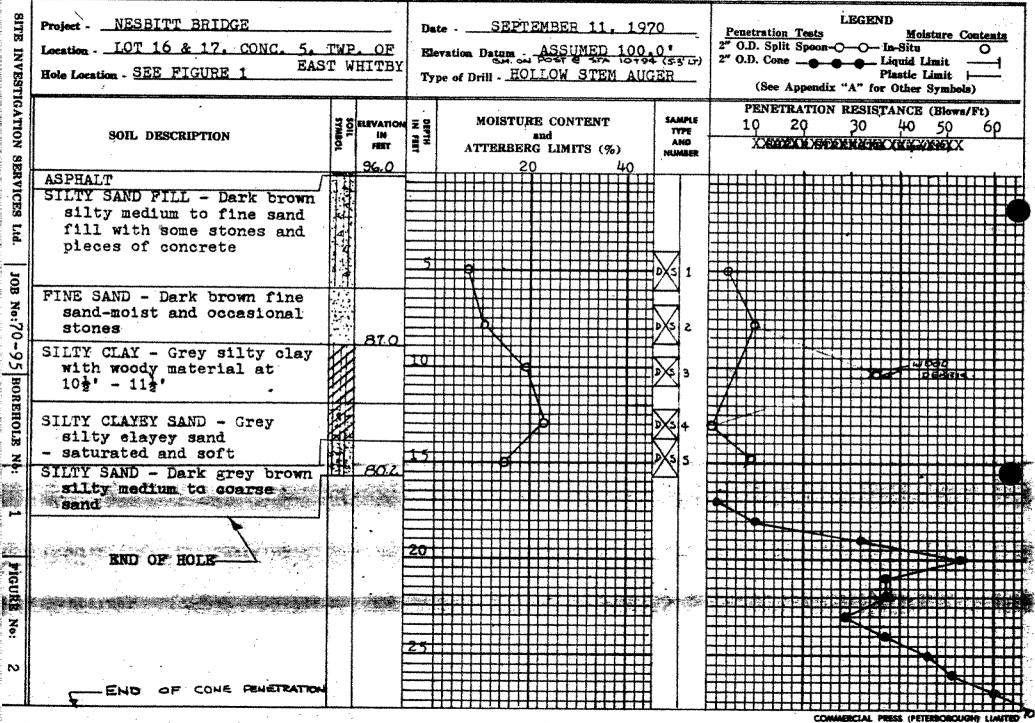

(4)

EROSION AND SCOUR CONSIDERATIONS

The existing river bed materials are highly erodable, but, if footings are based 8 feet below stream bed level of if piles are used, there should be adequate protection against scour damage. The toes of the approach embankments will need protection, however, and it is recommended that rip-rap be placed on these slopes up to the design high water level.

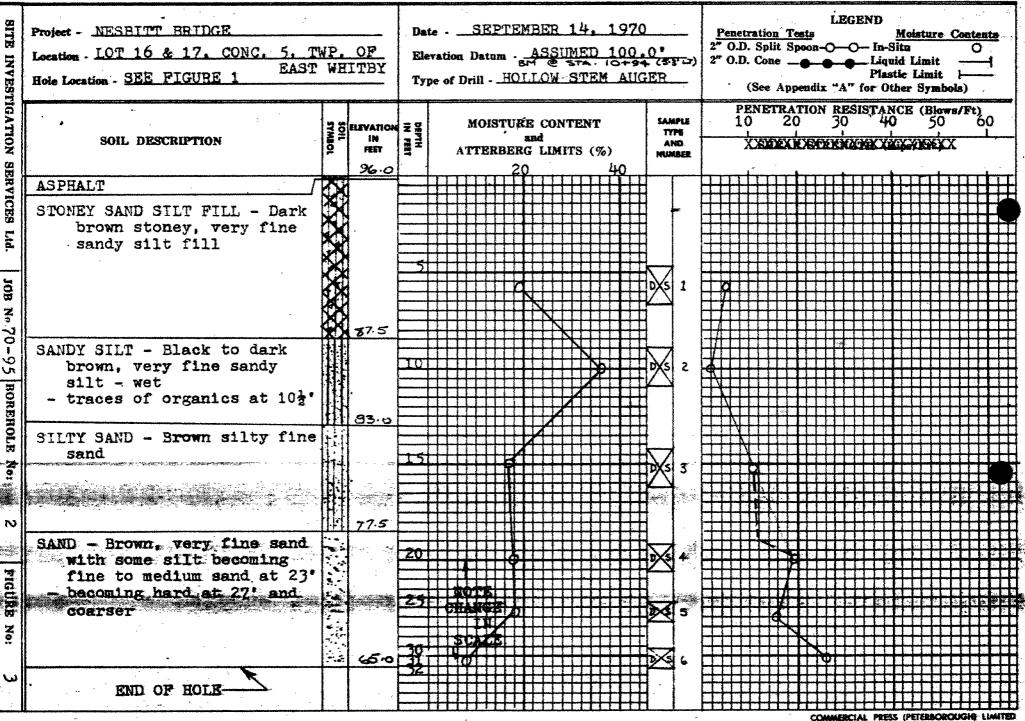
SETTLEMENT CONSIDERATIONS

The subsoils below the proposed foundation bearing levels are compact granular materials which are relatively incompressible. Any foundation settlement which does take place will occur during construction and will be well within tolerable limits.



Submitted by:

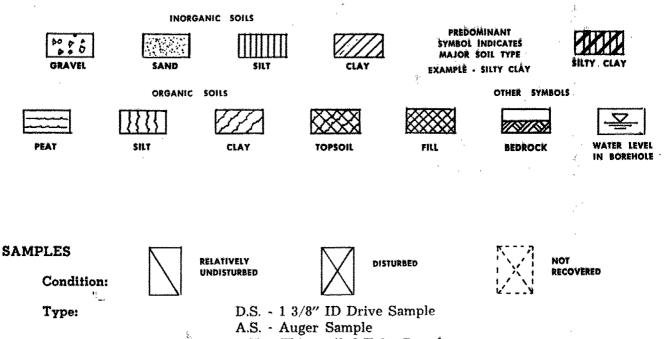
SITE INVESTIGATION SERVICES INVITED


ber A. HAYES, Pr ENG

BOREHOLE DATA and TEST SUMMARY

44

BOREHOLE DATA and TEST SUMMARY

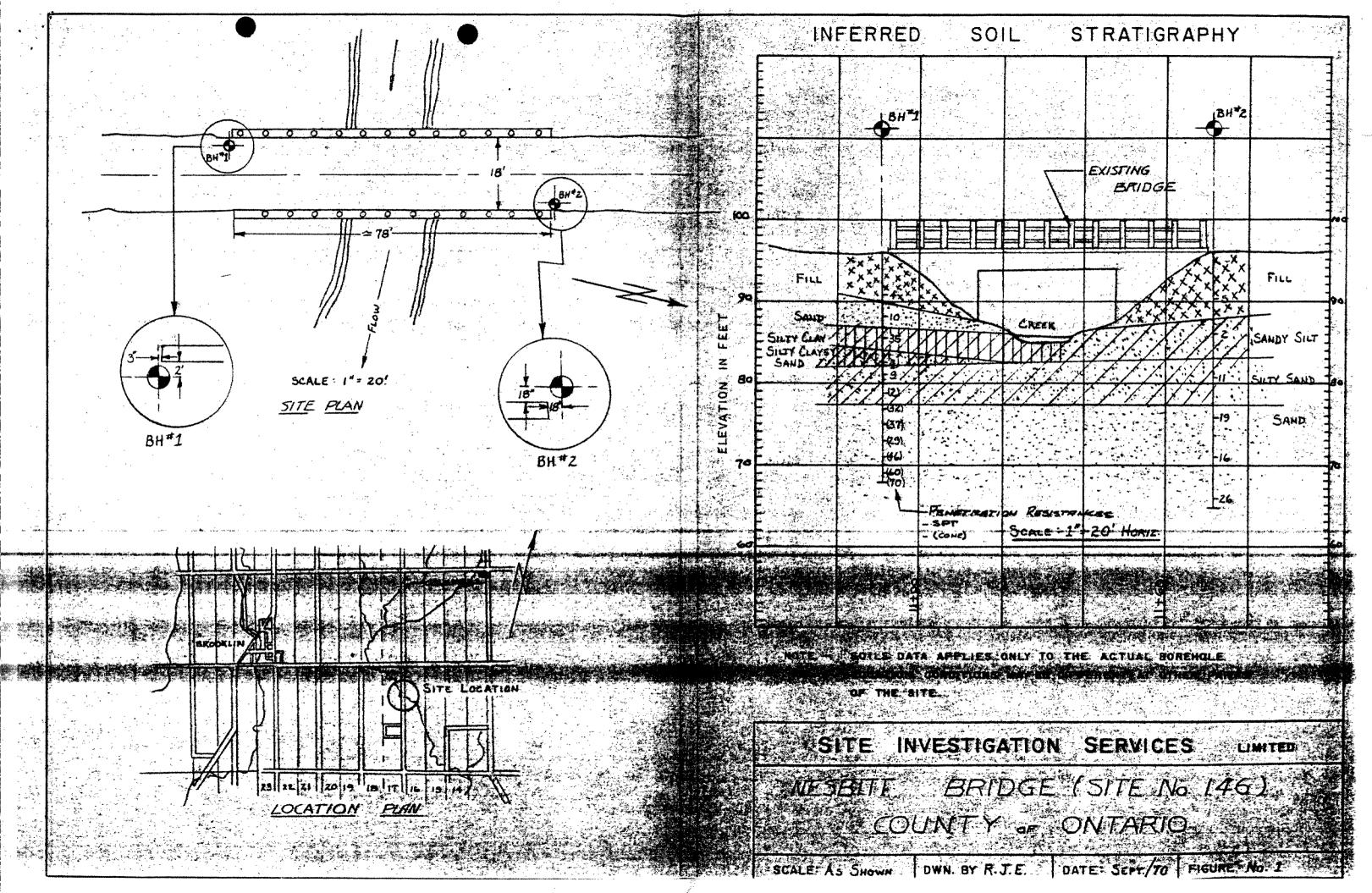


EXPLANATION OF SYMBOLS AND TERMINOLOGY

SOIL DESCRIPTION

A description of visible characteristics of the soil as determined in the field and altered, if necessary, on the basis of laboratory classification tests. The soil profile applies only to the borehole location and may be different at other locations on the site.

A soil symbol is usually found opposite each soil type as follows:



- U Thin-walled Tube Sample
- J Small Jar Sample
- B Bag Sample

Penetration Resistance: (N) Indicates number of blows, of a 140-lb. hammer falling 30 inches, required to drive a 2" OD Drive Sampler a distance of 1 foot into the soil. This resistance is used to assess the relative density of cohesionless soils and the relative consistency of cohesive soils.

OTHER TESTS

- M Grain size analysis using seives or hydrometer or both plotted graphically on a separate sheet.
- 9ν unconfined compressive strength.
- $\forall f$ field vane tests.
- \checkmark laboratory vane tests.
- **7**_d dry unit weight.
- C consolidation test results on a separate sheet.
- T triaxial compression test results on a separate sheet.

OSHAWA SUBURBAN ROAD COMMISSION

605 ROSSLAND ROAD EAST

WHITBY, ONTARIO

REPORT ON FOUNDATION CONDITIONS

EAST OSHAWA CREEK BRIDGE

OSHAWA SUBURBAN ROAD #3 BRIDGE TOWNSHIP OF EAST WHITBY

× 51.

D. T. C. -- TORONTO RECEIVED

MAY 26 197

STRUCTUR OFFICE

OCTOBER 1971

STRUCTURE SITE NO. 22-306

JOB NO. 71-87

TABLE OF CONTENTS

HEADING

INTRODUCTION

SOIL CONDITIONS

FOUNDATION CONSIDERATIONS

EXCAVATION CONSIDERATIONS

SCOUR PROTECTION

EROSION PROTECTION

LOCATION PLAN

SITE PLAN & INFERRED SOIL STRATIGRAPHY BOREHOLE SUMMARIES

EXPLANATION OF SYMBOLS & TERMINOLOGY

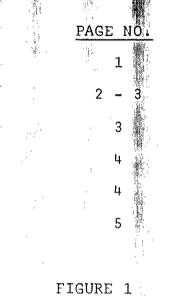
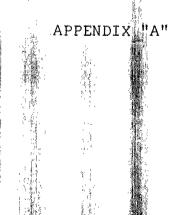



FIGURE 2

FIGURES 3 and 4

INTRODUCTION

As part of the proposed reconstruction of Oshawa Suburban Road #3, it will be necessary to provide a new structure for the East Oshawa creek crossing at station 54+00±. A diversion of the creek is also planned. The proposed bridge site is located in Lot 9, Concession VI of East Whitby Township, as indicated on the Location Plan, Figure 1. At the request of Mr. W. Twelvetrees of the Oshawa Suburban Road Commission, an investigation of subsoil conditions has been carried out at the above site.

The field work for the soils investigation was done on September 9 1971 using a truck-mounted hollow stem power auger drill. Two boreholes were drilled to a minimum depth of 30 feet at the locations shown on the site plan portion of Figure 2. Samples were collected at 2- to 5foot intervals with a 2-inch open-end drive sampler, while recording standard penetration resistances (ie=N-values). Elevation references for the boreholes were obtained from the plan and profile provided by the Commission.

This report summarizes the results of the soils survey and presents recommendations for the foundation design. A site plan and an inferred soil stratigraphy are outlined on Figure 2. Individual borehole data summaries are included as Figures 3 and 4, while Appendix "A" lists some of the soils symbols and terminology used in the report.

(1)

(2)

SOIL CONDITIONS

The site lies in a drumlinized till plain known as the South Slope, an area separating the glacial lake Iroquois Plain from the interlobate Oak ridges Moraine to the north. Locally, the East Oshawa Creek has cut a meandering channel into the till plain and deposited fine sand silt on the floor of the creek valley.

The subsoils at the site consist mainly of compact sand with some gravel content. A veneer (5 ft.) of loose fine sand and silt covers the compact sand at BH #2, while east of the proposed structure, at BH #1, the upper 13 feet of the overburden consists of very loose to loose fine to medium sand. The looseness of the sand (N=4 to 8 blows per foot) suggests that it is a post-glacial outwash deposit.

Below elevation 523 feet, approximately, the sandy subsoils become very dense with standard penetration resistances ranging from 35 to over 100 blows/ft. The dense sand zone continues below elevation 501.6 feet which was the maximum depth investigated.

Aside from the upper silt and peat material in BH #2 the only other variation from a sand texture in the soil depsoits at this site occurred between elevation 522 and 525.5 feet in BH #2 where a layer of stiff sandy silt was encountered.

(SOIL CONDITIONS continued on next page)

SOIL CONDITIONS (cont.)

The natural ground water table in the relatively free-draining sand subsoils is controlled by the level of East Oshawa Creek: At the time of the field work, the creek water level was at elevation 533 feet.

FOUNDATION CONSIDERATIONS

In order to use conventional spread footings at this site, it is recommended that they be located at or below elevation 522 feet in the very dense sand stratum at that level. The allowable loading for the footings placed at this level on undisturbed ground should not exceed 7000 lbs/sq. ft. for design purposes.

Because of potential dewatering problems at this site (see following section), a pile-supported structure should be considered as an alternative to spread footings. A displacement-type pile such as a closedend pipe pile or a timber pile is recommended.

It is anticipated that piles would be driven to elevation 510 feet, approximately, where the allowable capacity of a size 12 timber pile would be 20 to 25 tons and that of a 10 3/4-inch pipe pile would be 50 to 60 tons. The above values are for estimating purposes; the actual pile design selected should be reviewed to determine design capacities.

(3)

(4)

EXCAVATION CONSIDERATIONS

Excavation at this site will be mainly in fine sand with silt lenses and medium to coarse sand lenses. In order to remove material below the water table, it will be necessary to lower it below the level of the excavation.

The most effective technique for dewatering this site would be a well-point system. The effective use of well points will allow construction of footings "in the dry" and reduces the possibility of "quicking" conditions which would loosen and disturb the subsoils below the footing level.

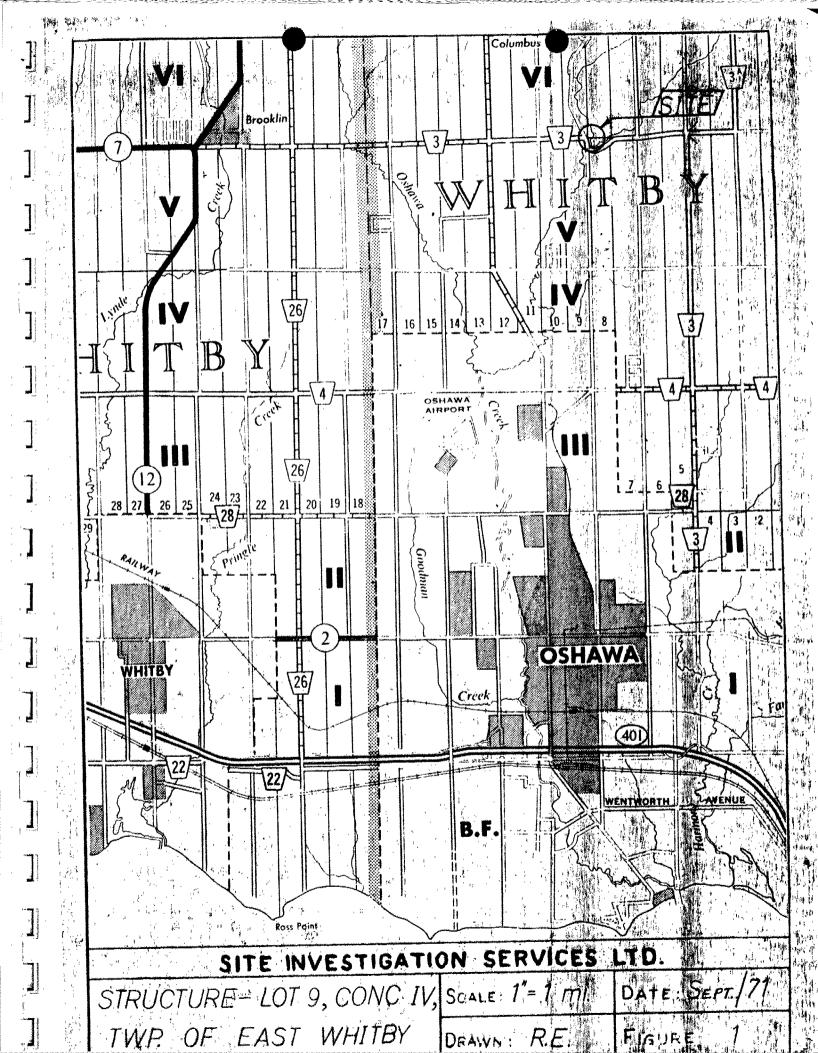
SCOUR PROTECTION

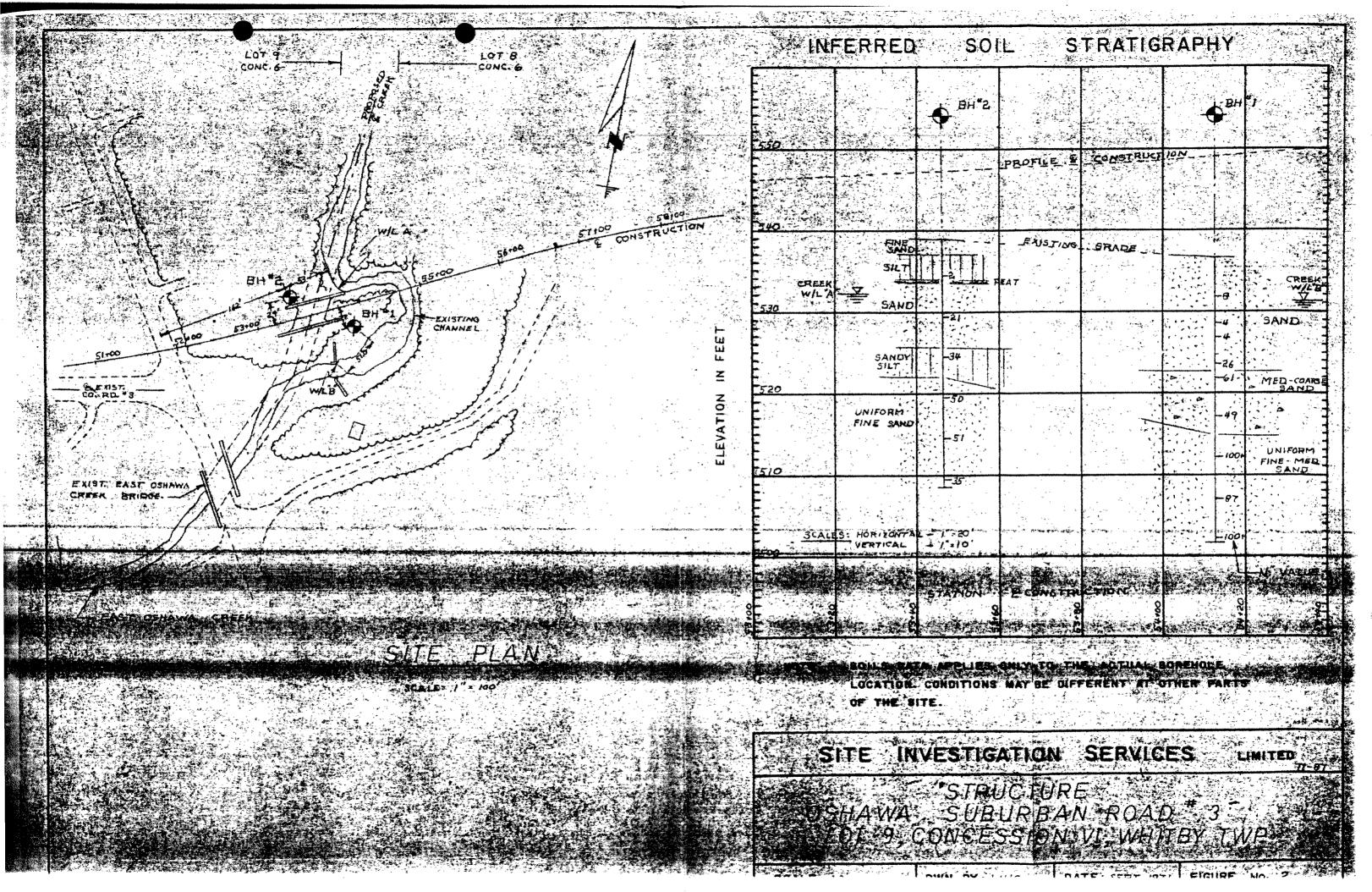
The recommended depth for footings will result in about 7 or 8 feet of cover over the footings in the channel area. This should provide adequate scour protection although the fine sand below the river bed will be highly erodable. If severe flooding of the East Oshawa Creek is expected, then scour protection of the channel should be considered.

A pile-type foundation on the other hand has much superior resistance to scour activity. No special scour protection will be required if piles are used to support this structure.

EROSION PROTECTION

The approach embankments for this structure will probably be composed of the fine silty sand from the adjacent cut to the east. This material will be easily eroded and will require rip-rap protection up to the high water level. Sodding of the slopes above that level will protect the slopes against runoff erosion.




Submitted by:

SITE INVESTIGATION SERVICES LIMITED

per ENG. HAYES, P.

JAH/df

MAILING ADDRESS P.O. Box 216, Postal Station "K" TORONTO 12, ONT.

MONTREAL, QUEBEC 620 CATHCÂRT ST. UNIVERSITY 6-5871

RAYMOND

CONCRETE PILE COMPANY, LIMITED

HIGHWAY NO. 7, UNIONVILLE, ONTARIO 293-2486 TELEPHONES 364-3644

BOIL INVESTIGATION REPORT

PROJECTI

8X22:

CLIERT:

TOPOGRAPHY

Proposed Bridge Accoustraction

Dellert's Bridge Concession 7, Whithy Township

County of Ontario Whitey, Ontario.

At the time of the field work, a location plan and profile were supplied by the County. Elevations were supplied, based on a banch mark as shown on the borehole location plan.

21 November to 22 November 1961

Baylin 8-1230-2

B - 68

CLIENT'S PROJECT NUMBER: DATE OF FEPORT:

DATE OF FIRID VORS:

OUR JOB MMARI

1 December 1961.

INTRODUCTION

Two boreholes were made by the Raymond Controls Fils So. Ltd. at the above site, for purposes of evaluating soil conditions for foundation design of the proposed bridge construction.

The borings were made by standard exploratory techniques, using 24" casing. The Standard Fenetration Test was performed every 2 to 3 feet to a depth of 15 feet, and at 5 foot intervals thereafter. PAGE NO.

INTRODUCTION - Continued

A record was kept of the number of blows required to drive the 2" O.D. Sampling Spoon one foot, using a 140 lb. weight fulling freely 30 inches. Boil samples were obtained after completion of each driving test.

Ground water levels were not observed. However, due to the granular nature of the soil deposite and nearness of the stream, for all intent and purpose the ground water level would be that of the stream.

SOIL CONDITIONS

Boil conditions observed at the two locations were similar and are loose to dense brown gravelly sand underlying 6 inches to $2^{1}-4^{4}$ of tepsoil, extending to a depth of 5.5 feet below ground surface. Underlying the brown sand is a dense very silty fine gray sand, extending to completion of both boreholes. At the location of borehole #2 the gray sand extended to elevation 40, at which depth the N value is recorded as 100 blows for 9 inches, or predtical refusal.

CONCLUSIONS

Assuming that the bridge foundations will be placed some 3 to 4 feet below present creek bottom, this would place the bottom of the foundation at approximate elevation 51.

Below elevation 54 foundations will be in the dense grey wild having an average minimum N value of 26, this being based on berehole \$1. With an N value of 26, and making reference to Terzachi and Peck, & soil bearing value of 4000 pounds per square foot is recommended with a minimum allowable settlement of 1 inch.

RAYMOND

3

CONCRETE PILE CO., LIMITED

PAGE NO.

CONCLUSIONS - Continued

It is pointed out that with the deposits being much, as excernions are taken below the ground water level, water problems will erise, and if a differential hydrostatic head is formed, a possible "quick" condition will be formed. This condition should not be allowed, since it will affect and reduce the above bearing value.

RAYMOND CONCRETE PILE COMPANY LIDUITED

James Hodd

James Hodd, P. Eng. Manager - Soil Investigation Department

1

승입

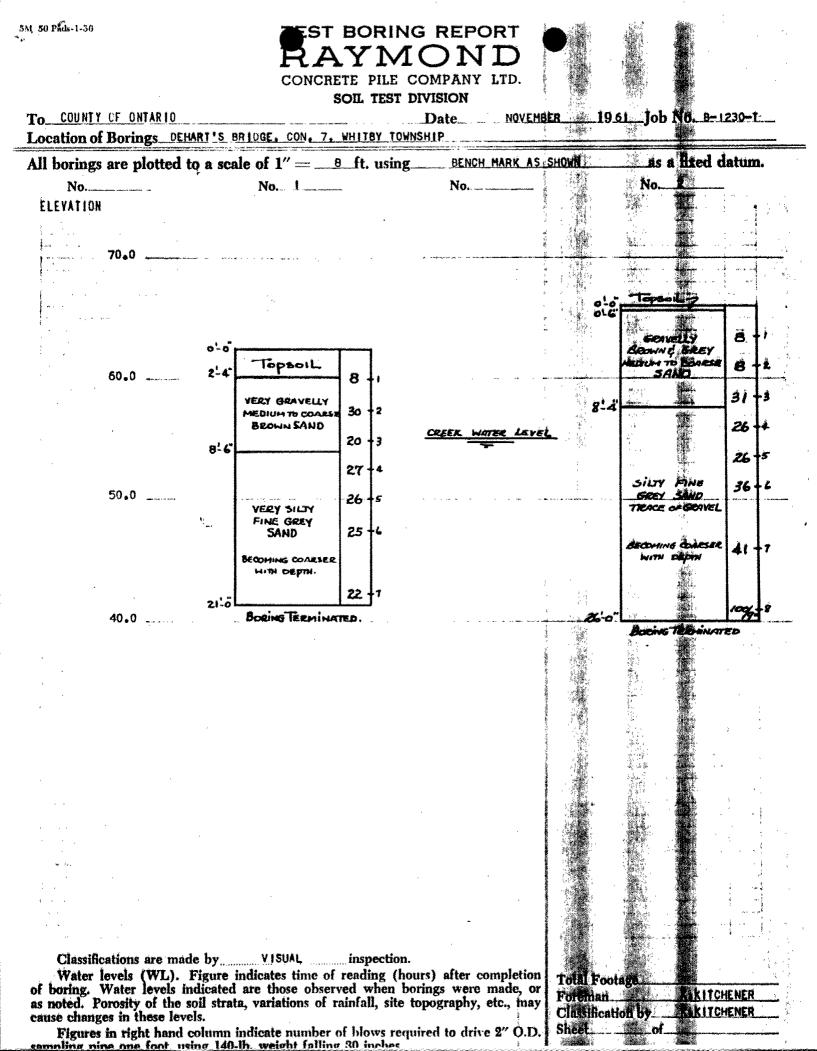
s u. * \$. ! *

t = 4

ų,

二十二 二十二

1 1


s .

jh/c

RAYMOND CONCRETE PILE COMPANY LTD.

LOCATION PLAN

To COUNTY OF ONTARIO Date	NOVEMBER	
Address WHITBY, ONTARIO		
Project B-68 DEHART'S BRIDGE		
CON. 7, TOWNSHIP OF WHITBY		
	BCALE	el. 1801
╴╞╍╄╍╊╍┠╍╎┙╡╍╊╍╄╍╏╺╉╍╋╼╋╍╄╶┦╌╊ ╲╠╡╌ ╊╸╎┄┠╍┞╍┨╼┼╶┦╶┨╶╎╴╢╶╌╢╶╎╌╢╶╢╌┨╶╢╸┥╌┠╸┨╌┠╸╋╼╂╍╎╌╂╌┨╸╋╼╋╍╢╌┨╶┫╼╋╧ ╋╍╋╼╉╍╎╼╅╍╊╼╋╍╋╴╢╌┨╍┲╼┲╼┨╴╪╍┢╲╠╣┱╍╊╸╎┄┠╼╿╍┨╼┼╶┨╶╿╴╴╴╋╶╢╴╵╴┥╼┼╴┨╼╿╴╵╶┥╶╴╽╌┨╶╴╢╴╋╴┠╸┫╼╋╼╋╼┥╵┨╶╉		
	0	
E. 46.54		
BH-83-		
BRIDBE AREA		
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Gompade Pointes		
		HOD
This boring report prepared in the		
IDRDNTO OFFICE de the		
Raymond Concreted Pile Company Ltd.		

MEMORANDUM

DATE: 93 03 24

TO: V. Boehnke Head Structural Section Central Region

l di

E.s.*

ATTENTION: Wade Young

FROM: Foundation Design Section

RE: Foundation Component of Preliminary Design W.P. 326-88-01 & 282-86-01 Hwy. 407 from Hwy. 48 to Hwy. 115 Whitby Link (407 to 401) Oshawa Link (407 to 401)

This is a proposal for the level of effort for the foundation component of preliminary design. Please consider the number of boreholes proposed to be a suggestion for discussion purposes. The proposal is intended to be conceptual and to illustrate a foundation investigation approach that balances risk and cost.

The request for the Hwy. 407 preliminary design suggested a minimum level of effort while the request for the links expected full coverage. It is understood that the design and construction phases of these projects are not scheduled for over 20 years. The purpose of our discussions to date has been to determine a consistent and appropriate level for all 3 projects.

Historically, preliminary design investigations have been carried out at most structure locations and at any other sites where groundwater, slope stability, settlement or organic terrain concerns were anticipated. Due to the number of sites at the 407 projects (assumed to be in the order of 250), such an approach would cost over \$500K and take over one year to complete in-house. If consultants were hired the cost would be increased by 50%, while time would be reduced by less than 50%. (These costs and times are approximations to illustrate the magnitude of the project.)

Our initial assessment of foundation aspects of the alignment has been based on a review of air photos, geological maps, well drilling data and the geotechnical planning reports prepared by Geocon. Based on that information and our knowledge of the area, we do not anticipate any foundation problems that would force alteration of the selected alignments. However, we are not be able to preclude the possibility of localized areas where foundation problems might arise (without drilling boreholes at each site).

.../2

In view of the distant design and construction phases for this project and the high costs for a full preliminary design investigation, we propose a compromise level of effort for preliminary design purposes:

* 30 boreholes for 407
* 10 boreholes for each link

We anticipate that the cost for this level of foundation investigation and reporting would be in the order of \$80K in-house and \$120K by consultants. Of course, if these investigations discovered critical sites, supplementary investigations would be carried out.

The boreholes would be assigned to - complex structure sites

- environmentally sensitive sites associated with impacts on groundwater
- high fills over 8m
- deep cuts over 8m

It should be understood that this 'compromise' level of investigation will not positively identify foundation types (spread footings or deep foundations) or loading recommendations, although the information obtained will facilitate guestimates.

As agreed in our meeting of March 3/93, the foundation investigation program should satisfy the comfort level of all parties involved. We understand that the project team will meet to discuss this proposal and reach a consensus on the appropriate level of effort.

If there are any questions, please call.

Dundas, P.Eng. Sr. Foundation Eng.

cc: P. Reynolds D. Mackie C. Lumley

M E M O R A N D U M

Central Region, Transportation Planning Section 3rd Floor, Atrium Tower, 1201 Wilson Avenue Downsview, Ontario M3M 1J8 TEL: (416) 235-5482 FAX: (416) 235-4382

TO: DISTRIBUTION LIST

37

DATE: September 25, 1991

RE: HWY 407/TRANSIT TRANSPORTATION CORRIDOR ROUTE PLANNING, PRELIMINARY DESIGN AND ENVIRONMENTAL ASSESSMENT STUDY, HWY 48 IN MARKHAM TO HWY 35/115 IN NEWCASTLE

In May and June, 1991 the Ministry presented for review and comment a "technically preferred route" for the proposed Highway 407/Transit facility in the above area. Presentations were given to other government ministries and agencies, technical representatives of municipalities and to municipal councils or planning committees. A series of Public Information Centres were then held, one in each of the directly affected municipalities, (attached brochure).

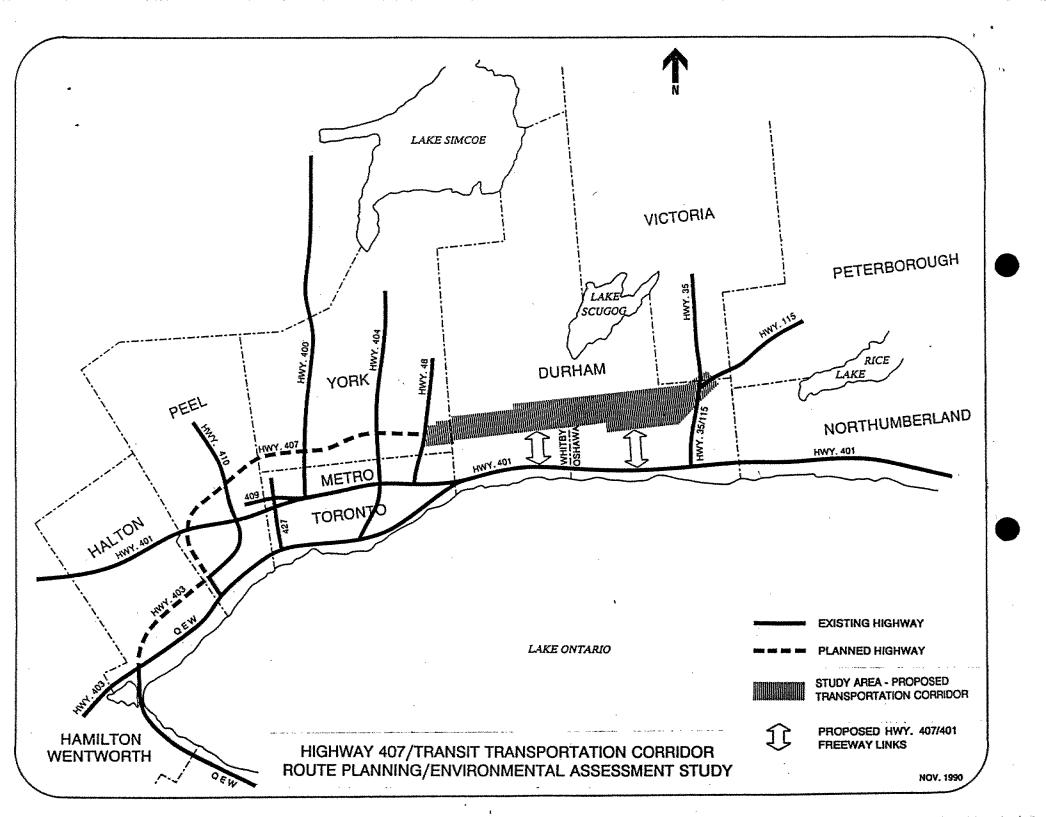
The Project Teams for the above studies are now reviewing and responding to comments from external contacts. Additional investigations and modifications will be undertaken as necessary to confirm and obtain general agreement for the proposed route before undertaking the preliminary design phase of the studies.

In May 1991, prior to external contacts, the Project Teams presented the proposed route to MTO Management and designated technical contacts from other Ministry offices with a request for comments.

Attached for your information is a plan of the "technically preferred route" as presented to external contacts following our May 1st, 1991 internal presentations. (Plans at a scale of 1:10,000 as well as 1:20,000 are available if required.)

To complete the review of the "technically preferred route" we are requesting that your office advise us of any final comments you may have regarding the proposed route at the present level of planning. (If significant modifications occur as a result of the current review process an update and opportunity for further comments will be provided).

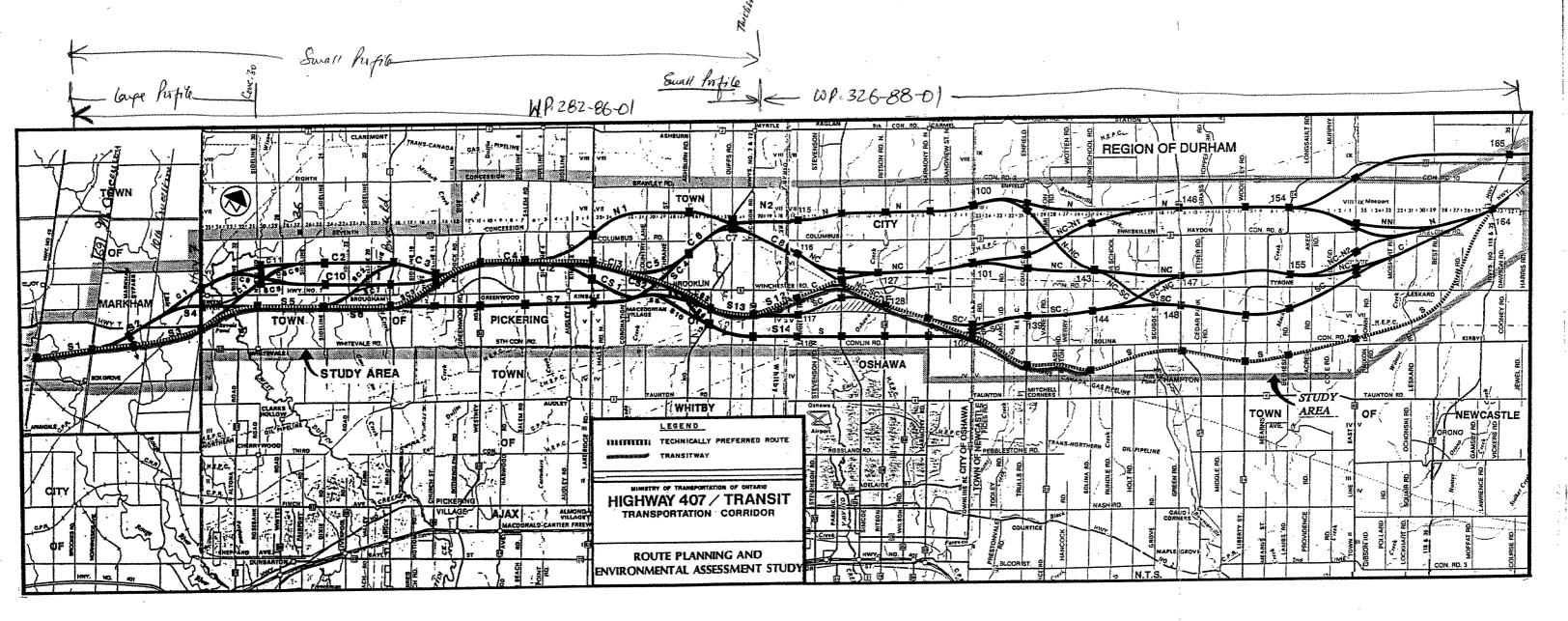
A full documentation of route selection will occur later in this phase following a final decision on the alignment. If your office requires information at the present time regarding background studies, data, or the evaluation process please contact the undersigned.


Your response regarding the "technically preferred route" by October 30, 1991 will be appreciated. Should you have any questions regarding this request or the studies in general please call.

Patrick Reynolds Project Manager Hwy 407 Studies - Hwy 48 to Hwy 35/115

Attach.

5


cc: C. Lumley K. Harding D. Coutts - PARKER CONSULTANTS R. Smith - PARKER CONSULTANTS A. Minchev - FENCO I. Upjohn - FENCO

HWY 407/TRANSIT ROUTE PLANNING AND ENVIRONMENTAL ASSESSMENT STUDY

(HWY 48 TO HWY 35/115)

TECHNICALLY PREFERRED AND ALTERNATIVE ROUTES -- MAY, 1991

MEMORANDUM

то	Mr. Pat Reynolds, P.Eng. MTO Transportation Section	DATE	May 30/90
FROM	I. Corbett, P.Eng Geocon	PROJECT No.	53425/T11547-2
SUBJECT		,,,,, ²	

RE: HIGHWAY 407 ROUTE PLANNING AND ENVIRONMENTAL ASSESSMENT STUDY PRELIMINARY ROUTES - GEOTECHNICAL APPRAISAL WHITBY-OSHAWA BOUNDARY EAST TO HWY 115/35 - PARKER SECTOR

Lavalin

WP 326-88-01

This memo outlines the results of our preliminary geotechnical appraisal of the proposed alternative routes for Highway 407 between the Whitby-Oshawa Boundary east to Highway 115/35. A copy of these routes, as supplied by C.C Parker Consultants Ltd., indicates that four basic routes are under consideration. Specifically, these include a Southerly Route (denoted S), two Central Routes (denoted NC and SC) and a North Route (denoted N). In addition to these main route corridors, several short parallel sections and/or crossovers between the four alignments are also under review at this time.

We understand that these routes are still preliminary and that they do not represent the final alignments to be subjected to a detailed route comparison study. However, at this stage of the route selection process, a preliminary appraisal of the geotechnical conditions along each of the proposed routes is required.

Geotechnical Appraisal

A preliminary analysis of the prevailing geotechnical conditions for this portion of the Highway 407 Route Corridor was presented in a Technical Paper by Geocon, issued in Draft format on January 26, 1990. Within that report, Drawing T11547B-02 presented the location of "Geotechnical Hazards" within this area of the route corridor. At this preliminary stage, the geotechnical appraisal of the proposed route alignments has been limited to their interaction with these identified areas. It should be noted, that the geotechnical hazard areas presented on the above quoted drawing, were selected based largely on air-photo interpretation and their anticipated geotechnical conditions have not been confirmed by field investigation. Mr. Pat Reynolds, P.Eng. MTO Transportation Section May 30/90 Page 2

In general, the proposed routes are favourably located with respect to the geotechnical hazards indicating, that for the majority of their lengths the routes traverse areas with good foundation conditions with respect to allowable bearing pressure, slope stability, etc. However, as discussed in the technical paper, the region to the North and East of this portion of the route corridor is located either on or close to the Oak Ridges Moraine and subsequently comprises an area of quite high relief. While the subsoils in this region are considered competent, it is anticipated that, due to the undulating nature of the terrain, deep cuts and fills will be required for any potential alignment traversing this section. To the South and West, away from the Oak Ridges Moraine, the fine grained nature of the subsoils render the subgrades frost susceptible.

A detailed analysis of the interrelationship between the proposed routes and the geotechnical hazards, is presented in Table 1. Also contained in Table 1, is a brief statement on the anticipated geotechnical conditions within the hazard area. Three areas are of particular note, namely two areas of high water table located to the southwest of Enfield and the southwest of Enniskillen, and / the Oak Ridges Moraine. In both of the former areas, the anticipated subsoil conditions are considered to be comprised of deposits which will be both soft and deep. Expected problems within the latter area will be as discussed above.

this preliminary stage, the therefore, at In conclusion geotechnical conditions along the North Route appear to limit the viability of this route. However, we understand that a potential route in this region of the route corridor is required for evaluation purposes. The identified hazardous areas along the remaining routes (Table 1), consist of a small percentage of the total route lengths and are representative of the range of geotechnical conditions that typically exist within these lengths of the route corridors. The full impact of these variations and those of the northern route together with other pertinent geotechnical conditions will be addressed during the detailed route comparison stage when more site specific information on the subsurface conditions within the identified hazard areas at other key locations will have been obtained.

Mr. Pat Reynolds, P.Eng. MTO Transportation Section May 30/90 Page 3

We trust that this preliminary geotechnical appraisal is sufficient for your present needs. Should you have any questions or require any further information, please do not hesitate to contact this office.

IC:dtj

cc: Mr. Doug Coutts, P.Eng. C.C. Parker Consultants

Enclosed:

Table 1 - Highway 407 Route Planning and Environmental Assessment Study. Proposed Routes - Preliminary Geotechnical Appraisal. Whitby/Oshawa Boundary East to Highway 115/35.

TABLE 1

HIGHWAY 407 ROUTE PLANNING AND ENVIRONMENTAL ASSESSMENT STUDY PROPOSED ROUTES - PRELIMINARY GEOTECHNICAL APPRAISAL WHITBY/OSHAWA BOUNDARY EAST TO HIGHWAY 115/35

Ĵ.,

	Ass	umed Route Limits			
Identification	From	То	Length	Geotechnical Hazards	Anticipated Associated
			(km)	Within Route Limits	Geotechnical Conditions
	Whitby/Oshawa Boundary	Ныу 115/35	26.9	Erosion along creek at Ritson Road	Erosion Protection at creek crossing
	-			Areas of high water table	Shallow *3 Soft Deposits
				- 1.2 East of Ritson Road	100 m long
				- at West Townline Road	50 m Long
				- immediate vicinity of Enfield Road	100 m Long
				- at Solina Road	200 m long
				- 50 m East of Regional Road 14	150 m long
		· ·		Areas of High Water Table	Deep*3 Soft Deposits
				1.0 km East of West Townline Road	120 m long
				East of Aked Road undulating terrain	Potential deep cuts and/or fills
NC	Whitby/Oshawa	Darlington	21.8	Erosion along creek at Ritson Road	Erosion protection at creek crossing
	Boundary	Townline Road		Areas of High Water Table	Shallow Soft Deposits
				- 2.5 km East of Thornton Road	- 50 m long
				- 4.0 km East of Grandview Road	- 300 m long
				- 20 m East of West Townline Road	- 100 m long
				- at Regional Road 14	- 150 m long
				Areas of High Water Table	Deep Soft Deposits
				- 200 m East of Holt Road	- 250 m long
				East of Aked Road undulating terrain	Potential deep cuts and/or fills
SC	Whitby/Oshawa	Darlington	22.0	Areas of High Water Table	Shallow Soft Deposits
	Boundary	Townline Road		-300 m East of Harmony Road	- 100 m long
				-100 m West of Old Scugog Road	- 150 m Long
				- at Bethesda Road	- 150 m long

TABLE 1									
HIGHWAY 407 ROUTE PLANNING AND ENVIRONMENTAL ASSESSMENT STUDY									
PROPOSED ROUTES - PRELIMINARY GEOTECHNICAL APPRAISAL									
WHITBY/OSHAWA BOUNDARY EAST TO HIGHWAY 115/35									

. .

•

	Assu	umed Route Limits			
Identification From		From To Ler		Geotechnical Hazards	Anticipated Associated
			(km)	Within Route Limits	Geotechnical Conditions
SC (cont'd)				East Aked Road undulating Terrain	Potential Deep Cuts and/or Fills
s	Whitby/Oshawa	Hwy 115/35	29.8	Areas of Kigh Water Table	Shallow Soft Deposits
		·		- 300 m East of Leask Road	- 150 m long
				- at Cole Road	- 100 m long
				- at Regional Road 42	- 150 m long
		·		Erosion along creek, 700 m West of Ritson Road	Erosion protection at creek crossing
	•			East of Aked Road Undulating Terrain	Potential Deep Cuts and/or Fills
c	Whitby/Oshawa Boundary	Ritson Road	3.6	None	
С	Darlington	Hwy 115/35	5.5	Area of High Water Table	Shallow Soft Deposits
	Townline Road			300 m West of Mosport Road	- 150 m long
NC-SC	Simcoe Road	Ritson Road	1.7	None	
(SC-S) (S-SC)	Harmony Road	Courtice Road	3.9	None	
NC-N1	West Townline Road	1.6 km West of Regional Road 57	6.4	Area of High Water Table at Courtice Road	Shallow Soft Deposits - 170 m long
N-NC	Enfield Road	Solina Road	3.3	None	
SC-NC	Holt Road	Regional Road 57	2.0	Area of High Water Table 0.5 km East of Holt Road	Deep Soft Deposits - 200 m long
NC-N2	Bethesda Road	Darlington Townline Road	2.4	Area of High Water Table 200 m East of Bethesda Road	Shallow Soft Deposits - 100 m long

TABLE 1

HIGHWAY 407 ROUTE PLANNING AND ENVIRONMENTAL ASSESSMENT STUDY PROPOSED ROUTES - PRELIMINARY GEOTECHNICAL APPRAISAL WHITBY/OSHAWA BOUNDARY EAST TO HIGHWAY 115/35

	Assum	ed Route Limit:	5		
Identification	From	To	Length	Geotechnical Hazards	Anticipated Associated
			(km)	Within Route Limits	Geotechnical Conditions
NC-N2 (cont'd)				f Aked road ting Terrain	Potential Deep Cuts and/or Fills

 Geotechnical hazards as noted were interpreted from Geocon Drawing No. T115478-2 entitled "Highway 407 Route Planning and Environmental Assessment Study (Whitby/Oshawa Boundary East to I35/115) (WP-282-06-01) - GEOTECHNICAL HAZARDS"

2) Routes analyzed were presented on Drawing supplied by Parker Consultants dated May 1, 1990.

3) In the above table "Shallow" refers to deposits less than 3.0 m thick and "Deep" represents deposits between 3 and 10 m thick.

 λ_{22}

MEMORANDUM

то	Mr. MTC	Pat Rey Transpo	nolds, l rtation	P.Eng. Planning	Section	DATE	May 30/90
FROM	I.	Corbett,	P.Eng.	- Geocon		PROJECT No.	53425/T11547-1
SUBJECT		•	a an an an an an an an an an an an an an			<u></u>	

avali

RE: HIGHWAY 407 ROUTE PLANNING AND ENVIRONMENTAL ASSESSMENT STUDY PROPOSED ROUTES - PRELIMINARY GEOTECHNICAL APPRAISAL HIGHWAY 48 EAST TO WHITBY-OSHAWA BOUNDARY

This memo outlines the results of our preliminary geotechnical appraisal of the proposed alternative routes for Highway 407 between Highway 48 east to the Whitby-Oshawa Boundary. A copy of these routes, as supplied by Fenco Engineers Inc., indicates that from Highway 48 to Salem Road, two basic routes are under consideration. Specifically, these include a Southerly Route (denoted S) and a Central Route (denoted C). East of Salem Road, a third potential alignment, to the north of the Central Route (denoted N), is also under consideration. In addition to these main route corridors, several short parallel sections and/or crossovers between the three alignments are also under review at this time.

We understand that these routes are still preliminary and that they do not represent the final alignments to be subjected to a detailed route comparison study. However, at this stage of the route selection process, a preliminary appraisal of the geotechnical conditions along each of the proposed routes is required.

Geotechnical Appraisal

Lavalin Inc. ADM-14-01-E-84/10

A preliminary analysis of the prevailing geotechnical conditions for this portion of the Highway 407 Route Corridor was presented in a Technical Paper by Geocon, issued in Draft format on January 26, 1990. Within that report, Drawing T11547A-02 presented the location of "Geotechnical Hazards" within this area of the route corridor. At this preliminary stage, the geotechnical appraisal of the proposed route alignments has been limited to their interaction with these identified areas. It should be noted, that the geotechnical hazard areas presented on the above quoted drawing, were selected based largely on air-photo interpretation and their anticipated geotechnical conditions have not been confirmed by field investigation. Mr. Pat Reynolds, P.Eng. MTO Transportation Planning Section May 30/90 Page 2

In general, the proposed routes are favourably located with respect to the geotechnical hazards indicating, that for the majority of their lengths the routes traverse areas with good foundation conditions with respect to allowable bearing pressures, slope stability, etc. However, as discussed in the technical paper, the predominant foundation soils within this portion of the route corridor comprise of frost susceptible materials. These conditions are however applicable to all of the routes and are not discussed further.

A detailed analysis of the interrelationship between the proposed routes and the geotechnical hazards, is presented in Table 1. Also contained in Table 1, is a brief statement on the anticipated geotechnical conditions within the hazard area. The information presented in Table 1, indicates that the most southerly alignments traverse several extinct gravel pits which will require considerable volumes of fill and as a result, at this very preliminary stage, are less favourable than the Central or Northern routes. Of particular note along the Central Route, is the presence of a high water table area within the C4 route alignment. This area is highlighted because it is anticipated that the soim conditions at this location will be comprised of a combination of deposits which are both soft and deep. As such, special measures will have to be taken to cope with these subsoils such as excavation, isolation or pre-loading. The remaining hazardous areas intersected by the proposed routes, based on available information at this time, are not considered to pose major geotechnical problems although, they will result in an increase in costs above the norm.

In conclusion therefore, none of the proposed routes traverse areas which are considered to comprise of such poor geotechnical conditions to warrant route relocation based on this consideration alone. The identified hazardous areas along the routes, as outlined in Table 1, consist of a small percentage of the total route lengths and are representative of the range of geotechnical conditions that typically exist within these lengths of the route corridors. The full impact of these variations and other pertinent geotechnical conditions will be addressed during the detailed route comparison stage when more site specific information on the subsurface conditions within the identified hazard areas and at other key locations will have been obtained. Mr. Pat Reynolds, P.Eng. MTO Transportation Planning Section May 30/90 Page 3

We trust that this preliminary geotechnical appraisal is sufficient for your present needs. Should you have any questions or require any further information, please do not hesitate to contact this office.

IC:dtj

cc: Mr. Ian Upjohn, P.Eng. Fenco Engineers Inc.

Enclosed:

Table 1 - Highway 407 Route Planning and Environmental Assessment Study. Proposed Routes - Preliminary Geotechnical Appraisal Highway 48 East to Whitby/Oshawa Boundary

TABLE 1 HIGHWAY 407 ROUTE PLANNING AND ENVIRONMENTAL ASSESSMENT STUDY PROPOSED ROUTES - PRELIMINARY GEOTECHNICAL APPRAISAL HIGHWAY 48 EAST TO WHITBY/OSHAWA BOUNDARY

Assum Identification From		Assumed Route Limits					
		То	Length (km)	Geotechnical Hazards Within Route Limits	Anticipated Associated Geotechnical Conditions		
\$1	Highway 48	Ninth Line	2.2	None			
S2	Ninth Line	Regional Road 30	4.9	None			
s3	Ninth Line	North Road	6.8	None			
\$4	Tenth Line	Regional Road 30	2.1	None			
SC1	Regional Road 30	Sideline 30	2.7	None			
\$5	North Road	Sideline 24	2.5	High Water Table Area 100 m West of Sideline 24	Shallow*3 Soft Deposits - Length 200 m		
\$6	Sideline 24	Westney Road	5.9	High Water Table Area - East of Sideline 24 Gravel Pit - 1.0 km East of Sideline 24 Gravel Pit - 4.5 km East of Sideline 24	Shallow Soft Deposits - Length 250 m Deep Road Fills - Length 200 m Deep Road Fills - Length 350 m		
SC2	Sideline 24	Brock Road	3.0	Kigh Water Table Area East of Sideline 24	Shallow Soft Deposits - Length 300 m		
SC3	Brock Road	Sideline 1	2.2	None			
s7	Westney Road	Coronation Road	5.6	High Water Table Area - 1.3 km East of Westney Road Gravel Pit - 2.5 km East of Westney Road Gravel Pit - 4.0 km East of Westney Road	Shallow Soft Deposits - Length 250 m Deep Road Fills - Length 250 m Deep Road Fills - Length 200 m		
SC4	Coronation Road	Regional Road 1	3.1	Gravel Pit - Adjacent to Coronation Road	Deep Road Fills - Length 300 m		
\$8	Coronation Road	Highway 12	3.5	Gravel Pit - Adjacent to Coronation Road	Deep Road Fills - Length 250 m		

TABLE 1 HIGHWAY 407 ROUTE PLANNING AND ENVIRONMENTAL ASSESSMENT STUDY PROPOSED ROUTES - PRELIMINARY GEOTECHNICAL APPRAISAL HIGHWAY 48 EAST TO WHITBY/OSHAWA BOUNDARY

Assumed Route Limits

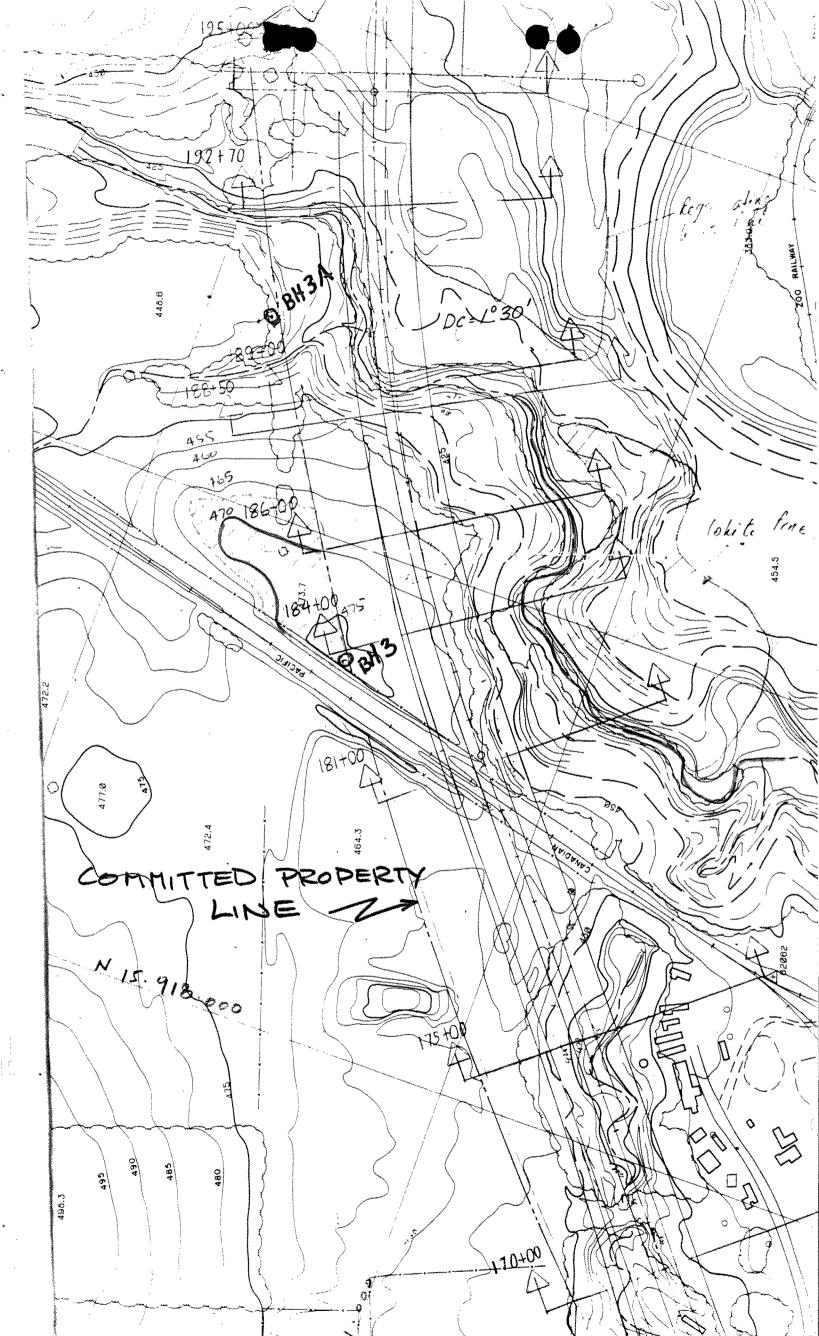
Route Geotechnical Hazards Anticipated Associated Identification From Τo Length Geotechnical Conditions Within Route Limits (km) Deep Road Fills - Length 250 m **S9** Coronation Road Thickson Road 5.0 Gravel Pit - Adjacent to Coronation Road Shallow Soft Deposits - Length 100 m **S10** Highway 12 Whitby/Oshawa 3.0 High Water Table Area - Immediately East of Highway 12 Boundary Shallow Soft Deposits - Length 400 m High Water Table Area - 300 m East of Highway 12 \$11 Thickson Road Whitby/Oshawa 1.2 None Boundary Shallow Soft Deposits - Length 200 m \$12 Whitby/Oshawa 1.3 High Water Table Area -Thickson Road 0.5 km East of Thickson Road Boundary Shallow Soft Deposits - Length 200 m C1 Regional Road 30 Sideline 30 2.3 High Water Table Area - Just East of Regional Road 30 River Bank Erosion - 0.5 km **Erosion Protection to Bridge** East of Regional Road 30 Abutment Across River Possibly Foundation Instability C2 5.0 None Sideline 30 Brock Road Shallow Soft Deposits - Length 100 m High Water Table Area - 0.7 km C9 Sideline 30 Sideline 1 7.6 East of Brock Road None C3 Sideline 1 1.7 Brock Road Deep*3 Soft Deposits - Length 350 m 3.4 High Water Table Area - 1.0 km C4 Sideline 1 Salem Road

East of Sideline 1

TABLE 1 HIGHWAY 407 ROUTE PLANNING AND ENVIRONMENTAL ASSESSMENT STUDY PROPOSED ROUTES - PRELIMINARY GEOTECHNICAL APPRAISAL HIGHWAY 48 TO WHITBY/OSHAWA BOUNDARY

	Assu	ned Route Limits			
Route	From	То	Length (km)	Geotechnical Hazards Within Route Limits	Anticipated Associated Geotechnical Conditions
C5	Salem Road	Regional Road 1	6.4	None	
CS1	Side Road 4	Coronation Road	3.3	Gravel Pit - 3.3 km East of Side Road 4	Deep Road Fills - Length - 80 m
C6	Có Regional Road 1 Du		2.1	High Water Table Area - 0.2 km East of Regional Road 1	Shallow Soft Deposits - Length 250 m
C8	Duffs Road	Whitby/Oshawa Boundary	2.4	None	
N1	Salem Road	Duffs Road	8.5	High Water Table Area - 0.3 km East of Pickering Whitby Boundary High Water Table Area - 1.0 km West of Duffs Road	Shallow Soft Deposits - Length 400 m Shallow Soft Deposits - Length 300 m
N2	Duffs Road	Whitby/Oshawa Boundary	2.0	None	

NOTES:


1) Geotechnical Hazards as noted above were interpreted from Geocon Drawing No. T11547A-02 entitled "Highway 407 Route Planning and Environmental Assessment Study (Hwy 48 East to Whitby/Oshawa Boundary) (WP-282-86-01) - GEOTECHNICAL HAZARDS"

2) Routes analysed were presented on Fenco Engineers' Drawing dated March 27, 1990

3) In the above table "Shallow" refers to deposits less than 3.0 m thick and "Deep" represents deposits between 3 and 10 m thick.

DOCUMENT MICROFILMING IDENTIFICATION

GEOCRES No. 30MIA -244 DIST._____REGION_____ 1,1730 JEFL 17/0 W.P. No. 91-78-00 CONT. No. W. O. No._____ STR. SITE No. HWY. NO. E.M.T.C. LOCATION SLOPE STABILITY No of FREES -OVERSIZE DRAWINGS TO BE INCLUDED WITH THIS REPORT. REMARKS:

and Back slothe adjacent & Miller Property 2:1 side slopee e 10' Bern with interreptor ditching Require Exc. of some Millie Property by else 267 Option O 1.75:1 side slipes à 2×5 bern with interceptor ditching à subdrains Require No Additional Grading Officer (E) Option 3: 1075:1 side slopes à 2×10 berns unto intercepté ditabing à subdrains. Required Exc. of limited Miller Property to class 270 Toe Slostpeon O Requires Protection against toe enough O Steep natural slopes many require counterfait drains, 3 Provide C.S. P. in areas when and benching stand the 25

Date: 1980-03-19

To: Mr. R.D. Gunter Head, Geotechnical Section Central Region

Attention: Mr. A. Shopoff

From: Pavement & Foundation Design Section Room 313, Central Building Downsview

GEOCRES = 30 M14 - 244

Re:

Slope Stability Station 175+00 to 200+00 W.P. 91-78-00, E.M.T.C.

In your letter to us dated 1980 02 20, you requested our Office to carry out an investigation to assess the slope stability in critical areas at Sta. 184+00 of the proposed East Metro Transportation Corridor. Our verbal recommendations for the areas in question were made at a meeting on 1980 03 13 between Mr. M. Thompson, Mr. I. Williams, Mr. A. Shopoff, Mr. M. Devata and Mr. M. MacLean. We are hereby confirming our verbal recommendations.

Our slope stability recommendations are based on the results of the Feasibility Foundation Investigation Report for the East Metro Freeway issued January, 1979 under W.P. 25-69-00. The investigation indicates that in the area of concern subsoil conditions consist of an extensive deposit of a generally hard glacial till deposit extending to depths of up to 85 feet below ground surface.

We understand that at Sta. 184+50 (refer to attached sketch), the required E.M.T.C. grading, left of centerline, using 2:1 side slopes with a 10 foot wide mid-height berm will require property in excess of a committed property line. Current proposals call for maintaining the property line by constructing retaining walls up to 30 feet high. At this location we recommend temporary easement of a limited amount of Miller property, regrading, and possible landscaping to accommodate the 2:1 slope with a mid height berm within our committed property line. It should be noted that the suggested regrading would be carried out on a small high knob at the extreme limits of Miller property and would, in our understanding of Miller's development proposals, be to the benefit of the property owner. The natural slope, right of centerline, will be stable provided one of the following alternatives are carried out.

- 1) Protection of the toe of slope against scour from Malvern Drain by means of rip-rap. Longterm maintenance may require the installation of some counterfort subdrains in the face of the natural slope.
- 2) Protection of the toe of slope against scour by maintaining the Malvern Drain in a culvert of adequate hydraulic size, and grading over the culvert to form a berm to improve the stability of the natural slope.

. 4

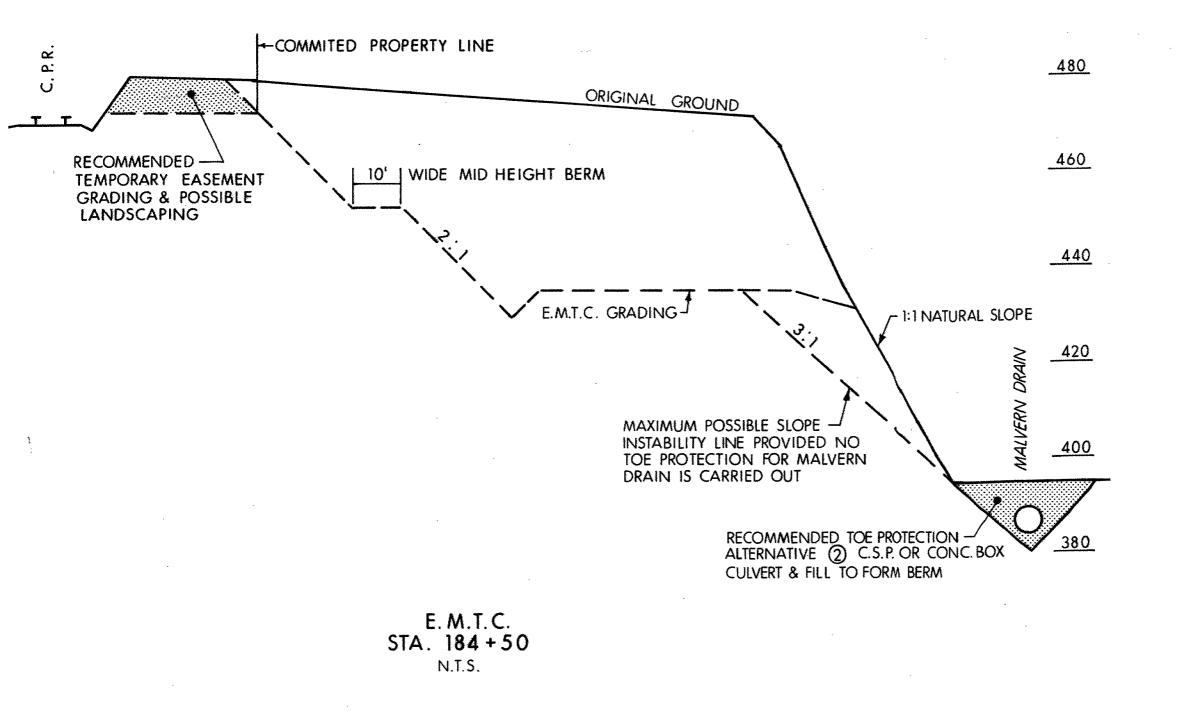
If it is not possible to carry out either of the above alternatives because of other factors, i.e. environmental constraints, then the highway alignment should be shifted westerly to enable the natural side slope to eventually stabilize without encroaching on the E.M.T.C. at a 3:1 slope.

- 2 -

If you have any further questions, please do not hesitate to call us.

M. Mache

MM:MD:ea


M. MacLean Project Foundations Engineer

For:

M. Devata Senior Foundations Engineer

cc: M. Thompson

I. Williams, M.M. Dillon

MEMO TO: File

CC: All in Attendance, Murray Thompson

FROM:. Ian Williams

SUBJECT: EMTC Preliminary Design Study

FILE: 8277-01

DATE: 14 March 1980

MAR 2 4 1980

MEETING WITH MTC GEOTECHNICAL OFFICE

On Friday 14 March 1980 a brief meeting was held with representatives of MTC geotechnical office (head office). This meeting was a followup to the meeting held on 13 March.

Those in attendance were:

	Devata McLean		MTC	G	eotechni "	ical	Section	ι
	Williams		Μ.	м.	Dillon	Limi	ited	

At the 13 March meeting the group, in discussing the currently recommended design for EMTC in the vicinity of Morningside Creek, had reviewed incorrect cross sections in the vicinity of Sta.184. Those cross sections (relevant to an earlier abandoned scheme) showed a large retaining wall on the east side of EMTC adjacent to Morningside Creek.

The currently adopted scheme allows comparatively minor westerly shift in the centre line of EMTC and eliminates the need for this retaining wall. The latest scheme (see Sta.184) locates EMTC as far east as reasonable whilst maintaining the existing natural slope on the channel bank.

The consultant asked the MTC representatives their opinion of this scheme.

Mr. Devata and Mr. McLean noted that the scheme would be acceptable from a soils point of view and would eliminate the need for the retaining wall or the major north-south culvert to carry the creek (this had been discussed at the previous meeting on 13 March).

It would however be necessary to take measures to ensure that the natural channel bank did not erode over time due to the creek flow at the bottom. This could be accomplished by either erosion protection or by placing the creek in a culvert along its existing location. The consultant asked the representatives opinion if environmental concerns made it impossible to do any remedial work in the creek bottom.

Mr. McLean and Mr. Devata replied in this case it would be necessary to shift the EMTC alignment further to the west to protect for a flatter natural slope (e.g. 2:1) together with a bench. It was noted that such a westerly shift would in fact approximate the other more westerly alternatives discussed at the 13 March meeting.

Mr. Devata noted that any stability problems possibly caused by vibration due to the highway operation would not be significant.

IW:ml

y 🕸 🖓 💴 🛋

To: Mr. M. Devata, Soil Mechanics Office, Main Floor, West Building. Date: 1980-02-20 Central Region.

W.P. 91-78-00, E.M.T.C. SLOPE STABILITY STATION 175+00 TO STATION 200+00

M.M. Dillon Limited requested for our comments regarding slope stability and erosion control for the E.M.T.C. from Station 175+00 to Station 200+00. The horizontal alignment within this section is controlled by the Rouge River on the east side and the committed property line on the west side. Also the vertical alignment is controlled by the C.P.R. Spur Line Crossing E.M.T.C. at Station 181+00±.

Because the proposed 2:1 cut-back slope with 10' midheight berm encroaches the committed property line for about 15', a retaining wall about 20' from the property line is proposed (refer to cross-section Station 184+00, roll #2).

Since this investigation involves high cut-back slope on the west side, almost 1:1 natural slope on the east side (refer to cross-section Station 184+00, roll #2), retaining wall as high as 50' on the east side (refer to cross-section Station 182+50, roll #1) and retaining wall close to midheight cut-back slope (refer to cross-section Station 184+00, roll #2), we are asking you to do the investigation.

Attached are: Copy of the request from M.M. Dillon Ltd., copy of my comments for the E.M.T.C. from Sheppard Avenue to Finch Avenue, two rolls of cross-sections, profile and plan for this section.

For your information, I am also attaching a copy of a report dealing with long term safe slope stability for the west bank, Rouge River, South of Finch Avenue.

a. Shopoff A. Shopoff,

AS:lc

for: R.D. Gunter, Head, Geotechnical Section.

c.c. Ian Williams, P. Eng. Project Manager M.M. Dillon Ltd. 482-5656

REC. GE PRE DESMU ONLY.

JAMES F. MACLAREN LIMITED

TEL 416 924-7411 CABLE "JAYMAC"

ON LONDON ON HALIFAX .OVERSEAS

321 BLOOR ST. EAST.

TORONTO 5. ONTARIO

REFERENCE NO 133

October 28, 1971

Municipality of Metropolitan Toronto, Department of Parks and Recreation, 10th Floor, East Tower, City Hall, TORONTO 1, Ontario

Attention:

n: Johnson, Sustronk, Weinstein, Doctory and Associates Limited, 819 Yonge Street, TORONTO, Ontario

Report on Valley Crest Setback Limits,West Bank, Rouge River, South of Finch Avenue

Gentlemen:

In the light of potential future development along the Rouge River Valley, our firm was invited to discuss the details of establishing setback limits for development adjacent to the river valley wall. The section of river under study is the west bank of the Rouge Valley, extending about 5000 feet south of Finch Avenue.

It was agreed that the following detailed terms of reference would provide a reasonable basis for establishing a limit for potential development:

, i)

Review the geological history, conduct a field examination of the site geology, and determine the likelihood of significant micro-geological deviations.

...2

ii) Review existing methods of soils investigation and laboratory testing and determine acceptable factors of safety against erosion and the methods of calculation. iii) Determine existing slopes in the area and the conditions required to maintain future stable slopes. Review the purpose of potential methods iv) of enforcement of regulations. Recommend objectives and content of crest v) setback regulations, including monitoring procedures. vi) Submit a report on the results of the study. The required work has now been completed and the following represents the required report on the results of the study. Data Collection In order to properly evaluate the existing conditions along the west bank of the river, it was necessary to utilize numerous sources of information. Initially, the investigation consisted of a review of all available soils reports, maps, etc., applicable to the area, to become familiar with the regional geology. An investigation of

with the regional geology. An investigation of sequential aerial photographs (1954, 1960, 1968, 1970) of various scales was then conducted to analyse local geologic and soil conditions, drainage patterns, historical development along the river (i.e. changes in land use, filling of - river banks, etc.) and the general meandering trends of the river over the past 15 years.

A field investigation of the site was then made by members of our firm and Golder Associates, Consulting Geotechnical Engineers, in order to

. . . 3

further evaluate local soil conditions, and to determine preliminary parameters necessary to formulate the setback recommendations.

The analysis of the findings on the site conditions are shown in a separate report by Golder Associates, entitled "Slope Stability Considerations, West Bank, Rouge River". Extensive use of the Golder Report has been made in the preparation of this report.

Cross-sections were prepared for respresentative valley slopes from aerial photography by Lockwood Survey Corporation Limited and used to determine existing slopes.

Site and Gelology

The area under consideration is located along the west bank of the Rouge River adjacent to the site of the proposed Metropolitan Zoo in the Borough of Scarborough, Ontario, as shown in Figure 1. The river meanders its way through a valley about 1000 feet wide. Inertia of the stream at bends accelerates erosion on the outside of the bends, developing meanders. Progressive meander is outward and downstream on the bends, working and reworking the entire floodplain without achieving horizontal stability unless artificially restrained. The progressive river meanders were plotted from the sequential photography to outline the future trends of the river, and to indicate the extent and location of required bank protection devices. The western bank may be divided into a northern area and a southern area separated by a small tributary creek flowing into the Rouge River through a heavily wooded valley. Figure 1 also shows the vertical sections determined from aerial photography.

In the northern area, the top of the slope is approximately 130 feet above the river and the land behind the crest slopes gradually down to the west a total of 15 feet over a distance of 400 feet. In the southern area the top of the slope is approximately 90 feet above the river and the land behind the crest is generally flat.

. . . 4

The upper strata generally consists of buff sandy tills which grade with depth into fine sandy silt tills. Below depths of 65 to 85 feet layers of stratified coarse sands, micaceous silty tills and peaty beds are evident and continue to the bottom of the exposes slopes.

Geologically, the Rouge River is in a young state and the present valley walls, cannot be considered to have established their geologically long term stable slope angle. In two obvious locations there is active erosion of the detritus at the toe of the slope by river action during high flow flood stages. The removal of this material is contributing to the general long term migration of the valley walls away from the river.

Slope Stability

An analysis of the factors which effect the stability of natural slopes is presented in Appendix "A". Although detailed soil characteristics at the site were not determined, it was possible to establish a probable range of values for the area based on examinations of the exposed slopes and comparisons with investigations and events at other locations of similar geologic origin.

These estimated values of soil parameters were used to determine the theoretical long-term crest position, and the safe slope angle was calculated for a factor of safety against movement of 1.5. The calculations suggest that slopes slightly flatter than 3 (horizontal) to 1 (vertical) would be appropriate for the study area.

Assuming that further toe erosion of the river is prevented, it may be assumed that the toe of the slope will remain relatively fixed, and the gradual long-term surficial erosion from seepage will, with time, flatten the slopes. Thus, the crest of the present slopes will gradually move westward away from the river until a safe slope angle consistent with the strength of the soil is reached.

Discussion and Recommendations

It is apparent that the erosion of the toe of the valley wall slope must be prevented to permit the slopes to attain their natural angle of repose. This protection can be afforded by the use of gabions or rip rap. The design of the protective devices should allow for the passage of groundwater readily from the slope to the river. Any device that will cause a rise in the existing groundwater level will reduce the stability of the slopes and accelerate the flattening of the slopes.

The long-term stable slope of the valley wall is in the order of 3.5 horizontal to 1 vertical. The zone of future potential slope crest movement is an area varying from 160 to 305 feet from the top of the existing slope, depending on the specific location. It is possible that this distance may be reduced depending on the results of detailed soils investigations in specific areas.

As a result of the foregoing, the following recommendations are made:

1. In order to properly control development in the area subject to slope crest movement the land outlined in Figure 2 should be purchased.

 Toe erosion protection should be placed along a reconstructed slope of two horizontal to one vertical in the locations shown in Figure 2.

All of which is respectfully submitted.

Yours very truly,

D. P. Sexsmith, P. Eng. Group Manager

PALC.

R. G. Graham, P. Eng. Project Engineer

DPS:rf

S.F. MAGLAREN LIMITED

APPENDIX I

A. MECHANICS OF SLOPE STABILITY

The factors which influence the ability of a slope to resist gravitational movement downwards into an adjacent valley may be summarized as follows, and a graphical representation of these variable is given on Figure 1 of this Appendix.

Slope Geometry

While complicated and compound slopes are normally observed in nature a slope may be characterized by an overall slope angle (β) and the total vertical height (H).

Weight of Soil;

or " 🎖 " pounds per cubic foot.

Soil Strength;

Which is typified by an effective angle of internal resistance, ϕ' , and an effective cohesion, c', (or shear strength at zero normal effective pressure). The shear strength along possible failure surfaces, which is the critical strength condition, is related to the applied effective normal pressure, σ_n' , in the following equation:

Shear strength = c' + σ_n tan ϕ'

Groundwater conditions

Variations in the groundwater elevation will influence the stability of slopes. In general, the higher the groundwater elevation, the more
unstable the slope. For convenience in numerical analysis, the groundwater may be expressed as the ratio of the water pressure to the existing soil overburden pressure, in the following form:

ru = $\frac{\text{groundwater pressure}}{\text{overburden pressure}} = \frac{\delta \omega h \omega}{\delta h}$ (see Fig.1)

E

...2

External Conditions

Changing external conditions, such as erosion of the toe of a slope or the construction of buildings near the crest, will alter the stability of the slope by increasing the slope angle or by increasing the weight which must be resisted along a critical failure surface. A wide variety of external conditions may be possible.

B. WEST SLOPE CONDITIONS

While each of the previous factors will vary from site to site, it is possible to establish a probably range of values for a particular location based upon exposed slopes at the specific site and similarities with other locations of similar geologic origin.

Slope Height

Based upon the vertical sections shown in Figure 1, the slope height in the northern area will range from about 100 ft. to 140 ft., while in the southern area, the present slope height ranges from 70 ft. to 110 ft.

Slope Angle

The present slopes in the study area may be divided into two groups. At sections 1 and 5, toe erosion and seepage under flood conditions have created bare scarps, resulting in compound slopes with a steep upper face and a talus of colluvial material near the toe. In the remaining sections, natural tree and brush cover has stabilized the slopes at slightly flatter angles. The following table summarizes the present range of values:]

...3

	RANGE OF	EXISTI	NG SLOPE	ANGLES
	FRO	М	то	
Slope Condition	Slope <u>Angle</u>	cot	Slope <u>Angle</u>	<u>cot</u>
Upper portion of eroded slopes	54 ⁰	0.72	`56 ⁰	0.67
Lower portion (talus) of eroded slopes	13 ⁰	4.1	310	1.6
Upper portion of wooded slopes	380	1.3	47 ⁰	0.9
Lower portion of wooded slopes	230	2.3	28 ⁰	1.8

Previous investigations in the upper reaches of Black Creek near Troutbrooke Drive in the Borough of North York have indicated that stable grassed slopes may exist at slopes in the order of 18° or 3 (horizontal) to 1 (vertical) for the stratified silts and varved clays which exist at that locality. When these slopes were artificially steepened by the placement of fill to create large level areas for backyards, slope movement occurred and remedial measures were required.

Similarly, an earlier investigation in the till soils along the upper reaches of the Humber River near St. Lucie Drive indicated that the slopes were in an incipient state of failure at slope angles between 20° and 25° (or between 2.8 and 2.1 horizontal to 1 vertical). In this case, slope movement had been on heavily wooded slopes, and assisted by a relatively high ground-water table combined with erosion at the toe of the slope. Extensive remedial measures and flattening of the overall slope were required. These values indicate the probable range of long term slope angles which may be established in the region of the Rouge River.

Weight of Soil

The typical range of unit weight of soil for tills in the Toronto area is between 125 pounds per cubic foot and 140 pounds per cubic foot.

Soil Strength

Groundwater seepage was evident near the bottom of the slope near section 5 in the stratified sands and silty till soils, and minor slumps and earth flows were evident. Assuming that the seepage flow is parallel to the surface and that the factorof safety against soil movement is 1, it may be estimated from the following relationship that the composite effective friction angle for the stratified deposits is in the order of 26° to 28° .

Factor of Safety =
$$\frac{\lambda' \tan \phi}{\lambda}$$
 tan ϕ

Seepage was not evident in the colluvial or talus. material which has accumulated near the toe of the slope at section 1, although the soil was moist. For this condition, the slope angle is approximately equal to the angle of internal friction for the soil. It is therefore suggested that the effective angle of friction is in the order of 31° for the sandy till materials near

Typical values for till soils in southern Ontario, with the value computed from the unstable slope conditions at St. Lucie Drive are given below:

	<u>c'</u>	ø١
	Lbs/sq.ft.	
Upper range St. Lucie Drive Lower range	150 250 400	35 ⁰ 28 ⁰

These values will vary with the plasticity and clay content of the till soils, which is normally assessed by the Atterberg Limits.

Groundwater Conditions

In the absence of any known groundwater conditions, it is difficult to establish a probable range of values. Seepage conditions in the southern section indicate possible values in the order of $r_{\rm u} = 0.2$ to 0.3 but seepage conditions under spring time conditions are not known.

C. LONG TERM SAFE SLOPE CONDITIONS

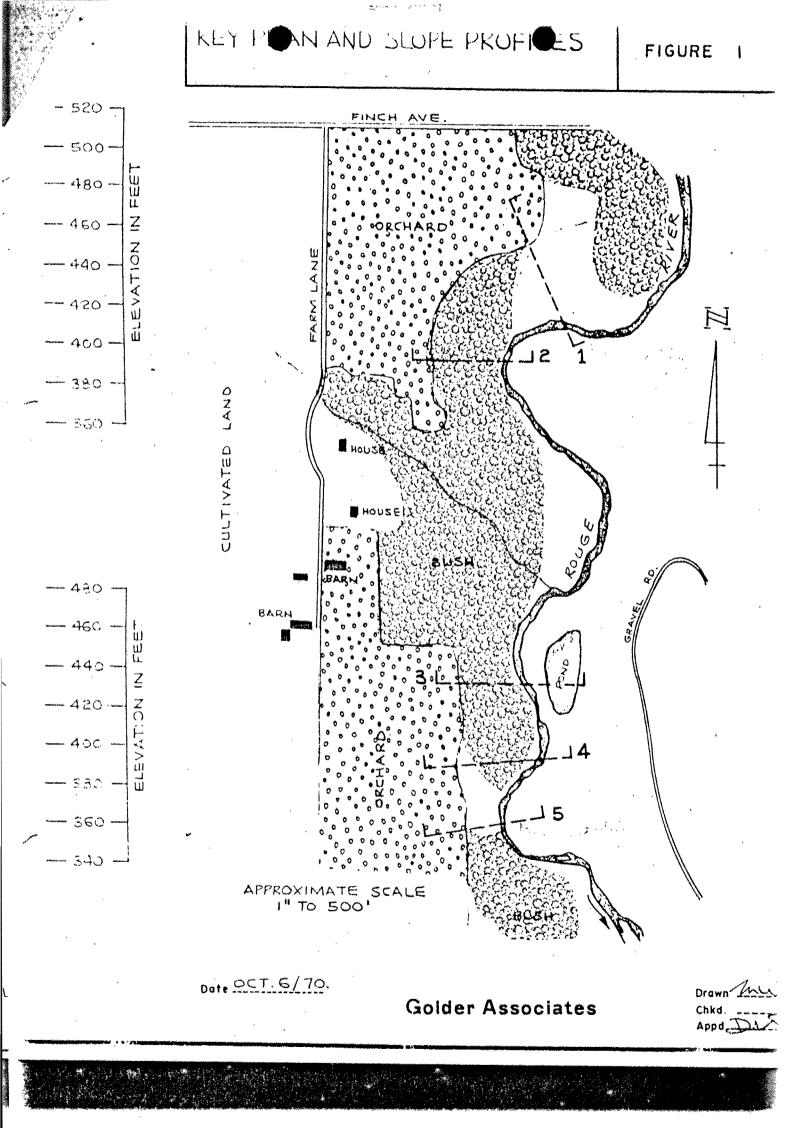
In the absence of specific geotechnical data about the soils in the study area, the long term safe slope angle for the west bank of the Rouge River cannot be determined exactly.

On the basis that further toe erosion by the river is prevented it may be presumed that the toe of the slopes will remain relatively fixed, and that gradual long term surficial erosion, from seepage will, with time, flatten the slopes. Thus, the crest of the present slopes will move westwards away from the river until a safe slope angle consistent with the strength of the soil is obtained.

In order to obtain a reasonable estimate of the maximum long term crest position, typical soil parameters were assumed for a variety of groundwater conditions, and the safe slope angle was calculated for a factor of safety against movement of 1.5. A factor of safety (or uncertainty) of 1.5 was]

]

1


]

selected because of the approximate nature of the calculations. Sometimes a value lower than 1.5 may be appropriate depending upon the precision with which the soil strength and loading conditions are known. This slope angle in turn permitted the distance back from the toe of the slope to be calculated, and thus gave an indication of the ultimate crest location.

The results of these calculations are given on Figure 1 of this Appendix. Assuming that groundwater conditions are such that a probable value of $r_u = 0.3$ is applicable the safe distance back from the existing toe of the slope for varying heights is as follows:

Assu stre		Slope height	Slope length	(horizonta	al) to (ve	ertica
<u>c'</u>	<u>ø'</u>					
375 375 175	25 ⁰ 25 ⁰ 35 ⁰	70ft. 110ft. 140ft.	250ft 410ft. 420ft.	3.6 3.7 3.0	to to to	1 1 1

These values would suggest slopes slightly flatter than the 3 (horizontal) to 1 (vertical) which were evident for the marginally stable slopes reported in earlier studies.

M. M. DILLON LIMITED

consulting engineers and planners

BOX 219, STN. K. TORONTO, CANADA M4P 265 . (416) 482-5656 . CABLE: DILLENG . TELEX 064-7540

OUR FILE: 8277-01

22 January 1980

Mr. R. D. Gunter, P.Eng. Head, Geotech. Section Ministry of Transportation and Communications Central Region 3501 Dufferin Street Downsview, Ontario M3K 1N6

Attention: Mr. A. Shopoff

EMTC Preliminary Design Study

Dear Sir:

Enclosed are the following plans:

No. Description

FP41 Plan 200'=1" showing the EMTC from approximately Sheppard Avenue to Finch Avenue.

FP41A Profile of EMTC for the same section.

FP41B Cross-sections for the same section.

The topography and soils conditions in the area between Sta.175 to Sta.200 are such that we have some concerns over the current designs. South of Sta. 175 there are certain other concerns which are already under investigation by the Geotechnical Office and have been the subject of recent discussions between Mr. A. Shopoff and the writer.

The following factors are relevant to the design of EMTC in the section between Sta.175 to Sta.200:

... continued

50 HOLLY STREET, TORONTO, ONTARIO

TORONTO LONDON OTTAWA WINDSOR SUDBURY CAMBRIDGE THUNDER BAY WINNIPEG EDMONTON YELLOWKNIP

Ministry of Transportation and Communications

22 January 1980

 Property controls: no significant realignment to the west can be accommodated due to an earlier commitment by the Ministry to observe the illustrated property line through the Miller property south of Sta.181.

There are certain significant geotechnical advantages in keeping the alignment as far west as possible and this has been done on the attached plans through the use of retaining walls.

Obviously no significant easterly shift in the alignment is feasible due to the proximity of the Metro Zoo.

- Profile controls: the EMTC must cross under the CPR spur line at Sta. 181+. South of Sta.181+ the profile of EMTC is under review based upon previous Geotechnical comments concerning the EMTC/Sheppard Avenue area.
- Environmental concerns: between Sta.187 and Sta.194 the EMTC crosses the Morningside Creek which is tributary to the Rouge River. Between Sta.189 and Sta.192+70 the EMTC in fact runs along a north-south section of the creek. This creek has been identified as having some natural environmental significance in the area.

It can be anticipated that the exact design of the EMTC in this area will be subject to scrutiny and criticism because of perceived environmental effects. These effects include bank stability at the Morningside Creek, and erosion concerns. Other information in the area has identified that the Rouge River Valley itself has comparatively unstable banks. It is therefore possible that the same situation would apply to the Morningside Creek. Our concerns over possible bank instability are illustrated by the cross-section at Sta.184+00.

We would appreciate comments on the overall stability and erosion situation in this area. Specific recommendations to eliminate or minimize these problems will be included in the relevant environmental assessment report.

Yours truly,

M. M. DILLON LIMITED

Ian Williams, P.Eng. Project Manager

IW:ml

cc: M.Thompson

Mr. W.C. Friedmann, Supervisor, Planning Unit, Central Region.

Regional Geotechnical Section, Central Region.

Mr. M. Thompson

79 11 13

91-78-00

W.P. 25-69-00, E.M.T.C., Sheppard Avenue to Finch Avenue, District 6, Toronto.

As requested, we are forwarding the following comments regarding the proposed alignment, profiles, encroaching the theoretical limit of the slope stability and treatment of the tributary creek, Station $177+00\pm$ to Station $195+00\pm$.

(1.) Alignment

We have no comments pertaining to the proposed alignment except from Station $177+00\pm$ to Station $195+00\pm$, which will be discussed in detail under the heading (4.) "Treatment of the Tributary Creek, Station $177+00\pm$ to Station $195+00\pm$ ".

(2.) Profiles

As stated on our previous memorandum to you dated August 24, 1978, the subsoil to a depth of 20' consists of fine to very fine sandy loam to sandy clay loam till. Below 20', the soil consists of extremely hard very fine sandy clay till which will require ripping prior to excavation. Also, numerous water bearing seams of sand, on the average one inch thick, were encountered throughout the till deposit. These water bearing seams will undoubtedly require a dewatering system. For this reason, 10' wide benches on mid-height cut back slopes over 30' in height and intercepting ditches for the run-off water at the top of the back slopes will be required.

Based on the soils conditions here the following are our comments for the four alternatives submitted by your Office.

(a.) Alternative I

(1) Advantage

This alternative has no vertical curve from

(continued ...

(... continued)

the C.P.R. spur, Station 180+00± northerly and runs on a 0.5% slope which provides excellent and uniform longitudinal ditch and subdrain drainage at all cuts and provides more than the required noise barrier here.

(ii) <u>Disadvantages</u>

Cuts are quite deep, specifically at Station 215+00± where the cut is about 36' deep, which will require 10' wide benches at the mid-height of the cut back slopes, interceptor ditches at the top of the cut back slopes are required. Additional property may be needed for the interceptor ditches. If severe water bearing strata is encountered at any elevation of the cut back slopes, expensive slope treatment will be required.

(b.) <u>Alternative</u> II_

(i) Advantages

This alternative has almost the same advantages as the Alternative I.

(ii) Disadvantages 🖗

Since most of the cuts are deeper than 20' in some locations (Station $215+00\pm$ is about 30' deep), this alternative has almost the same disadvantages as the Alternative I except this alternative will require less property.

(c.) <u>Alternative III</u>

(i) Advantages

This alternative is the most favourable as it has all the advantages of the previous two alternatives. In addition the need for benching the cut slopes and providing interceptor ditches is eliminated. Also, if severe water bearing strata are encountered, minimum treatment will be required to stabilized the cut slopes. Because less property will be required, the alignment can be shifted further to the east, towards the previously determined limit of slope stability. (ii) <u>Disadvantages</u>

No comments.

(d.) Alternative IV

From the soils point-of-view, construction, cost, etc., this alternative is the most acceptable. It requires less property than any of the other three alternatives, minimizes excavation, earth surplus, eliminates benching, intercepting ditches, (if severe water bearing strata is encountered), the cost for the treatment of cut back slopes will be minimized.

However, this alternative does not meet the noise barrier requirements (minimum 15' to 20') and since the profile is depressed at Station 236+00 \pm , a storm sewer from Station 236+00 \pm either northerly to Rouge River crossing (Station 242+00 \pm), or southerly to the ditch crossing at approximately Station 218+00 \pm will be required.

(3.) Encroachment the Limits of the Theoretical Slope Stability

The limits of the slope stability shown on the plan runs almost parallel with the proposed alignment, whereas the horizontal distance between the Rouge River and the slope stability limits line varies from 200' at Station $221+00\pm$ and 500' at Station $214+00\pm$.

James F. MacLearen Limited of Toronto have prepared a detailed Slope Stability Report for the west bank of the Rouge River for this location. Based on their detailed investigation, they came to the conclusion that the long term safe slope ratio for this area cannot be determined exactly and that gradual long term surficial erosion from seepage will, with time, flatten the slopes. They suggested slopes lightly flatter than 3:1, which is evident for the marginally stable slopes, as reported in earlier studies.

In conclusion, the long term stable slope of the valley wall is in the order of 3.5:1 (3.5 horizontal to 1 vertical).

In order to determine accurately the limits of the Slope Stability, a cross-section at 200' to 500' intervals should be prepared. Then at 3.5:1 the slope from the toe of slope should be projected upward to establish the limits of the slope stability.

(continued ... 4.)

continued)

This limit should not be encroached. If the limit of the established slope stability is encroached, particularly in areas with severe abnormal ground water. conditions, any water bearing layer located just under the ditch line and sloping transversally towards the Rouge River has the potential to create slope stability problems. During wet periods external water from the surface added to the internal water of the water bearing sand layer could increase the internal pressure, thus decrease the cohesiveness of the particles within the water bearing layer. This coupled with the weight of the road load could result in shear failure within the water bearing layer. There are some cases in the Niagara (Fonthill) area where part of the road moves laterally almost parallel with the slope.

(4.) Treatment of the Tributary Creek, Station 177+00± to

Station 195+00±

The most critical location of E.M.T.C. alignment is at the vicinity of Station 182+50± where the alignment is controlled by the C.N.R. spur on the west side and the creek on the east side. The vertical distance on the west side particularly at the east ditch line is about Here a 15' wide bench at the mid-height of the cut 45*. back slope and intercepting ditch for the run-off water at the top of the back slope will be required. " If severe water bearing strata is encountered, very expensive cut back slope treatment will be required. This may affect the railway tracks and if this occurs, a retaining wall may have to be built.

On the east side, as you show on the cross-section, a retaining wall 38' high and about 500' long will be required. If this alignment is accepted, the retaining wall should be extended upward for another 10' to serve as a guiderail between the road and the creek. Since the transversal transition here is near the centreline of the northbound lanes and the existing slope is nearly 1:1, heavy grading will be required. (Refer to benching Standard DD-414.) Another retaining wall or creek realignment will be required from Station 188+00± to Station 192+00±.

To eliminate retaining walls, increase the distance between the C.P.R. spur and the centreline E.M.T.C. and

(continued5.)

- ... continued)
 - 1 1 The standing high and and the stand the second stands and second possible elimination of benching requirements (Standard DD-414), and 15' wide benches at the mid-height cut back slope, the following is suggested:

S. S. Same

- Re-align the creek from Station $180+00\pm$ to Station $184+00\pm$ westerly and the E.M.T.C. centreline easterly to a location where the re-aligned creek will run along the centreline E.M.T.C. median.
- Construct culvert, along the centreline E.M.T.C. median for the new creek. \$ 268-51
- Re-align the creek westerly from Station 188+50± to Station 192+00±.

If any clarification or additional information is required, please feel free to contact this Office.

198 S

AS/RDG:saw

For: R.D. Gunter

A. Shopoff

Head, Geotechnical Section

Appendix B

Previous Investigations

GEOTECHNICAL INVESTIGATION PROPOSED ZOOMOBILE BRIDGE NEAR INDO-MALAYAN PAVILION TORONTO ZOO SCARBOROUGH, ONTARIO

Report

to

CHISHOLM, FLEMING AND ASSOCIATES

Thurber Engineering Ltd.170 Evans Avenue, Suite 101Etobicoke, OntarioM8Z 5Y6Phone:416-503-3600Fax:416-503-3010

April 12, 1999 File: 19-2211-7

Scott Peaker, P.Eng Associate, Project Engineer

TABLE OF CONTENTS

1.	INTRODUCTION 1
2.	PROJECT AND SITE DESCRIPTION 1
3.	METHOD OF INVESTIGATION 2
4.	SUBSURFACE CONDITIONS34.1Stratigraphy34.2Groundwater44.3Results of Water-Soluble Soil Sulphate Testing5
5.	GEOTECHNICAL RECOMMENDATIONS55.1General5.2Recommended Geotechnical Design Parameters65.2.15.2.2Subgrade Reaction Below Pier Bases75.2.35.2.4Earth Pressures Acting on Permanent Retaining Walls85.2.45.3Construction Recommendations95.3.15.3.2Excavations and Excavated Material105.3.3Surficial Slope Stability
6.	CLOSURE 11

Drawings

Drawing 19-2211-7-01 Borehole Location Plan

List of Appendices

Appendix A	Borehole Logs
Appendix B	Laboratory Testing Results

1. INTRODUCTION

1 1

This report presents the results of a geotechnical investigation carried out by Thurber Engineering Ltd. (TEL) for a proposed bridge crossing a ravine adjacent to the Indo-Malayan Pavilion at the Toronto Zoo in Scarborough, Ontario. This investigation was completed by TEL for Chisholm, Fleming and Associates (CFA), as authorized by Mr. Eric Tuson, P.Eng.

The purpose of the investigation was to determine the subsurface conditions in the vicinity of the proposed abutment and pier locations and based on that information, to provide geotechnical recommendations for the design and construction of shallow foundation elements.

The contents of this report are subject to the attached Statement of General Conditions. The reader's attention is specifically drawn to these conditions as it is considered essential that they be followed for the proper use and interpretation of this report.

2. PROJECT AND SITE DESCRIPTION

We understand that, as part of circulation improvements at the Toronto Zoo, it is proposed to construct a three-span prefabricated steel (Eagle) bridge crossing an approximately 18m deep ravine. The bridge will link existing paths located between the Indo-Malayan Pavilion and the Indian Rhinoceros Pavilion and will provide access for the Zoomobile and for Zoo service vehicles. The bridge will be supported on two piers located within the valley and on reinforced cast-in-place concrete abutment walls, constructed near the opposing crests of the ravine. The total span is approximately 70.5m.

The site is located in a ravine leading off the Little Rouge River. The ravine slopes are well vegetated with trees but have minimal undergrowth. There is an existing steeply inclined asphalt-paved roadway cut into the southern valley slope with a low gabion retaining wall providing grade separation. The ravine slopes are inclined at approximately 2H:1V.

The existence of younger trees along the slope faces with up-turned growth suggests that surficial soils along the slope are creeping. In addition, we noted at least two small slip failures evident in the lower third of the northern ravine slope near the proposed bridge alignment. The exposed soils within the failed soil masses consisted of very moist sandy silt with some clay and organic material.

We understand that the existing timber trestle bridge to the west of the proposed bridge site has experienced some problems with surficial erosion/sloughing which resulted in exposure of the footings. We further understand that this problem was rectified through the construction of new crib walls and erosion control measures at the abutments. A creek, which is reported to have only intermittent eastward flow (flow is primarily during spring thaw), follows a very narrow channel along the base of the ravine.

3. METHOD OF INVESTIGATION

The field investigation for this project was carried out on March 17 and 22, 1999 and consisted of advancing four (4) boreholes, to depths ranging from 1.7m to 7.7m. The boreholes were advanced in the vicinity of the pier and abutment locations as approximately shown on the attached Borehole Location Plan, Drawing No. 19-2211-7-01. Control points denoting the pier and abutment locations were prestaked in advance of the work by the surveyors, Sexton McKay Limited.

Borehole 99-4 was drilled using a truck-mounted CME-55 drill rig equipped with 100mm diameter solid stem augers at the south abutment location, while the remaining borings 99-1 through 99-3 were advanced using a portable tripod and cathead unit (70lb and 140lb hammers) since road access to the pier and north abutment locations was not available and tree clearing was not permitted. Drilling work was undertaken by Eastern Soil Investigations Limited of Courtice, Ontario who were supervised by a Thurber technologist.

During drilling of the boreholes, continuous Standard Penetration Tests (SPT) with associated split spoon samples were completed within the boreholes advanced using the portable equipment. SPT blow counts ('N' values) as shown on the borehole logs of Appendix A have been adjusted to account for the reduced driving energy in cases where the 70lb hammer was used. Limited depths of penetration were achieved at the proposed pier locations using the hand sampling equipment due to the dense nature of the subsoils combined with the hazards of working on the relatively steep slopes. In order to obtain additional geotechnical information to greater depths at these two locations, an access trail and staging areas would have to be constructed. Within the deeper BH99-4, SPT sampling was undertaken at conventional intervals. The undrained shear strength of cohesive soil samples was measured by pocket penetrometer testing.

Groundwater levels were noted both during and upon the completion of drilling. An open-standpipe piezometer (sealed at surface) was installed in Borehole 99-4 in order to permit monitoring of more stabilized groundwater levels. A follow-up groundwater level measurement was taken in the BH99-4 piezometer approximately two and one half weeks following installation.

Upon completion of the field investigation, all recovered samples were taken to TEL's laboratory for detailed visual examination and moisture content determinations. In addition, selected samples of the native soils were subjected to water soluble sulphate content determination testing (BH99-1, 1.2-1.8m; BH99-2, 0.6-1.2m) and grain size analyses (BH99-1, 3.0-3.7m; BH99-3, 1.8-2.1m). One soil sample from BH99-4, 6.1-6.2m depth was also subjected to Atterberg Limits testing. The results

of this work are summarized on the attached borehole logs of Appendix A and are presented in Figures B1 and B2 of Appendix B.

The ground surface elevations and offset distances at the borehole locations were measured with respect to staked working points placed by Sexton McKay Limited.

4. SUBSURFACE CONDITIONS

4.1 Stratigraphy

Based on the subsurface conditions observed in Boreholes 99-1 through 99-4, the general stratigraphy consists of a veneer of topsoil overlying a sequence of cohesionless silt and sand to sandy silt till, underlain by more cohesive silty clay/clayey silt tills. At the north abutment within BH99-4, a thin layer of fill soil was also encountered, presumably to raise the grades adjacent to the existing pathway. The upper metre to 1.5m of soil encountered on the ravine slopes near the proposed pier locations appears to be more highly softened than at the abutment locations. This may be a result of groundwater/surface water infiltration through the valley slopes, combined with greater exposure to weathering.

Generalized descriptions of the encountered stratigraphic layers are provided below; however, for more detailed information, the reader should consult the borehole logs of Appendix A.

Topsoil

2 à

A veneer of topsoil, ranging in thickness from approximately 0.3m at BH99-2 to approximately 0.6m at BH99-4, was encountered at the boring locations. The topsoil is described as being sandy loam with trace rootlets and wood fragments and a natural moisture content in the range of about 24% to 58% was measured in the samples tested.

Suspected Fill

Within Borehole 99-4, underlying the topsoil and extending to a depth of about 1.5m, a layer of silty sand fill with a trace of clay and trace gravel, occasional topsoil pockets was encountered. Based on SPT 'N' of 15, this unit is considered to be compact. The one retrieved sample of the fill had a moisture content of 10%.

Silt and Sand Deposits

A deposit of light brown silt and sand was encountered above approximate elevation 135m within BH99-1. This deposit appeared to be thinly laminated. Within BH99-1 this unit had SPT 'N' in the range of 15 to 43, corresponding to a compact to dense consistency (dense below ~1.2m). The natural moisture content of selected sample of the silt and sand decreased from about 17.5% below the topsoil to about 6% near the base of the deposit.

: 1

Sand and Silt Till to Silty Sand Till Deposits

At the south abutment location within BH99-4, as well as within both pier boring locations BH99-2 and 99-3, a dark brown sand and silt till to sandy silt till was encountered. The sandy silt till was encountered above approximate elevation 132.5m within BH99-4. In this boring, the till was found to contain a trace of clay and a trace gravel, with occasional cobbles and inferred boulders based on augering resistance and high SPT 'N' values in excess of 80 blows per 300mm advance. Within BH99-3, the silty sand deposit encountered below a depth of about 0.4m was interpreted to be reworked till material to about 1.8m depth, then becoming native till of similar gradation. In this borehole, the relative density of the deposit ranges from loose (SPT 'N' of 7) to dense (SPT 'N' of 35) with consistency increasing with increasing depth.

The natural moisture content of the silty till deposits was measured to be in the range of 5% to 12% (more typically about 7 to 10%), with the more moist material being encountered generally at shallower depths.

Silty Clay to Clayey Silt Till Deposits

A mottled, fissured, grey-brown silty clay till to clayey silt till was encountered at varying depths within BH99-1, 99-2 and 99-4. This till deposit contains a trace to some sand and a trace of gravel and was typically found below the upper silt and sand till unit within the depths investigated.

The silty clay/clayey silt till is typically described as having low plasticity (ML to CL). The results of one Atterberg limits test (BH99-4, 6.2m depth) are presented in Figure B2 of Appendix B which yielded the following results:

Plastic Limit:	9.2%
Moisture Content:	12%
Liquid Limit:	12%
Plasticity Index:	2.8%

The natural moisture content of samples of this deposit ranged from about 6 to 19% with shallower deposits exhibiting higher moisture contents. The estimated optimum water content for this material would likely be in the range of 10% to 14%; accordingly, some of the shallow excavated silty clay till will have moisture contents near to, or in excess of, optimum.

4.2 Groundwater

Groundwater was encountered within BH99-1 at a depth of ~4m below grade on completion of drilling. This should be considered as a short-term observation. Seepage was noted into BH99-4 during drilling at about 6.3m depth and a more stabilized water level was measured in the open standpipe piezometer in this borehole at approximately 3.1m below grade (approx. elevation 135.5m) 18 days after installation of the piezometer. No long term observations of water levels in the

borings at the pier locations are available; however, at the time of the investigation, groundwater was observed to be seeping through the slopes at these locations.

4.3 Results of Water-Soluble Soil Sulphate Testing

The results of analytical testing of two (2) selected soil samples for water soluble sulphate content are summarized as follows:

BH	Depth	Soil Type	Water Soluble Sulphate Content
	-		(%)
99-1	1.2-1.8m	Silt and Sand	0.04%
99-2	0.6-1.2m	Silty Clay Till	0.06%

The measured range of water soluble sulphates in the tested samples, according to CAN/CSA A23.1-94, represents a 'low' degree of exposure to Portland cement concrete.

5. GEOTECHNICAL RECOMMENDATIONS

5.1 General

The results of subsurface drilling at this site within the depths investigated indicate that generally favourable conditions for support of spread footings are available near or below the depth of frost penetration of 1.4m. Provided that the abutment and pier spread footing foundation bases are not disturbed or softened during construction (eg. by mechanical means, by surface water or groundwater infiltration) modest bearing capacities can be assumed in the design as outlined in the following section.

It should be noted, however, that the anticipated founding depth for the piers (3.5m below grade) exceeds the maximum depth investigated in BH99-2 and BH99-3. Given the access and environmental constraints, it was not possible to extend these borings deeper during the investigation by Thurber. As such, the assumption has been made in this report that the soils encountered at the depths of borehole termination are similar to the soils at and below founding level. This assumption must be verified by this office at the time of foundation construction in order to confirm that the bearing capacities and earth pressure parameters recommended herein are appropriate. It must also be recognized that in the event that less favourable soils are encountered at the design founding level, then modifications to the pier footings may be warranted. In this regard, the design of temporary shoring works should include sufficient allowance/redundancy such that the pier bases can be widened and or deepened if necessary.

5.2 Recommended Geotechnical Design Parameters

5.2.1 Spread Footings

Bearing Capacity - Pier and abutment footings founded on competent undisturbed dense or very stiff to hard native soils, which are constructed using good construction practices and no basal disturbance, may be designed for the following bearing resistances:

factored ULS capacity:	425kPa
SLS geotechnical capacity:	275kPa

These capacities assume that the inclination of the ravine slopes do not exceed 26.5 degrees above horizontal (2H:1V) downslope of the foundation elements. The bearing resistance calculation assumes that the base of the pier footings are buried a minimum of 3.5m below grade and the abutment footings should be founded at or below the following elevations:

North Abutment (BH99-1): 136.6m (min. 1.4m depth for frost cover requirements) South Abutment (BH99-4): 136.4m (min 2.2m depth to reach suitable founding soils)

The foregoing SLS capacities assume an allowable total settlement of less than 25mm.

The foregoing capacities must be further reduced as outlined in the OHBDC for inclined resultant forces. As noted in Section 5.1 of this report, the design bearing capacities must be verified by Thurber at the time of footing excavation.

It is recommended that the prepared footing bases, once approved by this office should be protected from groundwater and surface water infiltration, trafficking and weathering by means of placement of a 150mm concrete 'mudslab' (20MPa).

Lateral Resistance - The lateral resistance of the footings against sliding may be calculated as the sum of the available passive resistance of the downslope soils against the footing plus the frictional base resistance. The following equation may be used to calculate the factored ULS lateral resistance of the footings, per unit width of footing:

Plat = $(f_{rp}) K_p \gamma' d^2/2 + (f_{rs}) (w)(W') \tan \varphi'$

where:

 $\begin{array}{l} f_{rp}=0.5\\ f_{rs}=0.8\\ K_{p}=1.0 \mbox{ (assumes a 2H:1V backslope or flatter)}\\ \gamma'=10kN/m^{3} \end{array}$

d = depth of cover above underside of footing
w = width of footing measured parallel to line of action
W' = normal pressure acting on footing, less the uplift pressure tanφ' = 0.42 on dense silt and sand or very stiff to hard tills

5.2.2 Subgrade Reaction Below Pier Bases

For the calculation of pier base rotation, Bowles (Foundation Analysis and Design, 1996) gives the following equation for calculation of flexible and rigid footing base rotation under moment due to elastic compression of the soil:

 $\tan \theta = [(1-\mu^2)/E_s] [M/(B^2L)] I_{\theta}$

Refer to Bowles Table 5-5 for Influence Factors, I_{θ} and assume:

 μ = 0.35 for dense silty sand

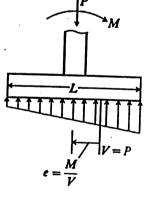
E_s = 30,000 kPa to 50,000 kPa for dense, saturated silty sand

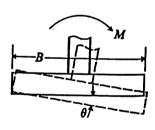
If you prefer to use a spring method, the modulus of subgrade reaction may be estimated as:

 $k_s = E_s / [B(1-\mu^2)]$ in units of kN/m²/m

ABLE 5-5 after a factors I_{θ} to compute rotation of a foo		
L/B	Flexible	Rigid†
0.1	1.045	1.59
0.2	1.60	2.42
0.50	2.51	3.54
0.75	2.91	3.94
1.00 (circle)	3.15 (3.00)*	4.17 (5.53)*

3.43


3.57


3.70

377

3.81

3.82

$$\tan\theta = \frac{M}{B^2 L} \left(\frac{1-\mu^2}{E_s}\right) I_{\theta}$$

For rigid: $I_{\theta} = \frac{16}{[\pi(1 + 0.22B/L)]}$

*For circle B = diameter.

1.50

2.00

3.00

5.00

10.00

100.00

[†]There are several "rigid" values; these are from equations given by Taylor (1967, Fig. 9, p. 227). They compare reasonably well with those given by Poulos and Davis (1974, p. 169, Table 7.3).

4.44

4.59

4.74

4.87

4.98

 $5.06 = 16/\pi$

5.2.3 Earth Pressures Acting on Permanent Retaining Walls

Lateral Earth Pressure Distribution - A triangular earth pressure distribution should be assumed to act against the abutments and any wingwalls.

The unfactored lateral earth pressure p, at any depth h, may be calculated in accordance with:

 $p = K(\gamma h + q)$

where:

h = depth below ground surface to point of interest in metres

γ = 21kN/m³ for compacted OPSS Granular 'B' fill (for active calculation), assumes that the abutment is provided with a weeping tile drain (free-draining)

 $\gamma = 17$ kN/m³ for undisturbed or replaced native soils (for passive calculation) q = appropriate permanent or temporary surcharge

and K is defined in the following table:

	Abutments	Piers
Ka (unrestrained wall)	0.40 (includes compaction surcharge, semi-rigid wall)	0.74 (assumes a 2H:1V up-slope)
Кр	1.0 (assumes a 2H:1V backslope)	1.0 (assumes a 2H:1V backslope)

5.2.4 Earth Pressures Acting on Temporary Shoring

Temporary shoring is required to be constructed up-slope of the proposed pier locations in order to safely excavate the pier footing bases and to prevent slope failure above the excavation. Shoring should be designed by a Professional Engineer who is a specialist shoring designer. It is recommended that the shoring design be reviewed by Thurber for general compliance with the recommendations of this report and for the assessment of global stability of the shoring system.

The shoring system must be installed prior to excavation into the slope face and be carefully staged such that the internal and global stability of the shoring system is satisfied and the stability of the ravine slope is not compromised as the excavation progresses.

A uniform rectangular earth pressure distribution should be assumed for the design

of braced flexible temporary shoring systems in accordance with the 3rd edition of the Canadian Foundation Engineering Manual. The lateral earth pressure p (kPa), acting at any depth h (m), may be calculated in accordance with the following expression:

where:

p = lateral earth pressure in kPa acting at depth h $\gamma = 20$ kN/m³ H = maximum excavation depth in m h = depth to point of interest in m Ka = 0.74 assuming a backslope no steeper than 2H:1V

Hydrostatic pressures have not been included in the above pressure distribution based on the assumption that the sheathing or lagging will be free-draining in nature. If this is not the case (eg. if sheet piling is implemented) then the appropriate hydrostatic pressure should be included in the design.

For the design of soldier piles, a passive pressure coefficient of 3.2 may be assumed, acting over 3 time the pile width. This Kp value assumes that the soldier piles are set back from the slope face at least 1x the depth of pile embedment.

This office should be consulted regarding an allowable bearing capacity for the design of inclined rakers. The allowable bearing capacity will be a function of the depth of the raker footing embedment, the raker inclination, the proximity of the raker footing to the slope face and the soil properties at founding level.

No soil should be stockpiled within a distance equal to one half of the depth of the excavation from the edge of the supported excavation. If this cannot be avoided, the soil surcharge must be incorporated into the shoring design. Surface runoff should be directed away from the excavations.

5.3 Construction Recommendations

5.3.1 Backfill Against Abutments & Wingwalls

Backfill behind the abutment walls and wingwalls within a 45 degree wedge from the base of the excavation (assuming competent soils at the base) should consist of freedraining OPSS Granular 'B' sand and gravel up to the level of the pavement subbasecourse. The sand and gravel should be carefully compacted to a minimum of 96% of Standard Proctor Maximum Dry Density (SPMDD) at a placement moisture content within ±2% of optimum using light, hand-held equipment so as not to damage or to apply excessive compaction pressures against the abutment wall. A weeping tile with filter fabric sock should be placed at the base of the granular drainage fill behind the abutments and wingwalls and sloped a minimum of 2% towards either wing wall. The weeping tile should extend along the back side of the wingwalls and discharge beyond the end of the wingwalls. The outlets of the weeper should have unimpeded drainage and be provided with suitable protection from rodent entry and freezing.

5.3.2 Excavations and Excavated Material

All excavations and trenching work should be carried out in conformance with the Ontario Occupational Health and Safety Act.

Excavations for the abutments should be sloped back as follows:

- 1H:1V to the base of the excavation at the north abutment,
- ► 1H:1V to within 1.2m of the base of the excavation at the south abutment.

The pier locations must be shored in advance of any excavation work.

Some groundwater infiltration into all of the foundation excavations and particularly the pier foundation excavations is anticipated. This should be controllable using strategically placed sumps, ditches and pumps.

The soils excavated at each of the foundation elements will vary from one location to the next. If it is planned to reuse the site soils as backfill or for use below landscaped areas, topsoil should be carefully stripped, segregated and stockpiled for reuse. None of the excavated soils can be considered as free-draining material and as such, they should not be used directly against abutment walls or where freedrainage or frost adhesion is of concern. However, with the exception of some of the shallow native soils directly below the topsoil (which will be excessively moist to achieve a high degree of compaction), the excavated soils should be suitable to be used as compacted fill in less critical areas. Stockpiled soils to be reused in engineered applications should be tarped over. Soil stockpiles should not be placed on the ravine slopes.

5.3.3 Surficial Slope Stability

Analysis of the global stability of the ravine valley slopes was outside of the scope of the current investigation. Deeper borings and additional analyses would be required to address global slope stability in a quantitative fashion.

It should be recognized that a surficial soil creep condition exists at this site, as evidenced by up-slope (bent) growth in young trees. This may be attributable to discharge of groundwater along the face of the lower ravine slopes and weathering/loss of cohesion of the upper deposits. At least two relatively small soil failure scarps were noted at the time of the investigation, located near the lower third of the north ravine slope in the vicinity of the proposed bridge structure. Each of the scarps was approximately 3 to 5m in width and of similar height. It is important that the stability of surficial soils in the vicinity of the foundation elements be improved as part of the works in order to ensure that sloughing and potential undermining and exposure of the foundation elements (to frost or additional erosion) does not occur, particularly since access to the pier bases may be restricted once the project has been completed.

It is recommended that the stability of surficial soils both upslope and downslope of the pier bases be improved by:

- 1) improving surficial drainage (through the addition of French drains and/or flexible weepers) to allow groundwater discharge through the slope face around the pier foundations. French drains should be constructed of 19mm clear crushed limestone completely enveloped in non-woven Class 2 geotextile which daylight onto the slope face in an area protected from surface runoff with rip rap. Rip rap should also be underlain by a non-woven Class 2 geotextile. In the event that the French drain is constructed directly against the face of the shoring (assuming a free-draining timber lagged shoring system), the drain can be replaced in these areas by means of a drainage geocomposite such as Terradrain 200 by Terrafix or Miradrain 6000 by Mirafi or approved equivalent. The geocomposite should be carefully detailed to tie into the conventional French drain; and
- 2) dressing the slope above and below the pier base down to the creek channel using high-friction, erosion resistant material such as rip rap or articulating interlocking pavers underlain by geotextile (to reduce runoff rates and stabilize the surficial soils). The rip rap should be coincident with the existing slope face so as not to impose a surcharge load on the slope face; and/or
- locally reducing the slope inclination and provision of earth retention works (retaining walls or reinforced soil structure) to accommodate the grade change.

It is recognized that some of the above 'hard' engineered provisions to enhance surficial stability may not be consistent with TRCA and Zoo expectations for preserving the ravine environment. These compromises must be weighed relative to the inconvenience of repairs to the slope and the importance of protecting the bridge foundation elements.

6. CLOSURE

Should you have any questions or require clarification on any point, please do not hesitate to contact this office. Thank you for providing Thurber Engineering Ltd. with

11.1

the opportunity to be of service on this project.

1. STANDARD OF CARE

This study and Report have been prepared in accordance with generally accepted engineering or environmental consulting practices in this area. No other warranty, expressed or implied, is made.

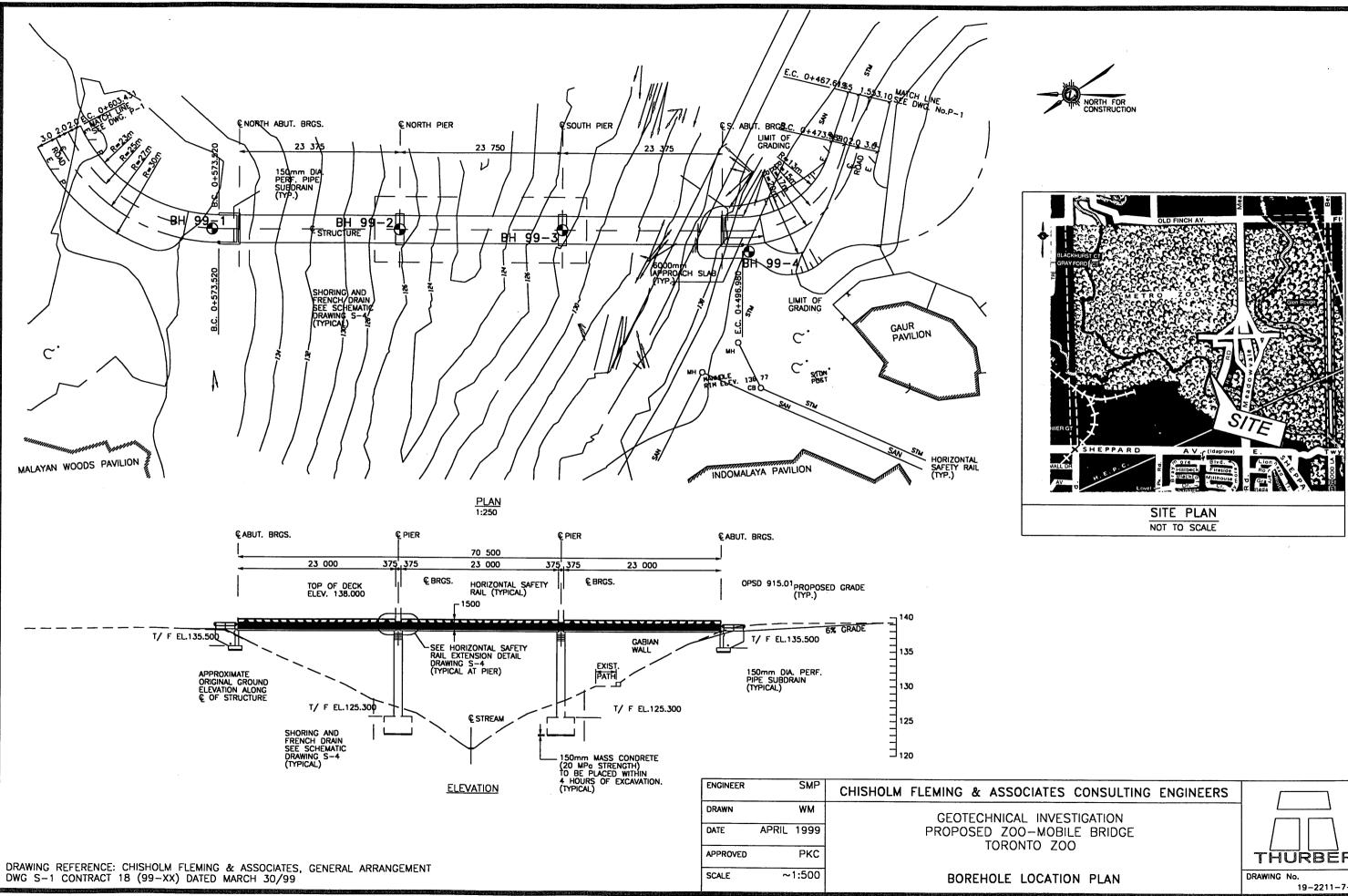
2. COMPLETE REPORT

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment are a part of the Report which is of a summary nature and is not intended to stand alone without reference to the instructions given to us by the Client, communications between us and the Client, and to any other reports, writings, proposals or documents prepared by us for the Client relative to the specific site described herein, all of which constitute the Report.

IN ORDER TO PROPERLY UNDERSTAND THE SUGGESTIONS, RECOMMENDATIONS AND OPINIONS EXPRESSED HEREIN, REFERENCE MUST BE MADE TO THE WHOLE OF THE REPORT. WE CANNOT BE RESPONSIBLE FOR USE BY ANY PARTY OF PORTIONS OF THE REPORT WITHOUT REFERENCE TO THE WHOLE REPORT.

3. BASIS OF REPORT

The Report has been prepared for the specific site, development, design objectives and purpose that were described to us by the Client. The applicability and reliability of any of the findings, recommendations, suggestions, or opinions expressed in the document are only valid to the extent that there has been no material alteration to or variation from any of the said descriptions provided to us unless we are specifically requested by the Client to review and revise the Report in light of such alteration or variation.


4. USE OF THE REPORT

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT OUR WRITTEN CONSENT. WE WILL CONSENT TO ANY REASONABLE REQUEST BY THE CLIENT TO APPROVE THE USE OF THIS REPORT BY OTHER PARTIES AS "APPROVED USERS". The contents of the Report remain our copyright property and we authorize only the Client and Approved Users to make copies of the Report only in such quantities as are reasonably necessary for the use of the Report by those parties. The Client and Approved Users may not give, lend, sell, or otherwise make the Report, or any portion thereof, available to any party without our written permission. Any use which a third party makes of the Report, or any portion of the Report, are the sole responsibility of such third parties. We accept no responsibility for damages suffered by any third party resulting from unauthorized use of the Report.

5. INTERPRETATION OF THE REPORT

a) Nature and Exactness of Soil and Contaminant Description: Classification and identification of soils, rocks, geological units, contaminant materials and quantities have been based on investigations performed in accordance with the standards set out in Paragraph 1. Classification and identification of these factors are judgemental in nature and even comprehensive sampling and testing programs, implemented with the appropriate equipment by experienced personnel, may fail to locate some conditions. All investigations utilizing the standards of Paragraph 1 will involve an inherent risk that some conditions will not be detected and all documents or records summarizing such investigations will be based on assumptions of what exists between the actual points sampled. Actual conditions may vary significantly between the points investigated and all persons making use of such documents or records should be aware of, and accept, this risk. Some conditions are subject to change over time and those making use of the Report should be aware of this possibility and understand that the Report only presents the conditions at the sampled points at the time of sampling. Where special concerns exist, or the Client has special considerations or requirements, the Client should disclose them so that additional or special investigations may be undertaken which would not otherwise be within the scope of investigations made for the purposes of the Report.

THURBER 19-2211-7-01

APPENDIX A

. .

Borehole Logs

SYMBOLS AND TERMS USED ON TEST HOLE LOGS

1. <u>TEXTURAL CLASSIFICATION OF SOILS</u>

CLASSIFICATION

Boulders Cobbles Gravel Sand Silt

Clay

1 1

PARTICLE SIZE

Greater than 200mm 75 to 200mm 4.75 to 75mm 0.075 to 4.75mm 0.002 to 0.075mm

less than 0.002mm

VISUAL IDENTIFICATION

same same 5 to 75mm Not visible particles to 5mm Non-plastic particles, not visible to the naked eye Plastic particles, not visible to the naked eye

2. COARSE GRAIN SOIL DESCRIPTION (50% greater than 0.075mm)

TERMINOLOGY

Trace or Occasional Some Adjective (e.g. silty or sandy) And (e.g. sand and gravel) Less than 10% 10 to 20% 20 to 35% 35 to 50%

PROPORTION

3. TERMS DESCRIBING CONSISTENCY (COHESIVE SOILS ONLY)

DESCRIPTIVE TERM

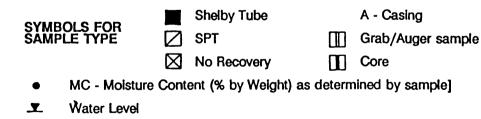
UNDRAINED SHEAR STRENGTH (kPa)

Very Soft Soft Firm Stiff Very Stiff Hard Less than 10 10 to 25 25 to 50 50 to 100 100 to 200 greater than 200 Less than 2 2 to 4 4 to 8 8 to 15 15 to 30 Greater than 30

APPROXIMATE SPT⁽¹⁾"N" VALUE

NOTE: Hierarchy of Soil Strength Prediction

Laboratory Triaxial Testing
 Field Insitu Vane Testing
 Laboratory Vane Testing
 SPT value
 Pocket Penetrometer


4. TERMS DESCRIBING DENSITY (COHESIONLESS SOILS ONLY)

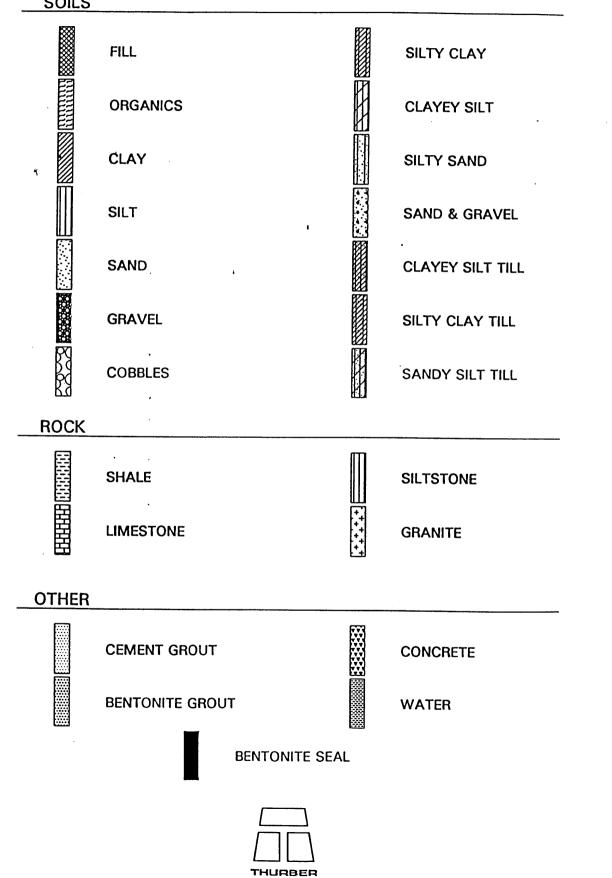
DESCRIPTIVE TERM

Very Loose Loose Compact Dense Very Dense less than 4 4 to 10 10 to 30 30 to 50 Greater than 50

SPT "N" VALUE

5. LEGEND FOR TEST HOLE LOGS

Current Shear Strength Determination by Field Insitu Vane


- C_{pen} Shear Strength Determination by Pocket Penetrometer
- C_{lab} Shear Strength Determination using a Laboratory Vane Apparatus
- C_u Undrained Shear Strength determined by Unconfined Compression Test
- (1) SPT Standard Penetration Test refers to the number the blows from a 63.5kg hammer falling through 0.76m to advance a 60 degree truncated cone 0.3m.

TTCHTCH2 6209 95/03/14

BOREHOLE GRAPHIC SYMBOLS

UNIFIED SOILS CLASSIFICATION

		GROUP	
MAJOF		SYMBOL	TYPICAL DESCRIPTION
	GRAVEL AND	GW	Well-graded gravels or gravel-sand mixtures, little or no fines.
	GRAVELLY	GP	Poorly-graded gravels or gravel-sand mixtures, little or no fines.
COARSE	SOILS	GM	Silty gravels, gravel-sand-silt mixtures.
COARSE		GC	Clayey gravels, gravel-sand clay mixtures.
GRAINED		sw	Well-graded sands or gravelly sands, little or no fines.
SOILS	SAND AND	SP	Poorly-graded sands or gravelly sands, little or no fines.
	SANDY	ѕм	Silty sands, sand-silt mixtures.
6	SOILS	sċ	Clayey sands, sand-clay mixtures.
	SILTS AND	ML	Inorganic sitts and very fine sands, rock flour, silty or clayey fine sands or clayey sitts with slight plasticity.
	CLAYS	CL	horganic clays of low to medium plasticity, gravelly clays, sandy clays, slity clays, lean clays. (W_ < 30%).
FINE	W _L < 50%	CI	Inorganic clays of medium plasticity, silty clays. (30% < W $< 50\%$).
GRAINED		OL	Organic silts and organic silty-clays of low plasticity.
	SILTS AND	МН	horganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.
SOILS	CLAYS	СН	Inorganic clays of high plasticity, fat clays.
	W _L > 50%	ОН	Organic clays of medium to high plasticity, organic silts.
HIGHLY ORG	ANIC SOILS	Pt	Peat and other highly organic soils.
CLAY SHALE		·	
SANDSTONE			
SILTSTONE			
CLAYSTONE			
COAL			

· · ·

1.105

.

•

	r	ETED : 1999 March 17 SOIL PROFILE			S۵	MPI	LES	·	SHEA	R STREM	стн: с	u, KPa		атим	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	ABER	TYPE	BLOWS/0.3m	COMMENTS	w w	nat V - rem V - 40 8 ATER CC vp 1- 10 2	0 12 NTENT,	, Perci	60 ENT	ADDITIONAL LAB. TESTING	PIEZOM OR STAND INSTALL
		GROUND SURFACE	<i>S</i>	138.00 0.00									58.2		
		TOPSOIL , clayey, trace sand, trace rootlets, dark brown, very moist		137.54	1	ss	12						56.2		
ł		SILT and SAND, fine grained, occasional silt lenses, compact to dense, light brown:		0.46			-			0					
-1		(ML-NONPLASTIC/SM)			2	ss	15			0					
]											
					3	SS	43								
-2					4	ss	30		0						
	MOTOBIZED TBIBOD									0					
- 3				135.10		ss	31			0					
		CLAY, silty, to SILT, clayey, some sand, trace gravel, some oxidized lenses, hard, brown to grey: (TILL)(CL-ML)				SS	75								
							/3	%Gr/%Sa/%Si/%Cl 0/8/64/28						Ì	
-4					7	ss	40			0		•			
		END OF BOREHOLE AT 4.27m. BOREHOLE BACKFILLED WITH DRILL		133.73 4.27			-								
		CUTTINGS. WATER LEVEL AT 4.0m ON COMPLETION.						•							
- 5															
-6															
- 7															
-8															
- 9															
33/04/03															

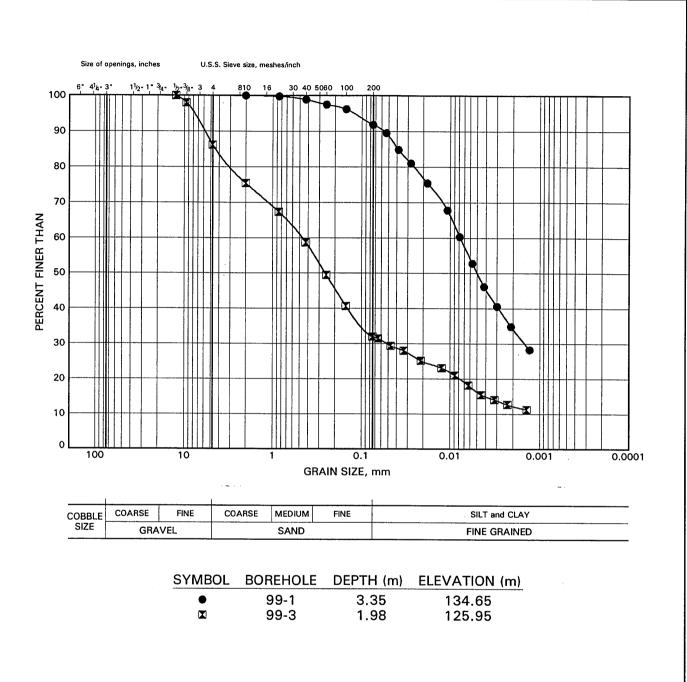
		SOIL BROCH 5					50		SHE	AR STRENGTH: C	u, KPa		l
DEPTH SCALE (metres)	BORING METHOD	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NUMBER S	TYPE	3m	COMMENTS	- N	nat V - ● rem V - ● 40 80 12 1 1 VATER CONTENT, wp I 0 20 3(Q - X U - ▲ 0 160 PERCENT	ADDITIONAL LAB. TESTING	PIEZOM OF STAND INSTALL
		GROUND SURFACE TOPSOIL, clayey, trace sand, trace wood fragments, dark brown, very moist		126.93 0.00 126.63 0.30		ss	1			0			
- 1	701b HAMMER	CLAY, silty, trace sand, trace gravel, occasional sand lenses, trace topsoil inclusions, firm to very stiff, brown to grey: (TILL)(CL)		0.30		ss				0			
	70	CAND and SILT Areas to some around		125.35 125.85 125.85 1.68	3	SS	29			0			
-2		SAND and SILT, trace to some gravel, dense, brown, moist: (TILL) END OF BOREHOLE AT 1.68m. BOREHOLE DRY ON COMPLETION. BOREHOLE BACKFILLED WITH DRILL CUTTINGS.		1.68									
- 3		NOTE: SPT 'N' factored to reflect 70lb hammer.						··· .					
-4													
- 5		;											
-6													
- 7													
-8													
- 9													

	0	SOIL PROFILE			SA	MP	LES		SHE	AR STRENGTH:	Cu, KPa	DATUM											
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)		DEPTH		ELEV.						DEPTH (m)		Түре	BLOWS/0.3m	COMMENTS			20 160	ADDITIONAL LAB. TESTING	PIEZON O STANI INSTALI
	_	GROUND SURFACE TOPSOIL, silty, some sand, trace	-	127.93								_											
		gravel, trace rootlets, trace wood fragments, dark brown, wet		127.51	1	ss	7																
. 1	701b HAMMER	SAND, fine grained, silty, some gravel, trace wood fragments, loose, light brown, moist: (SM)(POSSIBLE FILL/REWORKED TILL)		0.43		ss	7			0													
- 1	Ib HA	accasional packets of clavey silt till		126.72																			
	2	occasional pockets of clayey silt till (POSSIBLE FILL/REWORKED TILL)				ss	14		0														
-2		SAND and SILT, some gravel, trace silt, trace clay, dense, brown, moist: (TILL)		126.11 1.83 125.80	4	ss	35	%Gr/%Sa/%Si/%Cl															
		END OF BOREHOLE AT 2.13m. BOREHOLE DRY ON COMPLETION. BOREHOLE BACKFILLED WITH DRILL CUTTINGS.		2.13				14/54/20/12	0														
- 3		NOTE: SPT 'N' factored to reflect 70lb hammer.																					
-4																							
-4																							
_																							
-5																							
								•															
-6																							
- 7									1														
-8																							
- 9			ŀ																				
F I																							

	MPL	TED : 1999 March 22									_			DATUN	Λ
ALE	METHOD	SOIL PROFILE			SA	MPL			SHEA	R STR nat V rem V	ENGTH:	Cu, KPa Q - U -	X	μŞ	
DEPTH SCALE (metres)	BORING MET	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	COMMENTS	W.	10 	80	120 IT, PERC	160	ADDITIONAL LAB. TESTING	PIEZO (STAN INSTAI
_		GROUND SURFACE	<u> </u>	1 <u>38.63</u> 0.00											
-		TOPSOIL, clayey, sandy, trace rootlets, trace wood fragments, dark brown		138.03		SS	6						0		19mm PIEZOME BENTQ
- 1		SAND, silty, some gravel, trace clay, occasional topsoil pockets, compact, brown, moist: (FILL)(SM)		0.61	2	ss	15			0					
		SILT, sandy, some clay, trace gravel, very stiff, brown: (TILL)(ML)		137.11 1.52	3	SS	29			ο					CUTTING
-2				136.35											
		SILT, sandy, trace clay, trace gravel, occasional cobbles and boulders inferred, very dense, brown: (TILL)(ML-NONPLASTIC)		2.29	4	SS	85		0				1 n 1		
- 3	STEM AUGERS	hard drilling			5	SS	88		0						Ţ
-4	100mm SOLID STEP	becoming grey					00/								
- 5					6	SS	225		0						133.0 FILTER33.: SAND SLOTTED
-6		CLAY , silty, to SILT, clayey, some sand, trace gravel, grey: (TILL)(ML) trace of seepage at ~6.3m		_ 132.54 _ 6.10	7	<u>ss</u>	60/ 100			Ð					SCREEN 132.
- 7															
-8		SILT, clayey, some sand, trace gravel, grey: (TILL)(CL-ML) END OF BOREHOLE AT 7.72m. Piezometer installation consists of 19mm diameter Schedule 40 PVC pipe with a 0.61m slotted screen.		131.01 139 <u>.82</u> 7.71	8	SS			0						130.
· 9		WATER LEVEL READINGS: DATE DEPTH ELEV. (m) (m) 04/09/99 3.10 135.50													

APPENDIX B

£ 1


Results of Geotechnical Laboratory Testing: Grain Size Analyses Atterberg Limits Determination

4. 2

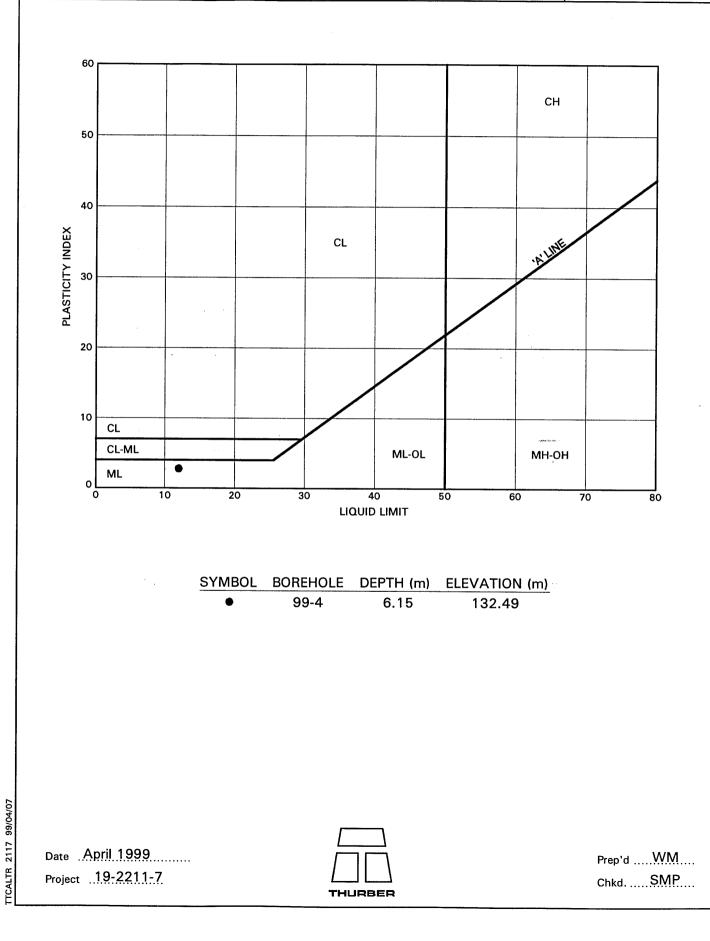
Zoo Mobile Bridge at Indo-Malayan Pavillion GRAIN SIZE DISTRIBUTION

FIGURE B1

THURBGSD 2117 99/04/07

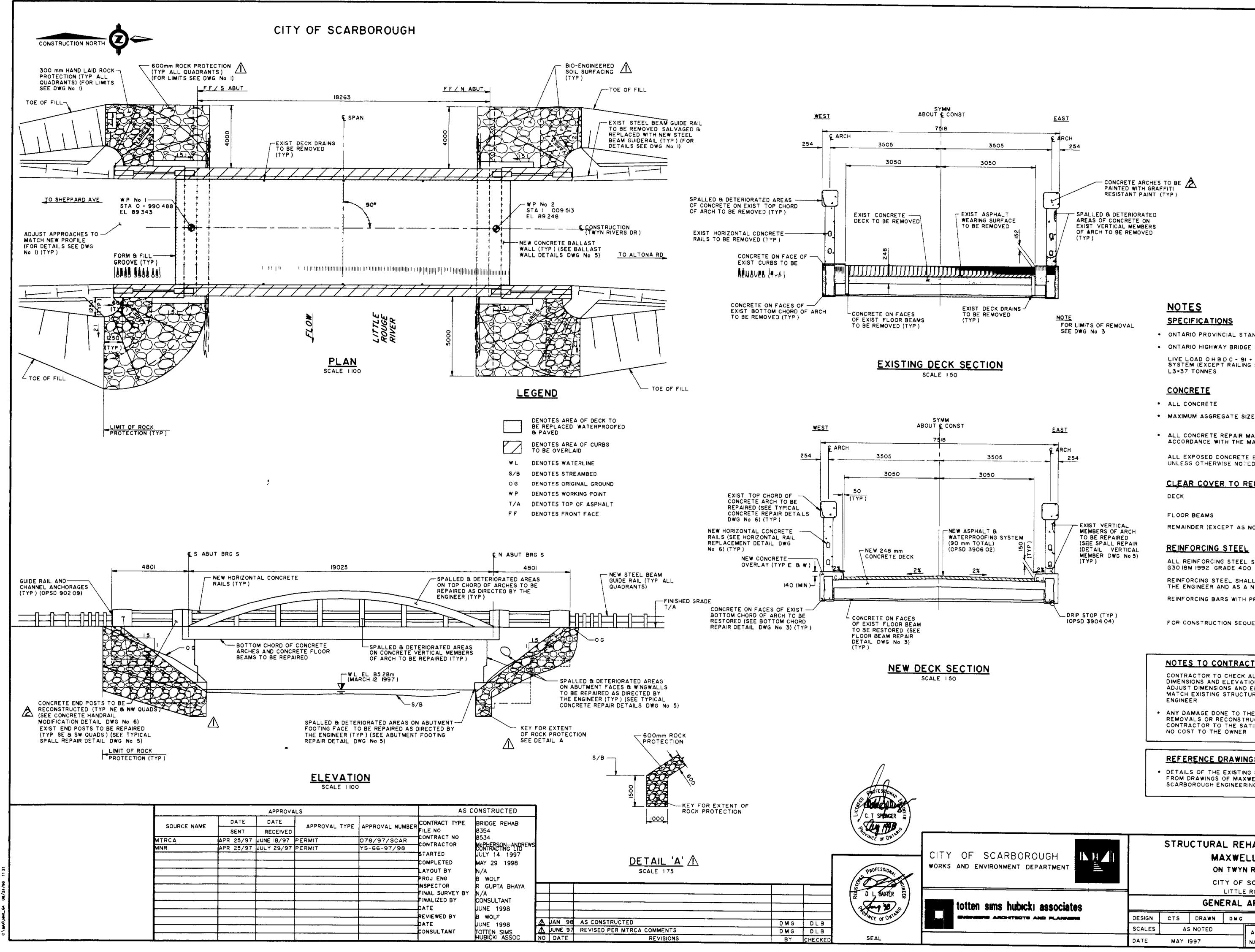
Date April 1999

Project 19-2211-7


Prep'd WM Chkd. SMP

. .

Zoo Mobile Bridge at Indo-Malayan Pavillion ATTERBERG LIMITS TEST RESULTS


FIGURE B2

Appendix C

Bridge Design Drawings

SPECIFICATIONS

- ONTARIO PROVINCIAL STANDARD SPECIFICATIONS DIVISION 9
- ONTARIO HIGHWAY BRIDGE DESIGN CODE 1991 LIVE LOAD OH BDC - 91 + 90mm ASPHALT & WATERPROOFING SYSTEM (EXCEPT RAILING SYSTEM) LI=15 TONNES L2=27 TONNES 13=37 TONNES

CONCRETE

30 MP a

13 2mm REPAIRS 19mm ALL OTHER CONCRETE

 ALL CONCRETE REPAIR MATERIALS SHALL BE APPLIED IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS

ALL EXPOSED CONCRETE EDGES TO HAVE 20mm CHAMFER UNLESS OTHERWISE NOTED

CLEAR COVER TO REINFORCEMENT

FLOOR BEAMS REMAINDER (EXCEPT AS NOTED)

70 ± 20 mm (TOP) 40 ± 10 mm (BOTTOM) 40 ± 10 mm 70 ± 20 mm

REINFORCING STEEL

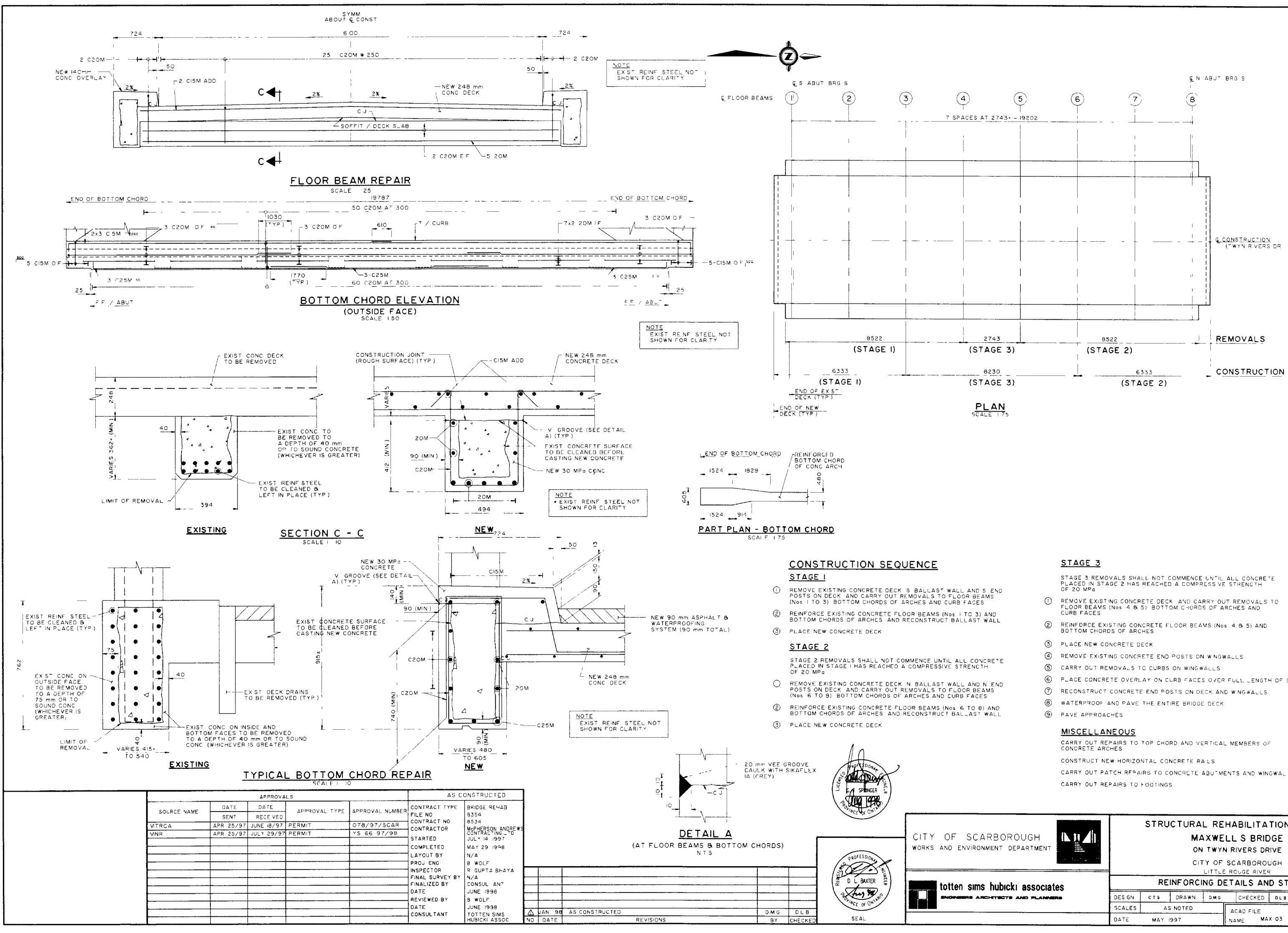
ALL REINFORCING STEEL SHALL BE IN ACCORDANCE WITH C S A G30 18M 1992 GRADE 400 UNLESS OTHERWISE NOTED

REINFORCING STEEL SHALL BE FIELD OUT AS DIRECTED BY THE ENGINEER AND AS A NON PAY ITEM REINFORCING BARS WITH PREFIX C DENOTE COATED BARS

FOR CONSTRUCTION SEQUENCE SEE DWG No 3

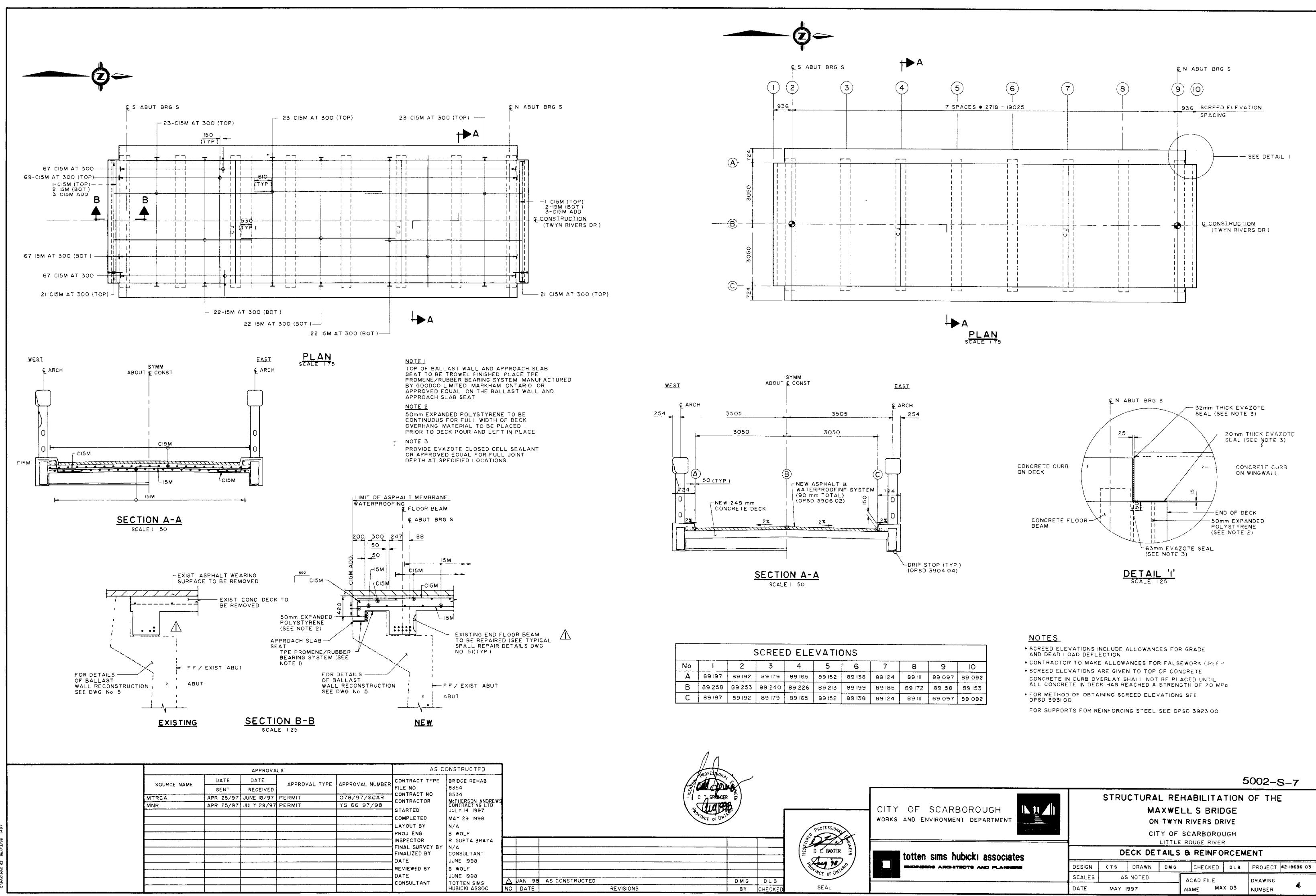
NOTES TO CONTRACTOR

CONTRACTOR TO CHECK ALL RELEVANT STRUCTURE DIMENSIONS AND ELEVATIONS SHOWN ON THE DRAWINGS AND ADJUST DIMENSIONS AND ELEVATIONS AS REQUIRED TO MATCH EXISTING STRUCTURE AND AS APPROVED BY THE ENGINEER


 ANY DAMAGE DONE TO THE EXISTING STRUCTURE DURING REMOVALS OR RECONSTRUCTION SHALL BE REPAIRED BY THE CONTRACTOR TO THE SATISFACTION OF THE ENGINEER AND AT NO COST TO THE OWNER

REFERENCE DRAWINGS

• DETAILS OF THE EXISTING STRUCTURE HAVE BEEN DERIVED FROM DRAWINGS OF MAXWELL S BRIDGE BY THE TOWNSHIP OF SCARBOROUGH ENGINEERING DEPARTMENT DATED AUG 8 1927

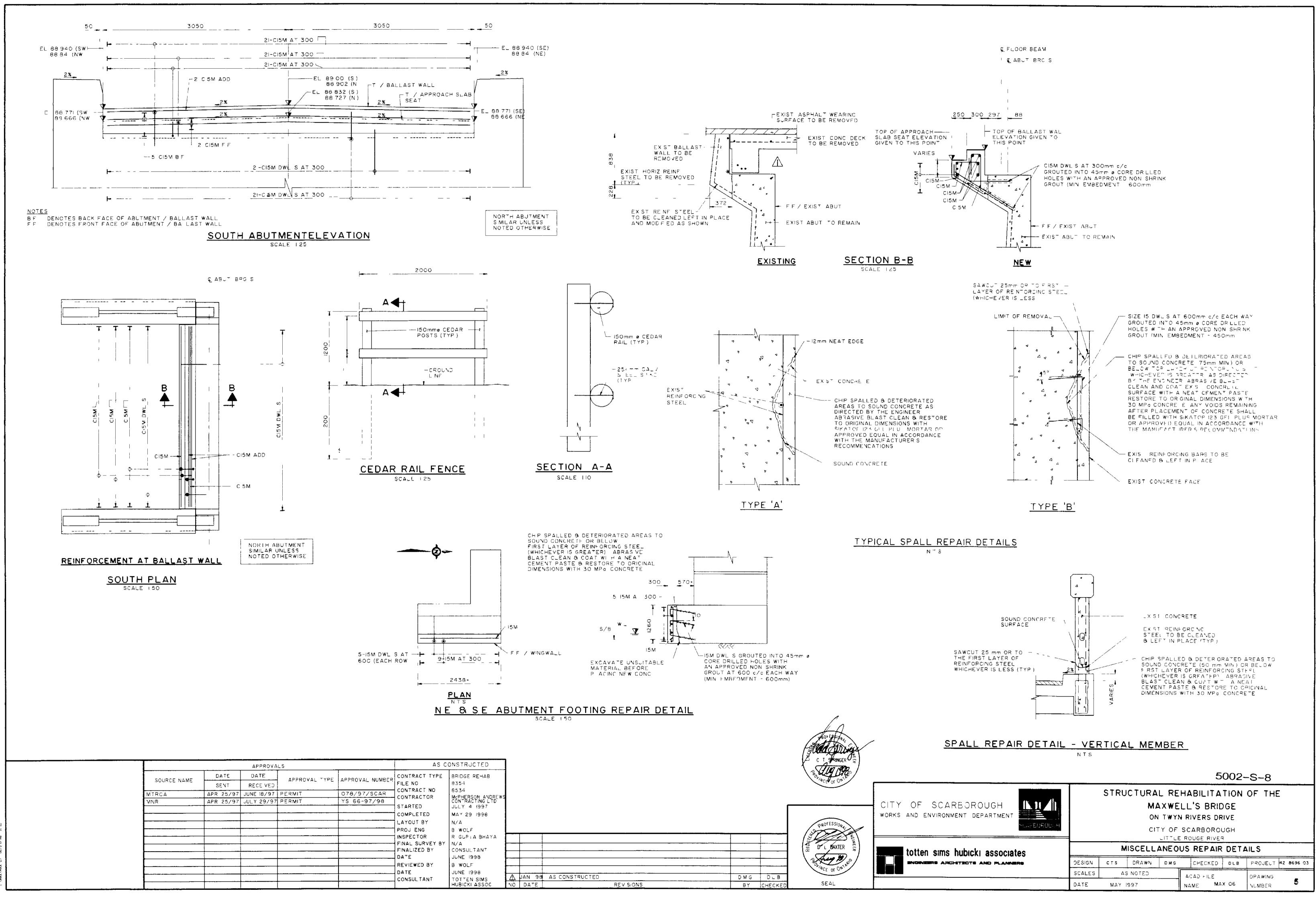

							5002	-S-5
OF SCARBOROUGH		STRU	MA ON	XWE	HABILITA LL'S BRIC NRIVERS DR SCARBOROI ROUGE RIVER)GE IIVE ЈGH	OF THE	Ξ
totten sims hubicki associates			GENE	RAL	ARRANGE	MENT		
ENGRAPHIC ARCHITECTE AND PLANNERS	DESIGN	CTS	DRAWN	DMG	CHECK	DLB.	PROJECT	42-18696-03
	SCALES	AS	NOTED		ACAD FILE			_
	DATE	MAY	997		NAME MA	X_GA	NUMBER	2

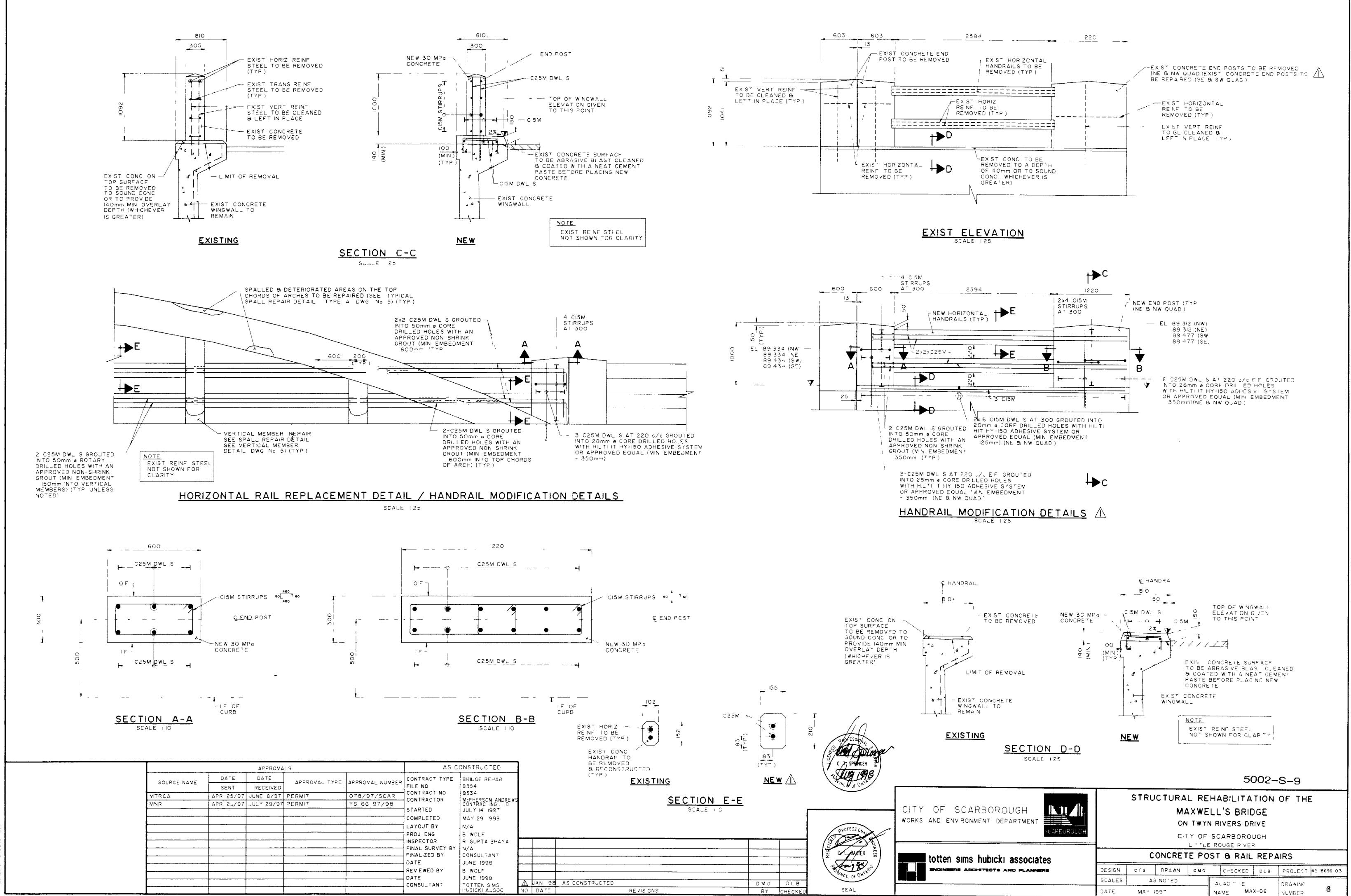
2363F

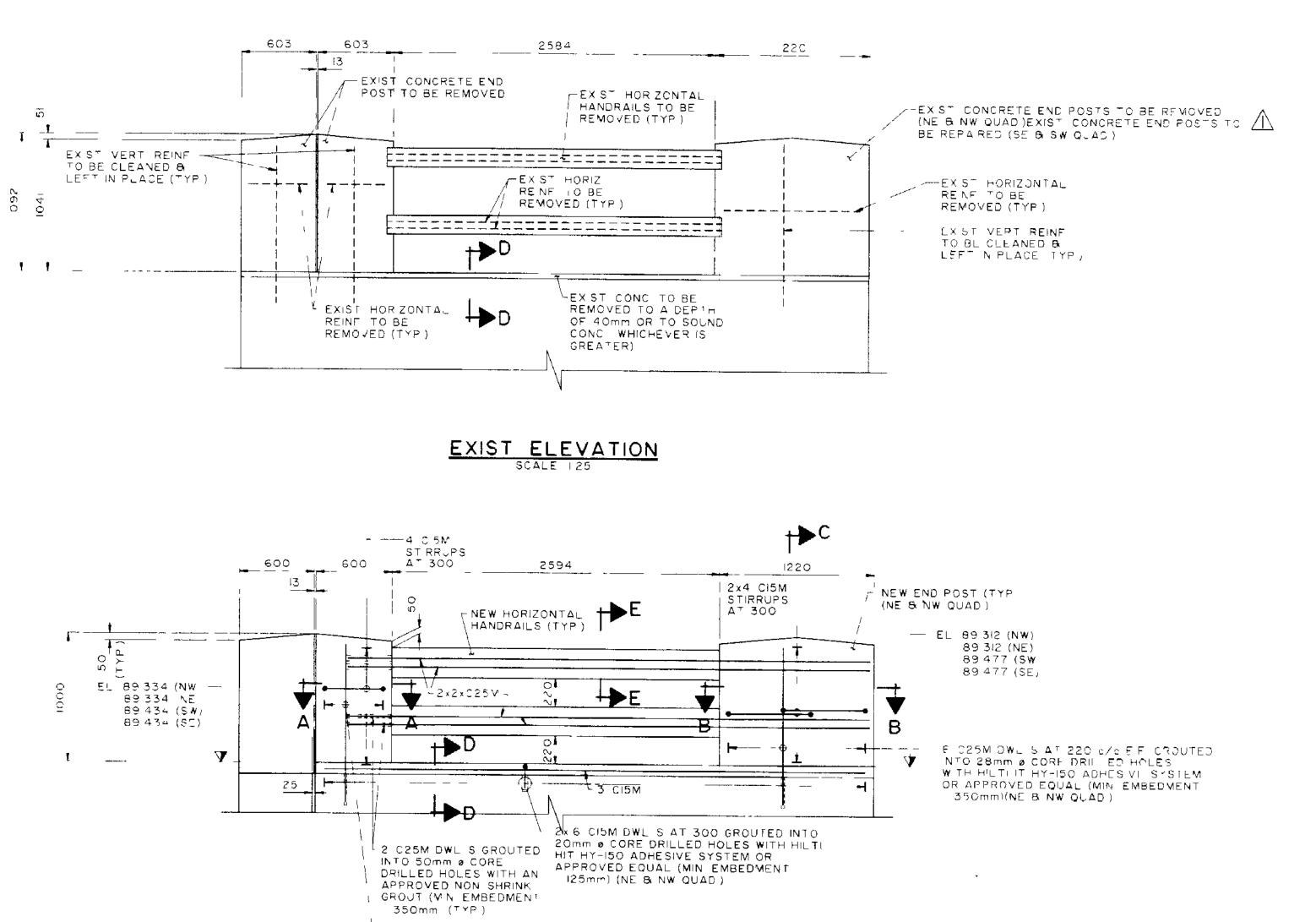


		STAGE 3
WALL AND S END		STAGE 3 REMOVALS SHALL NOT COMMENCE UNTIL ALL CONCRETE Placed in stage 2 has reached a compressive strength OF 20 MPg
FLOOR BEAMS URB FACES os TC 3) AND	Û	REMOVE EXISTING CONCRETE DECK AND CARRY OUT REMOVALS TO FLOOR BEAMS (Nos. 4.6.5) BOTTOM CHORDS OF ARCHES AND CURB FACES
BALLAST WALL	2	REINFORCE EXISTING CONCRETE FLOOR BEAMS (Nos 4 & 5) AND Bottom chords of Arches
	3	PLACE NEW CONCRETE DECK
L ALL CONCRETE	4	REMOVE EXISTING CONCRETE END POSTS ON WINGWALLS
E STRENCTH	5	CARRY OUT REMOVALS TO CURBS ON WINGWALLS
WALL AND N END	6	PLACE CONCRETE OVERLAY ON CURB FACES OVER FULL LENGTH OF STRUC URE
FLOOR BEAMS CURB FACES	\bigcirc	RECONSTRUCT CONCRETE END POSTS ON DECK AND WINGWALLS
IOS 6 TO B) AND	8	WATERPROOF AND PAVE THE ENTIRE BRIDGE DECK
BALLAST WALL	9	PAVE APPROACHES
		MISCELLANEOUS
		CARRY OUT REPAIRS TO TOP CHORD AND VERTICAL MEMBERS OF CONCRETE ARCHES
		CONSTRUCT NEW HORIZONTAL CONCRETE RALS
		CARRY OUT PATCH REPAIRS TO CONCRETE ABUTMENTS AND WINGWAL IS
		CARRY OUT REPAIRS TO FOOTINGS
		5002-S-6
		STRUCTURAL REHABILITATION OF THE
DF SCARBOROU	IGH	MAXWELL S BRIDGE

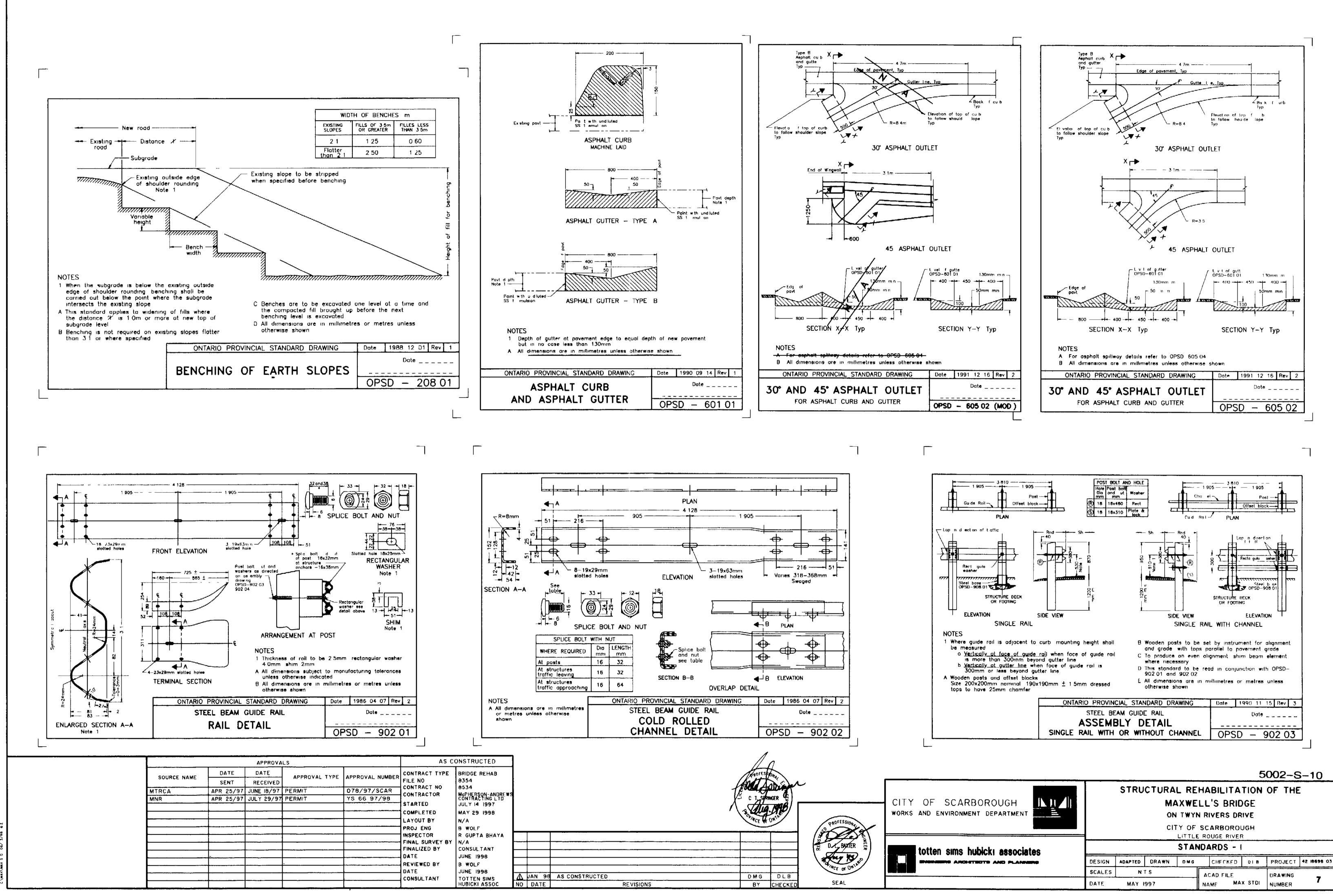
D ENVIRONMENT DEPARTMENT				_	N RIVERS DR			
			CIT		SCARBORO			
ten sims hubicki associates		RE	INFORCI	NG D	ETAILS AN	DST	AGING	
onders architects and planners	DESGN	сть	DRAWN	DMIG	CHECKED	DLB	PROJECT	42 18696 03
	SCALES	А	S NOTED		ACAD FILE		DRAWINC	_
	DATE	MAY	1997		NAME MA	X 03	NUMBER	3

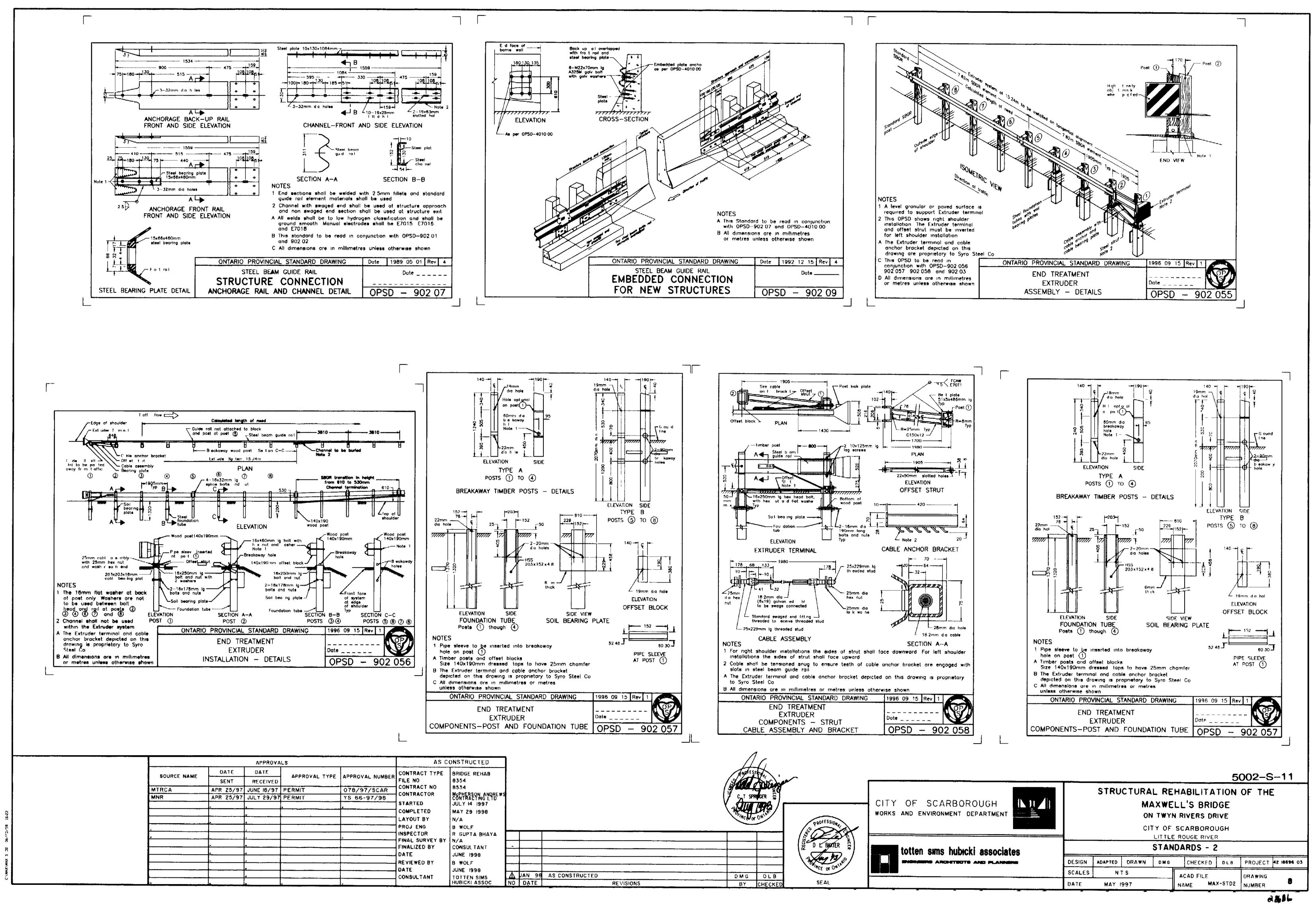




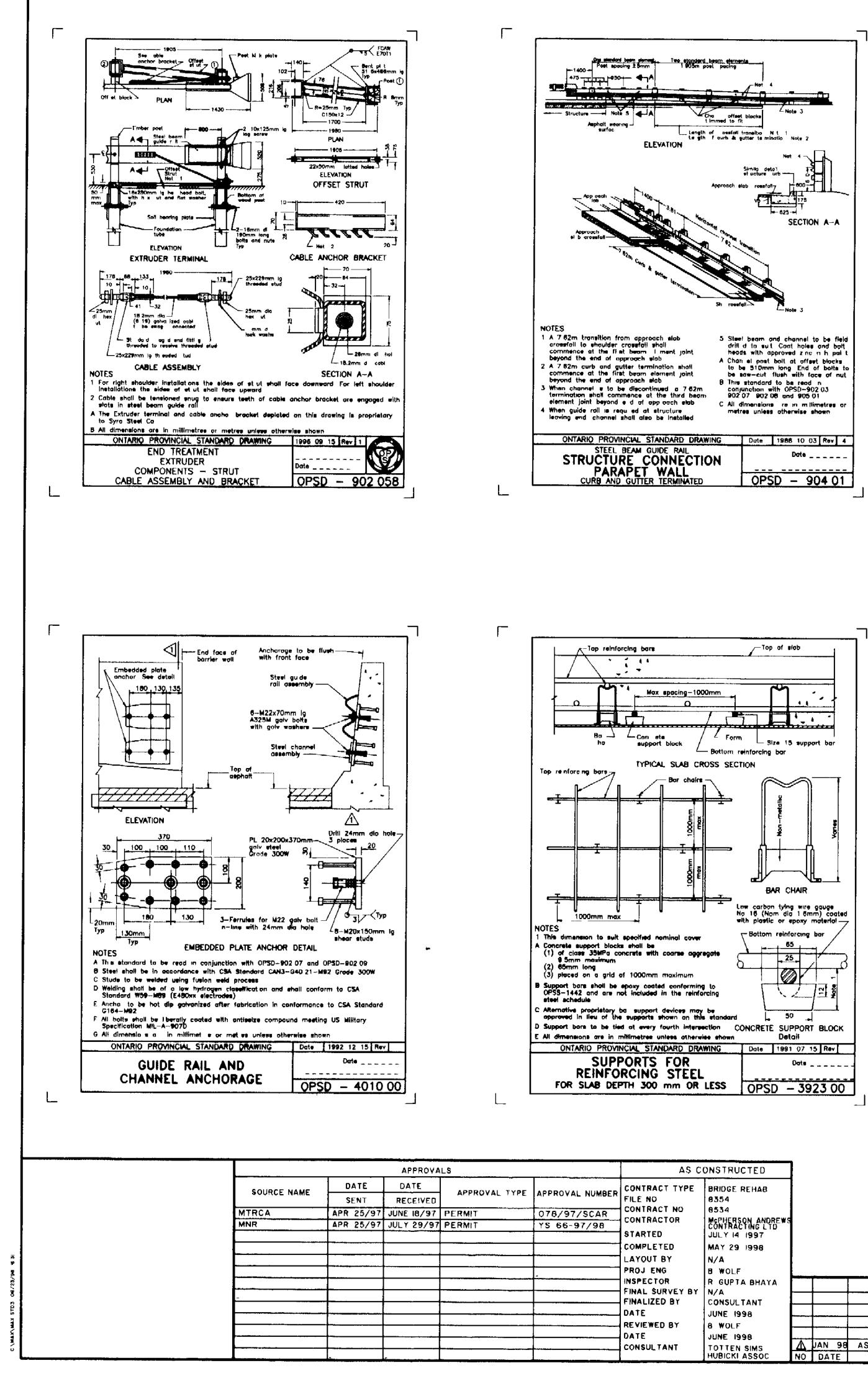

		Q	SCREE	DELE		ONS		
No	i	2	3	4	5	6	7	
Α	89 197	89 192	89179	89/65	89152	89138	89124	ε Ε
В	89258	89253	89240	89 226	89 213	89199	89185	6
С	89 197	89192	89 179	89 165	89 152	89138	89124	E

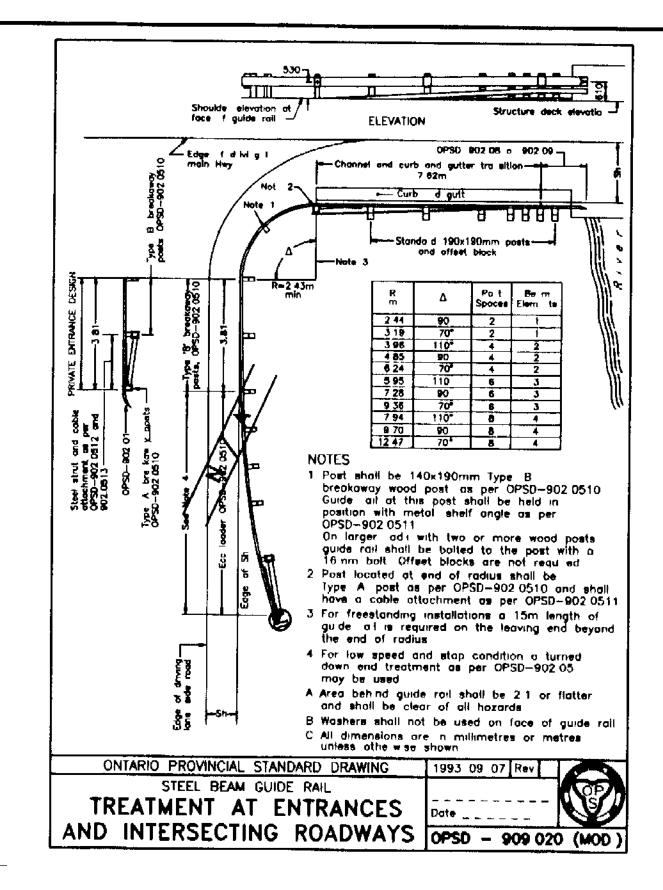
AS C	ONSTRUCTED					ROFESSION				
T TYPE T NO TOR ED SY	BRIDGE REHAB 8354 8534 McPHERSON ANDREWS CONTRACTING LTD JULY 14 1997 MAY 29 1998 N/A B WOLF					Anni	MEER		PROFESSIONA	CITY Works A
R Rvey by) by	R GUPTA BHAYA N/A CONSULTANT JUNE 1998			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				D L BAXTER E	
BY	B WOLF JUNE 1998	 JAN 98	AS CONSTRUCTED				DMG	DLB	ROVINCE OF ONIMIC	
ANT	TOTTEN SIMS HUBICKI ASSOC	DATE	AS CONSTRUCTED	REVISIONS			BY	CHECKED	SEAL	

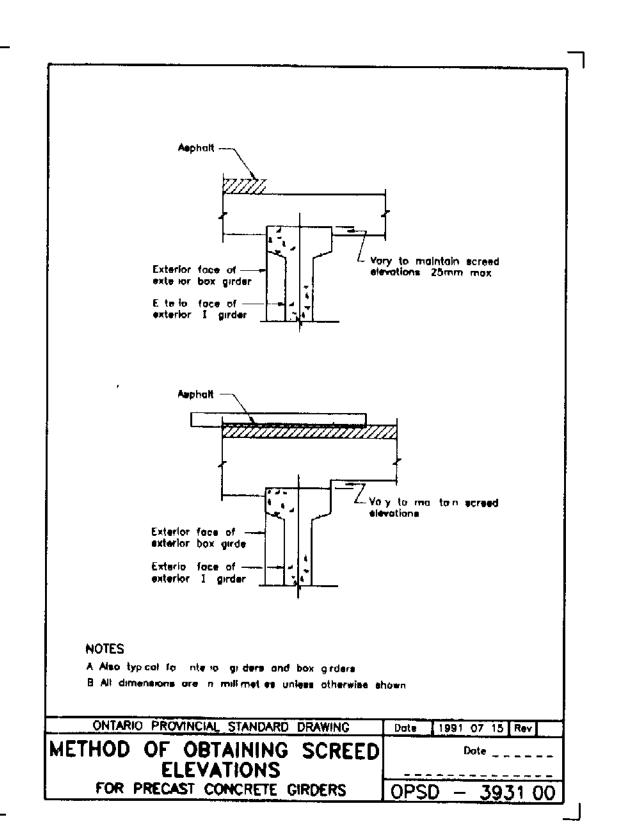

2363H

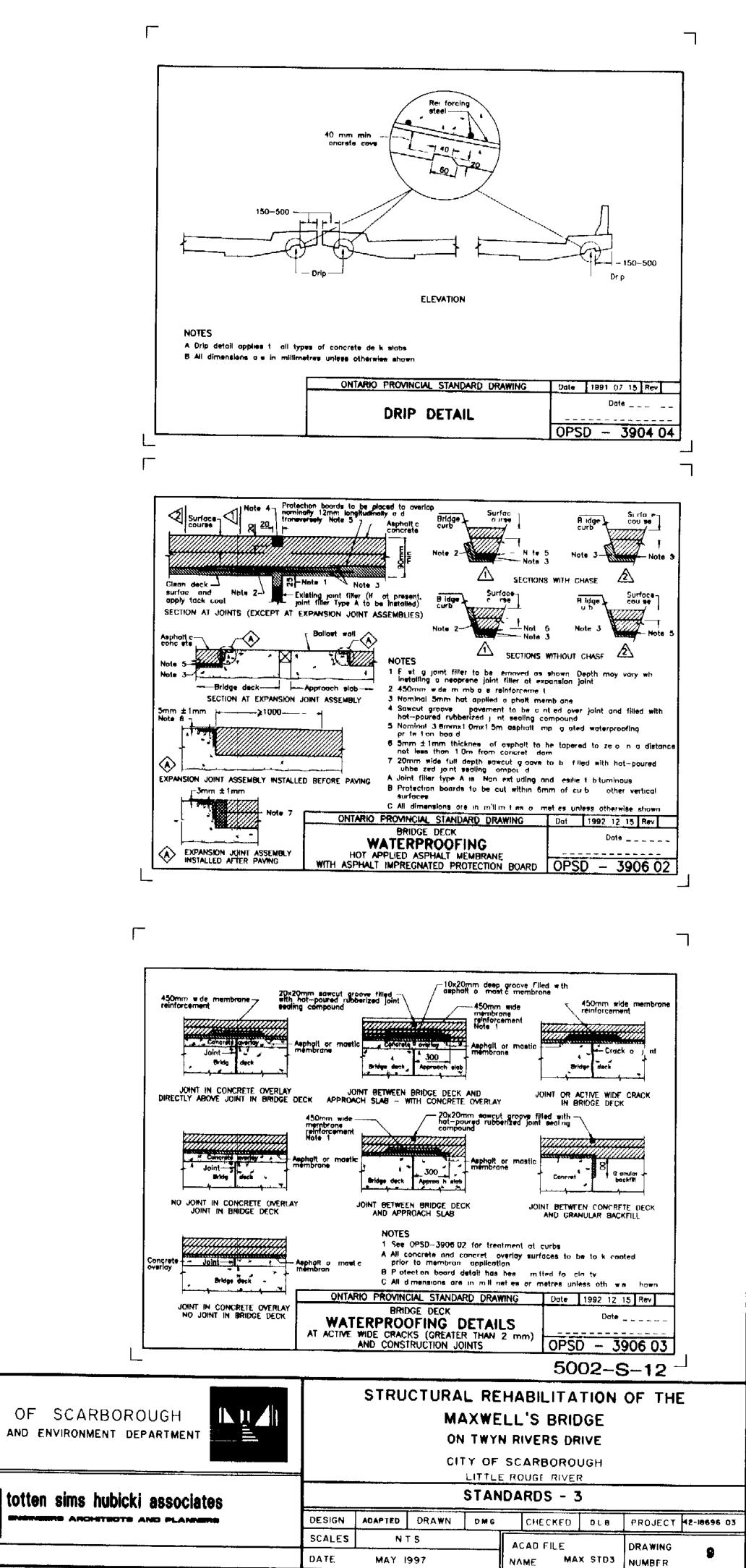


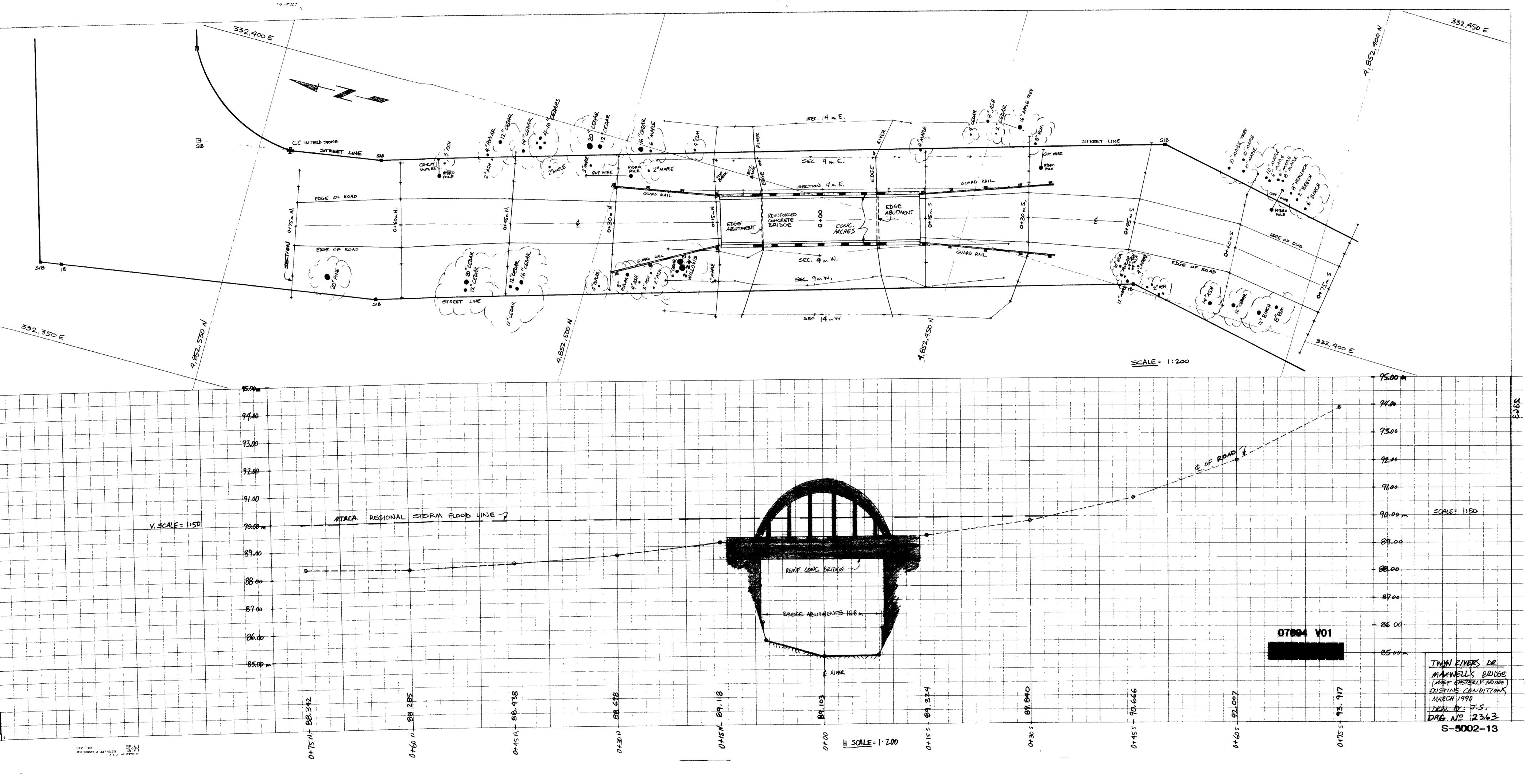
			Cr		E ROUGE RIV			
totten sims hubicki associates			ONCREI	E PC	ST & RAI	L REP.	AIRS	
NOINSERS ARCHITZCTS AND PLANNERS	DESIGN	стs	DRAWN	DMG	CHECKED	DLB	PROVECT	42 18696 03
	SCALES	Α	S NOTED		ALAD T E			
	DATE	МА≚	1997		NAME M	IAX-06	NUMBER	6




ONTARIO PROVINCIAL STANDARD DRAWING					
CITATIO / ROTITCIAE STATUARU CRAMING	Date	1990-11	15	Rev	3
STEEL BEAM GUIDE RAIL ASSEMBLY DETAIL			·		
SINGLE RAIL WITH OR WITHOUT CHANNEL	OPS	D —	90	20	3


						5	5002-5	5-10
OF SCARBOROUGH		STRU	M / 01	AXWE NTWYI TY OF	HABILITA LL'S BRIE N RIVERS DR SCARBOROI E ROUGE RIVE)GE HVE JGH	OF THE	<u>E</u>
totten sims hubicki associates				STAN	NDARDS - I			
	DESIGN	ADAPTED	DRAWN	DMG	CHECKED	QIB	PROJECT	42 18696 03
	SCALES	N	ΤS		ACAD FILE		DRAWING	
	DATE	MAY I	997	_	11	X STDI	NUMBER	7


AS C	ONSTRUCTED							6		
T TYPE	BRIDGE REHAB 8354 8534 McPHERSON ANDREWS CONTRACTING LTD							RINGER		
ED	JULY 14 1997 May 29 1998							798/1		CITY C
BY	N/A						OVINC D	T ONTHE	PROFESSIONA	WORKS AN
G	B WOLF		· · · ·							
RVEY BY	R GUPTA BHAYA N/A				·	· · · · · · · · · · · · · · · · · · ·				
DBY	CONSULTANT	<u> </u>	 						D L BATTER	to
	JUNE 1990				• · · · · · · · · · · · · · · · · · · ·	·····			A The #5 .	
D BY	B WOLF						<u> </u>		Brince or OWINNO	
ANT	JUNE 1998 TOTTEN SIMS	Δ	JAN 98	AS CONSTRUCTED	•		DMG	OLB		
			DATE		REVISIONS		BY	CHECKED	SEAL	



AS C	ONSTRUCTED						An			
T TYPE T NO TOR ED SY S	BRIDGE REHAB 0354 0534 MCPHERSON ANDREWS CONTRACTING LTD JULY 14 1997 MAY 29 1996 N/A B WOLF R GUPTA BHAYA		TT				C LASPINGER		SUPPOFESS/04-	CITY WORKS #
RVEY BY) by) by	N/A Consultant June 1998 8 Wolf	 							D'L BAXTER	
ANT	JUNE 1998 Totten sims Hubicki assoc	_	JAN 98 DATE	AS CONSTRUCTED	REV SIONS	······································	D M G BY	DL B CHECKED	SEAL	

1 Care o

LIST OF DRAWINGS

347 Meadowvale Road Over Rouge River

802 Twyn Rivers Drive Over Little Rouge River 802-S5002-14 **Cover Sheet** 802-S5002-15 **General Arrangement** 802-S5002-16 Details

803 Twyn Rivers Drive Over Rouge River **General Arrangement** 803-S5003-11 803-S5003-12 Details 803-S5003-13 Details

812 Sewells Road Over Rouge River 812-S5012-7 **General Arrangement** 812-S5012-8 Details

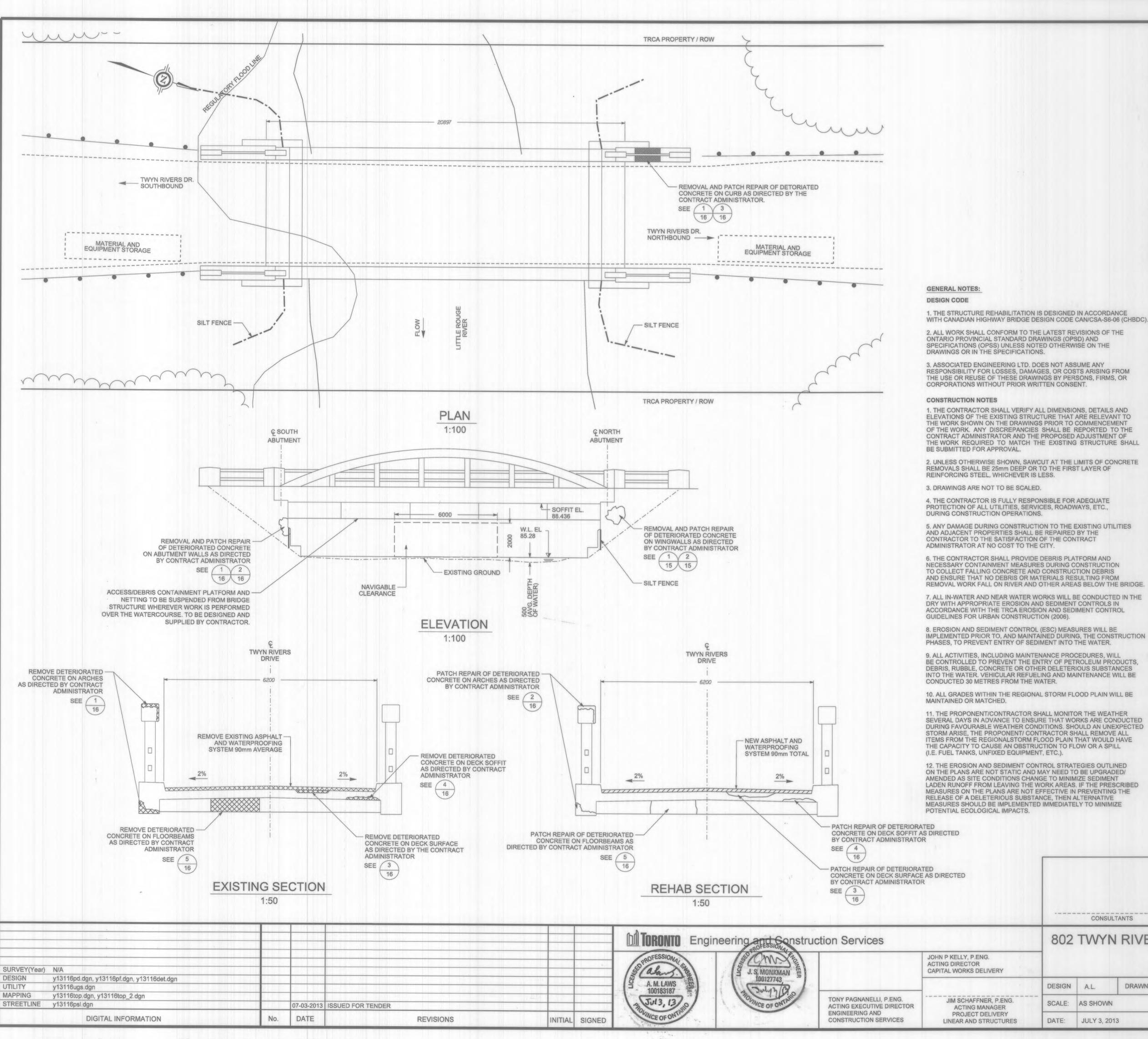
TENDER

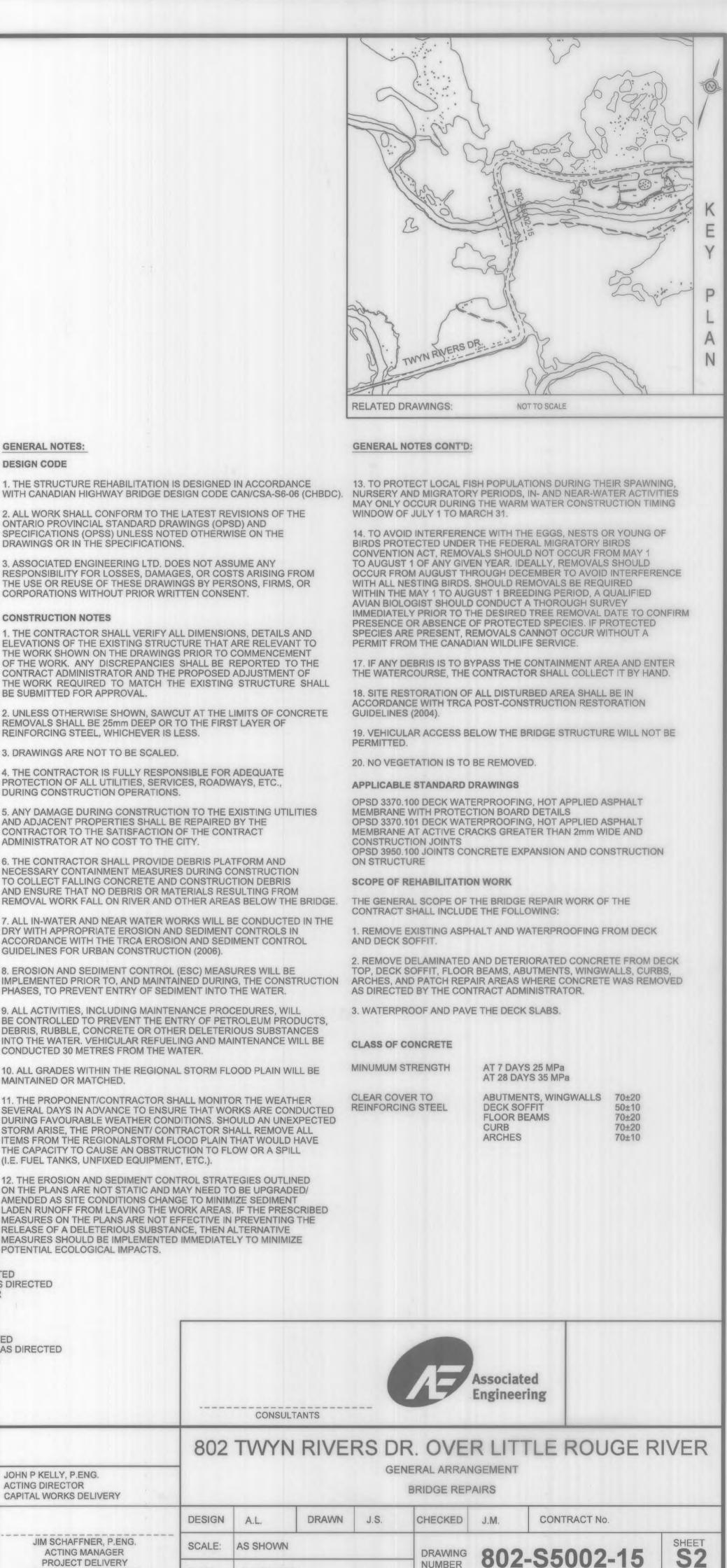
SSUED FOR

10S

12SE

CONTRACT No.


813 Old Finch Avenue Over Rouge River **General Arrangement** 813-S5013-5 813-S5013-6 Details Access Road 813-S5013-7 and Tree Removal Plan 813-S5013-8 **Tree Reinstatement Plan**


REVISED DRAWINGS -

ISSUED FOR TENDER

JULY 3, 2013 DATE: DRAWING NUMBER:802-S5002-14 **REVISED**:

Mo.Day.Yr \$\$FILE\$\$

JULY 3, 2013

5.10.2013 802-S5002-15.dgn

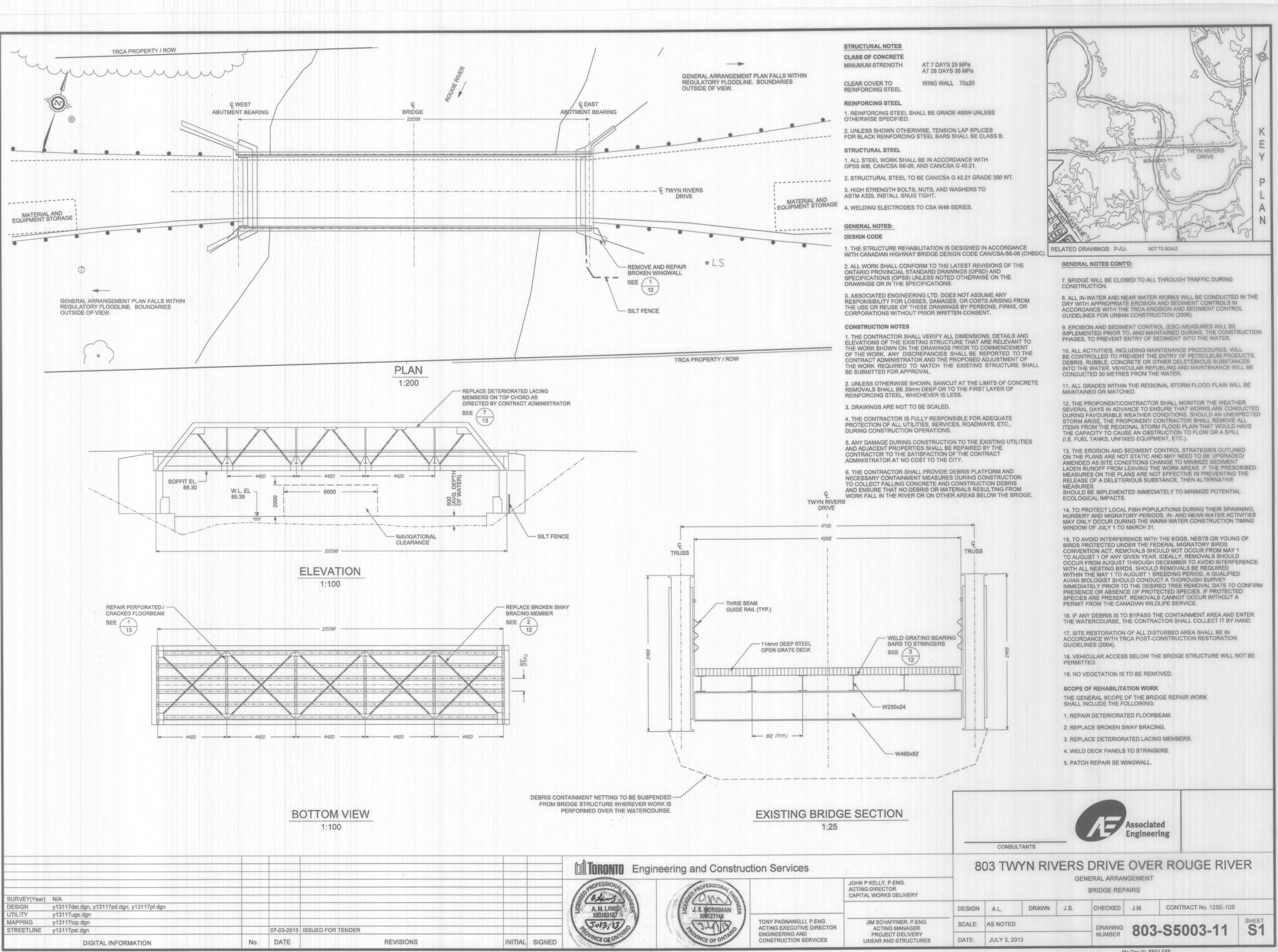
INITIAL SIGNED

DIGITAL INFORMATION

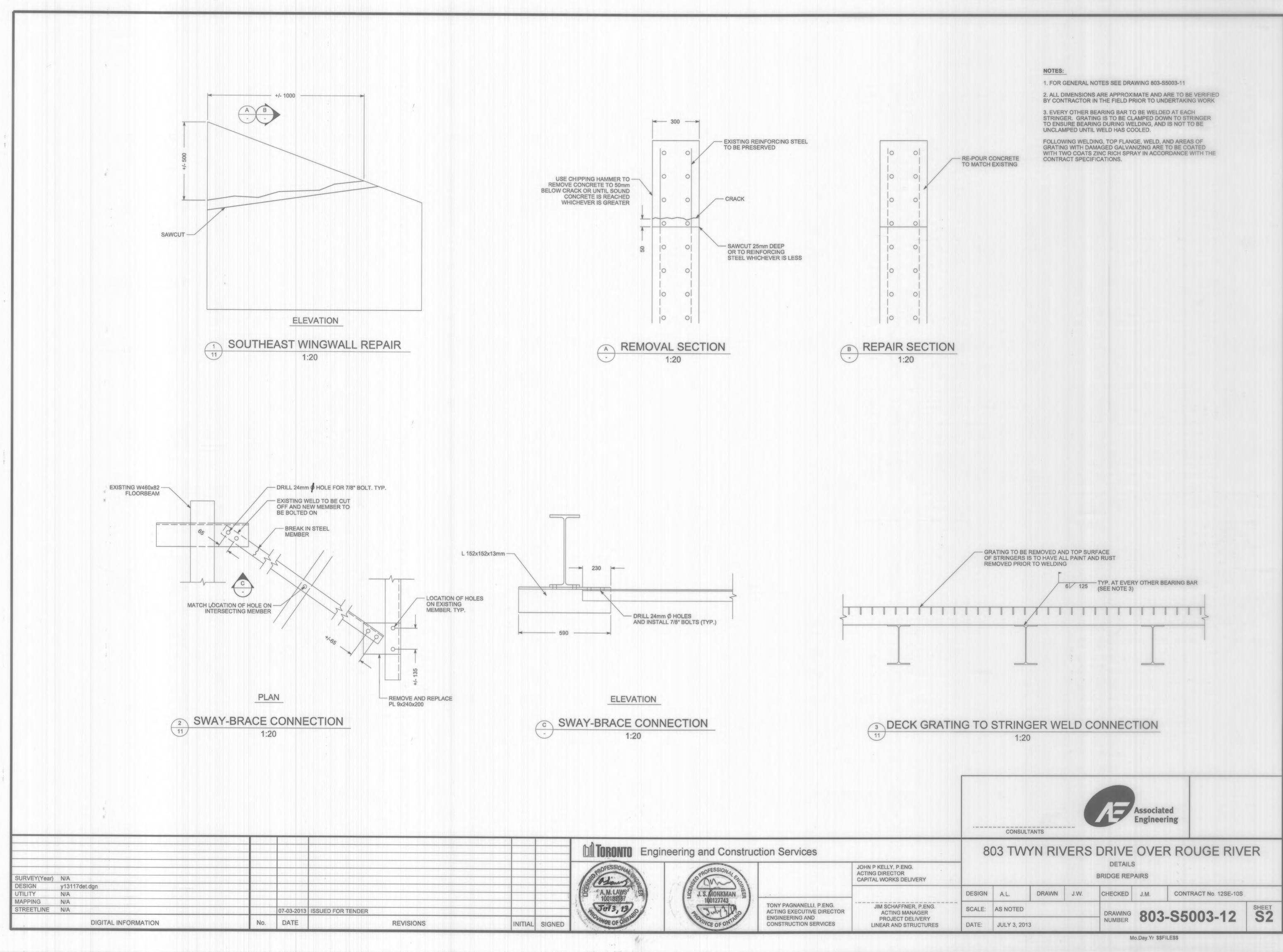
No.

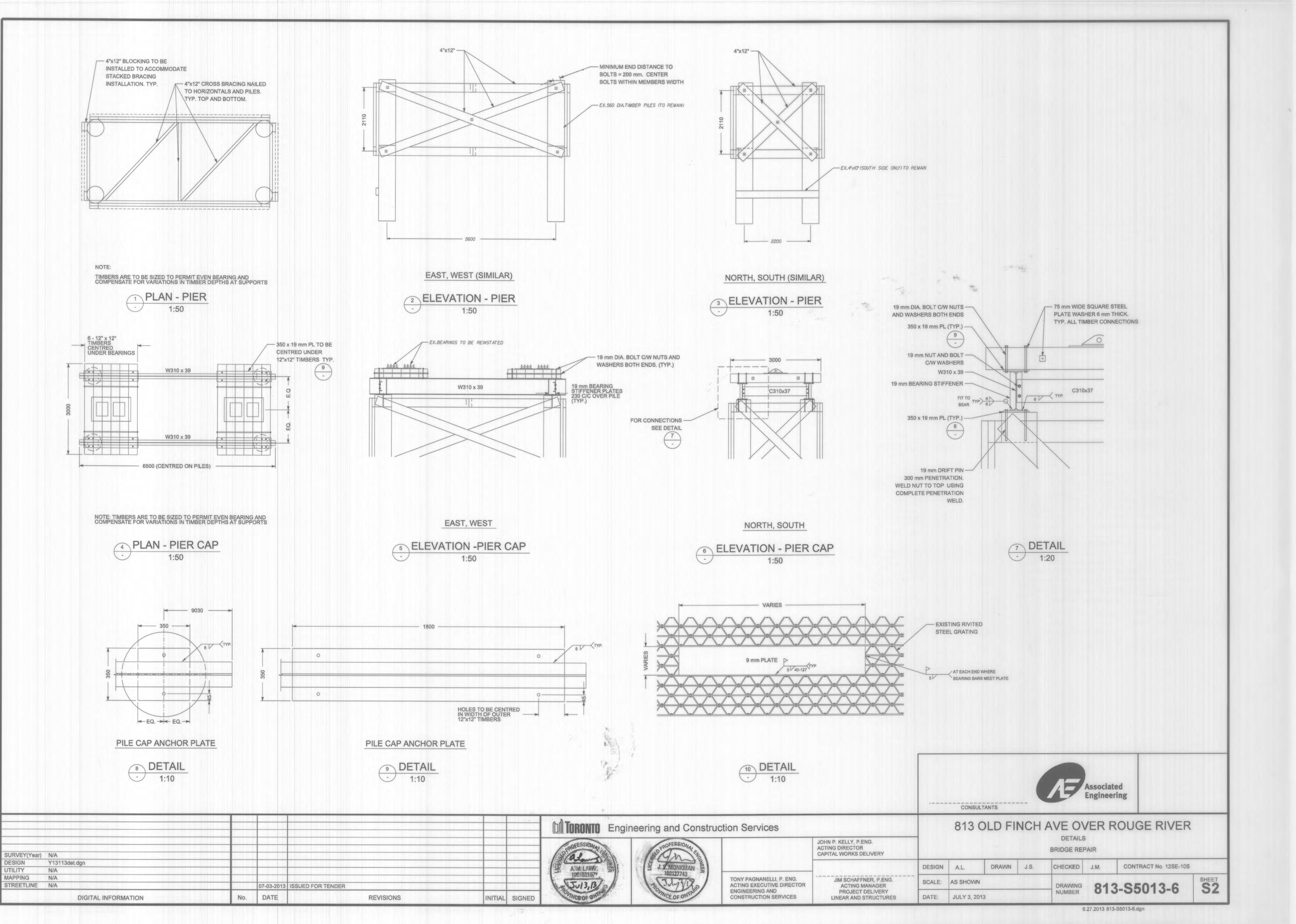
DATE

REVISIONS

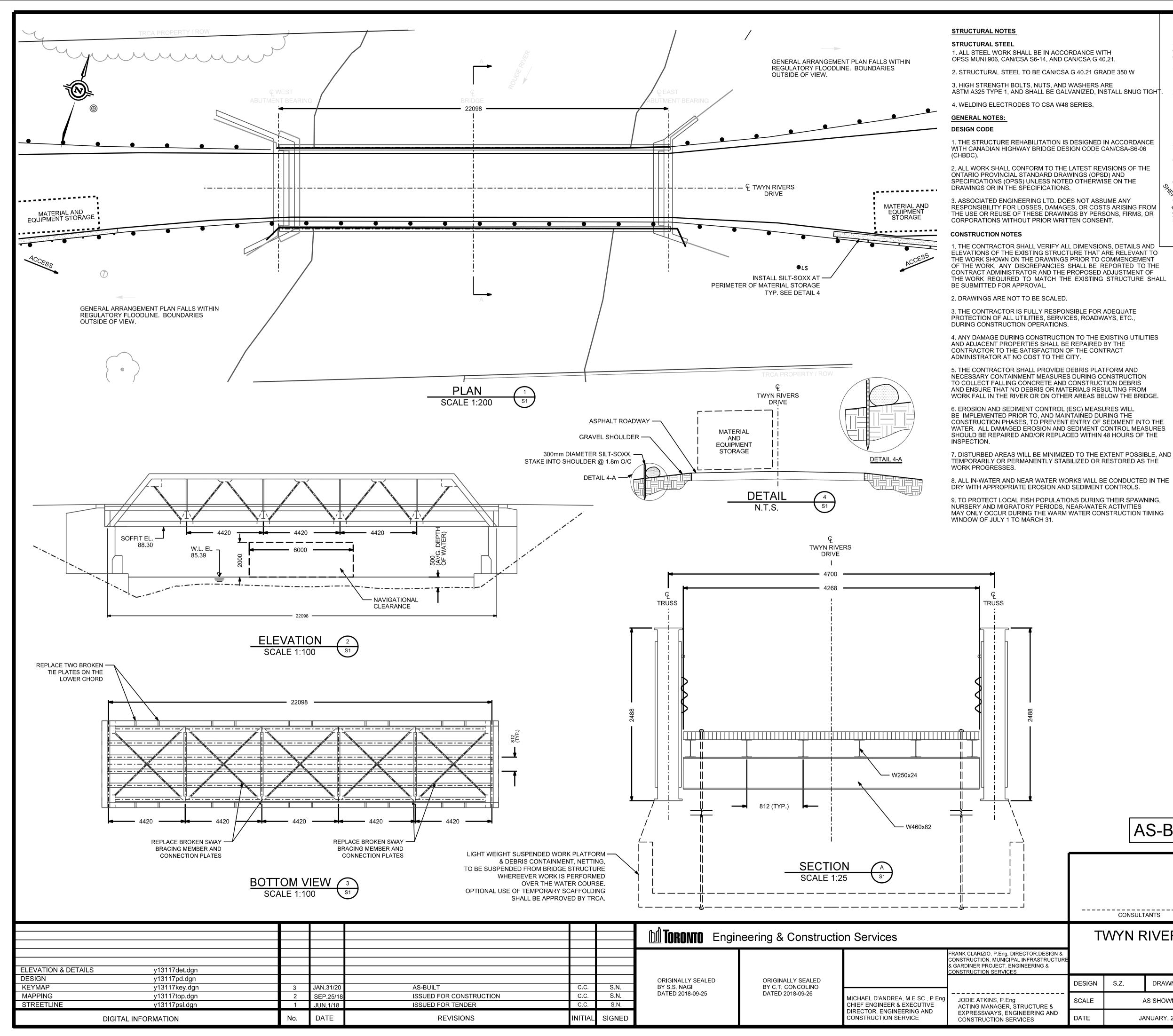

NOTES:	1
1. ALL DIMENSIONS ARE APPROXIMATE AND ARE TO BE VERIFIED BY CONTRACTOR IN THE FIELD PRIOR TO UNDERTAKING WORK	
U/S HORIZONTAL	
1:10	
Associated	
CONSULTANTS	
TWYN RIVERS DR. OVER LITTLE ROUGE RIVER DETAILS BRIDGE REPAIRS	
A.L. DRAWN J.S. CHECKED J.M. CONTRACT No. 12SE-10S AS NOTED SHEET	
JULY 3, 2013 DRAWING NUMBER 802-S5002-16 S3	
4,29,2013 802-S5002-16.dgn	

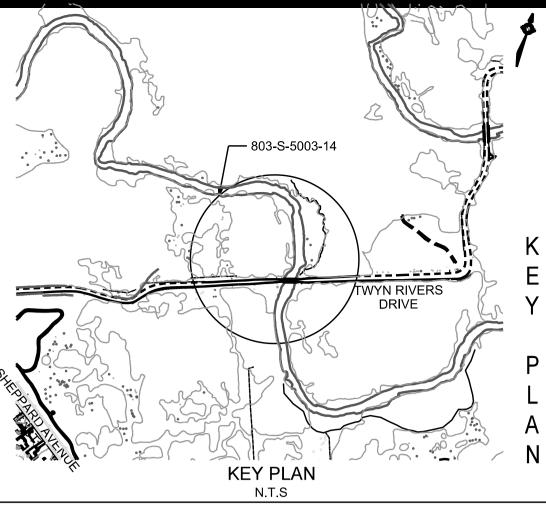
DATE:


LINEAR AND STRUCTURES


CONSTRUCTION SERVICES

.




Mo.Day.Yr \$\$FILE\$\$

_			TORONTO Engir	neering and Constru	ction Services			
_			PROFESSION AL	Sto PROFESSIONAL FL		JOHN P. KELLY, P.ENG. ACTING DIRECTOR CAPITAL WORKS DELIVERY		
_			A.M.LAWE	J. S. MONKMAN			DESIGN	
			Jul 3, 13/ 0	3 317720	TONY PAGNANELLI, P. ENG. ACTING EXECUTIVE DIRECTOR	JIM SCHAFFNER, P.ENG. ACTING MANAGER	SCALE:	A
	INITIAL	SIGNED	TOUNCEDE ONIT	UNCE OF OWTAR	ENGINEERING AND CONSTRUCTION SERVICES	PROJECT DELIVERY LINEAR AND STRUCTURES	DATE:	

NOT TO SCALE **GENERAL NOTES CONT'D:**

10. BRIDGE WILL BE CLOSED TO ALL THROUGH TRAFFIC DURING CONSTRUCTION.

11. THE EROSION AND SEDIMENT CONTROL STRATEGIES OUTLINED ON THE PLANS ARE NOT STATIC AND MAY NEED TO BE UPGRADED/AMENDED AS SITE CONDITIONS CHANGE TO MINIMIZE SEDIMENT LADEN RUNOFF FROM LEAVING THE WORK AREAS. IF THE PRESCRIBED MEASURES ON THE PLANS ARE NOT EFFECTIVE IN PREVENTING THE RELEASE OF A DELETERIOUS SUBSTANCE, INCLUDING SEDIMENT, THEN ALTERNATIVE MEASURES MUST BE IMPLEMENTED IMMEDIATELY TO MINIMIZE POTENTIAL ECOLOGICAL IMPACTS. TRCA ENFORCEMENT OFFICER SHOULD BE IMMEDIATELY CONTACTED. ADDITIONAL ESC MEASURES TO BE KEPT ON SITE AND USED AS NECESSARY.

12. AN ENVIRONMENTAL MONITOR WILL ATTEND THE SITE TO INSPECT ALL NEW CONTROLS, AS WELL AS ON A REGULAR BASIS, OR FOLLOWING RAIN/SNOW MELT EVENT, TO MONITOR ALL WORKS, AND IN PARTICULAR WORKS RELATED TO EROSION AND SEDIMENT CONTROLS, DEWATERING OR UNWATERING, RESTORATION AND IN- OR NEAR- WATER WORKS. SHOULD CONCERNS ARISE ON SITE THE ENVIRONMENTAL MONITOR WILL CONTACT THE TRCA ENFORCEMENT OFFICER AS WELL AS THE PROPONENT.

13. ALL ACTIVITIES, INCLUDING MAINTENANCE PROCEDURES, WILL BE CONTROLLED TO PREVENT THE ENTRY OF PETROLEUM PRODUCTS, DEBRIS, RUBBLE, CONCRETE OR OTHER DELETERIOUS SUBSTANCES INTO THE WATER. VEHICULAR REFUELING AND MAINTENANCE WILL BE CONDUCTED 30 METERS FROM THE WATER.

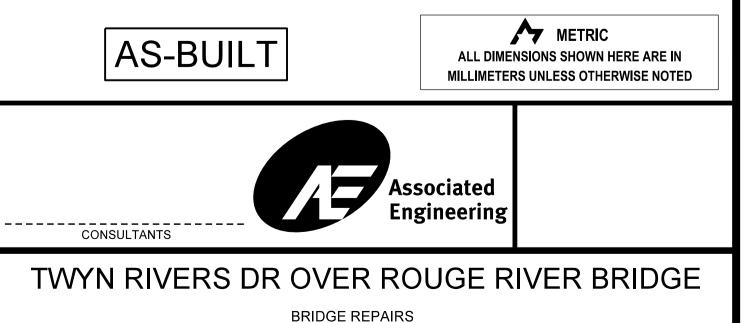
14. ALL GRADES WITHIN THE REGULATORY FLOOD PLAIN WILL BE MAINTAINED OR MATCHED.

15.THE PROPONENT/CONTRACTOR SHALL MONITOR THE WEATHER SEVERAL DAYS IN ADVANCE OF THE ONSET OF THE PROJECT TO ENSURE THAT THE WORKS WILL BE CONDUCTED DURING FAVOURABLE WEATHER CONDITIONS. SHOULD AN UNEXPECTED STORM ARISE, THE CONTRACTOR WILL REMOVE ALL UNFIXED ITEMS FROM THE REGIONAL STORM FLOOD PLAIN THAT WOULD HAVE THE POTENTIAL TO CAUSE A SPILL OR AN OBSTRUCTION TO FLOW, E.G., FUEL TANKS, PORTA-POTTIES, MACHINERY, EQUIPMENT, CONSTRUCTION MATERIALS, ETC.

16. PLEASE NOTIFY TRCA ENFORCEMENT OFFICER (MICHEAL BRETANSKYAT 416.661.6600 X 5699) AND TRCA PROJECT MANAGER (HEATHER WRIGHT AT 416.661.6600 X 5766) 48 HOURS PRIOR.

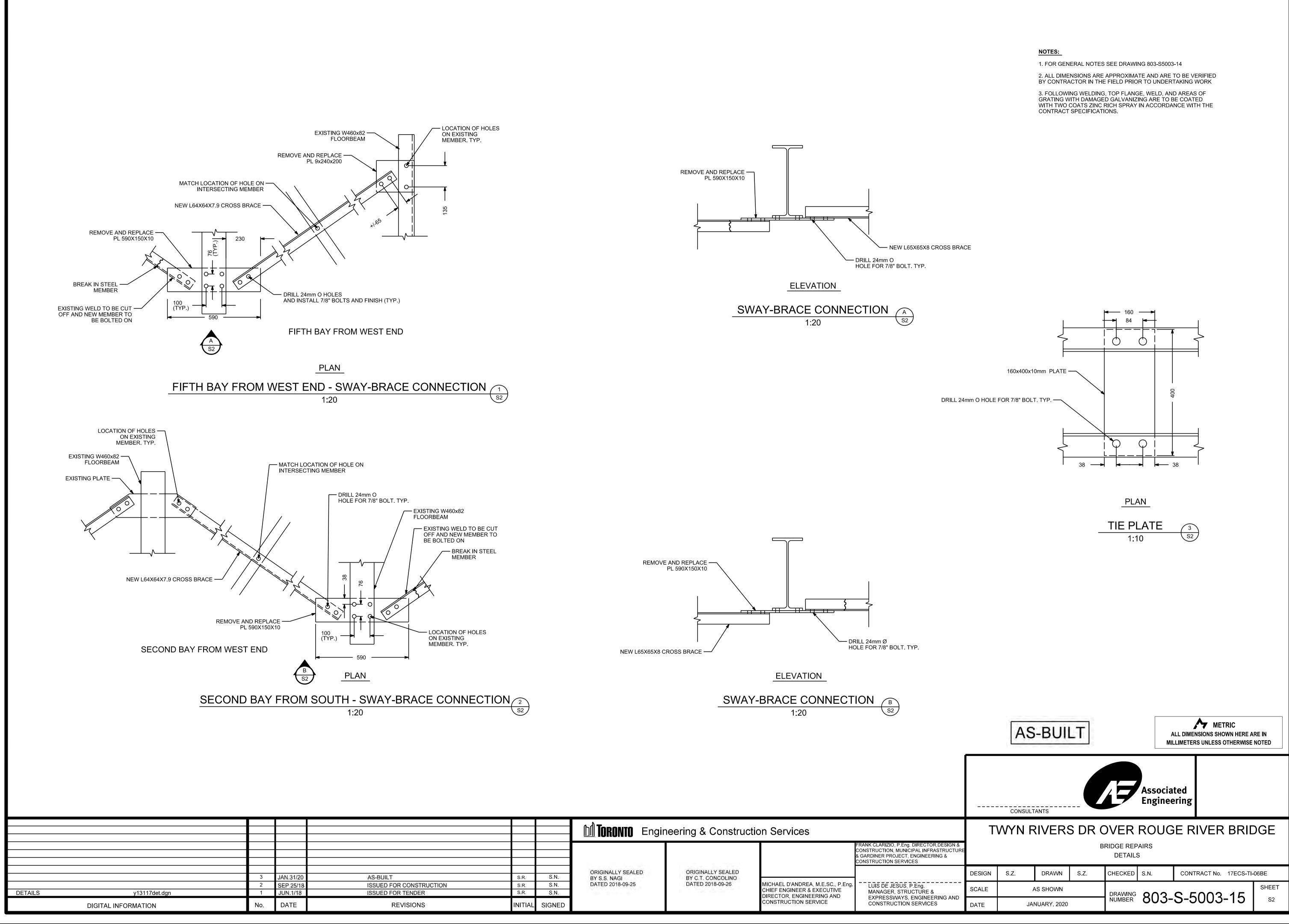
17. AN ENVIRONMENTAL MONITOR WILL BE ON SITE, AND PROVIDE ADVICE, TO ENSURE THAT ACTIVITIES THAT COULD HAVE A NEGATIVE IMPACT TO THE NATURAL ENVIRONMENT ARE EFFECTIVELY MITIGATED AS CONSTRUCTION PROCEEDS. THE ENVIRONMENTAL MONITOR SHALL NOTIFY THE TRCA ENFORCEMENT OFFICER AND PROJECT MANAGER IF AN ISSUE ARISES.

18. NO ACCESS ROAD FOR CONSTRUCTION VEHICLES PERMITTED.

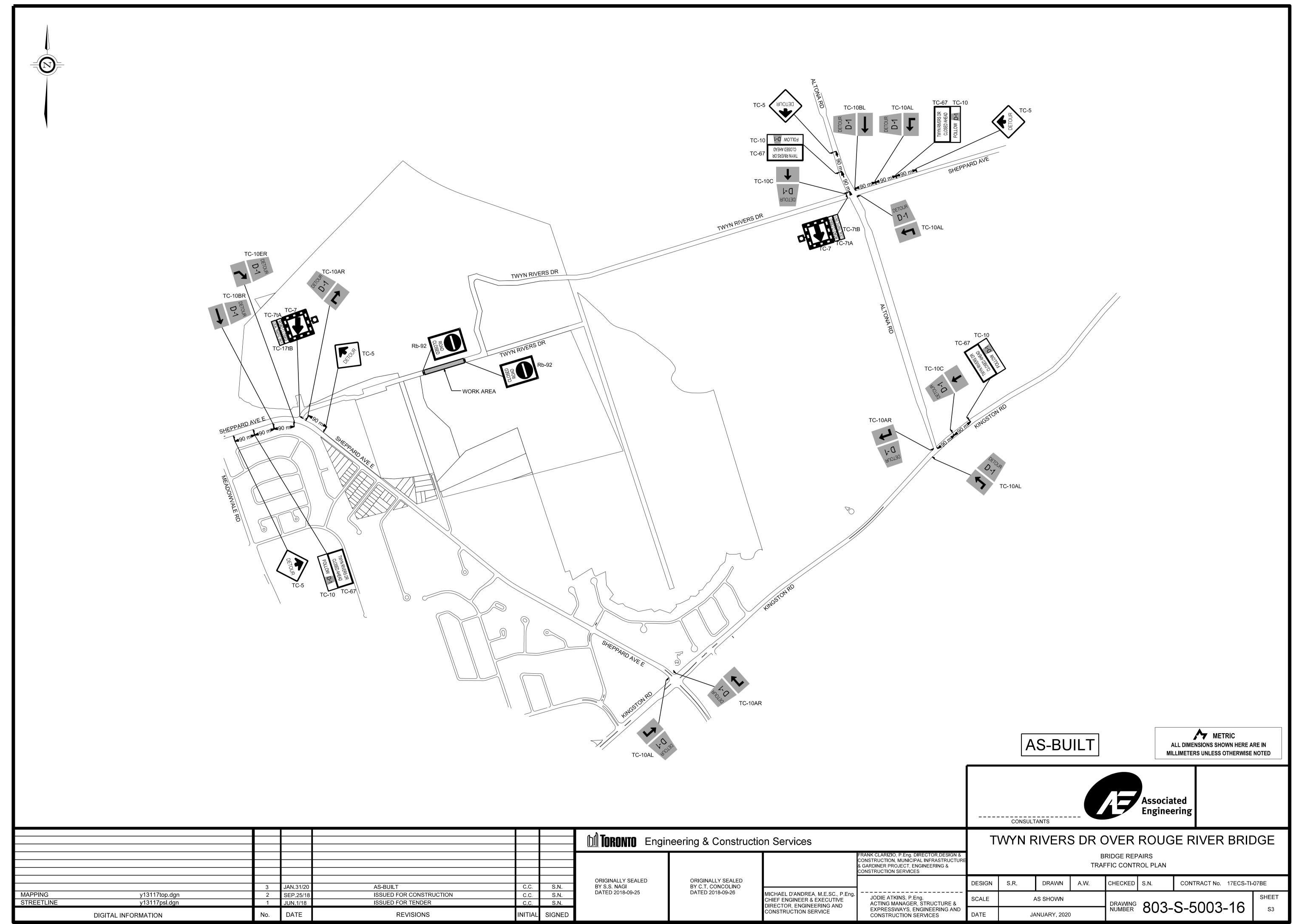

19. TO AVOID INTERFERENCE WITH THE EGGS, NESTS OR YOUNG OF BIRDS PROTECTED UNDER THE FEDERAL MIGRATORY BIRDS CONVENTION ACT, REMOVALS SHOULD NOT OCCUR FROM MAY 1 TO AUGUST 1 OF ANY GIVEN YEAR, IDEALLY, REMOVALS SHOULD OCCUR FROM AUGUST THROUGH DECEMBER TO AVOID INTERFERENCE WITH ALL NESTING BIRDS. SHOULD REMOVALS BE REQUIRED WITHIN THE MAY 1 TO AUGUST 1 BREEDING PERIOD, A QUALIFIED AVIAN BIOLOGIST SHOULD CONDUCT A THOROUGH SURVEY IMMEDIATELY PRIOR TO THE DESIRED TREE REMOVAL DATE TO CONFIRM PRESENCE OR ABSENCE OF PROTECTED SPECIES. IF PROTECTED SPECIES ARE PRESENT, REMOVALS CANNOT OCCUR WITHOUT A PERMIT FROM THE CANADIAN WILDLIFE SERVICE.

20. IF ANY DEBRIS IS TO BYPASS THE CONTAINMENT AREA AND ENTER THE WATER COURSE, THE CONTRACTOR SHALL COLLECT IT BY HAND.

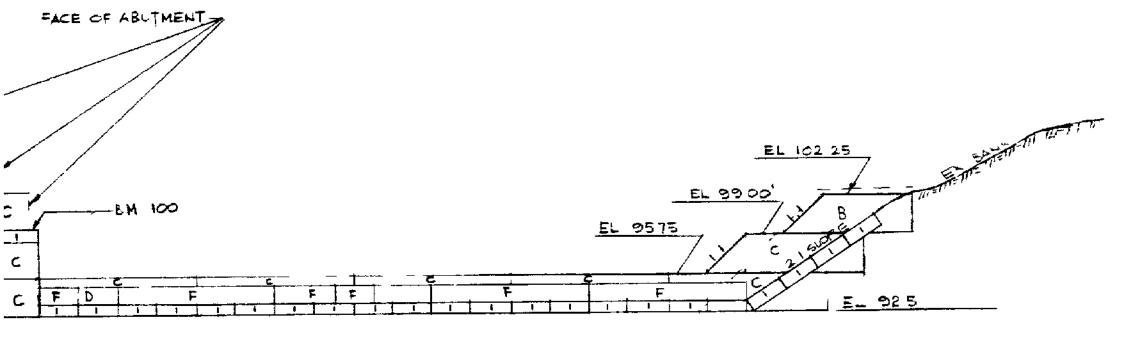
21. SITE RESTORATION OF ALL DISTURBED AREA SHALL BE IN ACCORDANCE WITH TRCA POST- CONSTRUCTION RESTORATION GUIDELINES (2004), INCLUDING BUT NOT LIMITED TO REMOVAL OF TEMPORARY FILL MATERIALS, SEEDING USING TRCA APPROVED NATIVE SEED MIXTURE AND PLANTING OF NATIVE SPECIES TREES.

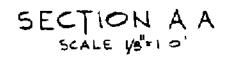

22. CONTAINMENT SYSTEM WILL BE INSPECTED DAILY TO ENSURE EFFECTIVE CONTAINMENT.

23. NO VEGETATION IS TO BE REMOVED.

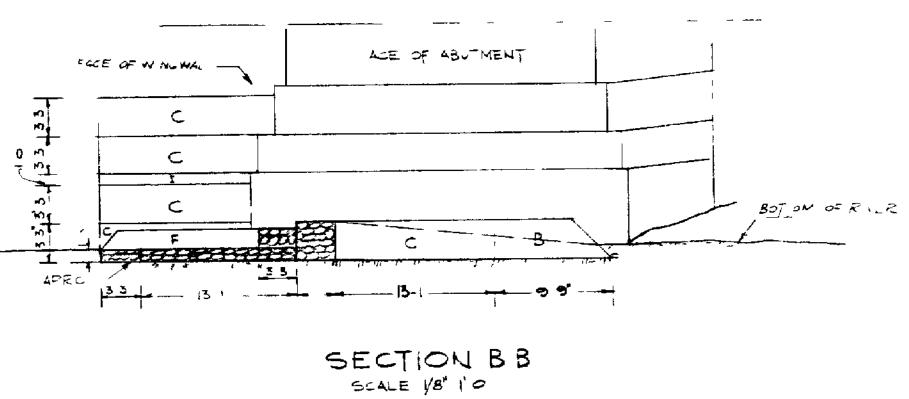


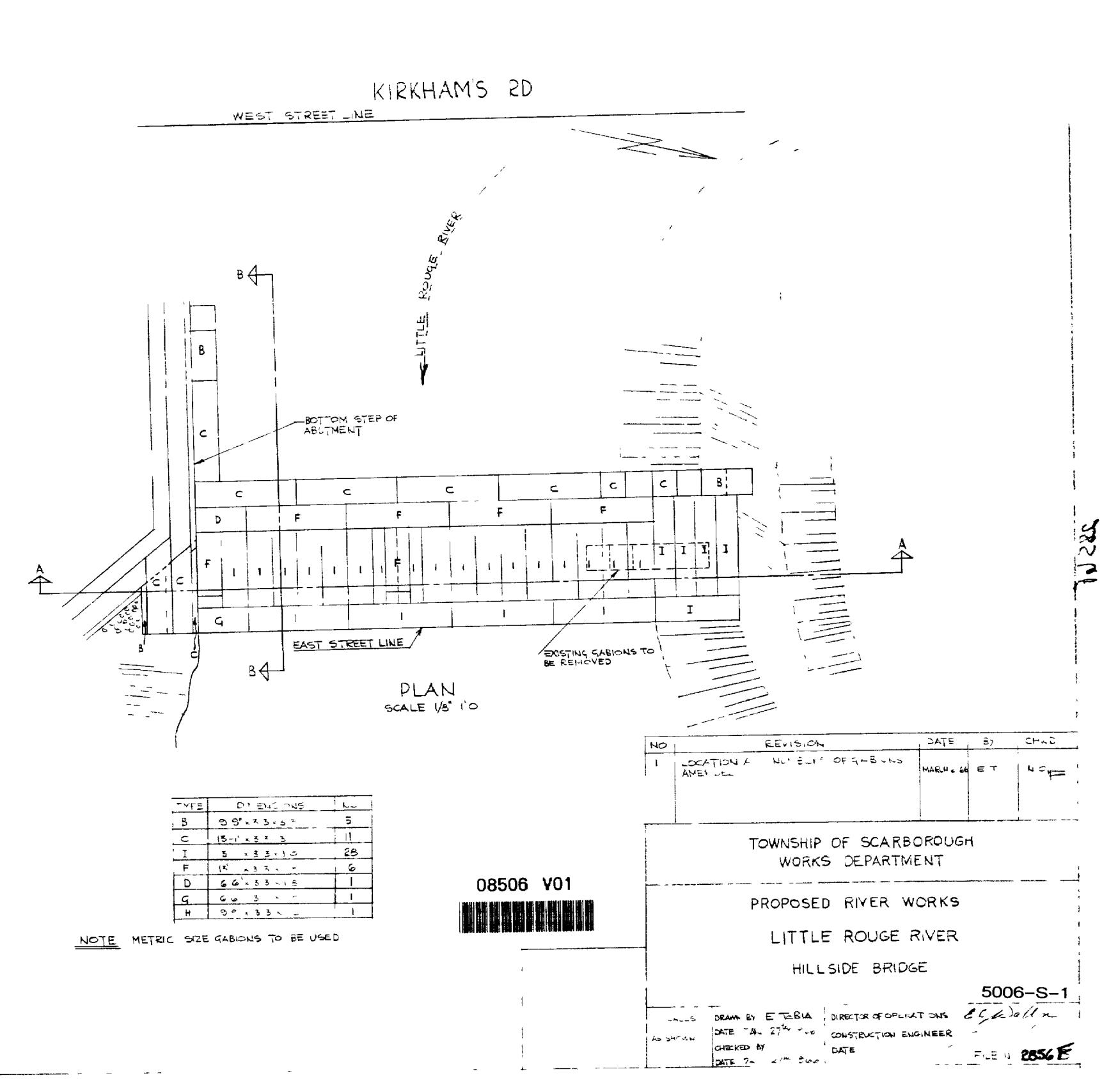
GENERAL ARRANGEMENT

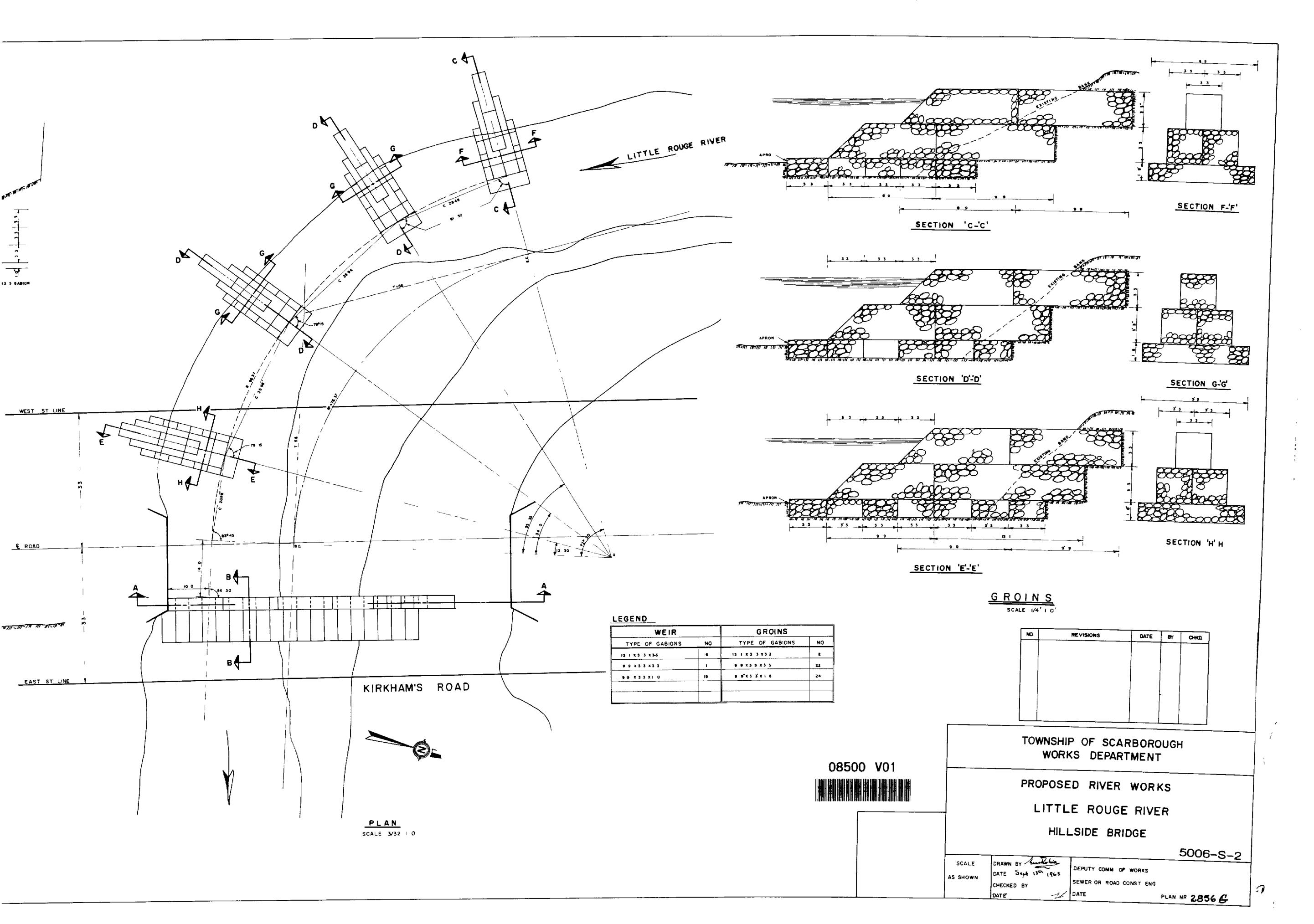

ESIGN	S.Z.	DRAWN	S.Z.	CHECKED	CKED S.N. CONTRACT No. 17ECS-TI-				
SCALE	F	AS SHOWN		DRAWING	002		SHEET		
DATE	ĄL	NUARY, 2020		NUMBER	003-	S-5003-14	S1		

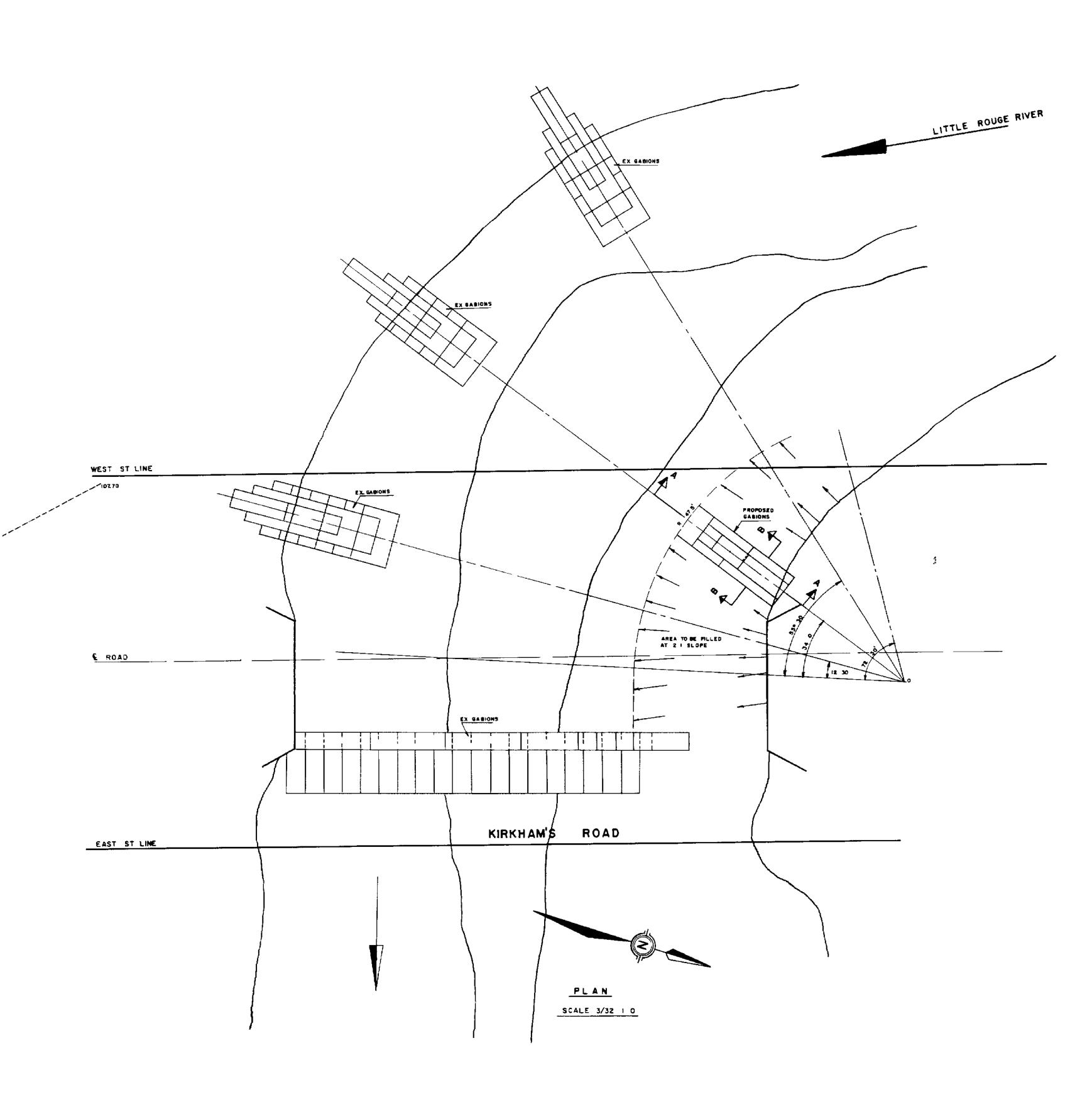


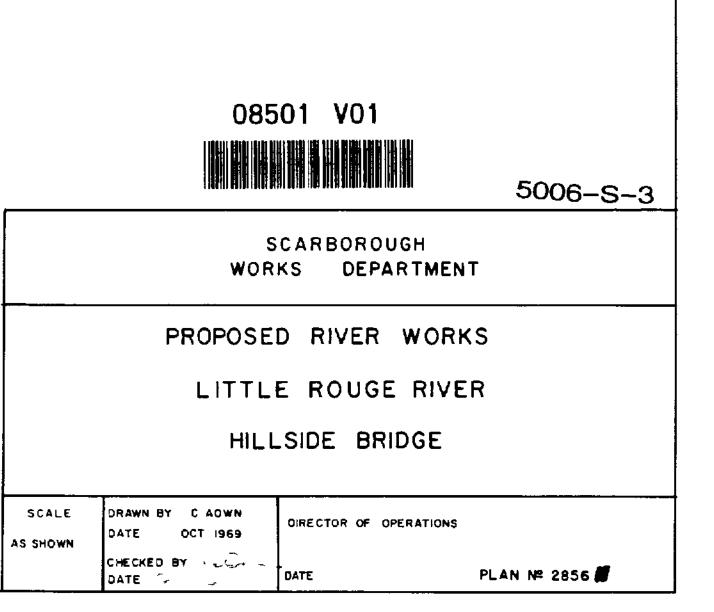
						-
		In Toronto Engir	neering & Construc	tion Services		
					FRANK CLARIZIO, P.Eng. DIRECTOR,DESIGN & CONSTRUCTION, MUNICIPAL INFRASTRUCTURE & GARDINER PROJECT, ENGINEERING & CONSTRUCTION SERVICES	
S.R.	S.N.	ORIGINALLY SEALED	ORIGINALLY SEALED			DES
S.R.	S.N.	BY S.S. NAGI DATED 2018-09-25	BY C.T. CONCOLINO DATED 2018-09-26	MICHAEL D'ANDREA, M.E.SC., P.Eng.	LUIS DE JESUS, P.Eng.	
S.R.	S.N.			CHIEF ENGINEER & EXECUTIVE	MANAGER, STRUCTURE &	SCA
INITIAL	SIGNED			DIRECTOR, ENGINEERING AND CONSTRUCTION SERVICE	EXPRESSWAYS, ENGINEERING AND CONSTRUCTION SERVICES	DAT

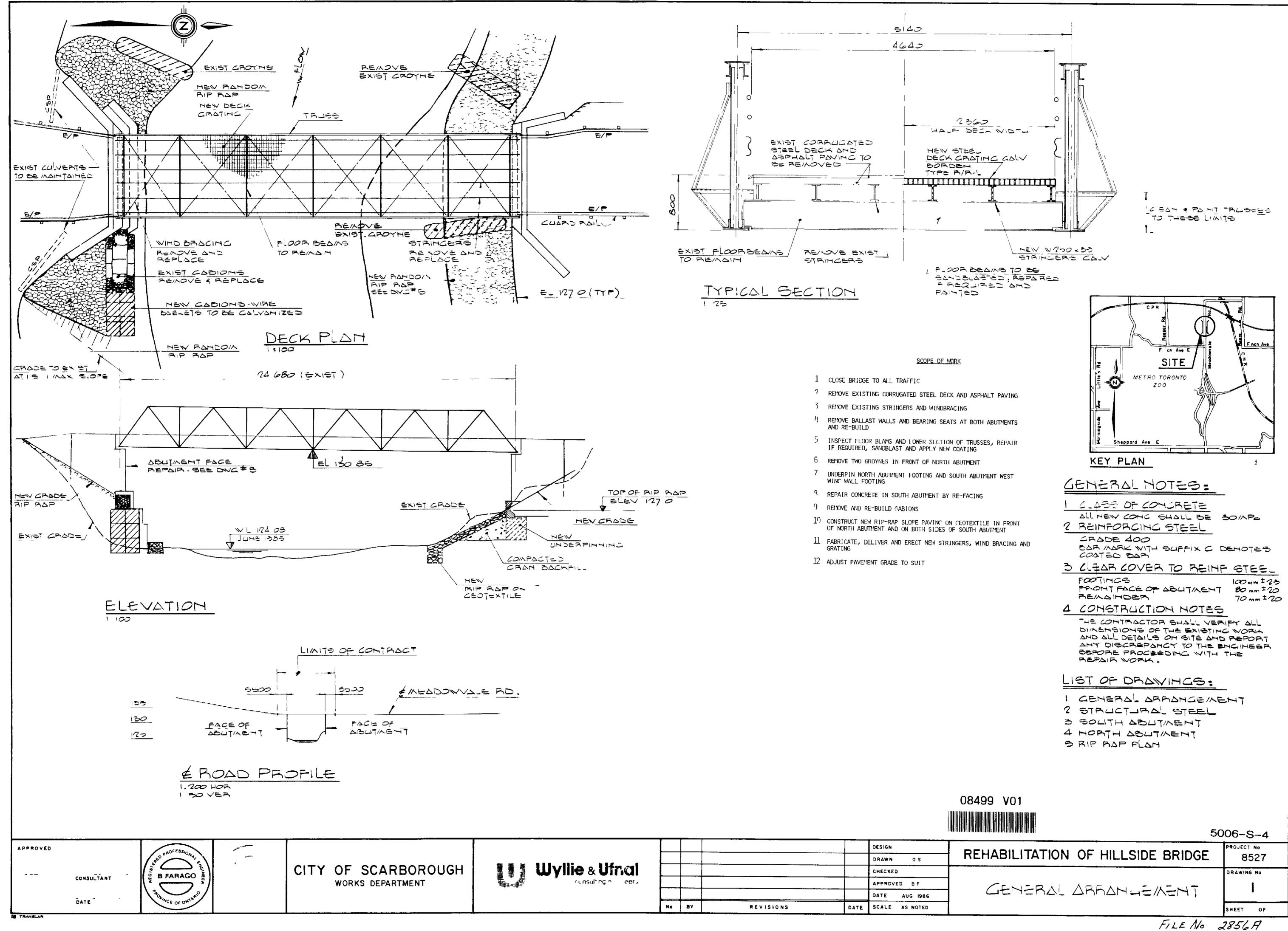



		In Toronto Engir	neering & Construct	Construction Services							
					FRANK CLARIZIO, P.Eng. DIRECTOR,DESIGN & CONSTRUCTION, MUNICIPAL INFRASTRUCTURE & GARDINER PROJECT, ENGINEERING & CONSTRUCTION SERVICES						
C.C.	S.N.	ORIGINALLY SEALED BY S.S. NAGI	ORIGINALLY SEALED BY C.T. CONCOLINO			DES					
C.C.	S.N.	DATED 2018-09-25	DATED 2018-09-26	MICHAEL D'ANDREA, M.E.SC., P.Eng. CHIEF ENGINEER & EXECUTIVE	JODIE ATKINS, P.Eng.	SCA					
C.C.	S.N.			DIRECTOR, ENGINEERING AND	ACTING MANAGER, STRUCTURE &						
INITIAL	SIGNED			CONSTRUCTION SERVICE	EXPRESSWAYS, ENGINEERING AND CONSTRUCTION SERVICES	DAT					

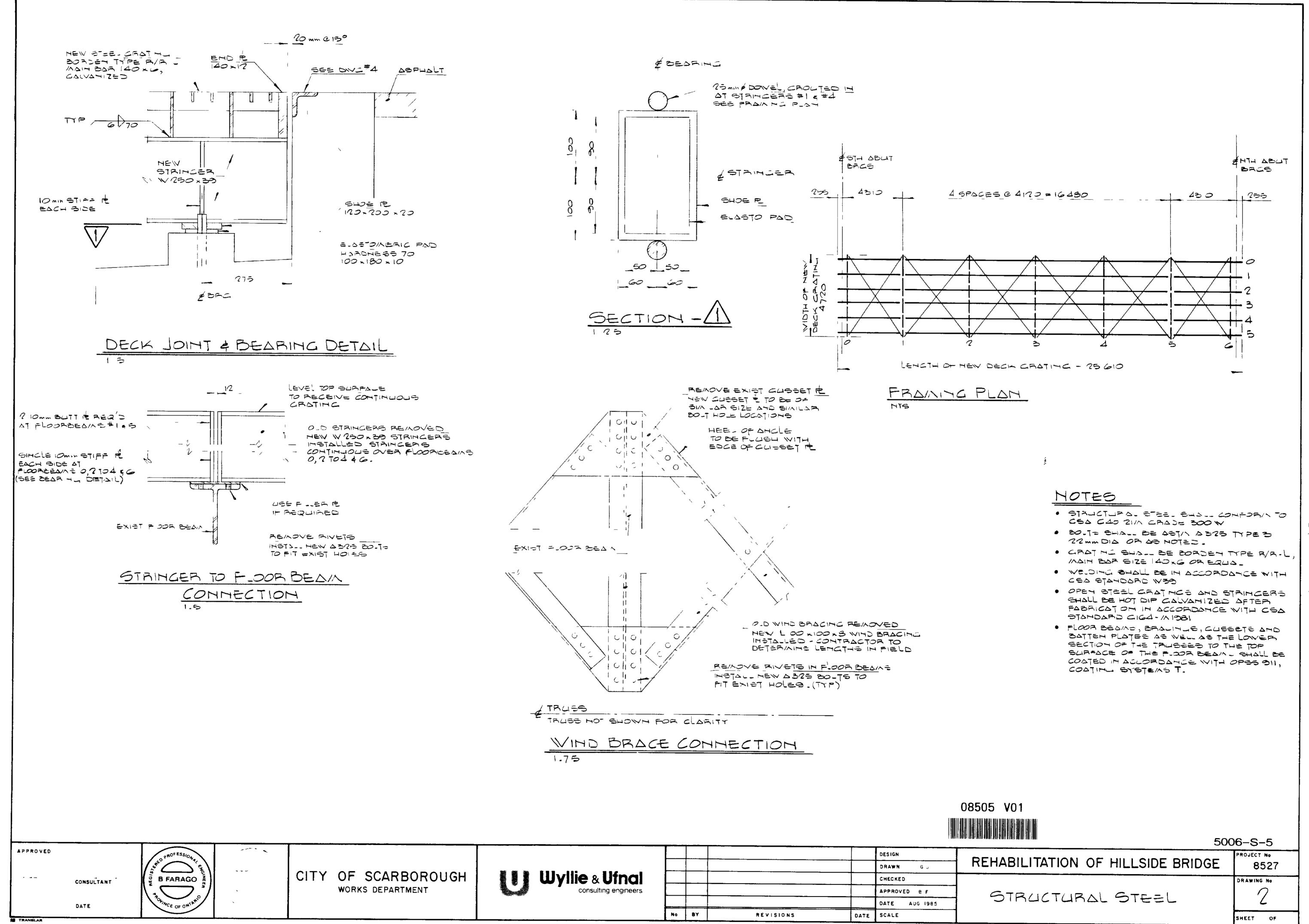






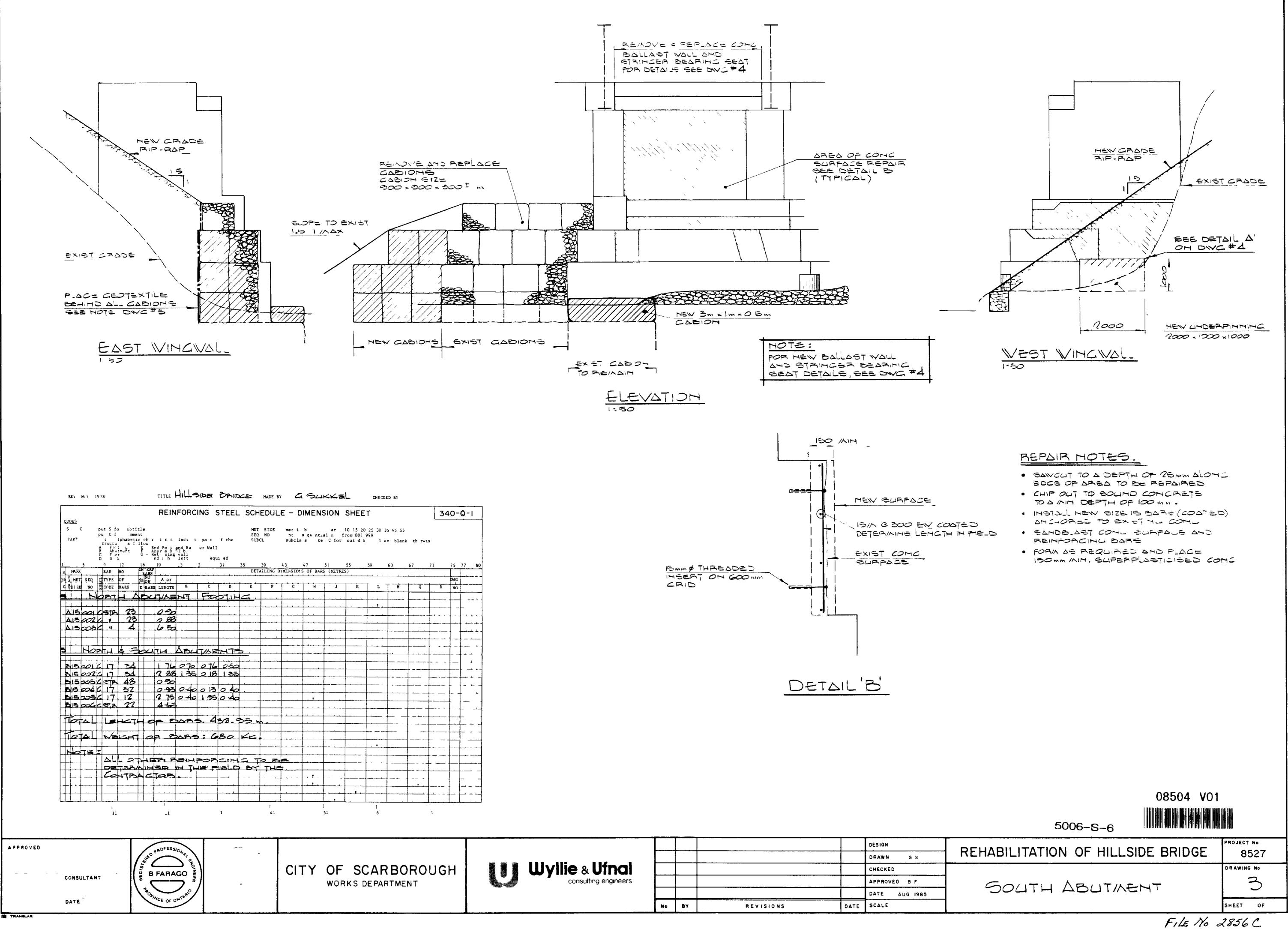


Alabi


S \checkmark 6

_

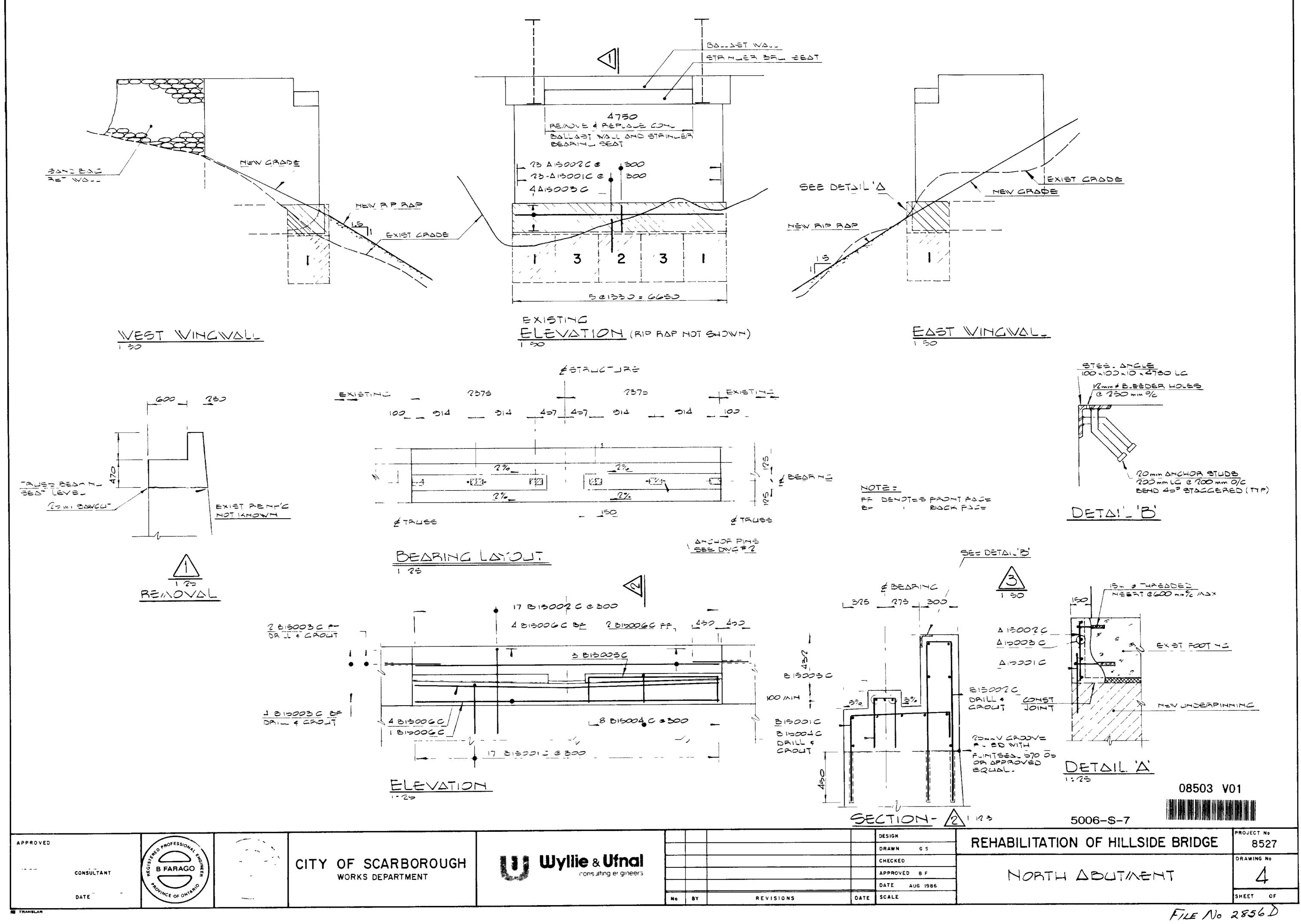
لمر

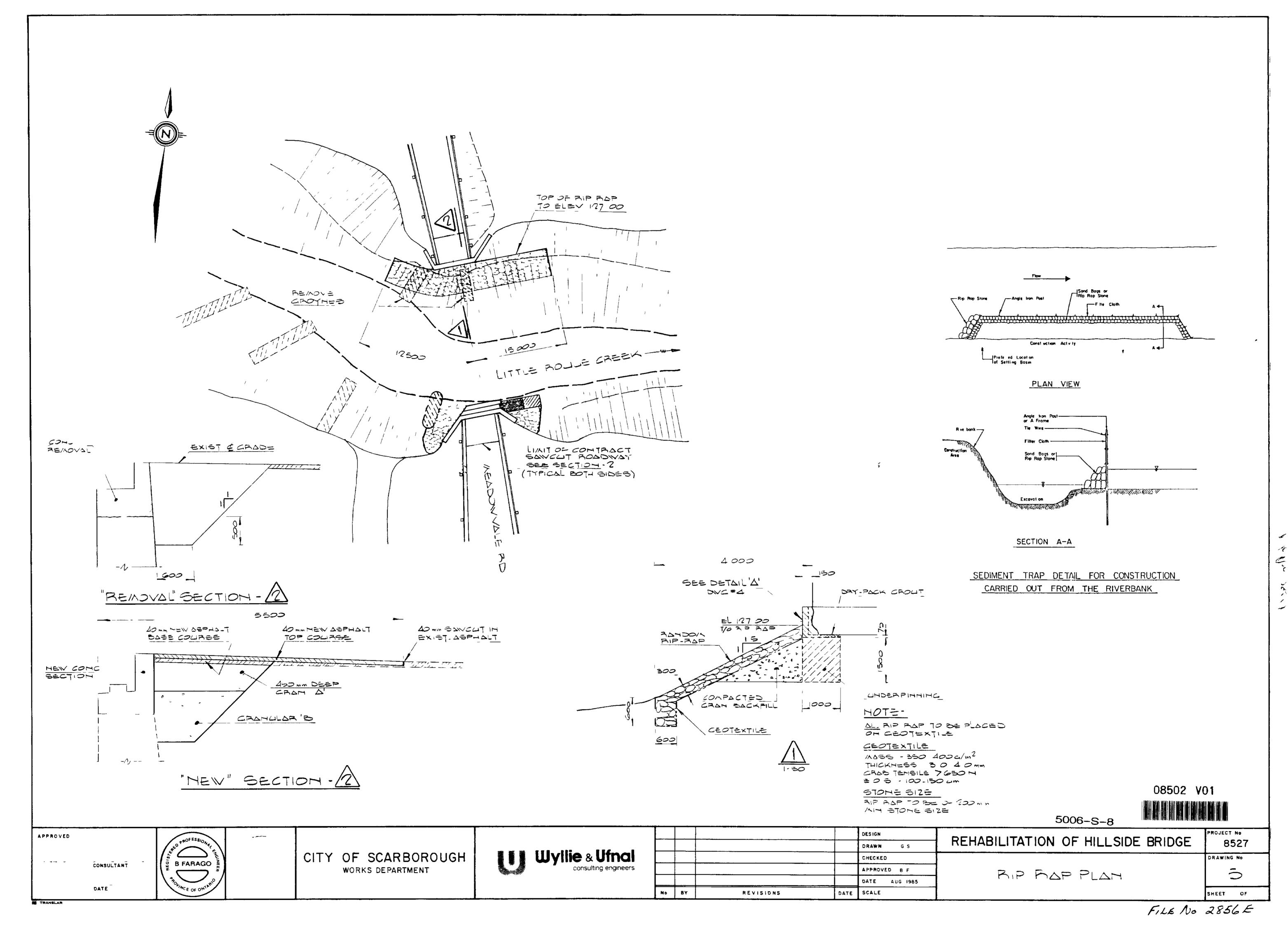

						DESIGN	T ,
						DRAWN GS	7 F
SH	Wyllie &	Ufrial 📃				CHECKED	1
	Wyllie &	ng eller a				APPROVED BF	1
						DATE AUG 1986	1
		Na	87	REVISIONS	DATE	SCALE AS NOTED	1

1 2 \mathcal{O}

Ø 202 8 ç, Jul Jul

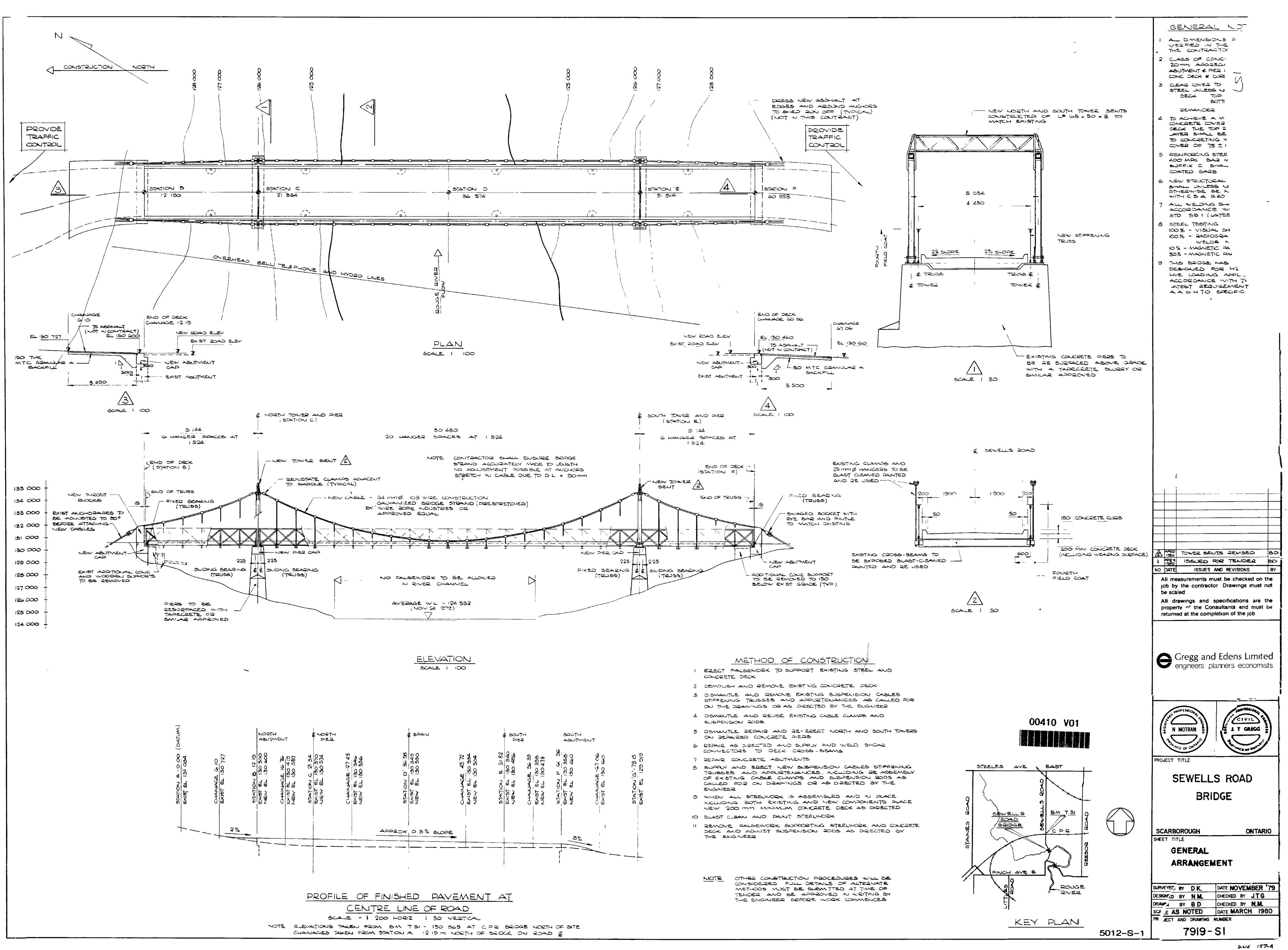
FILE No 2856B

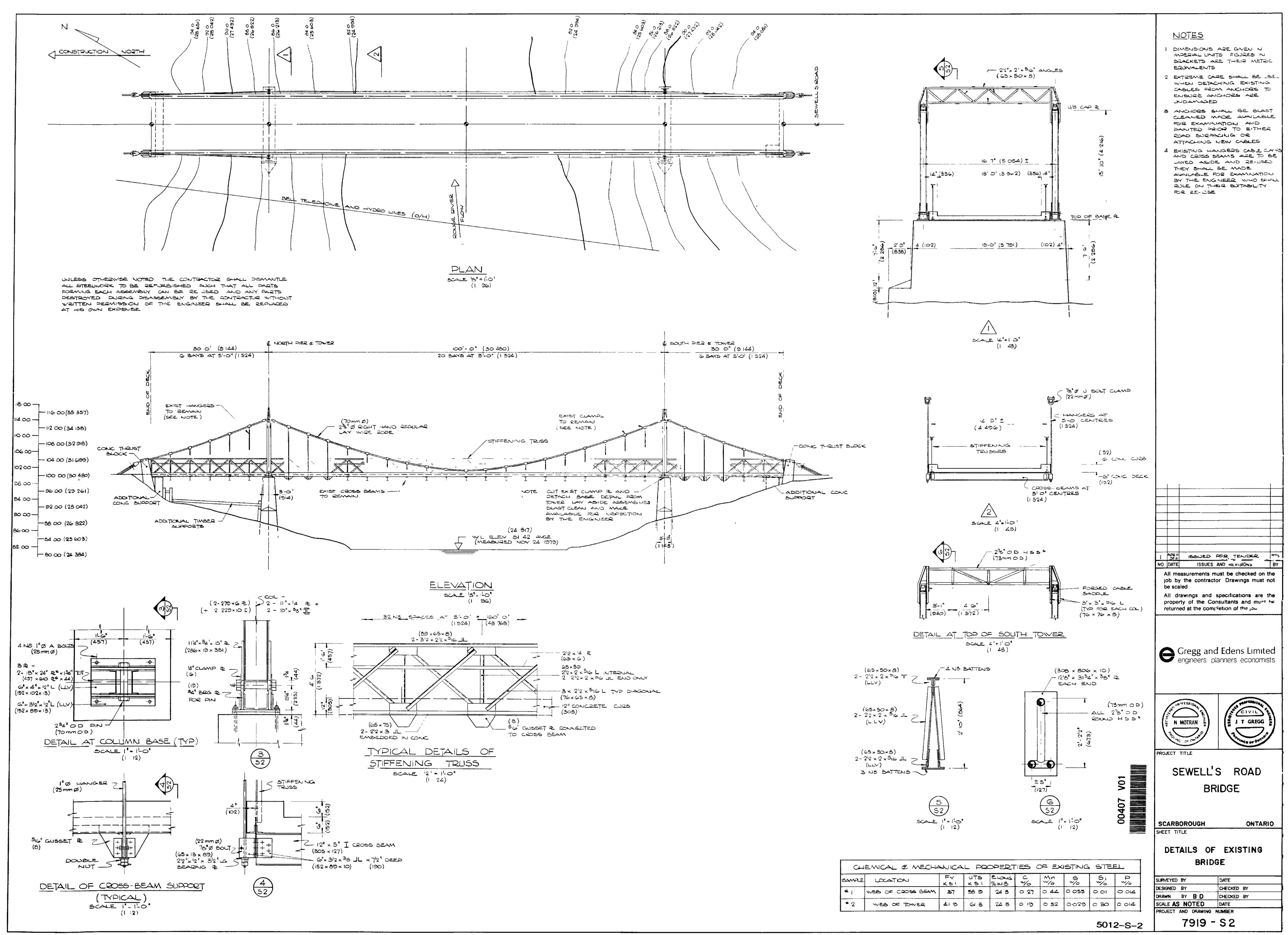



	-	o ubti		REIN	FORC	ING	SIEEL	MET	SIZE	met i	Ъ	ar	SHEE	0 25 30	35 45 5	5
PART	t.	i mane Iphabeți	ie ch r	trt	indı t	pat	fthe	SEQ SUB	NO CL	nt .	s qu'nt.	aln	from 001 oat d b	999		
	A FX B Abu	i sf it b utment er	E E	nd Pot pprah	and Ba 51 b 51 b 1 b 1 ett	er Wall										
	ט ט	ĸ														
I 5 S MARK	9 BAR	12 NO	IN ERP	1		2	31			43 IMENSION			55 ES)	59	63	67
OR A MET SEQ	TYPE	OF	BARS NO DRIOF	Aor		· · · ·	· · · · · · ·		·····	<u>111</u>	<u> </u>	<u> </u>			d <u></u>	<u> </u>
C REIZE NO				LENGTH	B	c	D	Ē	F	C C	, H	J	K	Τ L	M	
	dat	<u> </u>	Ype		TH	Fra	PIT	G.								
		<u> </u>	<u>_</u>			<u> </u>				<u> </u>	ļ	<u> </u>		<u> </u>	·	
A15001				02			ļ	·	ļ	<u></u>	İ	ļ				
A13002	-	23	╘╋	0.88			ļ	+		+					<u> </u>	
41503	<u>- 1</u>	4	╉┝╌	650	4	<u> </u>	· ·	+	ļ ·		·	┿┈╸╸	- 	+		
┟┼┼╸┠╵╶┈┧		+	┫		+	<u> </u>	- · · ··· · ·	- <u> </u>	<u></u>	<u></u>	<u> </u>	┿┷╍	- -		•	 .
				· · ·	ABC				<u> </u>	+	+ + + +	· · · · · ·		<u> </u>	·	
				╡ ╽┝╼ ┫ _{───}				.	<u> +</u>		<u> </u>	+		- 		
BIBDOID	: 177	=4	++	1 7/-	070	076	0.50	+	+	<u> </u>	<u> </u>	/		1		
315002		34	<u>+ · </u> + · .		135				+	<u> </u>	╞╴┈╾┶			+	• • • • • • • • • • • • • • • • • • • •	
015005	1		1 1	090	T · · · ·	<u> </u>	╷┈╶┖┈╺═┙═╛ │					1		+		· +
BIBOOL			1	1	2.40	013	040	,	+ · · · ·		.			·		
515005			1		040				1	1	• •	1 .		1		-+
615006				4.10										1		1
							<u> </u>									
TETAL			Hc	<u> </u>	20.P	<u>s. 4</u>	32.	<u>>5</u> ,	h			· · · · -				
	<u> </u>		╆╞╌╺					ļ	ļ	· · · · · · · · ·						ļ
TIPTAL	- NZ	timer C	1/2	2_2	205-	\$: C	80_	↓K	· · · · · ·	• • • • • • •						
		+	╆╋	· · · ·	ļ		 	<u> </u>	 		<u> </u>	+		ļ. •		-
			<u> </u>		ļ <u></u>		· · · · ·		<u> </u>	ļ		+	+	+		
		4 <u>-</u> 2-			<u></u>							+	+	<u> </u>		
┠╉╋╼┾╺╌╴╅					DH JL		منا سا متقلال		L DHE	-		╉╶╌╺──	+	+		-+
+++-+++		HTA		the second	•	<u> </u>	<u>↓</u>		<u> </u>	↓ <u>~</u>		<u> </u>				4
<u>│</u> ╇╍┠└ ╉╍╍╌╉	1	1	++	•_ b _ • •				<u></u>		<u> </u> +	····▲···	÷	1 .			<u>-</u>
	1	·		<u> </u>	· · · · · - · · ·	· · ·	╎╴╴┈┺			- • • • •		+ ·	+			
)		· · ·				· <u> </u>		ندا ـــــــــــــــــــــــــــــــــــ	<u></u>	I	1	<u> </u>	 		<u> </u>
	11	1		_1			1		41			51		6		

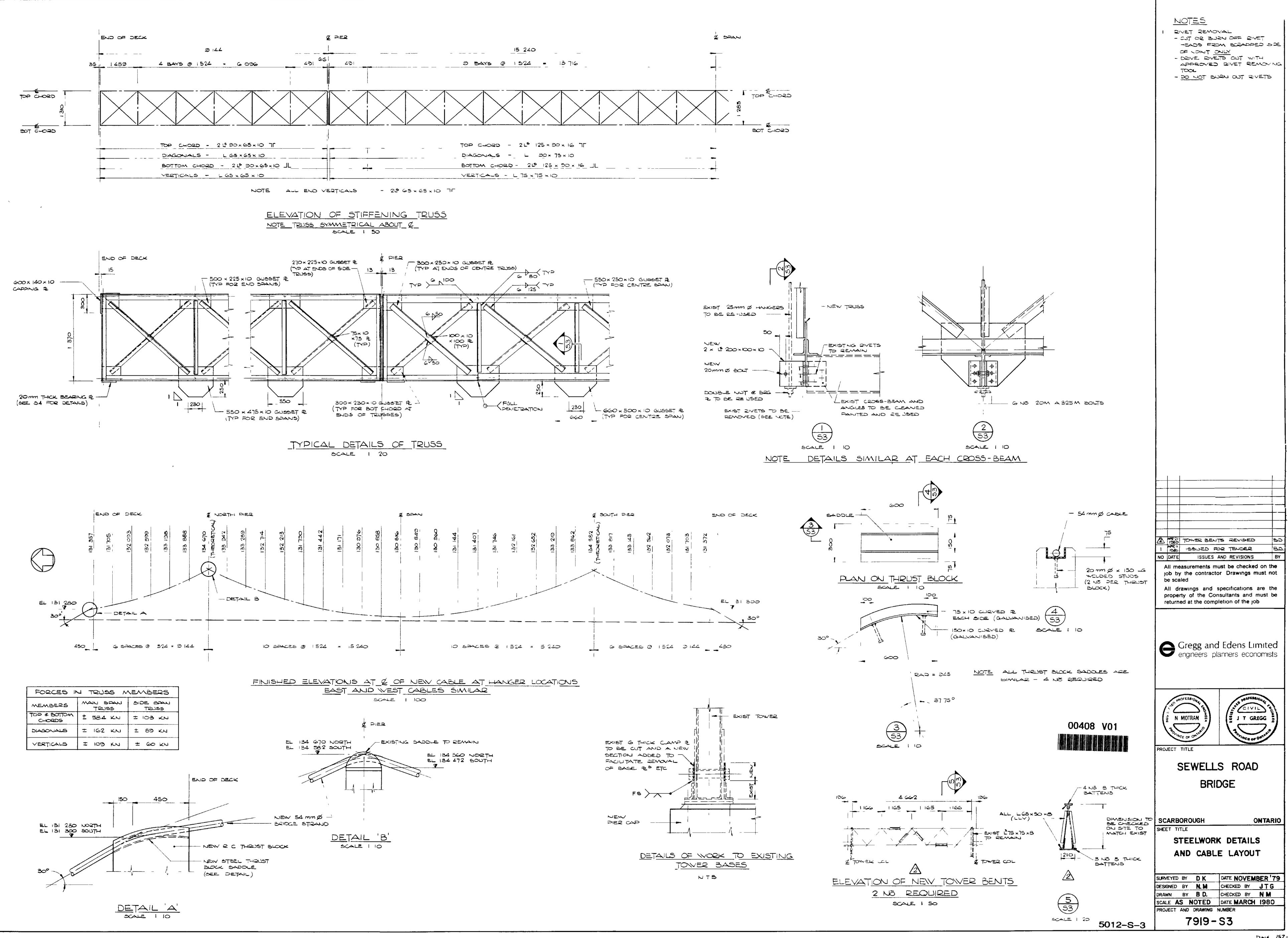
						DESIGN	
						DRAWN GS	
GH	Wyllie & Ufnal					CHECKED	
	consulting engineers					APPROVED B F	
						DATE AUG 1985	
		No	BY	REVISIONS	DATE	SCALE	

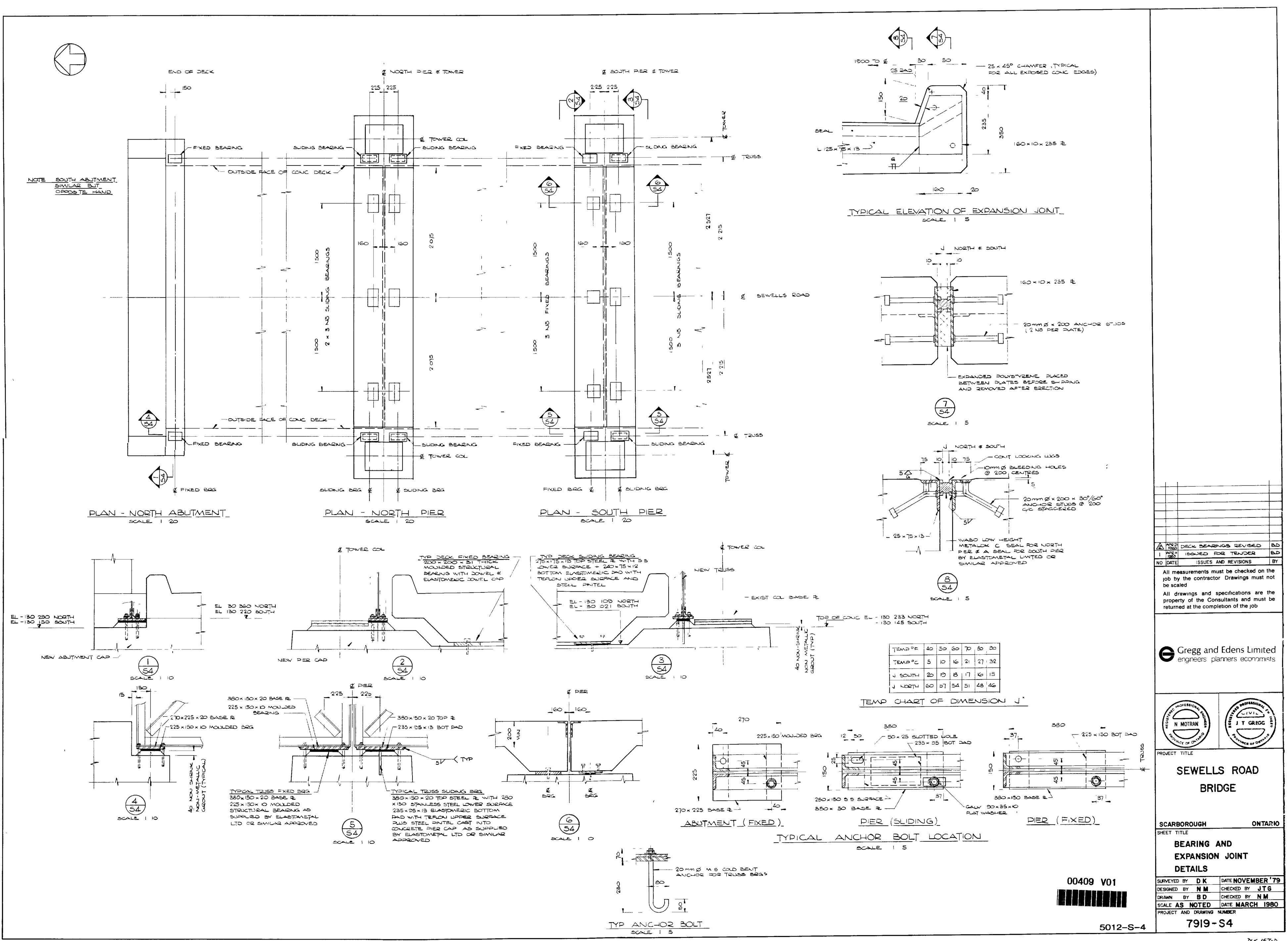
-


 \wedge 8238 9 i I

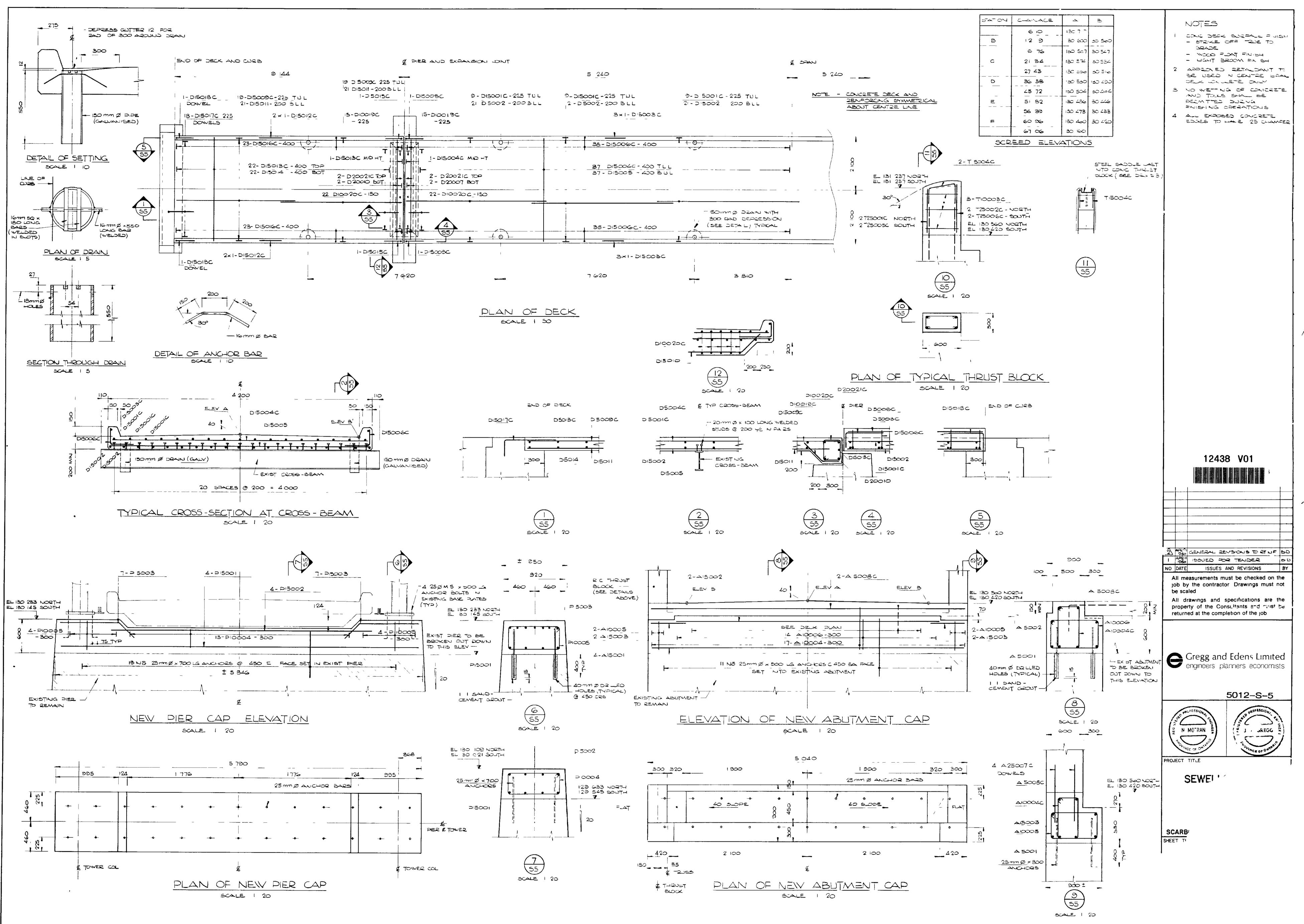

E'TE Nº 3820

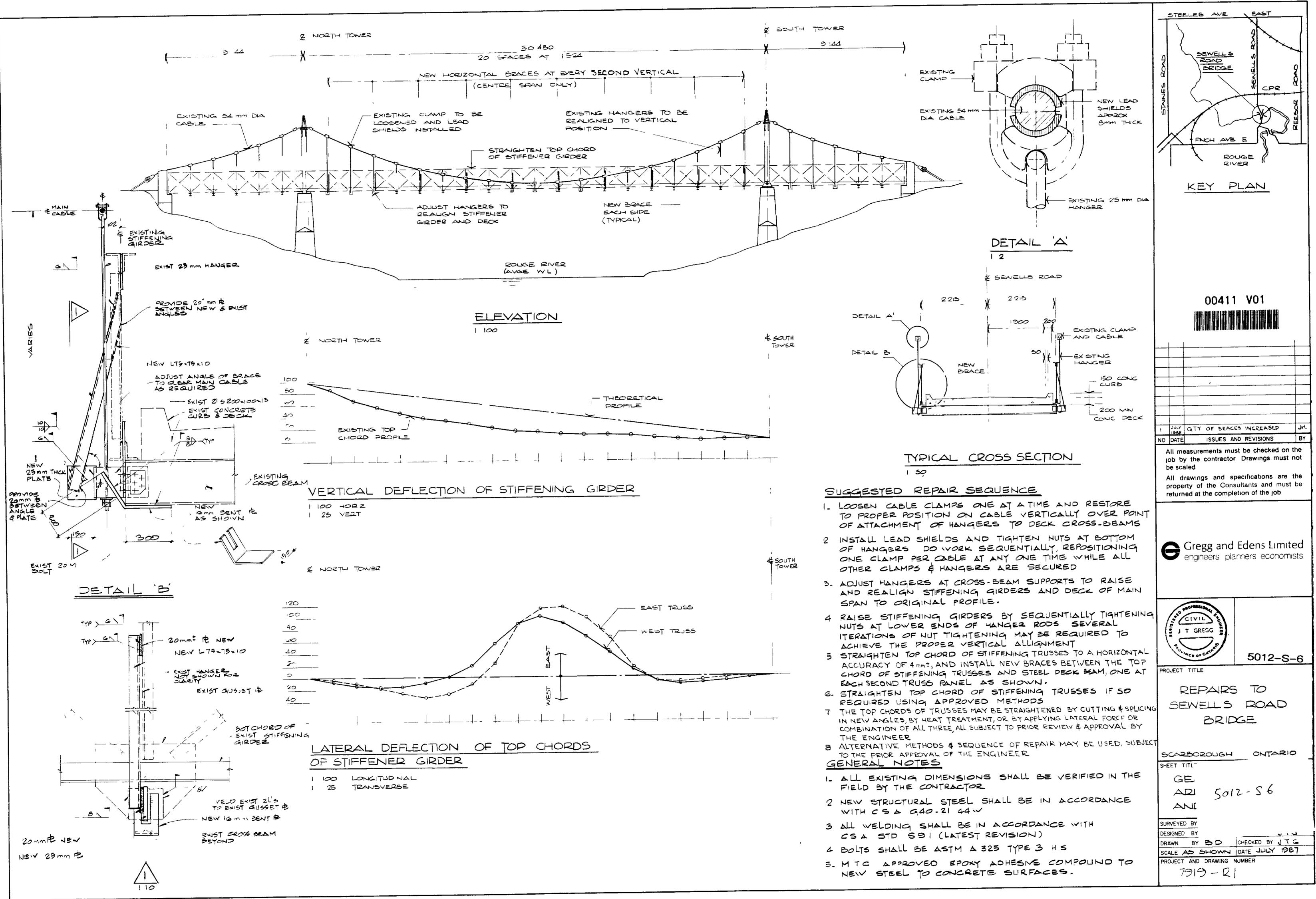
 \mathcal{G}

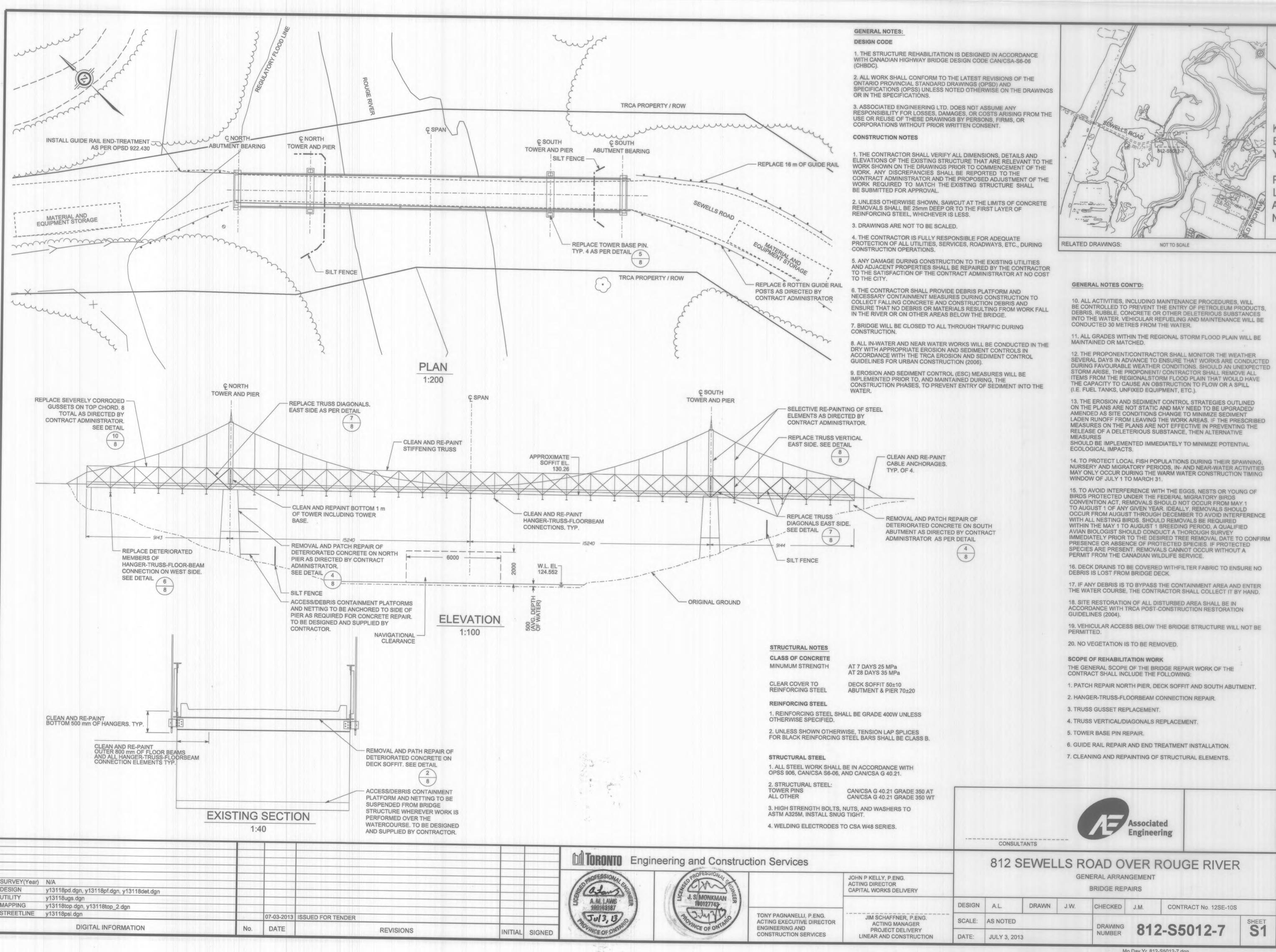




SAMPLE	LOCATION	KOI	UTS KSI	ELONG %IN8	C ≫⁄o	Mn	5	5
*1	WEB OF CROSS BEAM	37	58 9	24 8	0 27		0 055	001
• 2	WEB OF TOWER	419	63	24 B	0 19	0.52	0-029	0 30

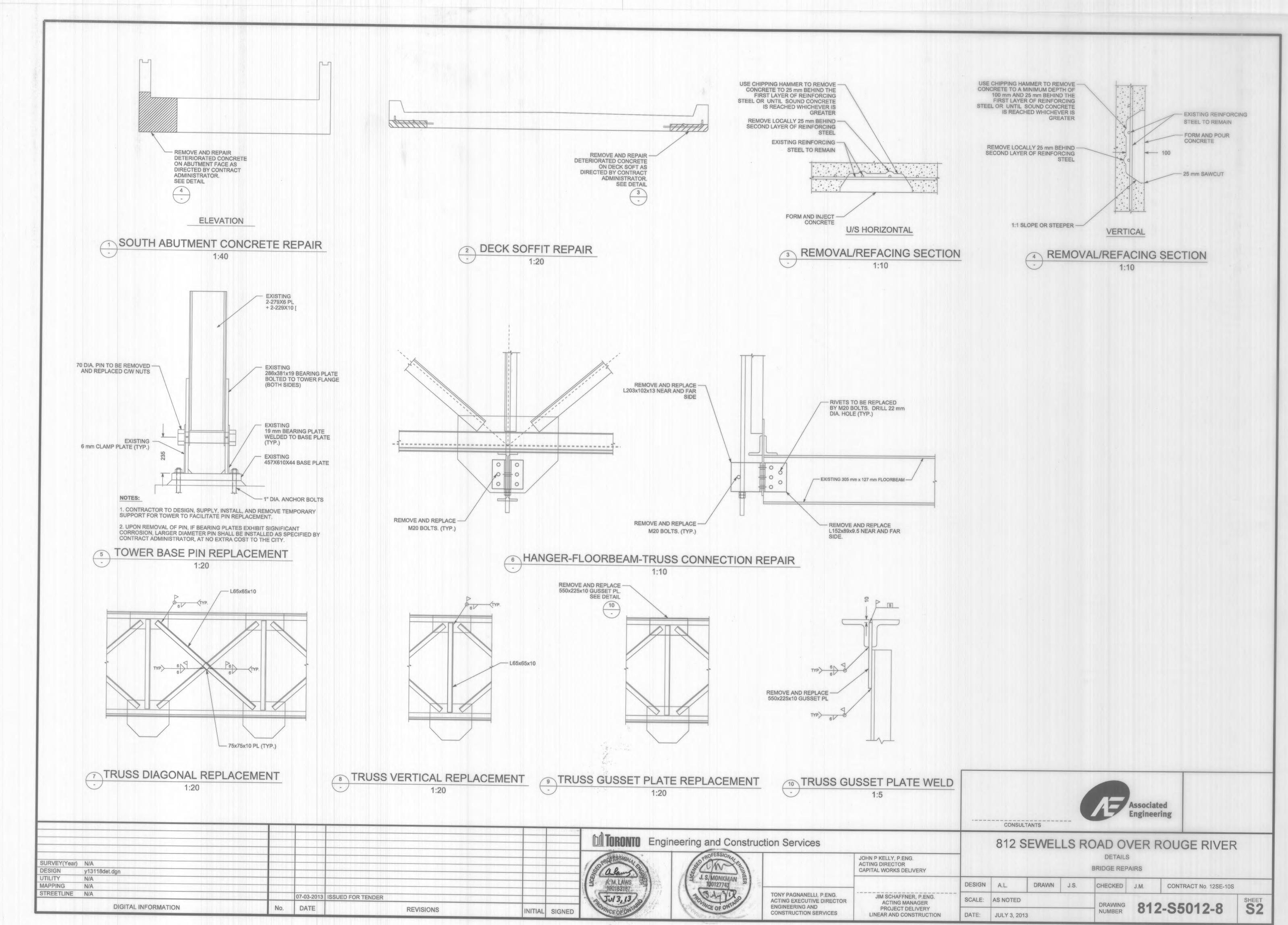


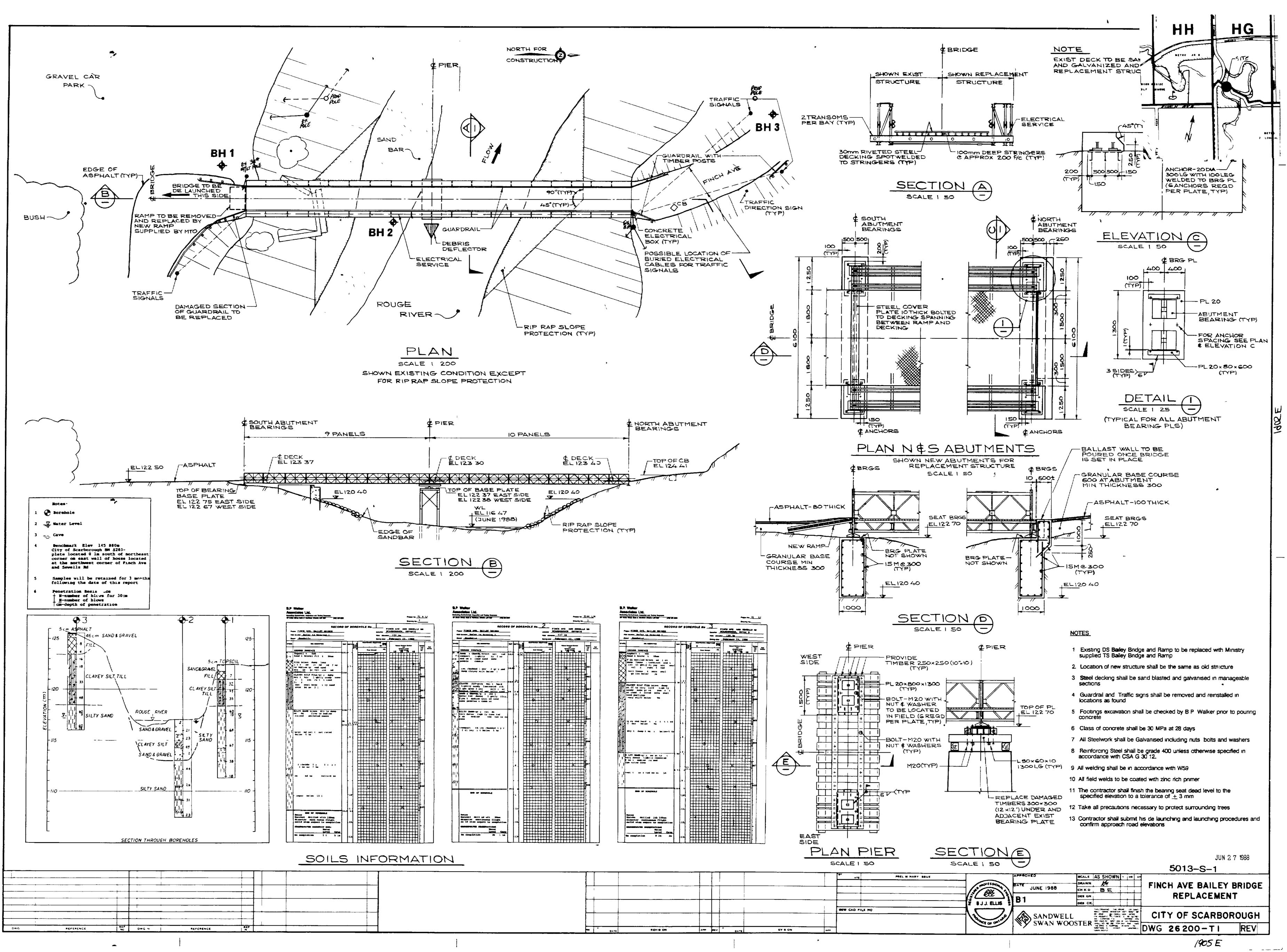

DW6 157-5

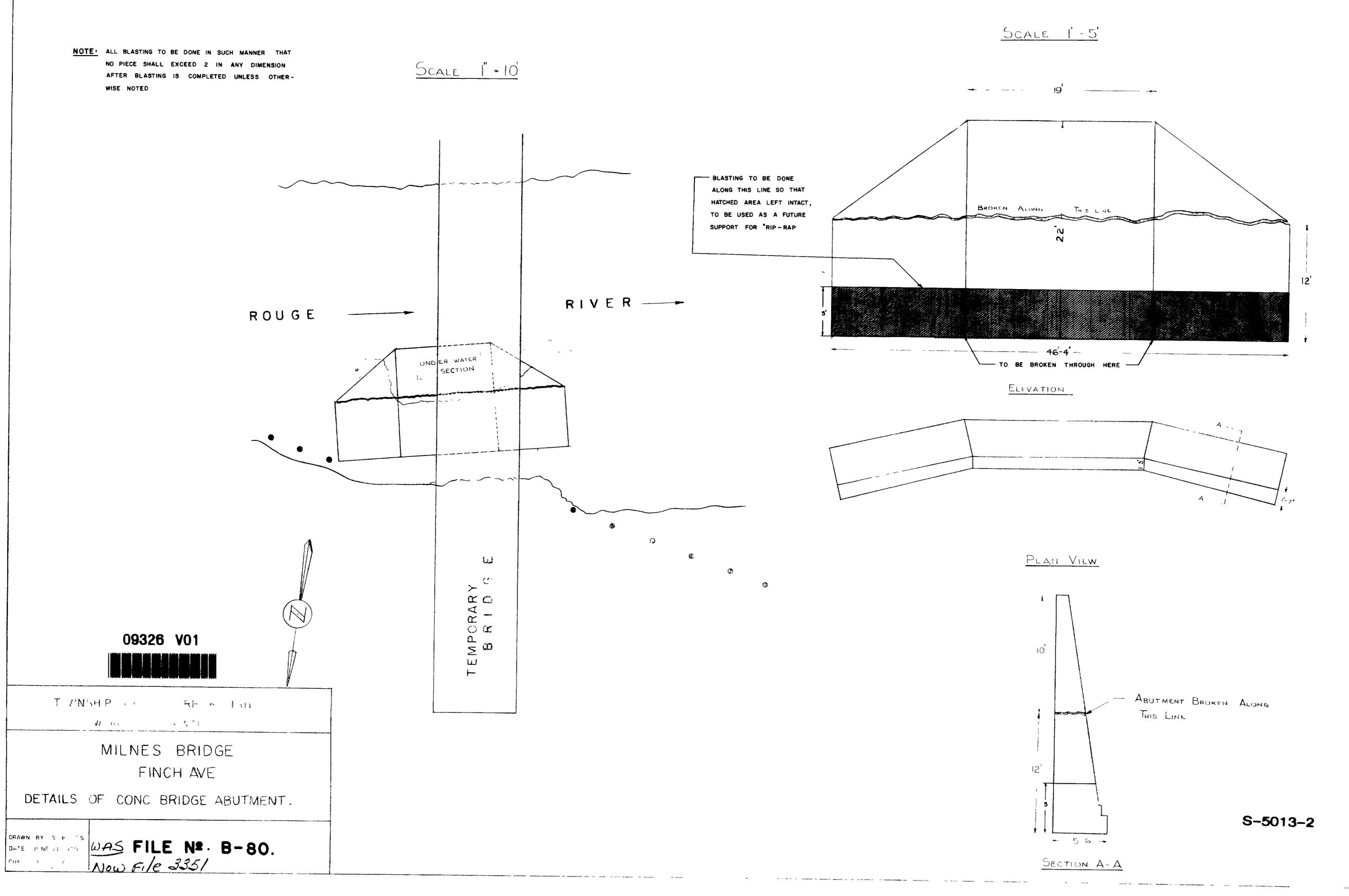


Due 157-D

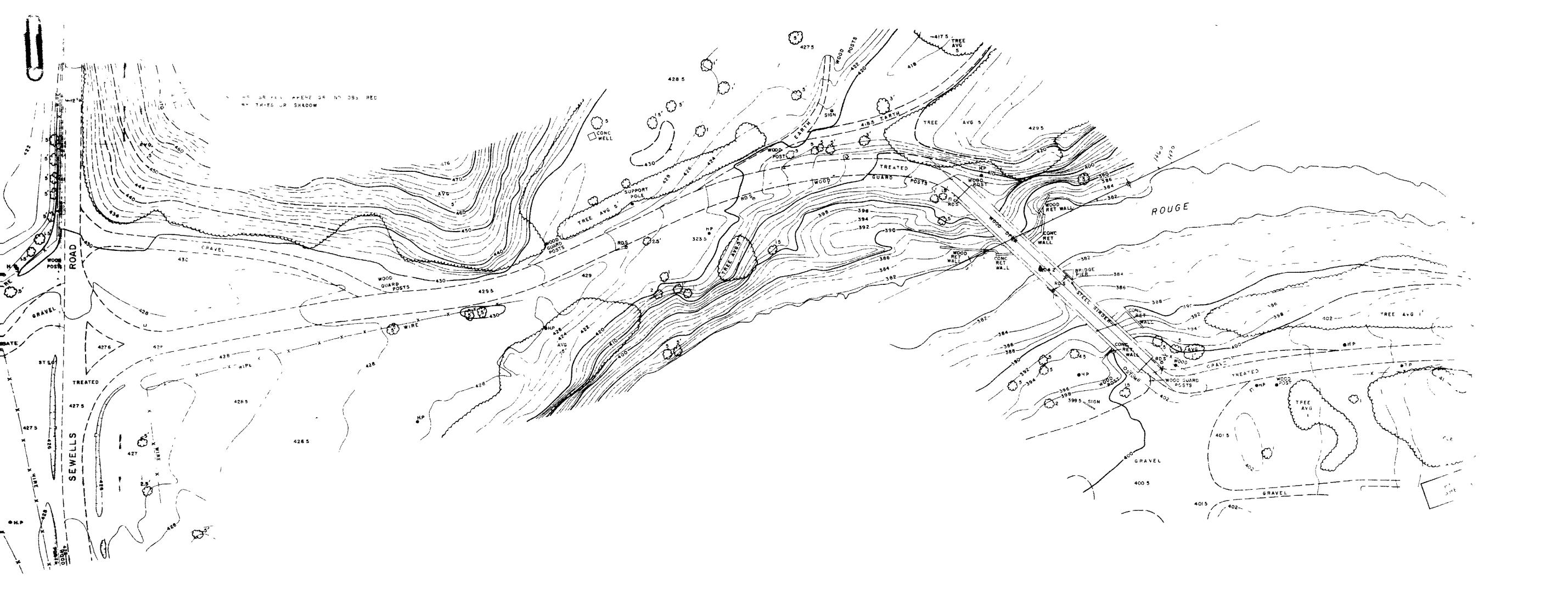





I	A	C	C	0	R	D	A	V	C	E
ų	N	C	S	A	_5	6	-0	6		


.

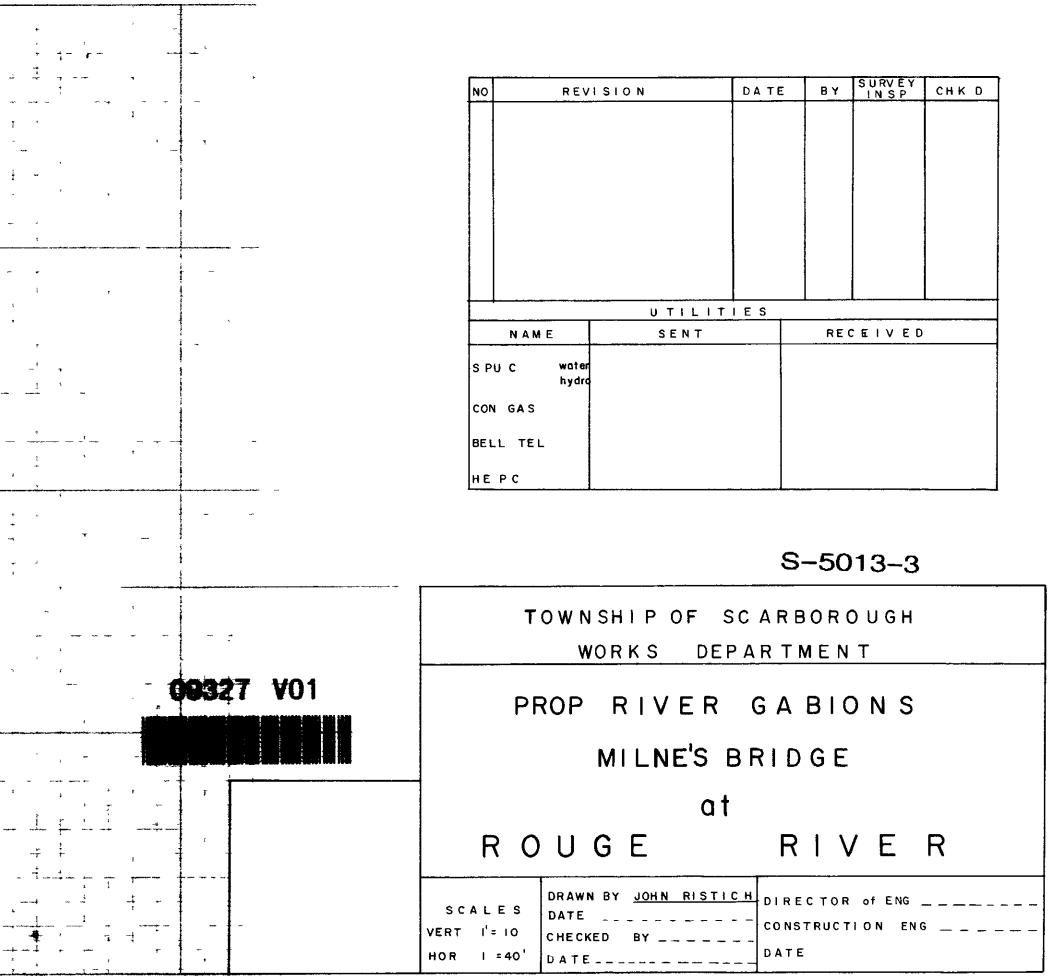
Mo.Day.Yr \$\$FILE\$\$


U.

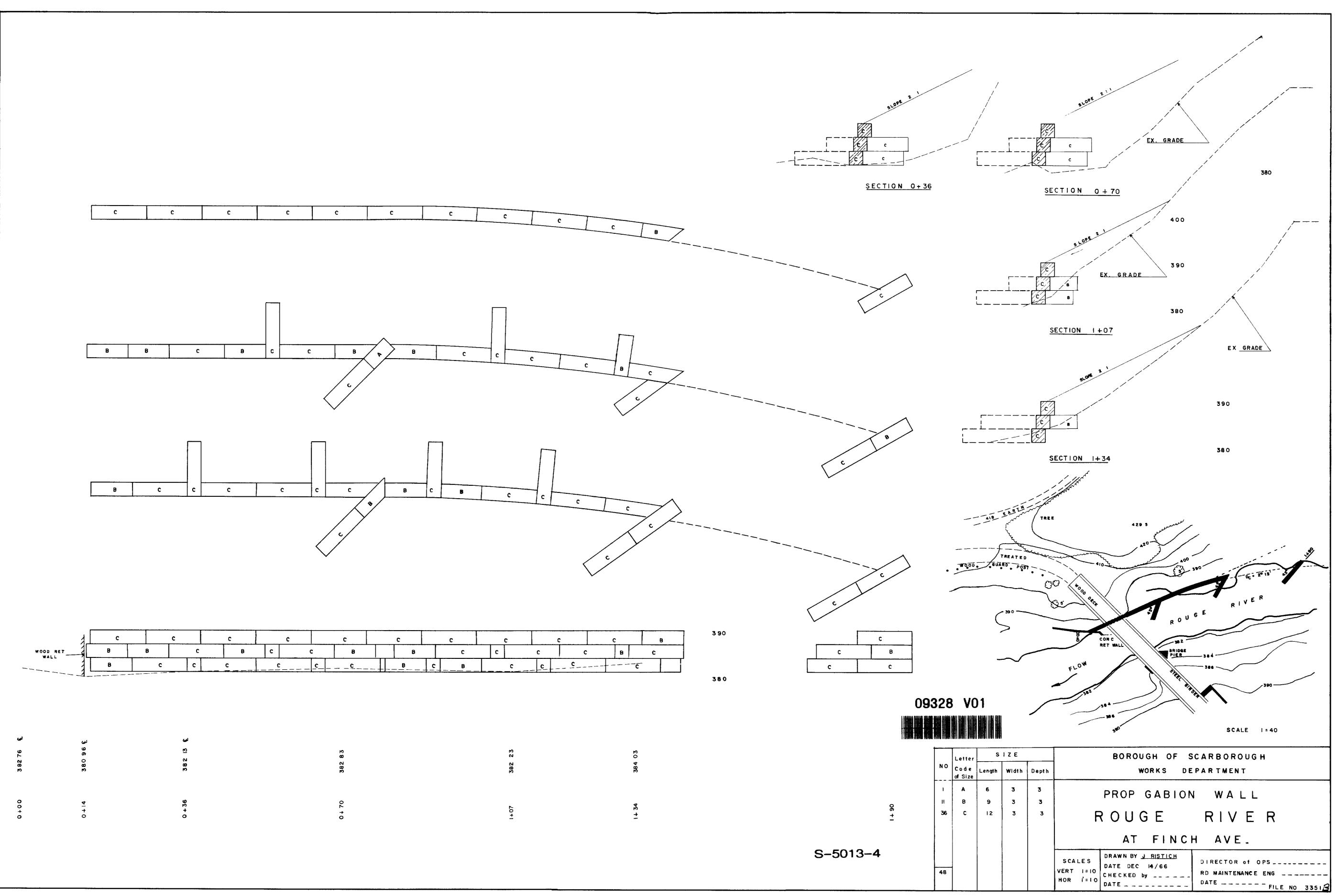
30

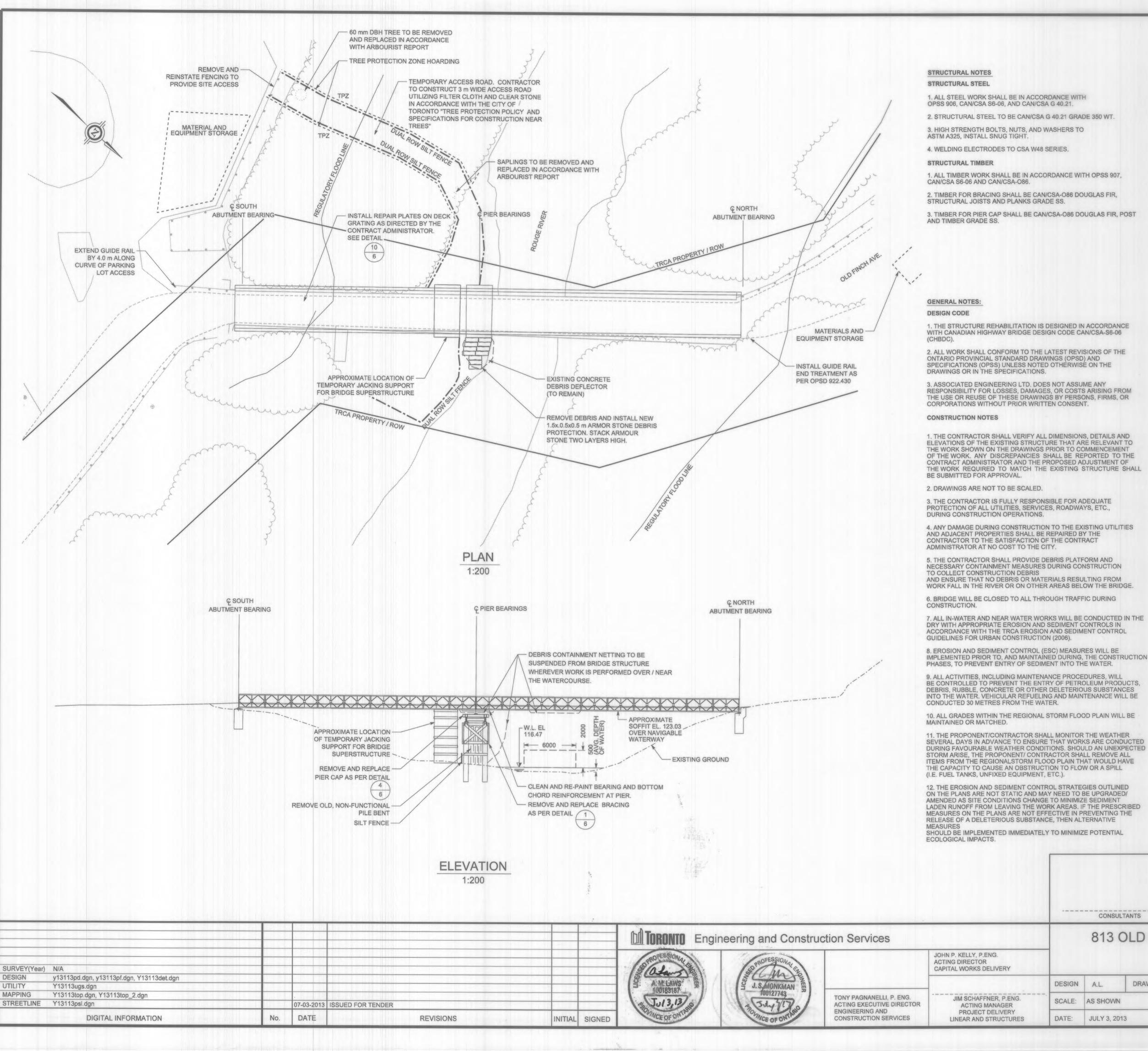
むそう

÷


-

	STANDARD S		RD 80 PLATE A 4 X 20	AGHATE ZON		
						 + + 1 +
					A panna a nap an A	J.
	1					
						· · · · · · · · · · · · · · · · · · ·
						۲ ۱ ۱
				· · · · · · · · · · · ·		! •
					2 2 3 7 7 7 7	
	~ -					+
						: !
						۲ ۲ ۹
	1 - 1 - 1 - 1		· - · · · · · · · · ·		3	~ /***
			1		a and a second sec	i ģ
						Ŧ
						- •
				· · · · · · · · · · · · · · · · · · ·		-
	······································				۱ ۲ ۹	


HATCH STANDARD & FUTCE PROFILE PLAT- & # X 20 WHED HUSA ON INFERME IRECHE CLOTH


14

HALL STANDARD B REALE PLATE A 4 X 20 PROFILE PLATE A 4 X 20

PLAN NO 3351 A

	_
CLD FINCH AVE	KEY
OLD FINICH AVE	P L A N
RELATED DRAWINGS: P-/U- NOT TO SCALE	

GENERAL NOTES CONT'D:

13. TO PROTECT LOCAL FISH POPULATIONS DURING THEIR SPAWNING. NURSERY AND MIGRATORY PERIODS, IN- AND NEAR-WATER ACTIVITIES MAY ONLY OCCUR DURING THE WARM WATER CONSTRUCTION TIMING WINDOW OF JULY 1 TO MARCH 31.

14. TO AVOID INTERFERENCE WITH THE EGGS, NESTS OR YOUNG OF BIRDS PROTECTED UNDER THE FEDERAL MIGRATORY BIRDS CONVENTION ACT, REMOVALS SHOULD NOT OCCUR FROM MAY 1 TO AUGUST 1 OF ANY GIVEN YEAR. IDEALLY, REMOVALS SHOULD OCCUR FROM AUGUST THROUGH DECEMBER TO AVOID INTERFERENCE WITH ALL NESTING BIRDS. SHOULD REMOVALS BE REQUIRED WITHIN THE MAY 1 TO AUGUST 1 BREEDING PERIOD, A QUALIFIED AVIAN BIOLOGIST SHOULD CONDUCT A THOROUGH SURVEY IMMEDIATELY PRIOR TO THE DESIRED TREE REMOVAL DATE TO CONFIRM PRESENCE OR ABSENCE OF PROTECTED SPECIES. IF PROTECTED SPECIES ARE PRESENT, REMOVALS CANNOT OCCUR WITHOUT A PERMIT FROM THE CANADIAN WILDLIFE SERVICE.

15. ROOT PROTECTION SHALL BE INSTALLED WHERE REQUIRED IN CONSTRUCTION ACCESS LOCATIONS TO THE SATISFACTION OF URBAN FORESTRY IN ORDER TO PROTECT TREE ROOTS FROM COMPACTION DURING CONSTRUCTION. ROOT PROTECTION SHALL CONSIST OF A COMBINATION OF FILTER FABRIC, CLEAR CRUSHED STONE (HALF TO THREE QUARTER INCH DIAMETER) PLACED IN A LAYER 15 cm DEEP, AND STEEL PLATING OR OTHER MATERIAL, AS APPROVED BY URBAN FORESTRY.

16. ONCE ALL TREE/SITE PROTECTION MEASURES HAVE BEEN INSTALLED CONTRACTOR MUST NOTIFY URBAN FORESTRY STAFF TO ARRANGE FOR AN INSPECTION OF THE SITE AND APPROVAL OF THE SITE PROTECTION REQUIREMENTS.

17. IF ANY DEBRIS IS TO BYPASS THE CONTAINMENT AREA AND ENTER THE WATERCOURSE, THE CONTRACTOR SHALL COLLECT IT BY HAND.

18. SITE RESTORATION OF ALL DISTURBED AREAS SHALL BE IN ACCORDANCE WITH TRCA POST-CONSTRUCTION RESTORATION GUIDELINES (2004), INCLUDING BUT NOT LIMITED TO REMOVAL OF TEMPORARY FILL MATERIALS, SEEDING USING TRCA APPROVED NATIVE SEED MIXTURE AND PLANTING OF NATIVE SPECIES TREES.

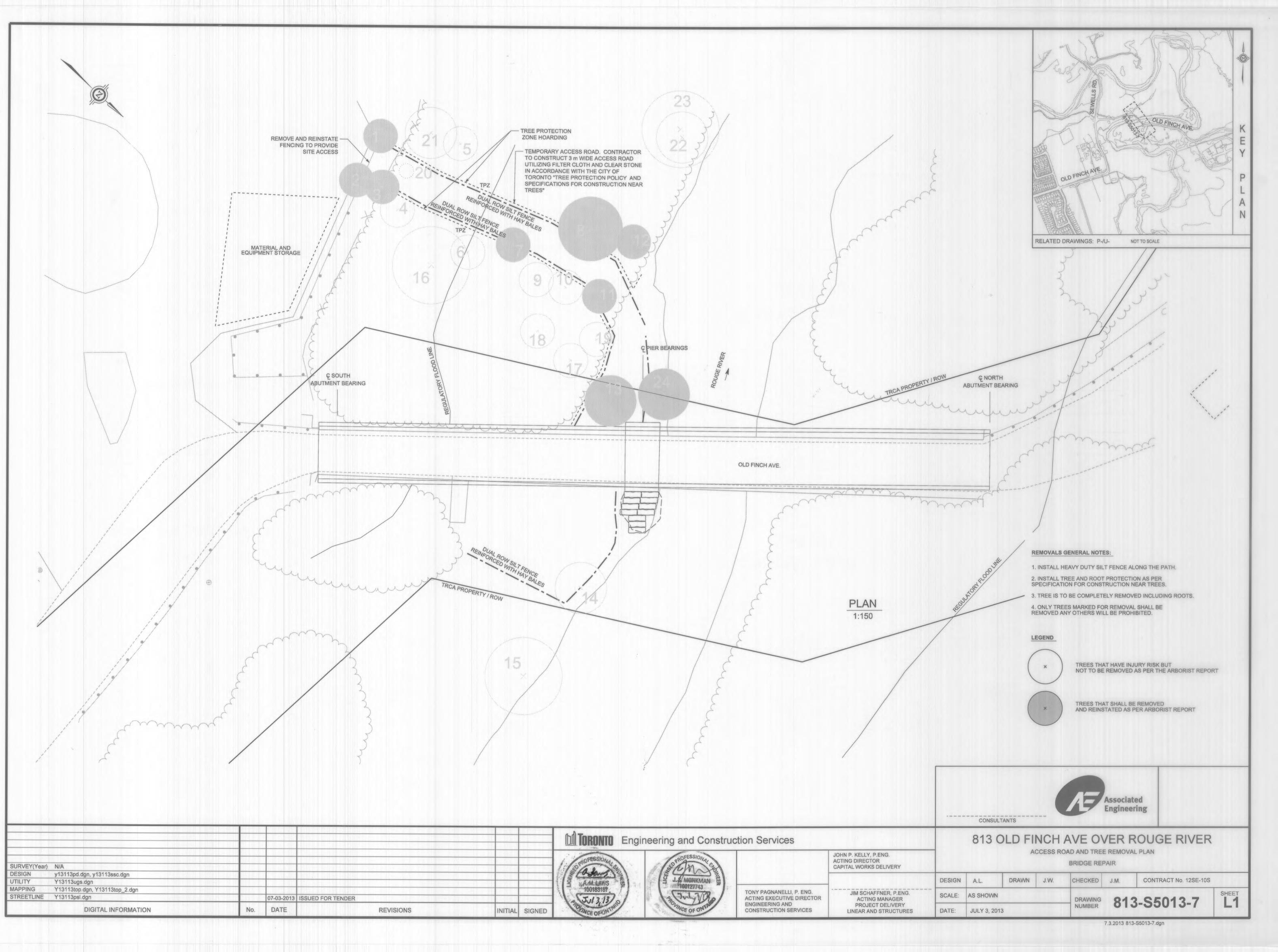
19. VEHICULAR ACCESS BELOW THE BRIDGE STRUCTURE WILL NOT BE PERMITTED.

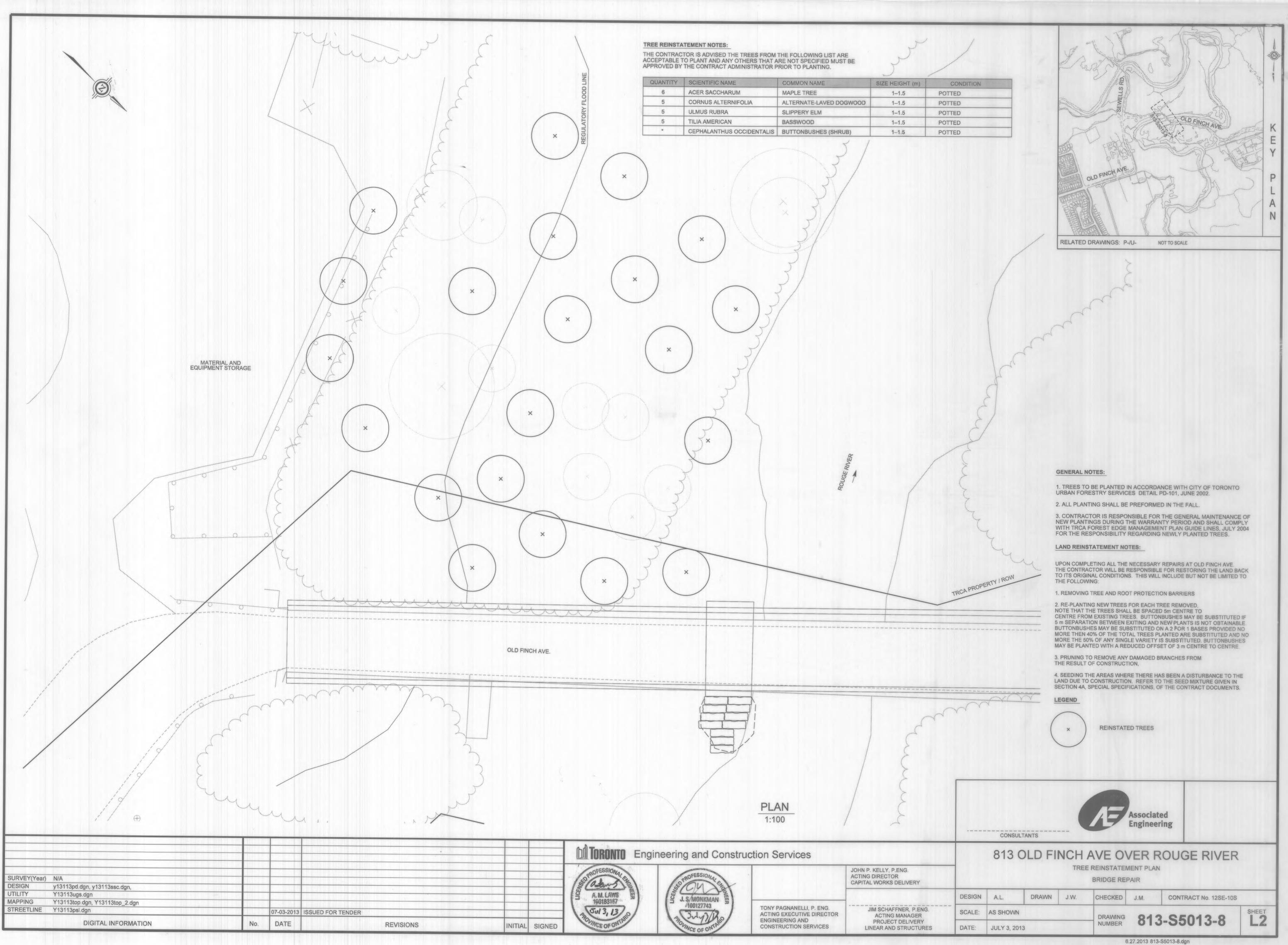
20. NO VEGETATION IS TO BE REMOVED.

SCOPE OF REHABILITATION WORK

THE GENERAL SCOPE OF THE BRIDGE REPAIR WORK OF THE CONTRACT SHALL INCLUDE THE FOLLOWING:

1. REMOVE EXISTING PIER CAP AND NON-FUNCTIONING PILE BENT.


- 2. INSTALL NEW PIER CAP AND BRACING.
- 3. REPAIR GUIDE RAIL AND INSTALL END TREATMENTS.


4. CLEAN AND REPAINT BEARINGS AND BOTTOM CHORD REINFORCEMENT AT PIER.

5. REPAIR DAMAGED DECK GRATING.

6. INSTALL DEBRIS / ICE PROTECTION UPSTREAM OF PIER.

		(Associa Engine		
	OLD FI				ROUGE RIVER	2
			BRIDGE REF	PAIR		
A.L.	DRAWN	J.S.	CHECKED	J.M.	CONTRACT No. 12SE-105	;
SHOW	1		DRAWING	04	0 00040 0	SHEET
JULY 3, 20	013		NUMBER	81	3-S5013-5	S1
			4	.16.2013 81	13-S5013-5.dgn	

Appendix D

MECP Water Well Records

MECP Well Record Summary Table

Well ID	UTM Coordinates Easting	UTM Coordinates Northing	Date Completed	Depth to Bedrock (m)	Well Depth (m)	Static Level (m)	Well Use
6905360	646417.7	4854337	1959-03-09	46.6	53.6	10.7	Abandoned
7210288	646165	4854580	2013-05-24	-	0	0	Abandoned
6923130	646152	4854543	1993-04-06	-	30.5	6.7	Supply Wells
6911174	648094.8	4852463	1972-08-10	11.3	59.1	0	Abandoned
6909829	646374.7	4854503	1970-03-14	-	33.2	20.7	Supply Wells
6927554	646351	4854285	2003-11-26	-	8.4	4.9	Supply Wells
6905367	644482.7	4854638	1963-11-02	-	10.7	7	Supply Wells
6909941	646454.7	4854463	1970-04-16	45.7	48.8	0	Abandoned
7234364	646359	4854568	2014-08-21	-	0	0	Supply Wells
6927557	646351	4854285	2003-12-09	-	7.6	0	Unknown
6911175	648054.8	4852463	1972-06-19	12.2	55.8	0	Abandoned
6927553	646341	4854772	2003-12-16	-	0	0	Abandoned
6927559	646373	4854747	2003-12-15	-	15.2	9.9	Supply Wells
6927919	644764	4854499	2004-06-02	-	0	0	Abandoned
6927921	644857	4854053	2004-06-11	-	0	0	Abandoned
6927662	644775	4854276	2004-02-23	-	23.6	13.1	Supply Wells
6929072	644745	4853898	2005-04-07	42.4	48.1	26.4	Supply Wells
6927560	644967	4854138	2003-12-23	-	15.7	0	Supply Wells
6905359	646429.7	4854374	1959-04-13	-	35.7	11.3	Supply Wells
6909731	646374.7	4854583	1969-10-09	-	24.4	7.6	Supply Wells
6929071	644698	4853647	2005-04-06	43.6	48.1	26.1	Supply Wells